Properties

Label 216.5.p.b.19.35
Level $216$
Weight $5$
Character 216.19
Analytic conductor $22.328$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [216,5,Mod(19,216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("216.19");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 216.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3279120261\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.35
Character \(\chi\) \(=\) 216.19
Dual form 216.5.p.b.91.35

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.30101 + 2.25906i) q^{2} +(5.79331 + 14.9143i) q^{4} +(2.53773 - 1.46516i) q^{5} +(-39.8426 - 23.0032i) q^{7} +(-14.5686 + 62.3198i) q^{8} +O(q^{10})\) \(q+(3.30101 + 2.25906i) q^{2} +(5.79331 + 14.9143i) q^{4} +(2.53773 - 1.46516i) q^{5} +(-39.8426 - 23.0032i) q^{7} +(-14.5686 + 62.3198i) q^{8} +(11.6869 + 0.896378i) q^{10} +(-27.1224 + 46.9774i) q^{11} +(-174.611 + 100.811i) q^{13} +(-79.5554 - 165.940i) q^{14} +(-188.875 + 172.807i) q^{16} +88.7146 q^{17} -357.083 q^{19} +(36.5537 + 29.3604i) q^{20} +(-195.656 + 93.8016i) q^{22} +(-214.383 + 123.774i) q^{23} +(-308.207 + 533.830i) q^{25} +(-804.130 - 61.6760i) q^{26} +(112.256 - 727.491i) q^{28} +(-18.7746 - 10.8395i) q^{29} +(349.016 - 201.504i) q^{31} +(-1013.86 + 143.757i) q^{32} +(292.848 + 200.411i) q^{34} -134.813 q^{35} -1263.37i q^{37} +(-1178.73 - 806.671i) q^{38} +(54.3372 + 179.496i) q^{40} +(1106.42 + 1916.37i) q^{41} +(678.384 - 1175.00i) q^{43} +(-857.765 - 132.358i) q^{44} +(-987.293 - 75.7244i) q^{46} +(-3120.48 - 1801.61i) q^{47} +(-142.209 - 246.314i) q^{49} +(-2223.34 + 1065.92i) q^{50} +(-2515.11 - 2020.17i) q^{52} +4122.82i q^{53} +158.955i q^{55} +(2014.00 - 2147.86i) q^{56} +(-37.4881 - 78.1944i) q^{58} +(2643.76 + 4579.12i) q^{59} +(-4778.25 - 2758.72i) q^{61} +(1607.31 + 123.280i) q^{62} +(-3671.51 - 1815.82i) q^{64} +(-295.410 + 511.664i) q^{65} +(3090.68 + 5353.21i) q^{67} +(513.951 + 1323.12i) q^{68} +(-445.019 - 304.551i) q^{70} -4832.30i q^{71} +9435.38 q^{73} +(2854.02 - 4170.38i) q^{74} +(-2068.69 - 5325.66i) q^{76} +(2161.26 - 1247.80i) q^{77} +(-1099.86 - 635.004i) q^{79} +(-226.125 + 715.269i) q^{80} +(-676.901 + 8825.41i) q^{82} +(-1266.75 + 2194.08i) q^{83} +(225.134 - 129.981i) q^{85} +(4893.74 - 2346.16i) q^{86} +(-2532.48 - 2374.66i) q^{88} -5907.27 q^{89} +9275.93 q^{91} +(-3087.99 - 2480.32i) q^{92} +(-6230.78 - 12996.5i) q^{94} +(-906.180 + 523.183i) q^{95} +(-928.999 + 1609.07i) q^{97} +(87.0031 - 1134.34i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q - 7 q^{2} + 31 q^{4} + 386 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 88 q - 7 q^{2} + 31 q^{4} + 386 q^{8} - 36 q^{10} - 44 q^{11} + 318 q^{14} + 511 q^{16} + 1156 q^{17} + 860 q^{19} + 1164 q^{20} + 215 q^{22} + 5998 q^{25} + 5232 q^{26} - 516 q^{28} - 5227 q^{32} + 1877 q^{34} + 2508 q^{35} + 4393 q^{38} + 2274 q^{40} - 2348 q^{41} + 3500 q^{43} - 2234 q^{44} + 3576 q^{46} + 16462 q^{49} - 5785 q^{50} - 1440 q^{52} - 1146 q^{56} - 4128 q^{58} + 3508 q^{59} - 2376 q^{62} - 5510 q^{64} + 2502 q^{65} + 5132 q^{67} - 10169 q^{68} + 1134 q^{70} + 19004 q^{73} + 2946 q^{74} - 5875 q^{76} - 8592 q^{80} - 18454 q^{82} - 17090 q^{83} - 18581 q^{86} - 3253 q^{88} + 8272 q^{89} - 9612 q^{91} - 9318 q^{92} - 7590 q^{94} + 9980 q^{97} - 6826 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/216\mathbb{Z}\right)^\times\).

