Properties

Label 2070.2.e.b.1241.7
Level $2070$
Weight $2$
Character 2070.1241
Analytic conductor $16.529$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2070,2,Mod(1241,2070)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2070, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2070.1241");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2070.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5290332184\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 32x^{14} + 392x^{12} + 2324x^{10} + 6930x^{8} + 9856x^{6} + 5740x^{4} + 1108x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1241.7
Root \(-2.59147i\) of defining polynomial
Character \(\chi\) \(=\) 2070.1241
Dual form 2070.2.e.b.1241.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +1.00000 q^{5} +3.66489i q^{7} +1.00000i q^{8} -1.00000i q^{10} -4.11811 q^{11} +1.37333 q^{13} +3.66489 q^{14} +1.00000 q^{16} -5.07910 q^{17} -4.19067i q^{19} -1.00000 q^{20} +4.11811i q^{22} +(-3.46711 - 3.31348i) q^{23} +1.00000 q^{25} -1.37333i q^{26} -3.66489i q^{28} +8.77528i q^{29} -2.18748 q^{31} -1.00000i q^{32} +5.07910i q^{34} +3.66489i q^{35} -3.27275i q^{37} -4.19067 q^{38} +1.00000i q^{40} -7.34071i q^{41} -3.98306i q^{43} +4.11811 q^{44} +(-3.31348 + 3.46711i) q^{46} -13.3579i q^{47} -6.43143 q^{49} -1.00000i q^{50} -1.37333 q^{52} -9.16726 q^{53} -4.11811 q^{55} -3.66489 q^{56} +8.77528 q^{58} -7.31535i q^{59} +3.23953i q^{61} +2.18748i q^{62} -1.00000 q^{64} +1.37333 q^{65} -6.81459i q^{67} +5.07910 q^{68} +3.66489 q^{70} -10.4476i q^{71} -8.69614 q^{73} -3.27275 q^{74} +4.19067i q^{76} -15.0924i q^{77} +0.619189i q^{79} +1.00000 q^{80} -7.34071 q^{82} -7.82170 q^{83} -5.07910 q^{85} -3.98306 q^{86} -4.11811i q^{88} -0.592028 q^{89} +5.03309i q^{91} +(3.46711 + 3.31348i) q^{92} -13.3579 q^{94} -4.19067i q^{95} +11.4733i q^{97} +6.43143i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{5} - 24 q^{11} + 16 q^{16} - 16 q^{20} - 4 q^{23} + 16 q^{25} - 8 q^{31} - 8 q^{38} + 24 q^{44} - 4 q^{46} - 16 q^{49} + 8 q^{53} - 24 q^{55} + 16 q^{58} - 16 q^{64} + 32 q^{73}+ \cdots + 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2070\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(1657\) \(1891\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.66489i 1.38520i 0.721322 + 0.692599i \(0.243535\pi\)
−0.721322 + 0.692599i \(0.756465\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −4.11811 −1.24166 −0.620829 0.783946i \(-0.713204\pi\)
−0.620829 + 0.783946i \(0.713204\pi\)
\(12\) 0 0
\(13\) 1.37333 0.380892 0.190446 0.981698i \(-0.439007\pi\)
0.190446 + 0.981698i \(0.439007\pi\)
\(14\) 3.66489 0.979483
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.07910 −1.23186 −0.615932 0.787799i \(-0.711220\pi\)
−0.615932 + 0.787799i \(0.711220\pi\)
\(18\) 0 0
\(19\) 4.19067i 0.961405i −0.876884 0.480702i \(-0.840382\pi\)
0.876884 0.480702i \(-0.159618\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 4.11811i 0.877985i
\(23\) −3.46711 3.31348i −0.722943 0.690908i
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 1.37333i 0.269332i
\(27\) 0 0
\(28\) 3.66489i 0.692599i
\(29\) 8.77528i 1.62953i 0.579793 + 0.814764i \(0.303133\pi\)
−0.579793 + 0.814764i \(0.696867\pi\)
\(30\) 0 0
\(31\) −2.18748 −0.392882 −0.196441 0.980516i \(-0.562938\pi\)
−0.196441 + 0.980516i \(0.562938\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 5.07910i 0.871059i
\(35\) 3.66489i 0.619480i
\(36\) 0 0
\(37\) 3.27275i 0.538037i −0.963135 0.269018i \(-0.913301\pi\)
0.963135 0.269018i \(-0.0866992\pi\)
\(38\) −4.19067 −0.679816
\(39\) 0 0
\(40\) 1.00000i 0.158114i
\(41\) 7.34071i 1.14643i −0.819406 0.573213i \(-0.805697\pi\)
0.819406 0.573213i \(-0.194303\pi\)
\(42\) 0 0
\(43\) 3.98306i 0.607412i −0.952766 0.303706i \(-0.901776\pi\)
0.952766 0.303706i \(-0.0982240\pi\)
\(44\) 4.11811 0.620829
\(45\) 0 0
\(46\) −3.31348 + 3.46711i −0.488545 + 0.511198i
\(47\) 13.3579i 1.94845i −0.225570 0.974227i \(-0.572424\pi\)
0.225570 0.974227i \(-0.427576\pi\)
\(48\) 0 0
\(49\) −6.43143 −0.918776
\(50\) 1.00000i 0.141421i
\(51\) 0 0
\(52\) −1.37333 −0.190446
\(53\) −9.16726 −1.25922 −0.629610 0.776911i \(-0.716785\pi\)
−0.629610 + 0.776911i \(0.716785\pi\)
\(54\) 0 0
\(55\) −4.11811 −0.555286
\(56\) −3.66489 −0.489742
\(57\) 0 0
\(58\) 8.77528 1.15225
\(59\) 7.31535i 0.952377i −0.879343 0.476189i \(-0.842018\pi\)
0.879343 0.476189i \(-0.157982\pi\)
\(60\) 0 0
\(61\) 3.23953i 0.414780i 0.978258 + 0.207390i \(0.0664969\pi\)
−0.978258 + 0.207390i \(0.933503\pi\)
\(62\) 2.18748i 0.277810i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.37333 0.170340
\(66\) 0 0
