Properties

Label 2116.4.a.j.1.1
Level $2116$
Weight $4$
Character 2116.1
Self dual yes
Analytic conductor $124.848$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2116,4,Mod(1,2116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2116, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2116.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2116 = 2^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2116.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(124.848041572\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 92)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2116.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.94474 q^{3} +12.4605 q^{5} -26.2182 q^{7} +71.8979 q^{9} -14.4815 q^{11} -75.8882 q^{13} -123.917 q^{15} -47.8555 q^{17} +0.645912 q^{19} +260.733 q^{21} +30.2652 q^{25} -446.498 q^{27} -47.5434 q^{29} -253.352 q^{31} +144.015 q^{33} -326.693 q^{35} -111.121 q^{37} +754.688 q^{39} +399.220 q^{41} +100.756 q^{43} +895.887 q^{45} -343.912 q^{47} +344.395 q^{49} +475.910 q^{51} -318.014 q^{53} -180.447 q^{55} -6.42342 q^{57} +159.340 q^{59} -38.3680 q^{61} -1885.03 q^{63} -945.608 q^{65} -497.979 q^{67} -481.080 q^{71} -83.5123 q^{73} -300.980 q^{75} +379.679 q^{77} -1275.70 q^{79} +2499.06 q^{81} +153.064 q^{83} -596.305 q^{85} +472.807 q^{87} +673.680 q^{89} +1989.65 q^{91} +2519.52 q^{93} +8.04841 q^{95} -1664.32 q^{97} -1041.19 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 2 q^{3} + 50 q^{5} - 2 q^{7} + 272 q^{9} + 92 q^{11} - 28 q^{13} - 64 q^{15} + 316 q^{17} + 222 q^{19} + 512 q^{21} + 786 q^{25} - 212 q^{27} + 218 q^{29} + 350 q^{31} + 576 q^{33} + 150 q^{35} + 314 q^{37}+ \cdots + 930 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.94474 −1.91387 −0.956933 0.290308i \(-0.906242\pi\)
−0.956933 + 0.290308i \(0.906242\pi\)
\(4\) 0 0
\(5\) 12.4605 1.11451 0.557253 0.830343i \(-0.311856\pi\)
0.557253 + 0.830343i \(0.311856\pi\)
\(6\) 0 0
\(7\) −26.2182 −1.41565 −0.707826 0.706387i \(-0.750324\pi\)
−0.707826 + 0.706387i \(0.750324\pi\)
\(8\) 0 0
\(9\) 71.8979 2.66288
\(10\) 0 0
\(11\) −14.4815 −0.396939 −0.198470 0.980107i \(-0.563597\pi\)
−0.198470 + 0.980107i \(0.563597\pi\)
\(12\) 0 0
\(13\) −75.8882 −1.61905 −0.809523 0.587089i \(-0.800274\pi\)
−0.809523 + 0.587089i \(0.800274\pi\)
\(14\) 0 0
\(15\) −123.917 −2.13301
\(16\) 0 0
\(17\) −47.8555 −0.682745 −0.341372 0.939928i \(-0.610892\pi\)
−0.341372 + 0.939928i \(0.610892\pi\)
\(18\) 0 0
\(19\) 0.645912 0.00779907 0.00389953 0.999992i \(-0.498759\pi\)
0.00389953 + 0.999992i \(0.498759\pi\)
\(20\) 0 0
\(21\) 260.733 2.70937
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 30.2652 0.242122
\(26\) 0 0
\(27\) −446.498 −3.18254
\(28\) 0 0
\(29\) −47.5434 −0.304434 −0.152217 0.988347i \(-0.548641\pi\)
−0.152217 + 0.988347i \(0.548641\pi\)
\(30\) 0 0
\(31\) −253.352 −1.46785 −0.733924 0.679231i \(-0.762313\pi\)
−0.733924 + 0.679231i \(0.762313\pi\)
\(32\) 0 0
\(33\) 144.015 0.759689
\(34\) 0 0
\(35\) −326.693 −1.57775
\(36\) 0 0
\(37\) −111.121 −0.493734 −0.246867 0.969049i \(-0.579401\pi\)
−0.246867 + 0.969049i \(0.579401\pi\)
\(38\) 0 0
\(39\) 754.688 3.09864
\(40\) 0 0
\(41\) 399.220 1.52068 0.760339 0.649527i \(-0.225033\pi\)
0.760339 + 0.649527i \(0.225033\pi\)
\(42\) 0 0
\(43\) 100.756 0.357331 0.178665 0.983910i \(-0.442822\pi\)
0.178665 + 0.983910i \(0.442822\pi\)
\(44\) 0 0
\(45\) 895.887 2.96780
\(46\) 0 0
\(47\) −343.912 −1.06734 −0.533668 0.845694i \(-0.679187\pi\)
−0.533668 + 0.845694i \(0.679187\pi\)
\(48\) 0 0
\(49\) 344.395 1.00407
\(50\) 0 0
\(51\) 475.910 1.30668
\(52\) 0 0
\(53\) −318.014 −0.824199 −0.412099 0.911139i \(-0.635204\pi\)
−0.412099 + 0.911139i \(0.635204\pi\)
\(54\) 0 0
\(55\) −180.447 −0.442391
\(56\) 0 0
\(57\) −6.42342 −0.0149264
\(58\) 0 0
\(59\) 159.340 0.351598 0.175799 0.984426i \(-0.443749\pi\)
0.175799 + 0.984426i \(0.443749\pi\)
\(60\) 0 0
\(61\) −38.3680 −0.0805332 −0.0402666 0.999189i \(-0.512821\pi\)
−0.0402666 + 0.999189i \(0.512821\pi\)
\(62\) 0 0
\(63\) −1885.03 −3.76971
\(64\) 0 0
\(65\) −945.608 −1.80443
\(66\) 0 0
\(67\) −497.979 −0.908027 −0.454013 0.890995i \(-0.650008\pi\)