\(n\) \(55\) \(109\) \(137\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.30101 + 2.25906i 0.825252 + 0.564765i
\(3\) 0 0
\(4\) 5.79331 + 14.9143i 0.362082 + 0.932146i
\(5\) 2.53773 1.46516i 0.101509 0.0586064i −0.448386 0.893840i \(-0.648001\pi\)
0.549895 + 0.835234i \(0.314668\pi\)
\(6\) 0 0
\(7\) −39.8426 23.0032i −0.813115 0.469452i 0.0349214 0.999390i \(-0.488882\pi\)
−0.848036 + 0.529938i \(0.822215\pi\)
\(8\) −14.5686 + 62.3198i −0.227634 + 0.973747i
\(9\) 0 0
\(10\) 11.6869 + 0.896378i 0.116869 + 0.00896378i
\(11\) −27.1224 + 46.9774i −0.224152 + 0.388243i −0.956065 0.293156i \(-0.905295\pi\)
0.731913 + 0.681398i \(0.238628\pi\)
\(12\) 0 0
\(13\) −174.611 + 100.811i −1.03320 + 0.596517i −0.917899 0.396813i \(-0.870116\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(14\) −79.5554 165.940i −0.405895 0.846635i
\(15\) 0 0
\(16\) −188.875 + 172.807i −0.737793 + 0.675027i
\(17\) 88.7146 0.306971 0.153485 0.988151i \(-0.450950\pi\)
0.153485 + 0.988151i \(0.450950\pi\)
\(18\) 0 0
\(19\) −357.083 −0.989149 −0.494575 0.869135i \(-0.664676\pi\)
−0.494575 + 0.869135i \(0.664676\pi\)
\(20\) 36.5537 + 29.3604i 0.0913843 + 0.0734011i
\(21\) 0 0
\(22\) −195.656 + 93.8016i −0.404248 + 0.193805i
\(23\) −214.383 + 123.774i −0.405261 + 0.233977i −0.688751 0.724998i \(-0.741841\pi\)
0.283491 + 0.958975i \(0.408508\pi\)
\(24\) 0 0
\(25\) −308.207 + 533.830i −0.493131 + 0.854127i
\(26\) −804.130 61.6760i −1.18954 0.0912367i
\(27\) 0 0
\(28\) 112.256 727.491i 0.143184 0.927922i
\(29\) −18.7746 10.8395i −0.0223242 0.0128889i 0.488796 0.872398i \(-0.337436\pi\)
−0.511121 + 0.859509i \(0.670769\pi\)
\(30\) 0 0
\(31\) 349.016 201.504i 0.363180 0.209682i −0.307295 0.951614i \(-0.599424\pi\)
0.670475 + 0.741932i \(0.266090\pi\)
\(32\) −1013.86 + 143.757i −0.990097 + 0.140387i
\(33\) 0 0
\(34\) 292.848 + 200.411i 0.253328 + 0.173366i
\(35\) −134.813 −0.110052
\(36\) 0 0
\(37\) 1263.37i 0.922839i −0.887182 0.461419i \(-0.847340\pi\)
0.887182 0.461419i \(-0.152660\pi\)
\(38\) −1178.73 806.671i −0.816297 0.558636i
\(39\) 0 0
\(40\) 54.3372 + 179.496i 0.0339608 + 0.112185i
\(41\) 1106.42 + 1916.37i 0.658189 + 1.14002i 0.981084 + 0.193582i \(0.0620106\pi\)
−0.322895 + 0.946435i \(0.604656\pi\)
\(42\) 0 0
\(43\) 678.384 1175.00i 0.366892 0.635476i −0.622185 0.782870i \(-0.713755\pi\)
0.989078 + 0.147393i \(0.0470884\pi\)
\(44\) −857.765 132.358i −0.443060 0.0683668i
\(45\) 0 0
\(46\) −987.293 75.7244i −0.466584 0.0357866i
\(47\) −3120.48 1801.61i −1.41262 0.815577i −0.416985 0.908913i \(-0.636913\pi\)
−0.995635 + 0.0933366i \(0.970247\pi\)
\(48\) 0 0
\(49\) −142.209 246.314i −0.0592292 0.102588i
\(50\) −2223.34 + 1065.92i −0.889338 + 0.426368i
\(51\) 0 0
\(52\) −2515.11 2020.17i −0.930144 0.747104i
\(53\) 4122.82i 1.46772i 0.679303 + 0.733858i \(0.262282\pi\)
−0.679303 + 0.733858i \(0.737718\pi\)
\(54\) 0 0
\(55\) 158.955i 0.0525469i
\(56\) 2014.00 2147.86i 0.642221 0.684905i
\(57\) 0 0
\(58\) −37.4881 78.1944i −0.0111439 0.0232445i
\(59\) 2643.76 + 4579.12i 0.759482 + 1.31546i 0.943115 + 0.332466i \(0.107881\pi\)
−0.183634 + 0.982995i \(0.558786\pi\)
\(60\) 0 0
\(61\) −4778.25 2758.72i −1.28413 0.741393i −0.306530 0.951861i \(-0.599168\pi\)
−0.977601 + 0.210468i \(0.932501\pi\)
\(62\) 1607.31 + 123.280i 0.418136 + 0.0320706i
\(63\) 0 0
\(64\) −3671.51 1815.82i −0.896365 0.443317i
\(65\) −295.410 + 511.664i −0.0699194 + 0.121104i
\(66\) 0 0
\(67\) 3090.68 + 5353.21i 0.688500 + 1.19252i 0.972323 + 0.233641i \(0.0750640\pi\)
−0.283822 + 0.958877i \(0.591603\pi\)
\(68\) 513.951 + 1323.12i 0.111149 + 0.286142i
\(69\) 0 0
\(70\) −445.019 304.551i −0.0908203 0.0621532i
\(71\) 4832.30i 0.958600i −0.877651 0.479300i \(-0.840891\pi\)
0.877651 0.479300i \(-0.159109\pi\)
\(72\) 0 0
\(73\) 9435.38 1.77057 0.885286 0.465047i \(-0.153963\pi\)
0.885286 + 0.465047i \(0.153963\pi\)
\(74\) 2854.02 4170.38i 0.521187 0.761574i
\(75\) 0 0
\(76\) −2068.69 5325.66i −0.358153 0.922032i
\(77\) 2161.26 1247.80i 0.364523 0.210457i
\(78\) 0 0
\(79\) −1099.86 635.004i −0.176231 0.101747i 0.409290 0.912405i \(-0.365777\pi\)
−0.585521 + 0.810657i \(0.699110\pi\)
\(80\) −226.125 + 715.269i −0.0353320 + 0.111761i
\(81\) 0 0
\(82\) −676.901 + 8825.41i −0.100669 + 1.31252i
\(83\) −1266.75 + 2194.08i −0.183881 + 0.318490i −0.943199 0.332229i \(-0.892199\pi\)
0.759318 + 0.650720i \(0.225533\pi\)