\(67\) 6.81459i 0.832534i −0.909242 0.416267i \(-0.863338\pi\)
0.909242 0.416267i \(-0.136662\pi\)
\(68\) 5.07910 0.615932
\(69\) 0 0
\(70\) 3.66489 0.438038
\(71\) 10.4476i 1.23990i −0.784641 0.619950i \(-0.787153\pi\)
0.784641 0.619950i \(-0.212847\pi\)
\(72\) 0 0
\(73\) −8.69614 −1.01781 −0.508903 0.860824i \(-0.669949\pi\)
−0.508903 + 0.860824i \(0.669949\pi\)
\(74\) −3.27275 −0.380449
\(75\) 0 0
\(76\) 4.19067i 0.480702i
\(77\) 15.0924i 1.71994i
\(78\) 0 0
\(79\) 0.619189i 0.0696642i 0.999393 + 0.0348321i \(0.0110896\pi\)
−0.999393 + 0.0348321i \(0.988910\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −7.34071 −0.810646
\(83\) −7.82170 −0.858543 −0.429272 0.903175i \(-0.641230\pi\)
−0.429272 + 0.903175i \(0.641230\pi\)
\(84\) 0 0
\(85\) −5.07910 −0.550906
\(86\) −3.98306 −0.429505
\(87\) 0 0
\(88\) 4.11811i 0.438992i
\(89\) −0.592028 −0.0627548 −0.0313774 0.999508i \(-0.509989\pi\)
−0.0313774 + 0.999508i \(0.509989\pi\)
\(90\) 0 0
\(91\) 5.03309i 0.527612i
\(92\) 3.46711 + 3.31348i 0.361472 + 0.345454i
\(93\) 0 0
\(94\) −13.3579 −1.37777
\(95\) 4.19067i 0.429953i
\(96\) 0 0
\(97\) 11.4733i 1.16493i 0.812854 + 0.582467i \(0.197913\pi\)
−0.812854 + 0.582467i \(0.802087\pi\)
\(98\) 6.43143i 0.649672i
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 9.81005i 0.976136i 0.872805 + 0.488068i \(0.162298\pi\)
−0.872805 + 0.488068i \(0.837702\pi\)
\(102\) 0 0
\(103\) 12.9748i 1.27845i 0.769020 + 0.639225i \(0.220745\pi\)
−0.769020 + 0.639225i \(0.779255\pi\)
\(104\) 1.37333i 0.134666i
\(105\) 0 0
\(106\) 9.16726i 0.890403i
\(107\) 17.2233 1.66504 0.832520 0.553994i \(-0.186897\pi\)
0.832520 + 0.553994i \(0.186897\pi\)
\(108\) 0 0
\(109\) 2.13239i 0.204246i 0.994772 + 0.102123i \(0.0325635\pi\)
−0.994772 + 0.102123i \(0.967436\pi\)
\(110\) 4.11811i 0.392647i
\(111\) 0 0
\(112\) 3.66489i 0.346300i
\(113\) −10.6560 −1.00243 −0.501214 0.865323i \(-0.667113\pi\)
−0.501214 + 0.865323i \(0.667113\pi\)
\(114\) 0 0
\(115\) −3.46711 3.31348i −0.323310 0.308983i
\(116\) 8.77528i 0.814764i
\(117\) 0 0
\(118\) −7.31535 −0.673432
\(119\) 18.6144i 1.70638i
\(120\) 0 0
\(121\) 5.95885 0.541714
\(122\) 3.23953 0.293294
\(123\) 0 0
\(124\) 2.18748 0.196441
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.9442 1.05988 0.529938 0.848037i \(-0.322215\pi\)
0.529938 + 0.848037i \(0.322215\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 1.37333i 0.120449i
\(131\) 3.60510i 0.314979i 0.987521 + 0.157490i \(0.0503401\pi\)
−0.987521 + 0.157490i \(0.949660\pi\)
\(132\) 0 0
\(133\) 15.3583 1.33174
\(134\) −6.81459 −0.588691
\(135\) 0 0
\(136\) 5.07910i 0.435530i
\(137\) −15.5428 −1.32791 −0.663957 0.747771i \(-0.731124\pi\)
−0.663957 + 0.747771i \(0.731124\pi\)
\(138\) 0 0
\(139\) −6.30232 −0.534556 −0.267278 0.963619i \(-0.586124\pi\)
−0.267278 + 0.963619i \(0.586124\pi\)
\(140\) 3.66489i 0.309740i
\(141\) 0 0
\(142\) −10.4476 −0.876742
\(143\) −5.65551 −0.472938
\(144\) 0 0
\(145\) 8.77528i 0.728747i
\(146\) 8.69614i 0.719698i
\(147\) 0 0
\(148\) 3.27275i 0.269018i
\(149\) −6.79080 −0.556324 −0.278162 0.960534i \(-0.589725\pi\)
−0.278162 + 0.960534i \(0.589725\pi\)
\(150\) 0 0
\(151\) 19.1608 1.55929 0.779643 0.626224i \(-0.215401\pi\)
0.779643 + 0.626224i \(0.215401\pi\)
\(152\) 4.19067 0.339908
\(153\) 0 0
\(154\) −15.0924 −1.21618
\(155\) −2.18748 −0.175702
\(156\) 0 0
\(157\) 14.1815i 1.13181i 0.824471 + 0.565904i \(0.191473\pi\)
−0.824471 + 0.565904i \(0.808527\pi\)
\(158\) 0.619189 0.0492600
\(159\) 0 0
\(160\) 1.00000i 0.0790569i
\(161\) 12.1435 12.7066i 0.957044 1.00142i
\(162\) 0 0
\(163\) −11.7476 −0.920140 −0.460070 0.887883i \(-0.652176\pi\)
−0.460070 + 0.887883i \(0.652176\pi\)
\(164\) 7.34071i 0.573213i
\(165\) 0 0
\(166\) 7.82170i 0.607082i
\(167\) 19.2009i 1.48581i 0.669396 + 0.742906i \(0.266553\pi\)
−0.669396 + 0.742906i \(0.733447\pi\)
\(168\) 0 0
\(169\) −11.1140 −0.854921
\(170\) 5.07910i 0.389550i
\(171\) 0 0
\(172\) 3.98306i 0.303706i
\(173\) 3.67537i 0.279433i 0.990192 + 0.139717i \(0.0446191\pi\)
−0.990192 + 0.139717i \(0.955381\pi\)
\(174\) 0 0
\(175\) 3.66489i 0.277040i
\(176\) −4.11811 −0.310414
\(177\) 0 0
\(178\) 0.592028i 0.0443744i
\(179\) 16.7414i 1.25131i −0.780101 0.625654i \(-0.784832\pi\)
0.780101 0.625654i \(-0.215168\pi\)
\(180\) 0 0
\(181\) 1.04339i 0.0775547i −0.999248 0.0387774i \(-0.987654\pi\)
0.999248 0.0387774i \(-0.0123463\pi\)
\(182\) 5.03309 0.373078
\(183\) 0 0
\(184\) 3.31348 3.46711i 0.244273 0.255599i
\(185\) 3.27275i 0.240617i
\(186\) 0 0
\(187\) 20.9163 1.52955
\(188\) 13.3579i 0.974227i
\(189\) 0 0
\(190\) −4.19067 −0.304023
\(191\) 8.60808 0.622859 0.311429 0.950269i \(-0.399192\pi\)