−0.454013 + 0.890995i \(0.650008\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −481.080 −0.804136 −0.402068 0.915610i \(-0.631709\pi\)
−0.402068 + 0.915610i \(0.631709\pi\)
\(72\) 0 0
\(73\) −83.5123 −0.133895 −0.0669477 0.997756i \(-0.521326\pi\)
−0.0669477 + 0.997756i \(0.521326\pi\)
\(74\) 0 0
\(75\) −300.980 −0.463389
\(76\) 0 0
\(77\) 379.679 0.561928
\(78\) 0 0
\(79\) −1275.70 −1.81681 −0.908405 0.418091i \(-0.862699\pi\)
−0.908405 + 0.418091i \(0.862699\pi\)
\(80\) 0 0
\(81\) 2499.06 3.42807
\(82\) 0 0
\(83\) 153.064 0.202421 0.101211 0.994865i \(-0.467728\pi\)
0.101211 + 0.994865i \(0.467728\pi\)
\(84\) 0 0
\(85\) −596.305 −0.760922
\(86\) 0 0
\(87\) 472.807 0.582646
\(88\) 0 0
\(89\) 673.680 0.802358 0.401179 0.916000i \(-0.368600\pi\)
0.401179 + 0.916000i \(0.368600\pi\)
\(90\) 0 0
\(91\) 1989.65 2.29200
\(92\) 0 0
\(93\) 2519.52 2.80927
\(94\) 0 0
\(95\) 8.04841 0.00869210
\(96\) 0 0
\(97\) −1664.32 −1.74213 −0.871063 0.491171i \(-0.836569\pi\)
−0.871063 + 0.491171i \(0.836569\pi\)
\(98\) 0 0
\(99\) −1041.19 −1.05700
\(100\) 0 0
\(101\) −497.369 −0.490000 −0.245000 0.969523i \(-0.578788\pi\)
−0.245000 + 0.969523i \(0.578788\pi\)
\(102\) 0 0
\(103\) −733.531 −0.701718 −0.350859 0.936428i \(-0.614110\pi\)
−0.350859 + 0.936428i \(0.614110\pi\)
\(104\) 0 0
\(105\) 3248.88 3.01960
\(106\) 0 0
\(107\) −1540.68 −1.39200 −0.695998 0.718044i \(-0.745038\pi\)
−0.695998 + 0.718044i \(0.745038\pi\)
\(108\) 0 0
\(109\) 1136.06 0.998301 0.499150 0.866515i \(-0.333646\pi\)
0.499150 + 0.866515i \(0.333646\pi\)
\(110\) 0 0
\(111\) 1105.07 0.944940
\(112\) 0 0
\(113\) −179.174 −0.149162 −0.0745808 0.997215i \(-0.523762\pi\)
−0.0745808 + 0.997215i \(0.523762\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −5456.20 −4.31133
\(118\) 0 0
\(119\) 1254.69 0.966528
\(120\) 0 0
\(121\) −1121.29 −0.842439
\(122\) 0 0
\(123\) −3970.14 −2.91037
\(124\) 0 0
\(125\) −1180.45 −0.844659
\(126\) 0 0
\(127\) 97.4070 0.0680589 0.0340294 0.999421i \(-0.489166\pi\)
0.0340294 + 0.999421i \(0.489166\pi\)
\(128\) 0 0
\(129\) −1002.00 −0.683883
\(130\) 0 0
\(131\) −2113.20 −1.40940 −0.704700 0.709505i \(-0.748918\pi\)
−0.704700 + 0.709505i \(0.748918\pi\)
\(132\) 0 0
\(133\) −16.9347 −0.0110408
\(134\) 0 0
\(135\) −5563.60 −3.54695
\(136\) 0 0
\(137\) 1094.21 0.682370 0.341185 0.939996i \(-0.389172\pi\)
0.341185 + 0.939996i \(0.389172\pi\)
\(138\) 0 0
\(139\) −80.5304 −0.0491403 −0.0245701 0.999698i \(-0.507822\pi\)
−0.0245701 + 0.999698i \(0.507822\pi\)
\(140\) 0 0
\(141\) 3420.12 2.04274
\(142\) 0 0
\(143\) 1098.97 0.642663
\(144\) 0 0
\(145\) −592.416 −0.339293
\(146\) 0 0
\(147\) −3424.92 −1.92165
\(148\) 0 0
\(149\) −2652.59 −1.45845 −0.729224 0.684275i \(-0.760119\pi\)
−0.729224 + 0.684275i \(0.760119\pi\)
\(150\) 0 0
\(151\) −149.188 −0.0804022 −0.0402011 0.999192i \(-0.512800\pi\)
−0.0402011 + 0.999192i \(0.512800\pi\)
\(152\) 0 0
\(153\) −3440.71 −1.81807
\(154\) 0 0
\(155\) −3156.90 −1.63593
\(156\) 0 0
\(157\) −84.4369 −0.0429223 −0.0214611 0.999770i \(-0.506832\pi\)
−0.0214611 + 0.999770i \(0.506832\pi\)
\(158\) 0 0
\(159\) 3162.56 1.57741
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2461.06 1.18261 0.591304 0.806449i \(-0.298613\pi\)
0.591304 + 0.806449i \(0.298613\pi\)
\(164\) 0 0
\(165\) 1794.50 0.846677
\(166\) 0 0
\(167\) 1061.13 0.491694 0.245847 0.969309i \(-0.420934\pi\)
0.245847 + 0.969309i \(0.420934\pi\)
\(168\) 0 0
\(169\) 3562.01 1.62131
\(170\) 0 0
\(171\) 46.4397 0.0207680
\(172\) 0 0
\(173\) −789.507 −0.346966 −0.173483 0.984837i \(-0.555502\pi\)
−0.173483 + 0.984837i \(0.555502\pi\)
\(174\) 0 0
\(175\) −793.500 −0.342760
\(176\) 0 0
\(177\) −1584.59 −0.672912
\(178\) 0 0
\(179\) 1973.57 0.824088 0.412044 0.911164i \(-0.364815\pi\)
0.412044 + 0.911164i \(0.364815\pi\)
\(180\) 0 0
\(181\) 3726.29 1.53024 0.765120 0.643888i \(-0.222680\pi\)
0.765120 + 0.643888i \(0.222680\pi\)
\(182\) 0 0
\(183\) 381.560 0.154130
\(184\) 0 0
\(185\) −1384.63 −0.550269
\(186\) 0 0
\(187\) 693.018 0.271008
\(188\) 0 0
\(189\) 11706.4 4.50536
\(190\) 0 0
\(191\) −1822.11 −0.690277 −0.345139 0.938552i \(-0.612168\pi\)
−0.345139 + 0.938552i \(0.612168\pi\)