\(84\) 0 0
\(85\) 225.134 129.981i 0.0311604 0.0179904i
\(86\) 4893.74 2346.16i 0.661673 0.317220i
\(87\) 0 0
\(88\) −2532.48 2374.66i −0.327025 0.306645i
\(89\) −5907.27 −0.745773 −0.372887 0.927877i \(-0.621632\pi\)
−0.372887 + 0.927877i \(0.621632\pi\)
\(90\) 0 0
\(91\) 9275.93 1.12015
\(92\) −3087.99 2480.32i −0.364839 0.293043i
\(93\) 0 0
\(94\) −6230.78 12996.5i −0.705159 1.47085i
\(95\) −906.180 + 523.183i −0.100408 + 0.0579704i
\(96\) 0 0
\(97\) −928.999 + 1609.07i −0.0987351 + 0.171014i −0.911161 0.412050i \(-0.864813\pi\)
0.812426 + 0.583064i \(0.198146\pi\)
\(98\) 87.0031 1134.34i 0.00905905 0.118112i
\(99\) 0 0
\(100\) −9747.25 1504.06i −0.974725 0.150406i
\(101\) 13841.8 + 7991.56i 1.35690 + 0.783409i 0.989205 0.146536i \(-0.0468123\pi\)
0.367699 + 0.929945i \(0.380146\pi\)
\(102\) 0 0
\(103\) 17094.2 9869.37i 1.61130 0.930283i 0.622227 0.782837i \(-0.286228\pi\)
0.989070 0.147445i \(-0.0471051\pi\)
\(104\) −3738.72 12350.4i −0.345665 1.14186i
\(105\) 0 0
\(106\) −9313.68 + 13609.4i −0.828914 + 1.21124i
\(107\) −8611.81 −0.752189 −0.376095 0.926581i \(-0.622733\pi\)
−0.376095 + 0.926581i \(0.622733\pi\)
\(108\) 0 0
\(109\) 19759.0i 1.66307i 0.555470 + 0.831537i \(0.312539\pi\)
−0.555470 + 0.831537i \(0.687461\pi\)
\(110\) −359.088 + 524.710i −0.0296767 + 0.0433645i
\(111\) 0 0
\(112\) 11500.4 2540.35i 0.916804 0.202516i
\(113\) 8203.89 + 14209.6i 0.642485 + 1.11282i 0.984876 + 0.173259i \(0.0554297\pi\)
−0.342392 + 0.939557i \(0.611237\pi\)
\(114\) 0 0
\(115\) −362.697 + 628.210i −0.0274251 + 0.0475017i
\(116\) 52.8973 342.808i 0.00393113 0.0254762i
\(117\) 0 0
\(118\) −1617.44 + 21088.1i −0.116162 + 1.51451i
\(119\) −3534.62 2040.72i −0.249603 0.144108i
\(120\) 0 0
\(121\) 5849.25 + 10131.2i 0.399512 + 0.691975i
\(122\) −9540.93 19900.9i −0.641019 1.33707i
\(123\) 0 0
\(124\) 5027.26 + 4037.96i 0.326955 + 0.262615i
\(125\) 3637.74i 0.232815i
\(126\) 0 0
\(127\) 190.402i 0.0118049i 0.999983 + 0.00590247i \(0.00187883\pi\)
−0.999983 + 0.00590247i \(0.998121\pi\)
\(128\) −8017.64 14288.2i −0.489358 0.872083i
\(129\) 0 0
\(130\) −2131.03 + 1021.66i −0.126096 + 0.0604533i
\(131\) 5339.62 + 9248.49i 0.311148 + 0.538925i 0.978611 0.205718i \(-0.0659530\pi\)
−0.667463 + 0.744643i \(0.732620\pi\)
\(132\) 0 0
\(133\) 14227.1 + 8214.03i 0.804292 + 0.464358i
\(134\) −1890.86 + 24653.0i −0.105305 + 1.37297i
\(135\) 0 0
\(136\) −1292.45 + 5528.67i −0.0698771 + 0.298912i
\(137\) 2673.96 4631.43i 0.142467 0.246759i −0.785958 0.618280i \(-0.787830\pi\)
0.928425 + 0.371520i \(0.121163\pi\)
\(138\) 0 0
\(139\) −4160.16 7205.61i −0.215318 0.372942i 0.738053 0.674743i \(-0.235746\pi\)
−0.953371 + 0.301801i \(0.902412\pi\)
\(140\) −781.014 2010.65i −0.0398477 0.102584i
\(141\) 0 0
\(142\) 10916.5 15951.5i 0.541383 0.791086i
\(143\) 10937.0i 0.534842i
\(144\) 0 0
\(145\) −63.5266 −0.00302148
\(146\) 31146.3 + 21315.1i 1.46117 + 0.999956i
\(147\) 0 0
\(148\) 18842.3 7319.07i 0.860220 0.334143i
\(149\) 8232.13 4752.82i 0.370800 0.214082i −0.303008 0.952988i \(-0.597991\pi\)
0.673808 + 0.738907i \(0.264658\pi\)
\(150\) 0 0
\(151\) −23033.8 13298.5i −1.01021 0.583244i −0.0989556 0.995092i \(-0.531550\pi\)
−0.911253 + 0.411848i \(0.864884\pi\)
\(152\) 5202.20 22253.3i 0.225164 0.963181i
\(153\) 0 0
\(154\) 9953.18 + 763.400i 0.419682 + 0.0321892i
\(155\) 590.472 1022.73i 0.0245774 0.0425693i
\(156\) 0 0
\(157\) −14257.2 + 8231.41i −0.578410 + 0.333945i −0.760501 0.649336i \(-0.775047\pi\)
0.182091 + 0.983282i \(0.441713\pi\)
\(158\) −2196.13 4580.80i −0.0879720 0.183496i
\(159\) 0 0
\(160\) −2362.27 + 1850.28i −0.0922763 + 0.0722766i
\(161\) 11388.8 0.439365
\(162\) 0 0
\(163\) −6664.66 −0.250843 −0.125422 0.992104i \(-0.540028\pi\)
−0.125422 + 0.992104i \(0.540028\pi\)
\(164\) −22171.6 + 27603.6i −0.824344 + 1.02631i
\(165\) 0 0
\(166\) −9138.12 + 4381.01i −0.331620 + 0.158986i
\(167\) 19196.1 11082.8i 0.688302 0.397391i −0.114674 0.993403i \(-0.536582\pi\)
0.802976 + 0.596012i \(0.203249\pi\)
\(168\) 0 0
\(169\) 6045.39 10470.9i 0.211666 0.366616i
\(170\) 1036.80 + 79.5218i 0.0358755 + 0.00275162i
\(171\) 0 0
\(172\) 21454.4 + 3310.54i 0.725202 + 0.111903i
\(173\) 9709.71 + 5605.90i 0.324425 + 0.187307i 0.653363 0.757045i \(-0.273357\pi\)
−0.328938 + 0.944351i \(0.606691\pi\)
\(174\) 0 0
\(175\) 24559.5 14179.5i 0.801944 0.463002i