0.311429 + 0.950269i \(0.399192\pi\)
\(192\) 0 0
\(193\) −24.8742 −1.79048 −0.895241 0.445581i \(-0.852997\pi\)
−0.895241 + 0.445581i \(0.852997\pi\)
\(194\) 11.4733 0.823733
\(195\) 0 0
\(196\) 6.43143 0.459388
\(197\) 23.0649i 1.64330i 0.569990 + 0.821651i \(0.306947\pi\)
−0.569990 + 0.821651i \(0.693053\pi\)
\(198\) 0 0
\(199\) 10.1323i 0.718259i 0.933288 + 0.359130i \(0.116926\pi\)
−0.933288 + 0.359130i \(0.883074\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0 0
\(202\) 9.81005 0.690233
\(203\) −32.1604 −2.25722
\(204\) 0 0
\(205\) 7.34071i 0.512698i
\(206\) 12.9748 0.904000
\(207\) 0 0
\(208\) 1.37333 0.0952231
\(209\) 17.2576i 1.19374i
\(210\) 0 0
\(211\) −17.7381 −1.22114 −0.610571 0.791961i \(-0.709060\pi\)
−0.610571 + 0.791961i \(0.709060\pi\)
\(212\) 9.16726 0.629610
\(213\) 0 0
\(214\) 17.2233i 1.17736i
\(215\) 3.98306i 0.271643i
\(216\) 0 0
\(217\) 8.01686i 0.544220i
\(218\) 2.13239 0.144424
\(219\) 0 0
\(220\) 4.11811 0.277643
\(221\) −6.97527 −0.469207
\(222\) 0 0
\(223\) −5.53297 −0.370515 −0.185258 0.982690i \(-0.559312\pi\)
−0.185258 + 0.982690i \(0.559312\pi\)
\(224\) 3.66489 0.244871
\(225\) 0 0
\(226\) 10.6560i 0.708824i
\(227\) −14.0021 −0.929351 −0.464676 0.885481i \(-0.653829\pi\)
−0.464676 + 0.885481i \(0.653829\pi\)
\(228\) 0 0
\(229\) 6.28684i 0.415446i −0.978188 0.207723i \(-0.933395\pi\)
0.978188 0.207723i \(-0.0666053\pi\)
\(230\) −3.31348 + 3.46711i −0.218484 + 0.228615i
\(231\) 0 0
\(232\) −8.77528 −0.576125
\(233\) 17.7054i 1.15992i 0.814646 + 0.579959i \(0.196931\pi\)
−0.814646 + 0.579959i \(0.803069\pi\)
\(234\) 0 0
\(235\) 13.3579i 0.871375i
\(236\) 7.31535i 0.476189i
\(237\) 0 0
\(238\) −18.6144 −1.20659
\(239\) 7.37705i 0.477182i −0.971120 0.238591i \(-0.923314\pi\)
0.971120 0.238591i \(-0.0766855\pi\)
\(240\) 0 0
\(241\) 18.9364i 1.21980i −0.792478 0.609901i \(-0.791209\pi\)
0.792478 0.609901i \(-0.208791\pi\)
\(242\) 5.95885i 0.383050i
\(243\) 0 0
\(244\) 3.23953i 0.207390i
\(245\) −6.43143 −0.410889
\(246\) 0 0
\(247\) 5.75516i 0.366192i
\(248\) 2.18748i 0.138905i
\(249\) 0 0
\(250\) 1.00000i 0.0632456i
\(251\) 18.9716 1.19748 0.598739 0.800944i \(-0.295669\pi\)
0.598739 + 0.800944i \(0.295669\pi\)
\(252\) 0 0
\(253\) 14.2780 + 13.6453i 0.897648 + 0.857871i
\(254\) 11.9442i 0.749445i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 20.1868i 1.25922i −0.776913 0.629608i \(-0.783216\pi\)
0.776913 0.629608i \(-0.216784\pi\)
\(258\) 0 0
\(259\) 11.9943 0.745288
\(260\) −1.37333 −0.0851701
\(261\) 0 0
\(262\) 3.60510 0.222724
\(263\) 10.9944 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(264\) 0 0
\(265\) −9.16726 −0.563140
\(266\) 15.3583i 0.941680i
\(267\) 0 0
\(268\) 6.81459i 0.416267i
\(269\) 14.9281i 0.910182i 0.890445 + 0.455091i \(0.150393\pi\)
−0.890445 + 0.455091i \(0.849607\pi\)
\(270\) 0 0
\(271\) 13.5649 0.824011 0.412006 0.911181i \(-0.364828\pi\)
0.412006 + 0.911181i \(0.364828\pi\)
\(272\) −5.07910 −0.307966
\(273\) 0 0
\(274\) 15.5428i 0.938977i
\(275\) −4.11811 −0.248332
\(276\) 0 0
\(277\) −2.59763 −0.156077 −0.0780383 0.996950i \(-0.524866\pi\)
−0.0780383 + 0.996950i \(0.524866\pi\)
\(278\) 6.30232i 0.377988i
\(279\) 0 0
\(280\) −3.66489 −0.219019
\(281\) 26.8084 1.59925 0.799627 0.600496i \(-0.205030\pi\)
0.799627 + 0.600496i \(0.205030\pi\)
\(282\) 0 0
\(283\) 18.9945i 1.12911i −0.825397 0.564553i \(-0.809049\pi\)
0.825397 0.564553i \(-0.190951\pi\)
\(284\) 10.4476i 0.619950i
\(285\) 0 0
\(286\) 5.65551i 0.334418i
\(287\) 26.9029 1.58803
\(288\) 0 0
\(289\) 8.79731 0.517489
\(290\) 8.77528 0.515302
\(291\) 0 0
\(292\) 8.69614 0.508903
\(293\) −11.3576 −0.663520 −0.331760 0.943364i \(-0.607642\pi\)
−0.331760 + 0.943364i \(0.607642\pi\)
\(294\) 0 0
\(295\) 7.31535i 0.425916i
\(296\) 3.27275 0.190225
\(297\) 0 0
\(298\) 6.79080i 0.393380i
\(299\) −4.76148 4.55049i −0.275363 0.263161i
\(300\) 0 0
\(301\) 14.5975 0.841386
\(302\) 19.1608i 1.10258i
\(303\) 0 0
\(304\) 4.19067i 0.240351i
\(305\) 3.23953i 0.185495i
\(306\) 0 0
\(307\) 13.9099 0.793878 0.396939 0.917845i \(-0.370073\pi\)
0.396939 + 0.917845i \(0.370073\pi\)
\(308\) 15.0924i 0.859971i
\(309\) 0 0
\(310\) 2.18748i 0.124240i
\(311\) 0.0885379i 0.00502053i 0.999997 + 0.00251026i \(0.000799042\pi\)
−0.999997 + 0.00251026i \(0.999201\pi\)
\(312\) 0 0
\(313\) 9.11501i 0.515211i −0.966250 0.257605i \(-0.917067\pi\)
0.966250 0.257605i \(-0.0829334\pi\)
\(314\) 14.1815 0.800309
\(315\) 0 0
\(316\) 0.619189i 0.0348321i
\(317\) 29.1559i 1.63756i −0.574110 0.818778i \(-0.694652\pi\)
0.574110 0.818778i \(-0.305348\pi\)
\(318\) 0 0
\(319\) 36.1376i 2.02332i
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) −12.7066 12.1435i −0.708111 0.676733i
