Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2116,4,Mod(1,2116)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2116, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2116.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2116 = 2^{2} \cdot 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2116.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(124.848041572\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Twist minimal: | no (minimal twist has level 92) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 0 | −9.94474 | 0 | 12.4605 | 0 | −26.2182 | 0 | 71.8979 | 0 | ||||||||||||||||||
1.2 | 0 | −9.19219 | 0 | −7.93087 | 0 | −7.58084 | 0 | 57.4963 | 0 | ||||||||||||||||||
1.3 | 0 | −8.69590 | 0 | 13.9258 | 0 | −29.7076 | 0 | 48.6186 | 0 | ||||||||||||||||||
1.4 | 0 | −7.95437 | 0 | 16.6634 | 0 | 21.8554 | 0 | 36.2721 | 0 | ||||||||||||||||||
1.5 | 0 | −7.94569 | 0 | −15.5280 | 0 | −9.00951 | 0 | 36.1340 | 0 | ||||||||||||||||||
1.6 | 0 | −7.88030 | 0 | −2.89546 | 0 | 7.59476 | 0 | 35.0991 | 0 | ||||||||||||||||||
1.7 | 0 | −6.17580 | 0 | −12.1175 | 0 | 13.5754 | 0 | 11.1405 | 0 | ||||||||||||||||||
1.8 | 0 | −4.73733 | 0 | 8.82100 | 0 | 28.0962 | 0 | −4.55769 | 0 | ||||||||||||||||||
1.9 | 0 | −4.17691 | 0 | 5.12216 | 0 | 29.2816 | 0 | −9.55339 | 0 | ||||||||||||||||||
1.10 | 0 | −3.06951 | 0 | 16.5539 | 0 | 5.57853 | 0 | −17.5781 | 0 | ||||||||||||||||||
1.11 | 0 | −2.97381 | 0 | −12.3295 | 0 | −14.6286 | 0 | −18.1565 | 0 | ||||||||||||||||||
1.12 | 0 | −2.04083 | 0 | −0.768282 | 0 | −21.6878 | 0 | −22.8350 | 0 | ||||||||||||||||||
1.13 | 0 | −1.94926 | 0 | −3.12092 | 0 | −11.3326 | 0 | −23.2004 | 0 | ||||||||||||||||||
1.14 | 0 | −1.09089 | 0 | 9.43805 | 0 | −34.7650 | 0 | −25.8100 | 0 | ||||||||||||||||||
1.15 | 0 | −0.780799 | 0 | 19.4878 | 0 | 32.8146 | 0 | −26.3904 | 0 | ||||||||||||||||||
1.16 | 0 | 0.0220256 | 0 | −3.09464 | 0 | 16.7552 | 0 | −26.9995 | 0 | ||||||||||||||||||
1.17 | 0 | 1.06823 | 0 | 16.3925 | 0 | −17.0749 | 0 | −25.8589 | 0 | ||||||||||||||||||
1.18 | 0 | 1.60050 | 0 | 2.46888 | 0 | −22.7375 | 0 | −24.4384 | 0 | ||||||||||||||||||
1.19 | 0 | 2.93512 | 0 | −18.7922 | 0 | −4.55096 | 0 | −18.3851 | 0 | ||||||||||||||||||
1.20 | 0 | 3.07231 | 0 | −13.8777 | 0 | 28.7429 | 0 | −17.5609 | 0 | ||||||||||||||||||
See all 30 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \( -1 \) |
\(23\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2116.4.a.j | 30 | |
23.b | odd | 2 | 1 | 2116.4.a.i | 30 | ||
23.d | odd | 22 | 2 | 92.4.e.a | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
92.4.e.a | ✓ | 60 | 23.d | odd | 22 | 2 | |
2116.4.a.i | 30 | 23.b | odd | 2 | 1 | ||
2116.4.a.j | 30 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2116))\):
\( T_{3}^{30} + 2 T_{3}^{29} - 539 T_{3}^{28} - 974 T_{3}^{27} + 127882 T_{3}^{26} + 206494 T_{3}^{25} + \cdots - 57\!\cdots\!31 \)
|
\( T_{5}^{30} - 50 T_{5}^{29} - 1018 T_{5}^{28} + 85216 T_{5}^{27} + 63111 T_{5}^{26} + \cdots + 69\!\cdots\!97 \)
|