\(176\) −2995.26 13559.8i −0.0966963 0.437752i
\(177\) 0 0
\(178\) −19499.9 13344.9i −0.615451 0.421186i
\(179\) 16987.5 0.530179 0.265090 0.964224i \(-0.414598\pi\)
0.265090 + 0.964224i \(0.414598\pi\)
\(180\) 0 0
\(181\) 48494.7i 1.48026i 0.672465 + 0.740129i \(0.265236\pi\)
−0.672465 + 0.740129i \(0.734764\pi\)
\(182\) 30619.9 + 20954.9i 0.924402 + 0.632619i
\(183\) 0 0
\(184\) −4590.31 15163.5i −0.135583 0.447883i
\(185\) −1851.03 3206.08i −0.0540842 0.0936766i
\(186\) 0 0
\(187\) −2406.15 + 4167.58i −0.0688082 + 0.119179i
\(188\) 8791.91 56977.1i 0.248753 1.61207i
\(189\) 0 0
\(190\) −4173.21 320.081i −0.115601 0.00886652i
\(191\) −31625.9 18259.2i −0.866915 0.500514i −0.000593302 1.00000i \(-0.500189\pi\)
−0.866322 + 0.499486i \(0.833522\pi\)
\(192\) 0 0
\(193\) −12557.9 21750.9i −0.337133 0.583932i 0.646759 0.762694i \(-0.276124\pi\)
−0.983892 + 0.178762i \(0.942791\pi\)
\(194\) −6701.62 + 3212.90i −0.178064 + 0.0853677i
\(195\) 0 0
\(196\) 2849.75 3547.93i 0.0741812 0.0923556i
\(197\) 28539.7i 0.735388i 0.929947 + 0.367694i \(0.119853\pi\)
−0.929947 + 0.367694i \(0.880147\pi\)
\(198\) 0 0
\(199\) 63914.2i 1.61395i −0.590583 0.806977i \(-0.701102\pi\)
0.590583 0.806977i \(-0.298898\pi\)
\(200\) −28778.0 26984.5i −0.719450 0.674613i
\(201\) 0 0
\(202\) 27638.4 + 57649.6i 0.677346 + 1.41284i
\(203\) 498.687 + 863.752i 0.0121014 + 0.0209603i
\(204\) 0 0
\(205\) 5615.57 + 3242.15i 0.133624 + 0.0771481i
\(206\) 78723.7 + 6038.04i 1.85512 + 0.142286i
\(207\) 0 0
\(208\) 15558.7 49214.7i 0.359622 1.13754i
\(209\) 9684.94 16774.8i 0.221720 0.384030i
\(210\) 0 0
\(211\) −7822.71 13549.3i −0.175708 0.304336i 0.764698 0.644389i \(-0.222888\pi\)
−0.940406 + 0.340053i \(0.889555\pi\)
\(212\) −61489.1 + 23884.8i −1.36813 + 0.531434i
\(213\) 0 0
\(214\) −28427.7 19454.6i −0.620746 0.424810i
\(215\) 3975.76i 0.0860089i
\(216\) 0 0
\(217\) −18541.0 −0.393743
\(218\) −44636.7 + 65224.6i −0.939245 + 1.37246i
\(219\) 0 0
\(220\) −2370.70 + 920.873i −0.0489814 + 0.0190263i
\(221\) −15490.5 + 8943.44i −0.317162 + 0.183113i
\(222\) 0 0
\(223\) −44835.1 25885.6i −0.901589 0.520532i −0.0238733 0.999715i \(-0.507600\pi\)
−0.877715 + 0.479183i \(0.840933\pi\)
\(224\) 43701.7 + 17594.3i 0.870968 + 0.350652i
\(225\) 0 0
\(226\) −5019.10 + 65438.9i −0.0982674 + 1.28121i
\(227\) 28229.2 48894.4i 0.547831 0.948871i −0.450592 0.892730i \(-0.648787\pi\)
0.998423 0.0561410i \(-0.0178797\pi\)
\(228\) 0 0
\(229\) −48956.6 + 28265.1i −0.933556 + 0.538989i −0.887935 0.459970i \(-0.847860\pi\)
−0.0456218 + 0.998959i \(0.514527\pi\)
\(230\) −2616.43 + 1254.37i −0.0494599 + 0.0237121i
\(231\) 0 0
\(232\) 949.038 1012.11i 0.0176322 0.0188041i
\(233\) −72322.4 −1.33217 −0.666087 0.745874i \(-0.732032\pi\)
−0.666087 + 0.745874i \(0.732032\pi\)
\(234\) 0 0
\(235\) −10558.6 −0.191192
\(236\) −52978.4 + 65958.1i −0.951207 + 1.18425i
\(237\) 0 0
\(238\) −7057.72 14721.3i −0.124598 0.259892i
\(239\) −86456.7 + 49915.8i −1.51357 + 0.873861i −0.513698 + 0.857971i \(0.671725\pi\)
−0.999874 + 0.0158894i \(0.994942\pi\)
\(240\) 0 0
\(241\) −13108.7 + 22704.9i −0.225697 + 0.390918i −0.956528 0.291640i \(-0.905799\pi\)
0.730832 + 0.682558i \(0.239132\pi\)
\(242\) −3578.55 + 46657.0i −0.0611049 + 0.796684i
\(243\) 0 0
\(244\) 13462.7 87246.6i 0.226127 1.46544i
\(245\) −721.778 416.719i −0.0120246 0.00694242i
\(246\) 0 0
\(247\) 62350.4 35998.0i 1.02199 0.590045i
\(248\) 7473.04 + 24686.2i 0.121505 + 0.401376i
\(249\) 0 0
\(250\) −8217.86 + 12008.2i −0.131486 + 0.192131i
\(251\) −110168. −1.74866 −0.874332 0.485328i \(-0.838700\pi\)
−0.874332 + 0.485328i \(0.838700\pi\)
\(252\) 0 0
\(253\) 13428.2i 0.209786i
\(254\) −430.129 + 628.518i −0.00666701 + 0.00974205i
\(255\) 0 0
\(256\) 5811.62 65277.8i 0.0886783 0.996060i
\(257\) −21395.2 37057.7i −0.323930 0.561063i 0.657365 0.753572i \(-0.271671\pi\)
−0.981295 + 0.192509i \(0.938338\pi\)
\(258\) 0 0
\(259\) −29061.4 + 50335.8i −0.433229 + 0.750374i
\(260\) −9342.54 1441.61i −0.138203 0.0213256i
\(261\) 0 0
\(262\) −3266.76 + 42591.9i −0.0475898 + 0.620475i
\(263\) −70761.8 40854.3i −1.02303 0.590645i −0.108048 0.994146i \(-0.534460\pi\)
−0.914979 + 0.403501i \(0.867793\pi\)
\(264\) 0 0
\(265\) 6040.58 + 10462.6i 0.0860175 + 0.148987i
\(266\) 28407.9 + 59254.5i 0.401491 + 0.837448i
\(267\) 0 0
\(268\) −61934.4 + 77108.3i −0.862307 + 1.07357i