\(192\) 0 0
\(193\) −1946.08 −0.725813 −0.362907 0.931825i \(-0.618216\pi\)
−0.362907 + 0.931825i \(0.618216\pi\)
\(194\) 0 0
\(195\) 9403.83 3.45345
\(196\) 0 0
\(197\) −3026.22 −1.09446 −0.547232 0.836981i \(-0.684318\pi\)
−0.547232 + 0.836981i \(0.684318\pi\)
\(198\) 0 0
\(199\) −3640.06 −1.29667 −0.648333 0.761356i \(-0.724534\pi\)
−0.648333 + 0.761356i \(0.724534\pi\)
\(200\) 0 0
\(201\) 4952.27 1.73784
\(202\) 0 0
\(203\) 1246.50 0.430972
\(204\) 0 0
\(205\) 4974.51 1.69480
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.35376 −0.00309576
\(210\) 0 0
\(211\) −1266.37 −0.413177 −0.206588 0.978428i \(-0.566236\pi\)
−0.206588 + 0.978428i \(0.566236\pi\)
\(212\) 0 0
\(213\) 4784.21 1.53901
\(214\) 0 0
\(215\) 1255.48 0.398247
\(216\) 0 0
\(217\) 6642.43 2.07796
\(218\) 0 0
\(219\) 830.508 0.256258
\(220\) 0 0
\(221\) 3631.66 1.10539
\(222\) 0 0
\(223\) 3078.13 0.924336 0.462168 0.886792i \(-0.347072\pi\)
0.462168 + 0.886792i \(0.347072\pi\)
\(224\) 0 0
\(225\) 2176.01 0.644742
\(226\) 0 0
\(227\) 3207.90 0.937956 0.468978 0.883210i \(-0.344622\pi\)
0.468978 + 0.883210i \(0.344622\pi\)
\(228\) 0 0
\(229\) 1985.81 0.573040 0.286520 0.958074i \(-0.407501\pi\)
0.286520 + 0.958074i \(0.407501\pi\)
\(230\) 0 0
\(231\) −3775.81 −1.07545
\(232\) 0 0
\(233\) −810.586 −0.227911 −0.113955 0.993486i \(-0.536352\pi\)
−0.113955 + 0.993486i \(0.536352\pi\)
\(234\) 0 0
\(235\) −4285.34 −1.18955
\(236\) 0 0
\(237\) 12686.6 3.47713
\(238\) 0 0
\(239\) −2970.27 −0.803895 −0.401948 0.915663i \(-0.631667\pi\)
−0.401948 + 0.915663i \(0.631667\pi\)
\(240\) 0 0
\(241\) 6822.51 1.82356 0.911778 0.410685i \(-0.134710\pi\)
0.911778 + 0.410685i \(0.134710\pi\)
\(242\) 0 0
\(243\) −12797.1 −3.37832
\(244\) 0 0
\(245\) 4291.35 1.11904
\(246\) 0 0
\(247\) −49.0170 −0.0126270
\(248\) 0 0
\(249\) −1522.18 −0.387407
\(250\) 0 0
\(251\) 3162.52 0.795284 0.397642 0.917541i \(-0.369829\pi\)
0.397642 + 0.917541i \(0.369829\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 5930.10 1.45630
\(256\) 0 0
\(257\) 2840.10 0.689341 0.344671 0.938724i \(-0.387991\pi\)
0.344671 + 0.938724i \(0.387991\pi\)
\(258\) 0 0
\(259\) 2913.39 0.698955
\(260\) 0 0
\(261\) −3418.27 −0.810672
\(262\) 0 0
\(263\) −3199.05 −0.750044 −0.375022 0.927016i \(-0.622365\pi\)
−0.375022 + 0.927016i \(0.622365\pi\)
\(264\) 0 0
\(265\) −3962.62 −0.918574
\(266\) 0 0
\(267\) −6699.57 −1.53561
\(268\) 0 0
\(269\) −2030.42 −0.460211 −0.230106 0.973166i \(-0.573907\pi\)
−0.230106 + 0.973166i \(0.573907\pi\)
\(270\) 0 0
\(271\) 2839.12 0.636399 0.318200 0.948024i \(-0.396922\pi\)
0.318200 + 0.948024i \(0.396922\pi\)
\(272\) 0 0
\(273\) −19786.6 −4.38659
\(274\) 0 0
\(275\) −438.285 −0.0961076
\(276\) 0 0
\(277\) 4849.52 1.05191 0.525955 0.850512i \(-0.323708\pi\)
0.525955 + 0.850512i \(0.323708\pi\)
\(278\) 0 0
\(279\) −18215.5 −3.90871
\(280\) 0 0
\(281\) 6494.90 1.37884 0.689418 0.724364i \(-0.257866\pi\)
0.689418 + 0.724364i \(0.257866\pi\)
\(282\) 0 0
\(283\) 3429.96 0.720458 0.360229 0.932864i \(-0.382698\pi\)
0.360229 + 0.932864i \(0.382698\pi\)
\(284\) 0 0
\(285\) −80.0394 −0.0166355
\(286\) 0 0
\(287\) −10466.9 −2.15275
\(288\) 0 0
\(289\) −2622.85 −0.533860
\(290\) 0 0
\(291\) 16551.2 3.33420
\(292\) 0 0
\(293\) 3867.37 0.771106 0.385553 0.922686i \(-0.374011\pi\)
0.385553 + 0.922686i \(0.374011\pi\)
\(294\) 0 0
\(295\) 1985.46 0.391858
\(296\) 0 0
\(297\) 6465.95 1.26327
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −2641.66 −0.505856
\(302\) 0 0
\(303\) 4946.20 0.937795
\(304\) 0 0
\(305\) −478.087 −0.0897546
\(306\) 0 0
\(307\) 693.762 0.128974 0.0644871 0.997919i \(-0.479459\pi\)
0.0644871 + 0.997919i \(0.479459\pi\)
\(308\) 0 0
\(309\) 7294.78 1.34299
\(310\) 0 0
\(311\) 4639.29 0.845885 0.422943 0.906157i \(-0.360997\pi\)
0.422943 + 0.906157i \(0.360997\pi\)
\(312\) 0 0
\(313\) −823.427 −0.148699 −0.0743496 0.997232i \(-0.523688\pi\)
−0.0743496 + 0.997232i \(0.523688\pi\)
\(314\) 0 0
\(315\) −23488.6 −4.20137
\(316\) 0 0
\(317\) −3673.18 −0.650808 −0.325404 0.945575i \(-0.605500\pi\)
−0.325404 + 0.945575i \(0.605500\pi\)
\(318\) 0 0
\(319\) 688.499 0.120842
\(320\) 0 0
\(321\) 15321.7 2.66409