\(323\) 21.2848i 1.18432i
\(324\) 0 0
\(325\) 1.37333 0.0761785
\(326\) 11.7476i 0.650637i
\(327\) 0 0
\(328\) 7.34071 0.405323
\(329\) 48.9554 2.69900
\(330\) 0 0
\(331\) −18.5024 −1.01699 −0.508493 0.861066i \(-0.669797\pi\)
−0.508493 + 0.861066i \(0.669797\pi\)
\(332\) 7.82170 0.429272
\(333\) 0 0
\(334\) 19.2009 1.05063
\(335\) 6.81459i 0.372321i
\(336\) 0 0
\(337\) 6.18235i 0.336774i 0.985721 + 0.168387i \(0.0538559\pi\)
−0.985721 + 0.168387i \(0.946144\pi\)
\(338\) 11.1140i 0.604520i
\(339\) 0 0
\(340\) 5.07910 0.275453
\(341\) 9.00827 0.487825
\(342\) 0 0
\(343\) 2.08375i 0.112512i
\(344\) 3.98306 0.214752
\(345\) 0 0
\(346\) 3.67537 0.197589
\(347\) 9.17696i 0.492645i 0.969188 + 0.246323i \(0.0792223\pi\)
−0.969188 + 0.246323i \(0.920778\pi\)
\(348\) 0 0
\(349\) −13.7288 −0.734885 −0.367442 0.930046i \(-0.619766\pi\)
−0.367442 + 0.930046i \(0.619766\pi\)
\(350\) 3.66489 0.195897
\(351\) 0 0
\(352\) 4.11811i 0.219496i
\(353\) 23.6643i 1.25952i 0.776788 + 0.629762i \(0.216848\pi\)
−0.776788 + 0.629762i \(0.783152\pi\)
\(354\) 0 0
\(355\) 10.4476i 0.554500i
\(356\) 0.592028 0.0313774
\(357\) 0 0
\(358\) −16.7414 −0.884809
\(359\) −25.0529 −1.32224 −0.661122 0.750279i \(-0.729919\pi\)
−0.661122 + 0.750279i \(0.729919\pi\)
\(360\) 0 0
\(361\) 1.43831 0.0757004
\(362\) −1.04339 −0.0548395
\(363\) 0 0
\(364\) 5.03309i 0.263806i
\(365\) −8.69614 −0.455177
\(366\) 0 0
\(367\) 30.4227i 1.58805i 0.607883 + 0.794026i \(0.292019\pi\)
−0.607883 + 0.794026i \(0.707981\pi\)
\(368\) −3.46711 3.31348i −0.180736 0.172727i
\(369\) 0 0
\(370\) −3.27275 −0.170142
\(371\) 33.5970i 1.74427i
\(372\) 0 0
\(373\) 10.9564i 0.567301i 0.958928 + 0.283651i \(0.0915456\pi\)
−0.958928 + 0.283651i \(0.908454\pi\)
\(374\) 20.9163i 1.08156i
\(375\) 0 0
\(376\) 13.3579 0.688883
\(377\) 12.0513i 0.620675i
\(378\) 0 0
\(379\) 29.2567i 1.50282i −0.659837 0.751409i \(-0.729375\pi\)
0.659837 0.751409i \(-0.270625\pi\)
\(380\) 4.19067i 0.214977i
\(381\) 0 0
\(382\) 8.60808i 0.440428i
\(383\) −14.1993 −0.725552 −0.362776 0.931876i \(-0.618171\pi\)
−0.362776 + 0.931876i \(0.618171\pi\)
\(384\) 0 0
\(385\) 15.0924i 0.769182i
\(386\) 24.8742i 1.26606i
\(387\) 0 0
\(388\) 11.4733i 0.582467i
\(389\) 16.1749 0.820101 0.410050 0.912063i \(-0.365511\pi\)
0.410050 + 0.912063i \(0.365511\pi\)
\(390\) 0 0
\(391\) 17.6098 + 16.8295i 0.890567 + 0.851104i
\(392\) 6.43143i 0.324836i
\(393\) 0 0
\(394\) 23.0649 1.16199
\(395\) 0.619189i 0.0311548i
\(396\) 0 0
\(397\) −5.37770 −0.269899 −0.134950 0.990852i \(-0.543087\pi\)
−0.134950 + 0.990852i \(0.543087\pi\)
\(398\) 10.1323 0.507886
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 18.3723 0.917470 0.458735 0.888573i \(-0.348303\pi\)
0.458735 + 0.888573i \(0.348303\pi\)
\(402\) 0 0
\(403\) −3.00412 −0.149646
\(404\) 9.81005i 0.488068i
\(405\) 0 0
\(406\) 32.1604i 1.59610i
\(407\) 13.4776i 0.668058i
\(408\) 0 0
\(409\) 30.0999 1.48835 0.744173 0.667987i \(-0.232844\pi\)
0.744173 + 0.667987i \(0.232844\pi\)
\(410\) −7.34071 −0.362532
\(411\) 0 0
\(412\) 12.9748i 0.639225i
\(413\) 26.8100 1.31923
\(414\) 0 0
\(415\) −7.82170 −0.383952
\(416\) 1.37333i 0.0673329i
\(417\) 0 0
\(418\) 17.2576 0.844099
\(419\) −36.0650 −1.76189 −0.880945 0.473219i \(-0.843092\pi\)
−0.880945 + 0.473219i \(0.843092\pi\)
\(420\) 0 0
\(421\) 5.92958i 0.288990i 0.989506 + 0.144495i \(0.0461558\pi\)
−0.989506 + 0.144495i \(0.953844\pi\)
\(422\) 17.7381i 0.863478i
\(423\) 0 0
\(424\) 9.16726i 0.445202i
\(425\) −5.07910 −0.246373
\(426\) 0 0
\(427\) −11.8725 −0.574553
\(428\) −17.2233 −0.832520
\(429\) 0 0
\(430\) −3.98306 −0.192080
\(431\) −31.2612 −1.50580 −0.752900 0.658135i \(-0.771346\pi\)
−0.752900 + 0.658135i \(0.771346\pi\)
\(432\) 0 0
\(433\) 19.8707i 0.954924i −0.878652 0.477462i \(-0.841557\pi\)
0.878652 0.477462i \(-0.158443\pi\)
\(434\) −8.01686 −0.384822
\(435\) 0 0
\(436\) 2.13239i 0.102123i
\(437\) −13.8857 + 14.5295i −0.664242 + 0.695041i
\(438\) 0 0
\(439\) 15.0653 0.719029 0.359515 0.933139i \(-0.382942\pi\)
0.359515 + 0.933139i \(0.382942\pi\)
\(440\) 4.11811i 0.196323i
\(441\) 0 0
\(442\) 6.97527i 0.331780i
\(443\) 38.3156i 1.82043i 0.414137 + 0.910214i \(0.364083\pi\)
−0.414137 + 0.910214i \(0.635917\pi\)
\(444\) 0 0
\(445\) −0.592028 −0.0280648
\(446\) 5.53297i 0.261994i
\(447\) 0 0
\(448\) 3.66489i 0.173150i
\(449\) 13.0185i 0.614380i −0.951648 0.307190i \(-0.900611\pi\)
0.951648 0.307190i \(-0.0993886\pi\)
\(450\) 0 0
\(451\) 30.2299i 1.42347i
\(452\) 10.6560 0.501214
\(453\) 0 0
\(454\) 14.0021i 0.657150i
\(455\) 5.03309i 0.235955i
\(456\) 0 0
\(457\) 15.4017i 0.720461i −0.932863 0.360230i \(-0.882698\pi\)