\(269\) 71867.3i 0.993177i 0.867986 + 0.496589i \(0.165414\pi\)
−0.867986 + 0.496589i \(0.834586\pi\)
\(270\) 0 0
\(271\) 57719.4i 0.785929i 0.919554 + 0.392964i \(0.128550\pi\)
−0.919554 + 0.392964i \(0.871450\pi\)
\(272\) −16756.0 + 15330.5i −0.226481 + 0.207213i
\(273\) 0 0
\(274\) 19289.4 9247.76i 0.256932 0.123179i
\(275\) −16718.6 28957.5i −0.221072 0.382909i
\(276\) 0 0
\(277\) −17169.2 9912.65i −0.223764 0.129190i 0.383928 0.923363i \(-0.374571\pi\)
−0.607692 + 0.794173i \(0.707905\pi\)
\(278\) 2545.17 33183.8i 0.0329327 0.429375i
\(279\) 0 0
\(280\) 1964.04 8401.53i 0.0250515 0.107162i
\(281\) 62271.1 107857.i 0.788631 1.36595i −0.138175 0.990408i \(-0.544124\pi\)
0.926806 0.375541i \(-0.122543\pi\)
\(282\) 0 0
\(283\) −28575.7 49494.6i −0.356799 0.617995i 0.630625 0.776088i \(-0.282799\pi\)
−0.987424 + 0.158093i \(0.949465\pi\)
\(284\) 72070.6 27995.0i 0.893555 0.347092i
\(285\) 0 0
\(286\) 24707.3 36103.1i 0.302060 0.441380i
\(287\) 101804.i 1.23595i
\(288\) 0 0
\(289\) −75650.7 −0.905769
\(290\) −209.702 143.510i −0.00249348 0.00170642i
\(291\) 0 0
\(292\) 54662.1 + 140722.i 0.641092 + 1.65043i
\(293\) 25459.0 14698.8i 0.296555 0.171216i −0.344339 0.938845i \(-0.611897\pi\)
0.640894 + 0.767629i \(0.278564\pi\)
\(294\) 0 0
\(295\) 13418.3 + 7747.04i 0.154189 + 0.0890209i
\(296\) 78732.7 + 18405.5i 0.898611 + 0.210070i
\(297\) 0 0
\(298\) 37911.2 + 2907.76i 0.426909 + 0.0327435i
\(299\) 24955.7 43224.5i 0.279143 0.483490i
\(300\) 0 0
\(301\) −54057.2 + 31210.0i −0.596652 + 0.344477i
\(302\) −45992.4 95933.2i −0.504281 1.05185i
\(303\) 0 0
\(304\) 67444.1 61706.3i 0.729788 0.667702i
\(305\) −16167.9 −0.173801
\(306\) 0 0
\(307\) −77280.8 −0.819964 −0.409982 0.912094i \(-0.634465\pi\)
−0.409982 + 0.912094i \(0.634465\pi\)
\(308\) 31131.0 + 25004.8i 0.328164 + 0.263586i
\(309\) 0 0
\(310\) 4259.55 2042.12i 0.0443242 0.0212500i
\(311\) 88843.4 51293.7i 0.918553 0.530327i 0.0353799 0.999374i \(-0.488736\pi\)
0.883173 + 0.469047i \(0.155403\pi\)
\(312\) 0 0
\(313\) 20566.6 35622.4i 0.209930 0.363609i −0.741762 0.670663i \(-0.766010\pi\)
0.951692 + 0.307054i \(0.0993431\pi\)
\(314\) −65658.5 5035.94i −0.665934 0.0510766i
\(315\) 0 0
\(316\) 3098.84 20082.4i 0.0310331 0.201114i
\(317\) 109026. + 62945.9i 1.08495 + 0.626396i 0.932227 0.361873i \(-0.117863\pi\)
0.152723 + 0.988269i \(0.451196\pi\)
\(318\) 0 0
\(319\) 1018.43 587.989i 0.0100080 0.00577813i
\(320\) −11977.8 + 771.277i −0.116970 + 0.00753200i
\(321\) 0 0
\(322\) 37594.4 + 25727.9i 0.362587 + 0.248138i
\(323\) −31678.5 −0.303640
\(324\) 0 0
\(325\) 124283.i 1.17664i
\(326\) −22000.1 15055.8i −0.207009 0.141667i
\(327\) 0 0
\(328\) −135547. + 41032.8i −1.25991 + 0.381402i
\(329\) 82885.4 + 143562.i 0.765748 + 1.32632i
\(330\) 0 0
\(331\) 54232.0 93932.5i 0.494993 0.857354i −0.504990 0.863125i \(-0.668504\pi\)
0.999983 + 0.00577154i \(0.00183715\pi\)
\(332\) −40062.0 6181.80i −0.363460 0.0560840i
\(333\) 0 0
\(334\) 88403.2 + 6780.44i 0.792455 + 0.0607806i
\(335\) 15686.6 + 9056.67i 0.139778 + 0.0807010i
\(336\) 0 0
\(337\) −1823.71 3158.77i −0.0160582 0.0278136i 0.857885 0.513842i \(-0.171778\pi\)
−0.873943 + 0.486029i \(0.838445\pi\)
\(338\) 43610.3 20907.7i 0.381730 0.183009i
\(339\) 0 0
\(340\) 3242.85 + 2604.70i 0.0280523 + 0.0225320i
\(341\) 21861.1i 0.188003i
\(342\) 0 0
\(343\) 123546.i 1.05013i
\(344\) 63342.4 + 59394.8i 0.535276 + 0.501917i
\(345\) 0 0
\(346\) 19387.8 + 40439.9i 0.161948 + 0.337799i
\(347\) 86264.4 + 149414.i 0.716428 + 1.24089i 0.962406 + 0.271615i \(0.0875576\pi\)
−0.245978 + 0.969275i \(0.579109\pi\)
\(348\) 0 0
\(349\) 138147. + 79759.0i 1.13420 + 0.654831i 0.944988 0.327106i \(-0.106073\pi\)
0.189212 + 0.981936i \(0.439407\pi\)
\(350\) 113103. + 8674.93i 0.923293 + 0.0708157i
\(351\) 0 0
\(352\) 20745.0 51527.5i 0.167428 0.415866i
\(353\) 20555.4 35603.0i 0.164959 0.285718i −0.771681 0.636009i \(-0.780584\pi\)
0.936641 + 0.350291i \(0.113917\pi\)
\(354\) 0 0
\(355\) −7080.09 12263.1i −0.0561800 0.0973067i
\(356\) −34222.6 88103.0i −0.270031 0.695170i
\(357\) 0 0
\(358\) 56075.8 + 38375.7i 0.437532 + 0.299427i
\(359\) 76360.8i 0.592491i 0.955112 + 0.296245i \(0.0957346\pi\)
−0.955112 + 0.296245i \(0.904265\pi\)
\(360\) 0 0
\(361\) −2812.82 −0.0215838
\(362\) −109552. + 160082.i −0.835997 + 1.22159i
\(363\) 0 0
\(364\) 53738.3 + 138344.i 0.405584 + 1.04414i