\(322\) 0 0
\(323\) −30.9104 −0.00532477
\(324\) 0 0
\(325\) −2296.77 −0.392006
\(326\) 0 0
\(327\) −11297.8 −1.91061
\(328\) 0 0
\(329\) 9016.77 1.51097
\(330\) 0 0
\(331\) 9634.53 1.59988 0.799942 0.600078i \(-0.204864\pi\)
0.799942 + 0.600078i \(0.204864\pi\)
\(332\) 0 0
\(333\) −7989.35 −1.31476
\(334\) 0 0
\(335\) −6205.09 −1.01200
\(336\) 0 0
\(337\) 7767.46 1.25555 0.627775 0.778395i \(-0.283966\pi\)
0.627775 + 0.778395i \(0.283966\pi\)
\(338\) 0 0
\(339\) 1781.84 0.285475
\(340\) 0 0
\(341\) 3668.91 0.582647
\(342\) 0 0
\(343\) −36.5848 −0.00575916
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11132.6 −1.72228 −0.861141 0.508367i \(-0.830249\pi\)
−0.861141 + 0.508367i \(0.830249\pi\)
\(348\) 0 0
\(349\) 4483.75 0.687706 0.343853 0.939023i \(-0.388268\pi\)
0.343853 + 0.939023i \(0.388268\pi\)
\(350\) 0 0
\(351\) 33883.9 5.15267
\(352\) 0 0
\(353\) 8677.65 1.30840 0.654199 0.756322i \(-0.273006\pi\)
0.654199 + 0.756322i \(0.273006\pi\)
\(354\) 0 0
\(355\) −5994.52 −0.896214
\(356\) 0 0
\(357\) −12477.5 −1.84981
\(358\) 0 0
\(359\) −10327.2 −1.51824 −0.759122 0.650948i \(-0.774371\pi\)
−0.759122 + 0.650948i \(0.774371\pi\)
\(360\) 0 0
\(361\) −6858.58 −0.999939
\(362\) 0 0
\(363\) 11150.9 1.61232
\(364\) 0 0
\(365\) −1040.61 −0.149227
\(366\) 0 0
\(367\) −11612.9 −1.65174 −0.825868 0.563863i \(-0.809315\pi\)
−0.825868 + 0.563863i \(0.809315\pi\)
\(368\) 0 0
\(369\) 28703.1 4.04939
\(370\) 0 0
\(371\) 8337.76 1.16678
\(372\) 0 0
\(373\) −3949.83 −0.548296 −0.274148 0.961688i \(-0.588396\pi\)
−0.274148 + 0.961688i \(0.588396\pi\)
\(374\) 0 0
\(375\) 11739.2 1.61656
\(376\) 0 0
\(377\) 3607.98 0.492892
\(378\) 0 0
\(379\) 13201.3 1.78920 0.894599 0.446870i \(-0.147461\pi\)
0.894599 + 0.446870i \(0.147461\pi\)
\(380\) 0 0
\(381\) −968.688 −0.130256
\(382\) 0 0
\(383\) 6019.63 0.803104 0.401552 0.915836i \(-0.368471\pi\)
0.401552 + 0.915836i \(0.368471\pi\)
\(384\) 0 0
\(385\) 4731.01 0.626271
\(386\) 0 0
\(387\) 7244.18 0.951530
\(388\) 0 0
\(389\) −12961.4 −1.68938 −0.844691 0.535254i \(-0.820216\pi\)
−0.844691 + 0.535254i \(0.820216\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 21015.3 2.69740
\(394\) 0 0
\(395\) −15896.0 −2.02484
\(396\) 0 0
\(397\) 5025.40 0.635309 0.317655 0.948207i \(-0.397105\pi\)
0.317655 + 0.948207i \(0.397105\pi\)
\(398\) 0 0
\(399\) 168.411 0.0211305
\(400\) 0 0
\(401\) 2357.46 0.293581 0.146791 0.989168i \(-0.453106\pi\)
0.146791 + 0.989168i \(0.453106\pi\)
\(402\) 0 0
\(403\) 19226.4 2.37651
\(404\) 0 0
\(405\) 31139.7 3.82060
\(406\) 0 0
\(407\) 1609.19 0.195982
\(408\) 0 0
\(409\) 1505.90 0.182058 0.0910292 0.995848i \(-0.470984\pi\)
0.0910292 + 0.995848i \(0.470984\pi\)
\(410\) 0 0
\(411\) −10881.6 −1.30596
\(412\) 0 0
\(413\) −4177.61 −0.497740
\(414\) 0 0
\(415\) 1907.26 0.225599
\(416\) 0 0
\(417\) 800.854 0.0940479
\(418\) 0 0
\(419\) 13376.0 1.55957 0.779784 0.626049i \(-0.215329\pi\)
0.779784 + 0.626049i \(0.215329\pi\)
\(420\) 0 0
\(421\) −10134.8 −1.17325 −0.586626 0.809858i \(-0.699544\pi\)
−0.586626 + 0.809858i \(0.699544\pi\)
\(422\) 0 0
\(423\) −24726.6 −2.84219
\(424\) 0 0
\(425\) −1448.36 −0.165307
\(426\) 0 0
\(427\) 1005.94 0.114007
\(428\) 0 0
\(429\) −10929.0 −1.22997
\(430\) 0 0
\(431\) 692.544 0.0773983 0.0386992 0.999251i \(-0.487679\pi\)
0.0386992 + 0.999251i \(0.487679\pi\)
\(432\) 0 0
\(433\) −3912.69 −0.434254 −0.217127 0.976143i \(-0.569669\pi\)
−0.217127 + 0.976143i \(0.569669\pi\)
\(434\) 0 0
\(435\) 5891.43 0.649362
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −3027.77 −0.329174 −0.164587 0.986363i \(-0.552629\pi\)
−0.164587 + 0.986363i \(0.552629\pi\)
\(440\) 0 0
\(441\) 24761.3 2.67372
\(442\) 0 0
\(443\) 4266.35 0.457563 0.228781 0.973478i \(-0.426526\pi\)
0.228781 + 0.973478i \(0.426526\pi\)
\(444\) 0 0
\(445\) 8394.42 0.894233
\(446\) 0 0
\(447\) 26379.3 2.79128
\(448\) 0 0
\(449\) −10438.0 −1.09711 −0.548553 0.836116i \(-0.684821\pi\)
−0.548553 + 0.836116i \(0.684821\pi\)
\(450\) 0 0
\(451\) −5781.31 −0.603616
\(452\) 0 0
\(453\) 1483.63 0.153879
\(454\) 0 0
\(455\) 24792.2 2.55445
\(456\) 0 0
\(457\) 2123.45 0.217354 0.108677 0.994077i \(-0.465339\pi\)