0.932863 0.360230i \(-0.117302\pi\)
\(458\) −6.28684 −0.293765
\(459\) 0 0
\(460\) 3.46711 + 3.31348i 0.161655 + 0.154492i
\(461\) 19.9043i 0.927035i −0.886088 0.463517i \(-0.846587\pi\)
0.886088 0.463517i \(-0.153413\pi\)
\(462\) 0 0
\(463\) 25.1321 1.16799 0.583994 0.811758i \(-0.301489\pi\)
0.583994 + 0.811758i \(0.301489\pi\)
\(464\) 8.77528i 0.407382i
\(465\) 0 0
\(466\) 17.7054 0.820186
\(467\) −26.1235 −1.20885 −0.604425 0.796662i \(-0.706597\pi\)
−0.604425 + 0.796662i \(0.706597\pi\)
\(468\) 0 0
\(469\) 24.9747 1.15323
\(470\) −13.3579 −0.616155
\(471\) 0 0
\(472\) 7.31535 0.336716
\(473\) 16.4027i 0.754197i
\(474\) 0 0
\(475\) 4.19067i 0.192281i
\(476\) 18.6144i 0.853188i
\(477\) 0 0
\(478\) −7.37705 −0.337419
\(479\) −23.1310 −1.05688 −0.528441 0.848970i \(-0.677223\pi\)
−0.528441 + 0.848970i \(0.677223\pi\)
\(480\) 0 0
\(481\) 4.49455i 0.204934i
\(482\) −18.9364 −0.862530
\(483\) 0 0
\(484\) −5.95885 −0.270857
\(485\) 11.4733i 0.520975i
\(486\) 0 0
\(487\) 39.2504 1.77860 0.889302 0.457321i \(-0.151191\pi\)
0.889302 + 0.457321i \(0.151191\pi\)
\(488\) −3.23953 −0.146647
\(489\) 0 0
\(490\) 6.43143i 0.290542i
\(491\) 16.7695i 0.756797i −0.925643 0.378398i \(-0.876475\pi\)
0.925643 0.378398i \(-0.123525\pi\)
\(492\) 0 0
\(493\) 44.5705i 2.00736i
\(494\) −5.75516 −0.258937
\(495\) 0 0
\(496\) −2.18748 −0.0982205
\(497\) 38.2893 1.71751
\(498\) 0 0
\(499\) −9.29413 −0.416063 −0.208031 0.978122i \(-0.566706\pi\)
−0.208031 + 0.978122i \(0.566706\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 18.9716i 0.846745i
\(503\) 1.26001 0.0561809 0.0280904 0.999605i \(-0.491057\pi\)
0.0280904 + 0.999605i \(0.491057\pi\)
\(504\) 0 0
\(505\) 9.81005i 0.436541i
\(506\) 13.6453 14.2780i 0.606606 0.634733i
\(507\) 0 0
\(508\) −11.9442 −0.529938
\(509\) 35.6885i 1.58187i −0.611902 0.790934i \(-0.709595\pi\)
0.611902 0.790934i \(-0.290405\pi\)
\(510\) 0 0
\(511\) 31.8704i 1.40986i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −20.1868 −0.890400
\(515\) 12.9748i 0.571740i
\(516\) 0 0
\(517\) 55.0095i 2.41931i
\(518\) 11.9943i 0.526998i
\(519\) 0 0
\(520\) 1.37333i 0.0602244i
\(521\) −11.7144 −0.513216 −0.256608 0.966516i \(-0.582605\pi\)
−0.256608 + 0.966516i \(0.582605\pi\)
\(522\) 0 0
\(523\) 26.4487i 1.15652i −0.815853 0.578260i \(-0.803732\pi\)
0.815853 0.578260i \(-0.196268\pi\)
\(524\) 3.60510i 0.157490i
\(525\) 0 0
\(526\) 10.9944i 0.479377i
\(527\) 11.1104 0.483977
\(528\) 0 0
\(529\) 1.04175 + 22.9764i 0.0452934 + 0.998974i
\(530\) 9.16726i 0.398200i
\(531\) 0 0
\(532\) −15.3583 −0.665868
\(533\) 10.0812i 0.436665i
\(534\) 0 0
\(535\) 17.2233 0.744629
\(536\) 6.81459 0.294345
\(537\) 0 0
\(538\) 14.9281 0.643596
\(539\) 26.4854 1.14080
\(540\) 0 0
\(541\) −38.8791 −1.67154 −0.835772 0.549077i \(-0.814979\pi\)
−0.835772 + 0.549077i \(0.814979\pi\)
\(542\) 13.5649i 0.582664i
\(543\) 0 0
\(544\) 5.07910i 0.217765i
\(545\) 2.13239i 0.0913416i
\(546\) 0 0
\(547\) −6.97599 −0.298272 −0.149136 0.988817i \(-0.547649\pi\)
−0.149136 + 0.988817i \(0.547649\pi\)
\(548\) 15.5428 0.663957
\(549\) 0 0
\(550\) 4.11811i 0.175597i
\(551\) 36.7743 1.56664
\(552\) 0 0
\(553\) −2.26926 −0.0964988
\(554\) 2.59763i 0.110363i
\(555\) 0 0
\(556\) 6.30232 0.267278
\(557\) 38.0409 1.61185 0.805923 0.592020i \(-0.201670\pi\)
0.805923 + 0.592020i \(0.201670\pi\)
\(558\) 0 0
\(559\) 5.47005i 0.231358i
\(560\) 3.66489i 0.154870i
\(561\) 0 0
\(562\) 26.8084i 1.13084i
\(563\) −19.8362 −0.835998 −0.417999 0.908447i \(-0.637268\pi\)
−0.417999 + 0.908447i \(0.637268\pi\)
\(564\) 0 0
\(565\) −10.6560 −0.448300
\(566\) −18.9945 −0.798398
\(567\) 0 0
\(568\) 10.4476 0.438371
\(569\) 39.1504 1.64127 0.820634 0.571454i \(-0.193620\pi\)
0.820634 + 0.571454i \(0.193620\pi\)
\(570\) 0 0
\(571\) 22.3013i 0.933280i −0.884447 0.466640i \(-0.845464\pi\)
0.884447 0.466640i \(-0.154536\pi\)
\(572\) 5.65551 0.236469
\(573\) 0 0
\(574\) 26.9029i 1.12291i
\(575\) −3.46711 3.31348i −0.144589 0.138182i
\(576\) 0 0
\(577\) 9.84297 0.409768 0.204884 0.978786i \(-0.434318\pi\)
0.204884 + 0.978786i \(0.434318\pi\)
\(578\) 8.79731i 0.365920i
\(579\) 0 0
\(580\) 8.77528i 0.364374i
\(581\) 28.6657i 1.18925i
\(582\) 0 0
\(583\) 37.7518 1.56352
\(584\) 8.69614i 0.359849i
\(585\) 0 0
\(586\) 11.3576i 0.469179i
\(587\) 26.7112i 1.10249i −0.834344 0.551245i \(-0.814153\pi\)
0.834344 0.551245i \(-0.185847\pi\)
\(588\) 0 0
\(589\) 9.16698i 0.377719i
\(590\) −7.31535 −0.301168
\(591\) 0 0
\(592\) 3.27275i 0.134509i
\(593\) 9.09562i 0.373512i 0.982406 + 0.186756i \(0.0597974\pi\)
−0.982406 + 0.186756i \(0.940203\pi\)
\(594\) 0 0
\(595\) 18.6144i 0.763115i
\(596\) 6.79080 0.278162