\(365\) 23944.4 13824.3i 0.179729 0.103767i
\(366\) 0 0
\(367\) 102925. + 59423.6i 0.764165 + 0.441191i 0.830789 0.556587i \(-0.187889\pi\)
−0.0666239 + 0.997778i \(0.521223\pi\)
\(368\) 19102.6 60424.7i 0.141058 0.446189i
\(369\) 0 0
\(370\) 1132.45 14764.9i 0.00827212 0.107852i
\(371\) 94837.8 164264.i 0.689023 1.19342i
\(372\) 0 0
\(373\) −115434. + 66645.9i −0.829691 + 0.479023i −0.853747 0.520688i \(-0.825675\pi\)
0.0240556 + 0.999711i \(0.492342\pi\)
\(374\) −17357.5 + 8321.57i −0.124092 + 0.0594925i
\(375\) 0 0
\(376\) 157737. 168221.i 1.11573 1.18988i
\(377\) 4371.00 0.0307537
\(378\) 0 0
\(379\) 141694. 0.986447 0.493224 0.869902i \(-0.335818\pi\)
0.493224 + 0.869902i \(0.335818\pi\)
\(380\) −13052.7 10484.1i −0.0903927 0.0726047i
\(381\) 0 0
\(382\) −63148.8 131719.i −0.432751 0.902653i
\(383\) 43983.8 25394.1i 0.299844 0.173115i −0.342529 0.939507i \(-0.611283\pi\)
0.642373 + 0.766392i \(0.277950\pi\)
\(384\) 0 0
\(385\) 3656.46 6333.17i 0.0246683 0.0427267i
\(386\) 7682.86 100169.i 0.0515642 0.672292i
\(387\) 0 0
\(388\) −29380.2 4533.54i −0.195160 0.0301144i
\(389\) −103180. 59570.8i −0.681860 0.393672i 0.118696 0.992931i \(-0.462129\pi\)
−0.800555 + 0.599259i \(0.795462\pi\)
\(390\) 0 0
\(391\) −19018.9 + 10980.6i −0.124403 + 0.0718242i
\(392\) 17422.0 5274.01i 0.113377 0.0343217i
\(393\) 0 0
\(394\) −64472.8 + 94209.7i −0.415321 + 0.606881i
\(395\) −3721.53 −0.0238521
\(396\) 0 0
\(397\) 200049.i 1.26927i −0.772812 0.634635i \(-0.781150\pi\)
0.772812 0.634635i \(-0.218850\pi\)
\(398\) 144386. 210981.i 0.911504 1.33192i
\(399\) 0 0
\(400\) −34036.8 154087.i −0.212730 0.963046i
\(401\) 13977.6 + 24209.9i 0.0869248 + 0.150558i 0.906210 0.422828i \(-0.138963\pi\)
−0.819285 + 0.573387i \(0.805629\pi\)
\(402\) 0 0
\(403\) −40627.9 + 70369.6i −0.250158 + 0.433286i
\(404\) −38999.1 + 252739.i −0.238941 + 1.54849i
\(405\) 0 0
\(406\) −305.095 + 3977.82i −0.00185090 + 0.0241320i
\(407\) 59349.6 + 34265.5i 0.358285 + 0.206856i
\(408\) 0 0
\(409\) −27650.2 47891.6i −0.165292 0.286294i 0.771467 0.636270i \(-0.219523\pi\)
−0.936759 + 0.349975i \(0.886190\pi\)
\(410\) 11212.8 + 23388.3i 0.0667033 + 0.139133i
\(411\) 0 0
\(412\) 246227. + 197773.i 1.45058 + 1.16513i
\(413\) 243259.i 1.42616i
\(414\) 0 0
\(415\) 7423.98i 0.0431063i
\(416\) 162538. 127310.i 0.939223 0.735658i
\(417\) 0 0
\(418\) 69865.4 33494.9i 0.399861 0.191702i
\(419\) 76753.4 + 132941.i 0.437189 + 0.757234i 0.997472 0.0710675i \(-0.0226406\pi\)
−0.560282 + 0.828302i \(0.689307\pi\)
\(420\) 0 0
\(421\) 230275. + 132949.i 1.29922 + 0.750105i 0.980269 0.197667i \(-0.0633364\pi\)
0.318950 + 0.947771i \(0.396670\pi\)
\(422\) 4785.90 62398.4i 0.0268744 0.350387i
\(423\) 0 0
\(424\) −256933. 60063.7i −1.42918 0.334103i
\(425\) −27342.4 + 47358.5i −0.151377 + 0.262192i
\(426\) 0 0
\(427\) 126919. + 219830.i 0.696097 + 1.20568i
\(428\) −49890.9 128440.i −0.272354 0.701150i
\(429\) 0 0
\(430\) 8981.48 13124.0i 0.0485748 0.0709790i
\(431\) 187074.i 1.00707i 0.863976 + 0.503533i \(0.167967\pi\)
−0.863976 + 0.503533i \(0.832033\pi\)
\(432\) 0 0
\(433\) 252526. 1.34688 0.673441 0.739241i \(-0.264815\pi\)
0.673441 + 0.739241i \(0.264815\pi\)
\(434\) −61203.8 41885.1i −0.324937 0.222372i
\(435\) 0 0
\(436\) −294692. + 114470.i −1.55023 + 0.602169i
\(437\) 76552.5 44197.6i 0.400863 0.231439i
\(438\) 0 0
\(439\) −138415. 79914.0i −0.718215 0.414662i 0.0958801 0.995393i \(-0.469433\pi\)
−0.814095 + 0.580731i \(0.802767\pi\)
\(440\) −9906.01 2315.75i −0.0511674 0.0119615i
\(441\) 0 0
\(442\) −71338.0 5471.56i −0.365154 0.0280070i
\(443\) −152813. + 264680.i −0.778670 + 1.34870i 0.154038 + 0.988065i \(0.450772\pi\)
−0.932708 + 0.360632i \(0.882561\pi\)
\(444\) 0 0
\(445\) −14991.1 + 8655.09i −0.0757028 + 0.0437070i
\(446\) −89524.0 186734.i −0.450060 0.938756i
\(447\) 0 0
\(448\) 104513. + 156804.i 0.520732 + 0.781268i
\(449\) −338152. −1.67733 −0.838667 0.544645i \(-0.816664\pi\)
−0.838667 + 0.544645i \(0.816664\pi\)
\(450\) 0 0
\(451\) −120035. −0.590138
\(452\) −164398. + 204676.i −0.804675 + 1.00182i
\(453\) 0 0
\(454\) 203640. 97629.4i 0.987987 0.473662i
\(455\) 23539.8 13590.7i 0.113705 0.0656477i
\(456\) 0 0
\(457\) −1641.07 + 2842.42i −0.00785770 + 0.0136099i −0.869928 0.493180i \(-0.835835\pi\)
0.862070 + 0.506790i \(0.169168\pi\)
\(458\) −225459. 17292.5i −1.07482 0.0824378i