0.108677 + 0.994077i \(0.465339\pi\)
\(458\) 0 0
\(459\) 21367.4 2.17286
\(460\) 0 0
\(461\) −15784.0 −1.59465 −0.797324 0.603552i \(-0.793752\pi\)
−0.797324 + 0.603552i \(0.793752\pi\)
\(462\) 0 0
\(463\) 10711.3 1.07516 0.537579 0.843214i \(-0.319339\pi\)
0.537579 + 0.843214i \(0.319339\pi\)
\(464\) 0 0
\(465\) 31394.6 3.13094
\(466\) 0 0
\(467\) 7492.65 0.742438 0.371219 0.928545i \(-0.378940\pi\)
0.371219 + 0.928545i \(0.378940\pi\)
\(468\) 0 0
\(469\) 13056.1 1.28545
\(470\) 0 0
\(471\) 839.703 0.0821475
\(472\) 0 0
\(473\) −1459.10 −0.141839
\(474\) 0 0
\(475\) 19.5487 0.00188832
\(476\) 0 0
\(477\) −22864.5 −2.19475
\(478\) 0 0
\(479\) 470.436 0.0448743 0.0224371 0.999748i \(-0.492857\pi\)
0.0224371 + 0.999748i \(0.492857\pi\)
\(480\) 0 0
\(481\) 8432.75 0.799377
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20738.4 −1.94161
\(486\) 0 0
\(487\) 4683.09 0.435751 0.217876 0.975977i \(-0.430087\pi\)
0.217876 + 0.975977i \(0.430087\pi\)
\(488\) 0 0
\(489\) −24474.6 −2.26335
\(490\) 0 0
\(491\) −16056.4 −1.47580 −0.737899 0.674911i \(-0.764182\pi\)
−0.737899 + 0.674911i \(0.764182\pi\)
\(492\) 0 0
\(493\) 2275.21 0.207851
\(494\) 0 0
\(495\) −12973.8 −1.17804
\(496\) 0 0
\(497\) 12613.1 1.13838
\(498\) 0 0
\(499\) −1182.03 −0.106042 −0.0530211 0.998593i \(-0.516885\pi\)
−0.0530211 + 0.998593i \(0.516885\pi\)
\(500\) 0 0
\(501\) −10552.7 −0.941037
\(502\) 0 0
\(503\) −4567.73 −0.404901 −0.202450 0.979293i \(-0.564890\pi\)
−0.202450 + 0.979293i \(0.564890\pi\)
\(504\) 0 0
\(505\) −6197.49 −0.546108
\(506\) 0 0
\(507\) −35423.3 −3.10297
\(508\) 0 0
\(509\) −9219.65 −0.802856 −0.401428 0.915890i \(-0.631486\pi\)
−0.401428 + 0.915890i \(0.631486\pi\)
\(510\) 0 0
\(511\) 2189.54 0.189549
\(512\) 0 0
\(513\) −288.398 −0.0248208
\(514\) 0 0
\(515\) −9140.20 −0.782069
\(516\) 0 0
\(517\) 4980.36 0.423667
\(518\) 0 0
\(519\) 7851.44 0.664046
\(520\) 0 0
\(521\) −12111.9 −1.01849 −0.509243 0.860623i \(-0.670074\pi\)
−0.509243 + 0.860623i \(0.670074\pi\)
\(522\) 0 0
\(523\) 9483.09 0.792862 0.396431 0.918065i \(-0.370249\pi\)
0.396431 + 0.918065i \(0.370249\pi\)
\(524\) 0 0
\(525\) 7891.16 0.655997
\(526\) 0 0
\(527\) 12124.3 1.00217
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 11456.2 0.936265
\(532\) 0 0
\(533\) −30296.1 −2.46205
\(534\) 0 0
\(535\) −19197.8 −1.55139
\(536\) 0 0
\(537\) −19626.7 −1.57719
\(538\) 0 0
\(539\) −4987.36 −0.398554
\(540\) 0 0
\(541\) 9704.41 0.771211 0.385605 0.922664i \(-0.373993\pi\)
0.385605 + 0.922664i \(0.373993\pi\)
\(542\) 0 0
\(543\) −37057.0 −2.92867
\(544\) 0 0
\(545\) 14155.9 1.11261
\(546\) 0 0
\(547\) 5983.20 0.467684 0.233842 0.972275i \(-0.424870\pi\)
0.233842 + 0.972275i \(0.424870\pi\)
\(548\) 0 0
\(549\) −2758.58 −0.214450
\(550\) 0 0
\(551\) −30.7088 −0.00237430
\(552\) 0 0
\(553\) 33446.7 2.57197
\(554\) 0 0
\(555\) 13769.7 1.05314
\(556\) 0 0
\(557\) −2004.07 −0.152451 −0.0762255 0.997091i \(-0.524287\pi\)
−0.0762255 + 0.997091i \(0.524287\pi\)
\(558\) 0 0
\(559\) −7646.22 −0.578534
\(560\) 0 0
\(561\) −6891.89 −0.518673
\(562\) 0 0
\(563\) 22091.0 1.65369 0.826844 0.562431i \(-0.190134\pi\)
0.826844 + 0.562431i \(0.190134\pi\)
\(564\) 0 0
\(565\) −2232.60 −0.166241
\(566\) 0 0
\(567\) −65520.9 −4.85295
\(568\) 0 0
\(569\) 21872.6 1.61151 0.805754 0.592251i \(-0.201761\pi\)
0.805754 + 0.592251i \(0.201761\pi\)
\(570\) 0 0
\(571\) −3662.90 −0.268455 −0.134227 0.990951i \(-0.542855\pi\)
−0.134227 + 0.990951i \(0.542855\pi\)
\(572\) 0 0
\(573\) 18120.4 1.32110
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −12531.7 −0.904159 −0.452079 0.891978i \(-0.649318\pi\)
−0.452079 + 0.891978i \(0.649318\pi\)
\(578\) 0 0
\(579\) 19353.3 1.38911
\(580\) 0 0
\(581\) −4013.07 −0.286558
\(582\) 0 0
\(583\) 4605.31 0.327157
\(584\) 0 0
\(585\) −67987.2 −4.80500
\(586\) 0 0
\(587\) 10668.6 0.750156 0.375078 0.926993i \(-0.377616\pi\)
0.375078 + 0.926993i \(0.377616\pi\)
\(588\) 0 0
\(589\) −163.643 −0.0114479
\(590\) 0 0
\(591\) 30095.0 2.09466
\(592\) 0 0
\(593\) −19712.7 −1.36510 −0.682549 0.730840i \(-0.739129\pi\)
−0.682549 + 0.730840i \(0.739129\pi\)
\(594\) 0 0
\(595\) 15634.1 1.07720