\(597\) 0 0
\(598\) −4.55049 + 4.76148i −0.186083 + 0.194711i
\(599\) 3.72692i 0.152278i 0.997097 + 0.0761388i \(0.0242592\pi\)
−0.997097 + 0.0761388i \(0.975741\pi\)
\(600\) 0 0
\(601\) 32.7678 1.33663 0.668314 0.743880i \(-0.267016\pi\)
0.668314 + 0.743880i \(0.267016\pi\)
\(602\) 14.5975i 0.594950i
\(603\) 0 0
\(604\) −19.1608 −0.779643
\(605\) 5.95885 0.242262
\(606\) 0 0
\(607\) −9.38225 −0.380814 −0.190407 0.981705i \(-0.560981\pi\)
−0.190407 + 0.981705i \(0.560981\pi\)
\(608\) −4.19067 −0.169954
\(609\) 0 0
\(610\) 3.23953 0.131165
\(611\) 18.3448i 0.742151i
\(612\) 0 0
\(613\) 9.98992i 0.403489i −0.979438 0.201744i \(-0.935339\pi\)
0.979438 0.201744i \(-0.0646610\pi\)
\(614\) 13.9099i 0.561356i
\(615\) 0 0
\(616\) 15.0924 0.608092
\(617\) −37.8743 −1.52476 −0.762380 0.647129i \(-0.775969\pi\)
−0.762380 + 0.647129i \(0.775969\pi\)
\(618\) 0 0
\(619\) 22.4368i 0.901811i 0.892572 + 0.450905i \(0.148899\pi\)
−0.892572 + 0.450905i \(0.851101\pi\)
\(620\) 2.18748 0.0878511
\(621\) 0 0
\(622\) 0.0885379 0.00355005
\(623\) 2.16972i 0.0869279i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −9.11501 −0.364309
\(627\) 0 0
\(628\) 14.1815i 0.565904i
\(629\) 16.6226i 0.662788i
\(630\) 0 0
\(631\) 3.71783i 0.148004i −0.997258 0.0740022i \(-0.976423\pi\)
0.997258 0.0740022i \(-0.0235772\pi\)
\(632\) −0.619189 −0.0246300
\(633\) 0 0
\(634\) −29.1559 −1.15793
\(635\) 11.9442 0.473991
\(636\) 0 0
\(637\) −8.83245 −0.349955
\(638\) −36.1376 −1.43070
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) −17.9718 −0.709845 −0.354922 0.934896i \(-0.615493\pi\)
−0.354922 + 0.934896i \(0.615493\pi\)
\(642\) 0 0
\(643\) 11.9598i 0.471650i 0.971796 + 0.235825i \(0.0757792\pi\)
−0.971796 + 0.235825i \(0.924221\pi\)
\(644\) −12.1435 + 12.7066i −0.478522 + 0.500710i
\(645\) 0 0
\(646\) 21.2848 0.837441
\(647\) 33.6779i 1.32401i 0.749498 + 0.662007i \(0.230295\pi\)
−0.749498 + 0.662007i \(0.769705\pi\)
\(648\) 0 0
\(649\) 30.1254i 1.18253i
\(650\) 1.37333i 0.0538663i
\(651\) 0 0
\(652\) 11.7476 0.460070
\(653\) 8.47244i 0.331552i −0.986163 0.165776i \(-0.946987\pi\)
0.986163 0.165776i \(-0.0530129\pi\)
\(654\) 0 0
\(655\) 3.60510i 0.140863i
\(656\) 7.34071i 0.286607i
\(657\) 0 0
\(658\) 48.9554i 1.90848i
\(659\) 23.1047 0.900032 0.450016 0.893021i \(-0.351418\pi\)
0.450016 + 0.893021i \(0.351418\pi\)
\(660\) 0 0
\(661\) 6.19923i 0.241122i −0.992706 0.120561i \(-0.961531\pi\)
0.992706 0.120561i \(-0.0384693\pi\)
\(662\) 18.5024i 0.719118i
\(663\) 0 0
\(664\) 7.82170i 0.303541i
\(665\) 15.3583 0.595571
\(666\) 0 0
\(667\) 29.0767 30.4249i 1.12585 1.17806i
\(668\) 19.2009i 0.742906i
\(669\) 0 0
\(670\) −6.81459 −0.263270
\(671\) 13.3408i 0.515015i
\(672\) 0 0
\(673\) −28.9418 −1.11563 −0.557813 0.829967i \(-0.688359\pi\)
−0.557813 + 0.829967i \(0.688359\pi\)
\(674\) 6.18235 0.238135
\(675\) 0 0
\(676\) 11.1140 0.427461
\(677\) −17.8256 −0.685095 −0.342547 0.939501i \(-0.611290\pi\)
−0.342547 + 0.939501i \(0.611290\pi\)
\(678\) 0 0
\(679\) −42.0483 −1.61367
\(680\) 5.07910i 0.194775i
\(681\) 0 0
\(682\) 9.00827i 0.344944i
\(683\) 11.3520i 0.434370i 0.976130 + 0.217185i \(0.0696875\pi\)
−0.976130 + 0.217185i \(0.930312\pi\)
\(684\) 0 0
\(685\) −15.5428 −0.593861
\(686\) 2.08375 0.0795580
\(687\) 0 0
\(688\) 3.98306i 0.151853i
\(689\) −12.5896 −0.479627
\(690\) 0 0
\(691\) 40.3088 1.53342 0.766709 0.641995i \(-0.221893\pi\)
0.766709 + 0.641995i \(0.221893\pi\)
\(692\) 3.67537i 0.139717i
\(693\) 0 0
\(694\) 9.17696 0.348353
\(695\) −6.30232 −0.239061
\(696\) 0 0
\(697\) 37.2842i 1.41224i
\(698\) 13.7288i 0.519642i
\(699\) 0 0
\(700\) 3.66489i 0.138520i
\(701\) 44.7271 1.68932 0.844660 0.535303i \(-0.179803\pi\)
0.844660 + 0.535303i \(0.179803\pi\)
\(702\) 0 0
\(703\) −13.7150 −0.517271
\(704\) 4.11811 0.155207
\(705\) 0 0
\(706\) 23.6643 0.890618
\(707\) −35.9528 −1.35214
\(708\) 0 0
\(709\) 1.75818i 0.0660297i 0.999455 + 0.0330148i \(0.0105109\pi\)
−0.999455 + 0.0330148i \(0.989489\pi\)
\(710\) −10.4476 −0.392091
\(711\) 0 0
\(712\) 0.592028i 0.0221872i
\(713\) 7.58422 + 7.24815i 0.284031 + 0.271445i
\(714\) 0 0
\(715\) −5.65551 −0.211504
\(716\) 16.7414i 0.625654i
\(717\) 0 0
\(718\) 25.0529i 0.934967i
\(719\) 13.4033i 0.499860i 0.968264 + 0.249930i \(0.0804076\pi\)
−0.968264 + 0.249930i \(0.919592\pi\)
\(720\) 0 0
\(721\) −47.5514 −1.77091
\(722\) 1.43831i 0.0535283i
\(723\) 0 0
\(724\) 1.04339i 0.0387774i
\(725\) 8.77528i 0.325906i
\(726\) 0 0
\(727\) 48.0291i 1.78130i −0.454687 0.890651i \(-0.650249\pi\)
0.454687 0.890651i \(-0.349751\pi\)
\(728\) −5.03309 −0.186539
\(729\) 0 0
\(730\) 8.69614i 0.321859i
\(731\) 20.2304i 0.748248i
\(732\) 0 0