\(459\) 0 0
\(460\) −11470.6 1769.97i −0.0542087 0.00836472i
\(461\) −215070. 124171.i −1.01199 0.584275i −0.100220 0.994965i \(-0.531955\pi\)
−0.911775 + 0.410690i \(0.865288\pi\)
\(462\) 0 0
\(463\) −42958.9 + 24802.3i −0.200397 + 0.115699i −0.596841 0.802360i \(-0.703578\pi\)
0.396444 + 0.918059i \(0.370244\pi\)
\(464\) 5419.21 1197.07i 0.0251710 0.00556009i
\(465\) 0 0
\(466\) −238737. 163380.i −1.09938 0.752365i
\(467\) −18727.6 −0.0858712 −0.0429356 0.999078i \(-0.513671\pi\)
−0.0429356 + 0.999078i \(0.513671\pi\)
\(468\) 0 0
\(469\) 284381.i 1.29287i
\(470\) −34853.9 23852.4i −0.157782 0.107978i
\(471\) 0 0
\(472\) −323886. + 98046.9i −1.45381 + 0.440099i
\(473\) 36798.8 + 63737.4i 0.164479 + 0.284887i
\(474\) 0 0
\(475\) 110055. 190621.i 0.487780 0.844859i
\(476\) 9958.76 64539.1i 0.0439533 0.284845i
\(477\) 0 0
\(478\) −398157. 30538.3i −1.74260 0.133656i
\(479\) 343234. + 198166.i 1.49596 + 0.863691i 0.999989 0.00465021i \(-0.00148021\pi\)
0.495967 + 0.868341i \(0.334814\pi\)
\(480\) 0 0
\(481\) 127362. + 220597.i 0.550489 + 0.953475i
\(482\) −94563.6 + 45335.8i −0.407033 + 0.195140i
\(483\) 0 0
\(484\) −117214. + 145931.i −0.500366 + 0.622955i
\(485\) 5444.52i 0.0231460i
\(486\) 0 0
\(487\) 240262.i 1.01304i 0.862228 + 0.506520i \(0.169068\pi\)
−0.862228 + 0.506520i \(0.830932\pi\)
\(488\) 241536. 257589.i 1.01424 1.08165i
\(489\) 0 0
\(490\) −1441.20 3006.13i −0.00600251 0.0125203i
\(491\) −98040.3 169811.i −0.406670 0.704372i 0.587845 0.808974i \(-0.299977\pi\)
−0.994514 + 0.104601i \(0.966643\pi\)
\(492\) 0 0
\(493\) −1665.58 961.625i −0.00685287 0.00395651i
\(494\) 287141. + 22023.4i 1.17663 + 0.0902467i
\(495\) 0 0
\(496\) −31099.1 + 98371.5i −0.126411 + 0.399858i
\(497\) −111158. + 192532.i −0.450017 + 0.779452i
\(498\) 0 0
\(499\) 130948. + 226808.i 0.525892 + 0.910871i 0.999545 + 0.0301596i \(0.00960157\pi\)
−0.473654 + 0.880711i \(0.657065\pi\)
\(500\) −54254.4 + 21074.5i −0.217018 + 0.0842981i
\(501\) 0 0
\(502\) −363664. 248875.i −1.44309 0.987583i
\(503\) 311251.i 1.23020i 0.788450 + 0.615099i \(0.210884\pi\)
−0.788450 + 0.615099i \(0.789116\pi\)
\(504\) 0 0
\(505\) 46835.6 0.183651
\(506\) 30335.1 44326.6i 0.118480 0.173126i
\(507\) 0 0
\(508\) −2839.72 + 1103.06i −0.0110039 + 0.00427435i
\(509\) −317446. + 183278.i −1.22528 + 0.707415i −0.966039 0.258398i \(-0.916805\pi\)
−0.259240 + 0.965813i \(0.583472\pi\)
\(510\) 0 0
\(511\) −375930. 217043.i −1.43968 0.831199i
\(512\) 166651. 202354.i 0.635722 0.771918i
\(513\) 0 0
\(514\) 13089.5 170661.i 0.0495447 0.645963i
\(515\) 28920.4 50091.6i 0.109041 0.188864i
\(516\) 0 0
\(517\) 169270. 97727.9i 0.633283 0.365626i
\(518\) −209644. + 100508.i −0.781307 + 0.374575i
\(519\) 0 0
\(520\) −27583.1 25864.1i −0.102009 0.0956512i
\(521\) 526988. 1.94145 0.970723 0.240203i \(-0.0772142\pi\)
0.970723 + 0.240203i \(0.0772142\pi\)
\(522\) 0 0
\(523\) 311012. 1.13703 0.568517 0.822671i \(-0.307517\pi\)
0.568517 + 0.822671i \(0.307517\pi\)
\(524\) −107001. + 133216.i −0.389696 + 0.485171i
\(525\) 0 0
\(526\) −141293. 294715.i −0.510680 1.06520i
\(527\) 30962.8 17876.4i 0.111486 0.0643663i
\(528\) 0 0
\(529\) −109280. + 189279.i −0.390509 + 0.676382i
\(530\) −3695.60 + 48183.1i −0.0131563 + 0.171531i
\(531\) 0 0
\(532\) −40084.8 + 259775.i −0.141630 + 0.917854i
\(533\) −386384. 223079.i −1.36008 0.785242i
\(534\) 0 0
\(535\) −21854.5 + 12617.7i −0.0763541 + 0.0440831i
\(536\) −378638. + 114622.i −1.31794 + 0.398967i
\(537\) 0 0
\(538\) −162352. + 237235.i −0.560911 + 0.819622i
\(539\) 15428.2 0.0531054
\(540\) 0 0
\(541\) 377631.i 1.29025i −0.764078 0.645124i \(-0.776806\pi\)
0.764078 0.645124i \(-0.223194\pi\)
\(542\) −130391. + 190532.i −0.443865 + 0.648589i
\(543\) 0 0
\(544\) −89944.1 + 12753.3i −0.303931 + 0.0430949i
\(545\) 28950.0 + 50143.0i 0.0974667 + 0.168817i
\(546\) 0 0
\(547\) −51766.7 + 89662.5i −0.173012 + 0.299665i −0.939471 0.342627i \(-0.888683\pi\)
0.766460 + 0.642292i \(0.222017\pi\)
\(548\) 84565.8 + 13049.0i 0.281601 + 0.0434526i
\(549\) 0 0
\(550\) 10228.4 133357.i 0.0338128 0.440850i
\(551\) 6704.10 + 3870.61i 0.0220819 + 0.0127490i
\(552\) 0 0
\(553\) 29214.2 + 50600.4i 0.0955308 + 0.165464i
\(554\) −34282.5 71508.0i −0.111700 0.232989i
\(555\) 0 0
\(556\) 83365.8 103790.i 0.269674 0.335744i
\(557\) 321643.i 1.03673i −0.855161 0.518363i \(-0.826542\pi\)