\(596\) 0 0
\(597\) 36199.4 2.48165
\(598\) 0 0
\(599\) 6365.07 0.434173 0.217086 0.976152i \(-0.430345\pi\)
0.217086 + 0.976152i \(0.430345\pi\)
\(600\) 0 0
\(601\) 4056.20 0.275301 0.137651 0.990481i \(-0.456045\pi\)
0.137651 + 0.990481i \(0.456045\pi\)
\(602\) 0 0
\(603\) −35803.6 −2.41797
\(604\) 0 0
\(605\) −13971.8 −0.938903
\(606\) 0 0
\(607\) 5331.59 0.356512 0.178256 0.983984i \(-0.442955\pi\)
0.178256 + 0.983984i \(0.442955\pi\)
\(608\) 0 0
\(609\) −12396.1 −0.824823
\(610\) 0 0
\(611\) 26098.9 1.72806
\(612\) 0 0
\(613\) 2298.06 0.151416 0.0757079 0.997130i \(-0.475878\pi\)
0.0757079 + 0.997130i \(0.475878\pi\)
\(614\) 0 0
\(615\) −49470.2 −3.24363
\(616\) 0 0
\(617\) −9356.41 −0.610494 −0.305247 0.952273i \(-0.598739\pi\)
−0.305247 + 0.952273i \(0.598739\pi\)
\(618\) 0 0
\(619\) 10068.1 0.653752 0.326876 0.945067i \(-0.394004\pi\)
0.326876 + 0.945067i \(0.394004\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −17662.7 −1.13586
\(624\) 0 0
\(625\) −18492.2 −1.18350
\(626\) 0 0
\(627\) 93.0207 0.00592486
\(628\) 0 0
\(629\) 5317.74 0.337094
\(630\) 0 0
\(631\) 23713.2 1.49605 0.748024 0.663672i \(-0.231003\pi\)
0.748024 + 0.663672i \(0.231003\pi\)
\(632\) 0 0
\(633\) 12593.7 0.790765
\(634\) 0 0
\(635\) 1213.74 0.0758519
\(636\) 0 0
\(637\) −26135.5 −1.62563
\(638\) 0 0
\(639\) −34588.6 −2.14132
\(640\) 0 0
\(641\) 29042.1 1.78954 0.894770 0.446527i \(-0.147339\pi\)
0.894770 + 0.446527i \(0.147339\pi\)
\(642\) 0 0
\(643\) −9383.74 −0.575519 −0.287759 0.957703i \(-0.592910\pi\)
−0.287759 + 0.957703i \(0.592910\pi\)
\(644\) 0 0
\(645\) −12485.4 −0.762191
\(646\) 0 0
\(647\) −1459.50 −0.0886844 −0.0443422 0.999016i \(-0.514119\pi\)
−0.0443422 + 0.999016i \(0.514119\pi\)
\(648\) 0 0
\(649\) −2307.48 −0.139563
\(650\) 0 0
\(651\) −66057.3 −3.97694
\(652\) 0 0
\(653\) −30851.8 −1.84889 −0.924445 0.381316i \(-0.875471\pi\)
−0.924445 + 0.381316i \(0.875471\pi\)
\(654\) 0 0
\(655\) −26331.7 −1.57078
\(656\) 0 0
\(657\) −6004.35 −0.356548
\(658\) 0 0
\(659\) 20099.3 1.18810 0.594049 0.804429i \(-0.297528\pi\)
0.594049 + 0.804429i \(0.297528\pi\)
\(660\) 0 0
\(661\) −4147.58 −0.244058 −0.122029 0.992527i \(-0.538940\pi\)
−0.122029 + 0.992527i \(0.538940\pi\)
\(662\) 0 0
\(663\) −36116.0 −2.11558
\(664\) 0 0
\(665\) −211.015 −0.0123050
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −30611.2 −1.76905
\(670\) 0 0
\(671\) 555.626 0.0319668
\(672\) 0 0
\(673\) −23389.5 −1.33967 −0.669836 0.742509i \(-0.733636\pi\)
−0.669836 + 0.742509i \(0.733636\pi\)
\(674\) 0 0
\(675\) −13513.4 −0.770562
\(676\) 0 0
\(677\) −2511.53 −0.142579 −0.0712895 0.997456i \(-0.522711\pi\)
−0.0712895 + 0.997456i \(0.522711\pi\)
\(678\) 0 0
\(679\) 43635.5 2.46624
\(680\) 0 0
\(681\) −31901.8 −1.79512
\(682\) 0 0
\(683\) −21785.7 −1.22051 −0.610253 0.792206i \(-0.708932\pi\)
−0.610253 + 0.792206i \(0.708932\pi\)
\(684\) 0 0
\(685\) 13634.5 0.760505
\(686\) 0 0
\(687\) −19748.4 −1.09672
\(688\) 0 0
\(689\) 24133.5 1.33442
\(690\) 0 0
\(691\) −23045.5 −1.26873 −0.634364 0.773035i \(-0.718738\pi\)
−0.634364 + 0.773035i \(0.718738\pi\)
\(692\) 0 0
\(693\) 27298.1 1.49635
\(694\) 0 0
\(695\) −1003.45 −0.0547671
\(696\) 0 0
\(697\) −19104.9 −1.03823
\(698\) 0 0
\(699\) 8061.06 0.436191
\(700\) 0 0
\(701\) −21575.1 −1.16246 −0.581228 0.813741i \(-0.697428\pi\)
−0.581228 + 0.813741i \(0.697428\pi\)
\(702\) 0 0
\(703\) −71.7742 −0.00385066
\(704\) 0 0
\(705\) 42616.6 2.27664
\(706\) 0 0
\(707\) 13040.1 0.693669
\(708\) 0 0
\(709\) −17788.8 −0.942272 −0.471136 0.882061i \(-0.656156\pi\)
−0.471136 + 0.882061i \(0.656156\pi\)
\(710\) 0 0
\(711\) −91720.5 −4.83796
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 13693.8 0.716251
\(716\) 0 0
\(717\) 29538.6 1.53855
\(718\) 0 0
\(719\) −473.961 −0.0245838 −0.0122919 0.999924i \(-0.503913\pi\)
−0.0122919 + 0.999924i \(0.503913\pi\)
\(720\) 0 0
\(721\) 19231.9 0.993388
\(722\) 0 0
\(723\) −67848.1 −3.49004
\(724\) 0 0
\(725\) −1438.91 −0.0737101
\(726\) 0 0
\(727\) −3899.59 −0.198938 −0.0994688 0.995041i \(-0.531714\pi\)
−0.0994688 + 0.995041i \(0.531714\pi\)
\(728\) 0 0
\(729\) 59789.0 3.03759
\(730\) 0 0
\(731\) −4821.75 −0.243966