\(733\) 13.9287i 0.514466i −0.966349 0.257233i \(-0.917189\pi\)
0.966349 0.257233i \(-0.0828109\pi\)
\(734\) 30.4227 1.12292
\(735\) 0 0
\(736\) −3.31348 + 3.46711i −0.122136 + 0.127799i
\(737\) 28.0632i 1.03372i
\(738\) 0 0
\(739\) −6.85157 −0.252039 −0.126020 0.992028i \(-0.540220\pi\)
−0.126020 + 0.992028i \(0.540220\pi\)
\(740\) 3.27275i 0.120309i
\(741\) 0 0
\(742\) −33.5970 −1.23339
\(743\) −21.2451 −0.779409 −0.389704 0.920940i \(-0.627423\pi\)
−0.389704 + 0.920940i \(0.627423\pi\)
\(744\) 0 0
\(745\) −6.79080 −0.248796
\(746\) 10.9564 0.401142
\(747\) 0 0
\(748\) −20.9163 −0.764777
\(749\) 63.1216i 2.30641i
\(750\) 0 0
\(751\) 8.14617i 0.297258i −0.988893 0.148629i \(-0.952514\pi\)
0.988893 0.148629i \(-0.0474860\pi\)
\(752\) 13.3579i 0.487113i
\(753\) 0 0
\(754\) 12.0513 0.438883
\(755\) 19.1608 0.697334
\(756\) 0 0
\(757\) 22.2646i 0.809221i −0.914489 0.404610i \(-0.867407\pi\)
0.914489 0.404610i \(-0.132593\pi\)
\(758\) −29.2567 −1.06265
\(759\) 0 0
\(760\) 4.19067 0.152011
\(761\) 2.46950i 0.0895193i 0.998998 + 0.0447597i \(0.0142522\pi\)
−0.998998 + 0.0447597i \(0.985748\pi\)
\(762\) 0 0
\(763\) −7.81498 −0.282921
\(764\) −8.60808 −0.311429
\(765\) 0 0
\(766\) 14.1993i 0.513043i
\(767\) 10.0464i 0.362753i
\(768\) 0 0
\(769\) 9.27287i 0.334388i 0.985924 + 0.167194i \(0.0534707\pi\)
−0.985924 + 0.167194i \(0.946529\pi\)
\(770\) −15.0924 −0.543894
\(771\) 0 0
\(772\) 24.8742 0.895241
\(773\) −37.6990 −1.35594 −0.677969 0.735090i \(-0.737140\pi\)
−0.677969 + 0.735090i \(0.737140\pi\)
\(774\) 0 0
\(775\) −2.18748 −0.0785764
\(776\) −11.4733 −0.411867
\(777\) 0 0
\(778\) 16.1749i 0.579899i
\(779\) −30.7625 −1.10218
\(780\) 0 0
\(781\) 43.0243i 1.53953i
\(782\) 16.8295 17.6098i 0.601821 0.629726i
\(783\) 0 0
\(784\) −6.43143 −0.229694
\(785\) 14.1815i 0.506160i
\(786\) 0 0
\(787\) 16.9689i 0.604875i −0.953169 0.302437i \(-0.902200\pi\)
0.953169 0.302437i \(-0.0978003\pi\)
\(788\) 23.0649i 0.821651i
\(789\) 0 0
\(790\) 0.619189 0.0220298
\(791\) 39.0529i 1.38856i
\(792\) 0 0
\(793\) 4.44894i 0.157986i
\(794\) 5.37770i 0.190848i
\(795\) 0 0
\(796\) 10.1323i 0.359130i
\(797\) 45.4466 1.60980 0.804900 0.593410i \(-0.202219\pi\)
0.804900 + 0.593410i \(0.202219\pi\)
\(798\) 0 0
\(799\) 67.8463i 2.40023i
\(800\) 1.00000i 0.0353553i
\(801\) 0 0
\(802\) 18.3723i 0.648749i
\(803\) 35.8117 1.26377
\(804\) 0 0
\(805\) 12.1435 12.7066i 0.428003 0.447849i
\(806\) 3.00412i 0.105816i
\(807\) 0 0
\(808\) −9.81005 −0.345116
\(809\) 40.4973i 1.42381i 0.702276 + 0.711905i \(0.252167\pi\)
−0.702276 + 0.711905i \(0.747833\pi\)
\(810\) 0 0
\(811\) −21.1875 −0.743994 −0.371997 0.928234i \(-0.621327\pi\)
−0.371997 + 0.928234i \(0.621327\pi\)
\(812\) 32.1604 1.12861
\(813\) 0 0
\(814\) 13.4776 0.472388
\(815\) −11.7476 −0.411499
\(816\) 0 0
\(817\) −16.6917 −0.583969
\(818\) 30.0999i 1.05242i
\(819\) 0 0
\(820\) 7.34071i 0.256349i
\(821\) 16.7811i 0.585666i 0.956164 + 0.292833i \(0.0945979\pi\)
−0.956164 + 0.292833i \(0.905402\pi\)
\(822\) 0 0
\(823\) −43.7002 −1.52329 −0.761647 0.647992i \(-0.775609\pi\)
−0.761647 + 0.647992i \(0.775609\pi\)
\(824\) −12.9748 −0.452000
\(825\) 0 0
\(826\) 26.8100i 0.932837i
\(827\) −43.6631 −1.51831 −0.759157 0.650907i \(-0.774389\pi\)
−0.759157 + 0.650907i \(0.774389\pi\)
\(828\) 0 0
\(829\) 21.6081 0.750479 0.375240 0.926928i \(-0.377560\pi\)
0.375240 + 0.926928i \(0.377560\pi\)
\(830\) 7.82170i 0.271495i
\(831\) 0 0
\(832\) −1.37333 −0.0476115
\(833\) 32.6659 1.13181
\(834\) 0 0
\(835\) 19.2009i 0.664475i
\(836\) 17.2576i 0.596868i
\(837\) 0 0
\(838\) 36.0650i 1.24584i
\(839\) 34.3173 1.18477 0.592383 0.805657i \(-0.298187\pi\)
0.592383 + 0.805657i \(0.298187\pi\)
\(840\) 0 0
\(841\) −48.0055 −1.65536
\(842\) 5.92958 0.204347
\(843\) 0 0
\(844\) 17.7381 0.610571
\(845\) −11.1140 −0.382332
\(846\) 0 0
\(847\) 21.8386i 0.750381i
\(848\) −9.16726 −0.314805
\(849\) 0 0
\(850\) 5.07910i 0.174212i
\(851\) −10.8442 + 11.3470i −0.371734 + 0.388970i
\(852\) 0 0
\(853\) −3.87711 −0.132750 −0.0663749 0.997795i \(-0.521143\pi\)
−0.0663749 + 0.997795i \(0.521143\pi\)
\(854\) 11.8725i 0.406270i
\(855\) 0 0
\(856\) 17.2233i 0.588681i
\(857\) 1.20652i 0.0412138i 0.999788 + 0.0206069i \(0.00655985\pi\)
−0.999788 + 0.0206069i \(0.993440\pi\)
\(858\) 0 0
\(859\) 39.9727 1.36385 0.681925 0.731422i \(-0.261143\pi\)
0.681925 + 0.731422i \(0.261143\pi\)
\(860\) 3.98306i 0.135821i
\(861\) 0 0
\(862\) 31.2612i 1.06476i
\(863\) 5.03369i 0.171349i −0.996323 0.0856744i \(-0.972696\pi\)
0.996323 0.0856744i \(-0.0273045\pi\)
\(864\) 0 0
\(865\) 3.67537i 0.124966i
\(866\) −19.8707 −0.675233
\(867\) 0 0
\(868\) 8.01686i 0.272110i