\(732\) 0 0
\(733\) 17905.4 0.902251 0.451126 0.892460i \(-0.351023\pi\)
0.451126 + 0.892460i \(0.351023\pi\)
\(734\) 0 0
\(735\) −42676.4 −2.14169
\(736\) 0 0
\(737\) 7211.47 0.360431
\(738\) 0 0
\(739\) −13312.1 −0.662643 −0.331322 0.943518i \(-0.607494\pi\)
−0.331322 + 0.943518i \(0.607494\pi\)
\(740\) 0 0
\(741\) 487.462 0.0241665
\(742\) 0 0
\(743\) 33895.7 1.67364 0.836819 0.547480i \(-0.184413\pi\)
0.836819 + 0.547480i \(0.184413\pi\)
\(744\) 0 0
\(745\) −33052.7 −1.62545
\(746\) 0 0
\(747\) 11005.0 0.539024
\(748\) 0 0
\(749\) 40394.0 1.97058
\(750\) 0 0
\(751\) −26911.0 −1.30759 −0.653793 0.756674i \(-0.726823\pi\)
−0.653793 + 0.756674i \(0.726823\pi\)
\(752\) 0 0
\(753\) −31450.4 −1.52207
\(754\) 0 0
\(755\) −1858.96 −0.0896086
\(756\) 0 0
\(757\) 7322.40 0.351568 0.175784 0.984429i \(-0.443754\pi\)
0.175784 + 0.984429i \(0.443754\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12135.2 −0.578056 −0.289028 0.957321i \(-0.593332\pi\)
−0.289028 + 0.957321i \(0.593332\pi\)
\(762\) 0 0
\(763\) −29785.5 −1.41325
\(764\) 0 0
\(765\) −42873.1 −2.02625
\(766\) 0 0
\(767\) −12092.0 −0.569253
\(768\) 0 0
\(769\) 3754.71 0.176071 0.0880353 0.996117i \(-0.471941\pi\)
0.0880353 + 0.996117i \(0.471941\pi\)
\(770\) 0 0
\(771\) −28244.1 −1.31931
\(772\) 0 0
\(773\) −25609.6 −1.19161 −0.595804 0.803130i \(-0.703167\pi\)
−0.595804 + 0.803130i \(0.703167\pi\)
\(774\) 0 0
\(775\) −7667.75 −0.355398
\(776\) 0 0
\(777\) −28972.9 −1.33771
\(778\) 0 0
\(779\) 257.861 0.0118599
\(780\) 0 0
\(781\) 6966.75 0.319193
\(782\) 0 0
\(783\) 21228.0 0.968872
\(784\) 0 0
\(785\) −1052.13 −0.0478371
\(786\) 0 0
\(787\) −7226.43 −0.327312 −0.163656 0.986517i \(-0.552329\pi\)
−0.163656 + 0.986517i \(0.552329\pi\)
\(788\) 0 0
\(789\) 31813.7 1.43548
\(790\) 0 0
\(791\) 4697.62 0.211161
\(792\) 0 0
\(793\) 2911.68 0.130387
\(794\) 0 0
\(795\) 39407.3 1.75803
\(796\) 0 0
\(797\) 34935.9 1.55269 0.776344 0.630309i \(-0.217072\pi\)
0.776344 + 0.630309i \(0.217072\pi\)
\(798\) 0 0
\(799\) 16458.1 0.728718
\(800\) 0 0
\(801\) 48436.1 2.13659
\(802\) 0 0
\(803\) 1209.38 0.0531484
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 20192.0 0.880783
\(808\) 0 0
\(809\) −27288.3 −1.18592 −0.592958 0.805233i \(-0.702040\pi\)
−0.592958 + 0.805233i \(0.702040\pi\)
\(810\) 0 0
\(811\) 37405.1 1.61957 0.809785 0.586727i \(-0.199584\pi\)
0.809785 + 0.586727i \(0.199584\pi\)
\(812\) 0 0
\(813\) −28234.3 −1.21798
\(814\) 0 0
\(815\) 30666.1 1.31802
\(816\) 0 0
\(817\) 65.0798 0.00278685
\(818\) 0 0
\(819\) 143052. 6.10334
\(820\) 0 0
\(821\) 15104.5 0.642084 0.321042 0.947065i \(-0.395967\pi\)
0.321042 + 0.947065i \(0.395967\pi\)
\(822\) 0 0
\(823\) 17898.2 0.758071 0.379035 0.925382i \(-0.376256\pi\)
0.379035 + 0.925382i \(0.376256\pi\)
\(824\) 0 0
\(825\) 4358.63 0.183937
\(826\) 0 0
\(827\) 10734.0 0.451341 0.225671 0.974204i \(-0.427543\pi\)
0.225671 + 0.974204i \(0.427543\pi\)
\(828\) 0 0
\(829\) −44607.5 −1.86886 −0.934428 0.356151i \(-0.884089\pi\)
−0.934428 + 0.356151i \(0.884089\pi\)
\(830\) 0 0
\(831\) −48227.2 −2.01322
\(832\) 0 0
\(833\) −16481.2 −0.685522
\(834\) 0 0
\(835\) 13222.3 0.547996
\(836\) 0 0
\(837\) 113121. 4.67148
\(838\) 0 0
\(839\) 19778.0 0.813843 0.406921 0.913463i \(-0.366602\pi\)
0.406921 + 0.913463i \(0.366602\pi\)
\(840\) 0 0
\(841\) −22128.6 −0.907320
\(842\) 0 0
\(843\) −64590.0 −2.63891
\(844\) 0 0
\(845\) 44384.6 1.80696
\(846\) 0 0
\(847\) 29398.1 1.19260
\(848\) 0 0
\(849\) −34110.0 −1.37886
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 32806.3 1.31684 0.658421 0.752650i \(-0.271225\pi\)
0.658421 + 0.752650i \(0.271225\pi\)
\(854\) 0 0
\(855\) 578.664 0.0231461
\(856\) 0 0
\(857\) −32892.0 −1.31105 −0.655524 0.755174i \(-0.727552\pi\)
−0.655524 + 0.755174i \(0.727552\pi\)
\(858\) 0 0
\(859\) 19148.4 0.760574 0.380287 0.924868i \(-0.375825\pi\)
0.380287 + 0.924868i \(0.375825\pi\)
\(860\) 0 0
\(861\) 104090. 4.12007
\(862\) 0 0
\(863\) −39969.2 −1.57656 −0.788278 0.615320i \(-0.789027\pi\)
−0.788278 + 0.615320i \(0.789027\pi\)
\(864\) 0 0
\(865\) −9837.69 −0.386695
\(866\) 0 0
\(867\) 26083.6 1.02174
\(868\) 0 0
\(869\) 18474.1 0.721163
\(870\) 0 0
\(871\) 37790.7 1.47014
\(872\) 0 0
\(873\) −119661. −4.63908
\(874\) 0 0
\(875\) 30949.2 1.19574
\(876\) 0 0
\(877\) 17323.6 0.667020 0.333510 0.942747i \(-0.391767\pi\)
0.333510 + 0.942747i \(0.391767\pi\)
\(878\) 0 0
\(879\) −38459.9 −1.47579
\(880\) 0 0
\(881\) −6911.21 −0.264296 −0.132148 0.991230i \(-0.542187\pi\)
−0.132148 + 0.991230i \(0.542187\pi\)
\(882\) 0 0
\(883\) 44073.8 1.67973 0.839865 0.542795i \(-0.182634\pi\)
0.839865 + 0.542795i \(0.182634\pi\)
\(884\) 0 0
\(885\) −19744.9 −0.749963
\(886\) 0 0
\(887\) −21893.8 −0.828775 −0.414387 0.910101i \(-0.636004\pi\)
−0.414387 + 0.910101i \(0.636004\pi\)
\(888\) 0 0
\(889\) −2553.84 −0.0963476
\(890\) 0 0
\(891\) −36190.1 −1.36073
\(892\) 0 0
\(893\) −222.137 −0.00832422
\(894\) 0 0
\(895\) 24591.8 0.918450
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12045.2 0.446863
\(900\) 0 0
\(901\) 15218.7 0.562717
\(902\) 0 0
\(903\) 26270.6 0.968140
\(904\) 0 0
\(905\) 46431.7 1.70546
\(906\) 0 0
\(907\) −14618.3 −0.535163 −0.267581 0.963535i \(-0.586224\pi\)
−0.267581 + 0.963535i \(0.586224\pi\)
\(908\) 0 0
\(909\) −35759.7 −1.30481
\(910\) 0 0
\(911\) 2071.66 0.0753427 0.0376714 0.999290i \(-0.488006\pi\)
0.0376714 + 0.999290i \(0.488006\pi\)
\(912\) 0 0
\(913\) −2216.59 −0.0803489
\(914\) 0 0
\(915\) 4754.45 0.171778
\(916\) 0 0
\(917\) 55404.4 1.99522
\(918\) 0 0
\(919\) −7935.82 −0.284852 −0.142426 0.989805i \(-0.545490\pi\)
−0.142426 + 0.989805i \(0.545490\pi\)
\(920\) 0 0
\(921\) −6899.28 −0.246839
\(922\) 0 0
\(923\) 36508.3 1.30193
\(924\) 0 0
\(925\) −3363.10 −0.119544
\(926\) 0 0
\(927\) −52739.3 −1.86859
\(928\) 0 0
\(929\) 15621.5 0.551695 0.275848 0.961201i \(-0.411041\pi\)
0.275848 + 0.961201i \(0.411041\pi\)
\(930\) 0 0
\(931\) 222.449 0.00783080
\(932\) 0 0
\(933\) −46136.6 −1.61891
\(934\) 0 0
\(935\) 8635.39 0.302040
\(936\) 0 0
\(937\) 39243.7 1.36823 0.684117 0.729372i \(-0.260188\pi\)
0.684117 + 0.729372i \(0.260188\pi\)
\(938\) 0 0
\(939\) 8188.77 0.284590
\(940\) 0 0
\(941\) 35170.9 1.21843 0.609213 0.793007i \(-0.291486\pi\)
0.609213 + 0.793007i \(0.291486\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 145868. 5.02125
\(946\) 0 0
\(947\) 23076.2 0.791842 0.395921 0.918284i \(-0.370425\pi\)
0.395921 + 0.918284i \(0.370425\pi\)
\(948\) 0 0
\(949\) 6337.59 0.216783
\(950\) 0 0
\(951\) 36528.8 1.24556
\(952\) 0 0
\(953\) 609.227 0.0207081 0.0103540 0.999946i \(-0.496704\pi\)
0.0103540 + 0.999946i \(0.496704\pi\)
\(954\) 0 0
\(955\) −22704.4 −0.769318
\(956\) 0 0
\(957\) −6846.94 −0.231275
\(958\) 0 0
\(959\) −28688.3 −0.965998
\(960\) 0 0
\(961\) 34396.1 1.15458
\(962\) 0 0
\(963\) −110772. −3.70672
\(964\) 0 0
\(965\) −24249.2 −0.808923
\(966\) 0 0
\(967\) 605.367 0.0201316 0.0100658 0.999949i \(-0.496796\pi\)
0.0100658 + 0.999949i \(0.496796\pi\)
\(968\) 0 0
\(969\) 307.396 0.0101909
\(970\) 0 0
\(971\) 41656.8 1.37675 0.688377 0.725353i \(-0.258323\pi\)
0.688377 + 0.725353i \(0.258323\pi\)
\(972\) 0 0
\(973\) 2111.36 0.0695655
\(974\) 0 0
\(975\) 22840.8 0.750247
\(976\) 0 0
\(977\) −17087.1 −0.559534 −0.279767 0.960068i \(-0.590257\pi\)
−0.279767 + 0.960068i \(0.590257\pi\)
\(978\) 0 0
\(979\) −9755.88 −0.318488
\(980\) 0 0
\(981\) 81680.3 2.65836
\(982\) 0 0
\(983\) 21344.4 0.692554 0.346277 0.938132i \(-0.387446\pi\)
0.346277 + 0.938132i \(0.387446\pi\)
\(984\) 0 0
\(985\) −37708.4 −1.21979
\(986\) 0 0
\(987\) −89669.5 −2.89180
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −38896.1 −1.24680 −0.623398 0.781905i \(-0.714248\pi\)
−0.623398 + 0.781905i \(0.714248\pi\)
\(992\) 0 0
\(993\) −95812.9 −3.06196
\(994\) 0 0
\(995\) −45357.1 −1.44514
\(996\) 0 0
\(997\) −40415.7 −1.28383 −0.641916 0.766775i \(-0.721860\pi\)
−0.641916 + 0.766775i \(0.721860\pi\)
\(998\) 0 0
\(999\) 49615.2 1.57133
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2116.4.a.j.1.1 30
23.15 odd 22 92.4.e.a.41.6 yes 60
23.20 odd 22 92.4.e.a.9.6 60
23.22 odd 2 2116.4.a.i.1.1 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.4.e.a.9.6 60 23.20 odd 22
92.4.e.a.41.6 yes 60 23.15 odd 22
2116.4.a.i.1.1 30 23.22 odd 2
2116.4.a.j.1.1 30 1.1 even 1 trivial