\(869\) 2.54989i 0.0864991i
\(870\) 0 0
\(871\) 9.35865i 0.317106i
\(872\) −2.13239 −0.0722119
\(873\) 0 0
\(874\) 14.5295 + 13.8857i 0.491468 + 0.469690i
\(875\) 3.66489i 0.123896i
\(876\) 0 0
\(877\) 12.6274 0.426396 0.213198 0.977009i \(-0.431612\pi\)
0.213198 + 0.977009i \(0.431612\pi\)
\(878\) 15.0653i 0.508430i
\(879\) 0 0
\(880\) −4.11811 −0.138822
\(881\) 37.2185 1.25392 0.626962 0.779050i \(-0.284298\pi\)
0.626962 + 0.779050i \(0.284298\pi\)
\(882\) 0 0
\(883\) −12.1568 −0.409108 −0.204554 0.978855i \(-0.565574\pi\)
−0.204554 + 0.978855i \(0.565574\pi\)
\(884\) 6.97527 0.234604
\(885\) 0 0
\(886\) 38.3156 1.28724
\(887\) 57.7006i 1.93740i −0.248240 0.968699i \(-0.579852\pi\)
0.248240 0.968699i \(-0.420148\pi\)
\(888\) 0 0
\(889\) 43.7742i 1.46814i
\(890\) 0.592028i 0.0198448i
\(891\) 0 0
\(892\) 5.53297 0.185258
\(893\) −55.9786 −1.87325
\(894\) 0 0
\(895\) 16.7414i 0.559602i
\(896\) −3.66489 −0.122435
\(897\) 0 0
\(898\) −13.0185 −0.434432
\(899\) 19.1957i 0.640212i
\(900\) 0 0
\(901\) 46.5615 1.55119
\(902\) 30.2299 1.00654
\(903\) 0 0
\(904\) 10.6560i 0.354412i
\(905\) 1.04339i 0.0346835i
\(906\) 0 0
\(907\) 15.2751i 0.507202i 0.967309 + 0.253601i \(0.0816150\pi\)
−0.967309 + 0.253601i \(0.918385\pi\)
\(908\) 14.0021 0.464676
\(909\) 0 0
\(910\) 5.03309 0.166845
\(911\) 12.2177 0.404789 0.202394 0.979304i \(-0.435128\pi\)
0.202394 + 0.979304i \(0.435128\pi\)
\(912\) 0 0
\(913\) 32.2107 1.06602
\(914\) −15.4017 −0.509443
\(915\) 0 0
\(916\) 6.28684i 0.207723i
\(917\) −13.2123 −0.436309
\(918\) 0 0
\(919\) 14.3237i 0.472494i 0.971693 + 0.236247i \(0.0759175\pi\)
−0.971693 + 0.236247i \(0.924083\pi\)
\(920\) 3.31348 3.46711i 0.109242 0.114307i
\(921\) 0 0
\(922\) −19.9043 −0.655513
\(923\) 14.3480i 0.472269i
\(924\) 0 0
\(925\) 3.27275i 0.107607i
\(926\) 25.1321i 0.825893i
\(927\) 0 0
\(928\) 8.77528 0.288063
\(929\) 51.0889i 1.67617i 0.545538 + 0.838086i \(0.316326\pi\)
−0.545538 + 0.838086i \(0.683674\pi\)
\(930\) 0 0
\(931\) 26.9520i 0.883315i
\(932\) 17.7054i 0.579959i
\(933\) 0 0
\(934\) 26.1235i 0.854786i
\(935\) 20.9163 0.684037
\(936\) 0 0
\(937\) 43.0286i 1.40568i 0.711347 + 0.702841i \(0.248086\pi\)
−0.711347 + 0.702841i \(0.751914\pi\)
\(938\) 24.9747i 0.815453i
\(939\) 0 0
\(940\) 13.3579i 0.435688i
\(941\) 51.8215 1.68933 0.844667 0.535292i \(-0.179798\pi\)
0.844667 + 0.535292i \(0.179798\pi\)
\(942\) 0 0
\(943\) −24.3233 + 25.4511i −0.792075 + 0.828801i
\(944\) 7.31535i 0.238094i
\(945\) 0 0
\(946\) 16.4027 0.533298
\(947\) 22.3758i 0.727117i 0.931571 + 0.363559i \(0.118438\pi\)
−0.931571 + 0.363559i \(0.881562\pi\)
\(948\) 0 0
\(949\) −11.9426 −0.387675
\(950\) −4.19067 −0.135963
\(951\) 0 0
\(952\) 18.6144 0.603295
\(953\) 6.43104 0.208322 0.104161 0.994560i \(-0.466784\pi\)
0.104161 + 0.994560i \(0.466784\pi\)
\(954\) 0 0
\(955\) 8.60808 0.278551
\(956\) 7.37705i 0.238591i
\(957\) 0 0
\(958\) 23.1310i 0.747328i
\(959\) 56.9628i 1.83942i
\(960\) 0 0
\(961\) −26.2150 −0.845644
\(962\) −4.49455 −0.144910
\(963\) 0 0
\(964\) 18.9364i 0.609901i
\(965\) −24.8742 −0.800728
\(966\) 0 0
\(967\) 2.71460 0.0872956 0.0436478 0.999047i \(-0.486102\pi\)
0.0436478 + 0.999047i \(0.486102\pi\)
\(968\) 5.95885i 0.191525i
\(969\) 0 0
\(970\) 11.4733 0.368385
\(971\) 39.4161 1.26492 0.632461 0.774592i \(-0.282045\pi\)
0.632461 + 0.774592i \(0.282045\pi\)
\(972\) 0 0
\(973\) 23.0973i 0.740466i
\(974\) 39.2504i 1.25766i
\(975\) 0 0
\(976\) 3.23953i 0.103695i
\(977\) 21.5755 0.690261 0.345130 0.938555i \(-0.387835\pi\)
0.345130 + 0.938555i \(0.387835\pi\)
\(978\) 0 0
\(979\) 2.43804 0.0779200
\(980\) 6.43143 0.205444
\(981\) 0 0
\(982\) −16.7695 −0.535136
\(983\) −41.5756 −1.32605 −0.663027 0.748595i \(-0.730729\pi\)
−0.663027 + 0.748595i \(0.730729\pi\)
\(984\) 0 0
\(985\) 23.0649i 0.734907i
\(986\) −44.5705 −1.41942
\(987\) 0 0
\(988\) 5.75516i 0.183096i
\(989\) −13.1978 + 13.8097i −0.419665 + 0.439124i
\(990\) 0 0
\(991\) 16.6208 0.527977 0.263988 0.964526i \(-0.414962\pi\)
0.263988 + 0.964526i \(0.414962\pi\)
\(992\) 2.18748i 0.0694524i
\(993\) 0 0
\(994\) 38.2893i 1.21446i
\(995\) 10.1323i 0.321215i
\(996\) 0 0
\(997\) −23.1337 −0.732650 −0.366325 0.930487i \(-0.619384\pi\)
−0.366325 + 0.930487i \(0.619384\pi\)
\(998\) 9.29413i 0.294201i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.2.e.b.1241.7 yes 16
3.2 odd 2 2070.2.e.a.1241.15 yes 16
23.22 odd 2 2070.2.e.a.1241.2 16
69.68 even 2 inner 2070.2.e.b.1241.10 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2070.2.e.a.1241.2 16 23.22 odd 2
2070.2.e.a.1241.15 yes 16 3.2 odd 2
2070.2.e.b.1241.7 yes 16 1.1 even 1 trivial
2070.2.e.b.1241.10 yes 16 69.68 even 2 inner