0.855161 0.518363i \(-0.173458\pi\)
\(558\) 0 0
\(559\) 273556.i 0.875431i
\(560\) 25462.8 23296.6i 0.0811953 0.0742877i
\(561\) 0 0
\(562\) 449212. 215362.i 1.42226 0.681861i
\(563\) 15717.8 + 27224.0i 0.0495878 + 0.0858885i 0.889754 0.456441i \(-0.150876\pi\)
−0.840166 + 0.542329i \(0.817543\pi\)
\(564\) 0 0
\(565\) 41638.5 + 24040.0i 0.130436 + 0.0753074i
\(566\) 17482.5 227936.i 0.0545721 0.711509i
\(567\) 0 0
\(568\) 301148. + 70399.9i 0.933433 + 0.218210i
\(569\) −118855. + 205862.i −0.367106 + 0.635846i −0.989112 0.147166i \(-0.952985\pi\)
0.622006 + 0.783013i \(0.286318\pi\)
\(570\) 0 0
\(571\) −259870. 450108.i −0.797047 1.38053i −0.921531 0.388304i \(-0.873061\pi\)
0.124484 0.992222i \(-0.460272\pi\)
\(572\) 163118. 63361.4i 0.498551 0.193657i
\(573\) 0 0
\(574\) 229982. 336057.i 0.698023 1.01997i
\(575\) 152592.i 0.461526i
\(576\) 0 0
\(577\) −150655. −0.452513 −0.226257 0.974068i \(-0.572649\pi\)
−0.226257 + 0.974068i \(0.572649\pi\)
\(578\) −249724. 170899.i −0.747488 0.511546i
\(579\) 0 0
\(580\) −368.029 947.457i −0.00109402 0.00281646i
\(581\) 100942. 58278.7i 0.299032 0.172646i
\(582\) 0 0
\(583\) −193679. 111821.i −0.569830 0.328992i
\(584\) −137460. + 588011.i −0.403043 + 1.72409i
\(585\) 0 0
\(586\) 117246. + 8992.64i 0.341430 + 0.0261874i
\(587\) −222883. + 386045.i −0.646846 + 1.12037i 0.337025 + 0.941496i \(0.390579\pi\)
−0.983872 + 0.178875i \(0.942754\pi\)
\(588\) 0 0
\(589\) −124628. + 71953.8i −0.359239 + 0.207407i
\(590\) 26792.8 + 55885.7i 0.0769687 + 0.160545i
\(591\) 0 0
\(592\) 218318. + 238618.i 0.622941 + 0.680864i
\(593\) 59064.6 0.167965 0.0839823 0.996467i \(-0.473236\pi\)
0.0839823 + 0.996467i \(0.473236\pi\)
\(594\) 0 0
\(595\) −11959.9 −0.0337826
\(596\) 118577. + 95242.3i 0.333815 + 0.268125i
\(597\) 0 0
\(598\) 180026. 86308.1i 0.503422 0.241351i
\(599\) −354748. + 204814.i −0.988703 + 0.570828i −0.904886 0.425653i \(-0.860044\pi\)
−0.0838164 + 0.996481i \(0.526711\pi\)
\(600\) 0 0
\(601\) 268772. 465527.i 0.744107 1.28883i −0.206505 0.978446i \(-0.566209\pi\)
0.950611 0.310385i \(-0.100458\pi\)
\(602\) −248948. 19094.1i −0.686936 0.0526874i
\(603\) 0 0
\(604\) 64897.3 420576.i 0.177891 1.15284i
\(605\) 29687.6 + 17140.2i 0.0811082 + 0.0468279i
\(606\) 0 0
\(607\) 377551. 217979.i 1.02470 0.591614i 0.109242 0.994015i \(-0.465158\pi\)
0.915463 + 0.402402i \(0.131824\pi\)
\(608\) 362032. 51333.1i 0.979353 0.138864i
\(609\) 0 0
\(610\) −53370.3 36524.2i −0.143430 0.0981569i
\(611\) 726491. 1.94602
\(612\) 0 0
\(613\) 184751.i 0.491662i −0.969313 0.245831i \(-0.920939\pi\)
0.969313 0.245831i \(-0.0790608\pi\)
\(614\) −255105. 174582.i −0.676677 0.463087i
\(615\) 0 0
\(616\) 46276.3 + 152868.i 0.121954 + 0.402860i
\(617\) −70628.6 122332.i −0.185528 0.321344i 0.758226 0.651992i \(-0.226066\pi\)
−0.943754 + 0.330647i \(0.892733\pi\)
\(618\) 0 0
\(619\) −132429. + 229374.i −0.345623 + 0.598637i −0.985467 0.169868i \(-0.945666\pi\)
0.639844 + 0.768505i \(0.278999\pi\)
\(620\) 18674.1 + 2881.52i 0.0485799 + 0.00749616i
\(621\) 0 0
\(622\) 409148. + 31381.3i 1.05755 + 0.0811129i
\(623\) 235361. + 135886.i 0.606399 + 0.350105i
\(624\) 0 0
\(625\) −187299. 324412.i −0.479486 0.830494i
\(626\) 148364. 71128.7i 0.378599 0.181508i
\(627\) 0 0
\(628\) −205363. 164950.i −0.520717 0.418247i
\(629\) 112079.i 0.283285i
\(630\) 0 0
\(631\) 699879.i 1.75778i 0.477026 + 0.878889i \(0.341715\pi\)
−0.477026 + 0.878889i \(0.658285\pi\)
\(632\) 55596.7 59291.8i 0.139192 0.148443i
\(633\) 0 0
\(634\) 217696. + 454080.i 0.541591 + 1.12968i
\(635\) 278.969 + 483.188i 0.000691844 + 0.00119831i
\(636\) 0 0
\(637\) 49662.5 + 28672.7i 0.122391 + 0.0706625i
\(638\) 4690.13 + 359.729i 0.0115224 + 0.000883759i
\(639\) 0 0
\(640\) −41281.1 24512.5i −0.100784 0.0598450i
\(641\) 159686. 276584.i 0.388643 0.673149i −0.603625 0.797269i \(-0.706277\pi\)
0.992267 + 0.124120i \(0.0396107\pi\)
\(642\) 0 0
\(643\) −120033. 207903.i −0.290321 0.502850i 0.683565 0.729890i \(-0.260429\pi\)
−0.973886 + 0.227040i \(0.927095\pi\)
\(644\) 65978.7 + 169856.i 0.159086 + 0.409552i
\(645\) 0 0
\(646\) −104571. 71563.5i −0.250580 0.171485i
\(647\) 160526.i 0.383475i −0.981446 0.191737i \(-0.938588\pi\)
0.981446 0.191737i \(-0.0614122\pi\)
\(648\) 0 0
\(649\) −286820. −0.680957
\(650\) 280763. 410259.i 0.664527 0.971028i
\(651\) 0 0
\(652\) −38610.4 99399.0i −0.0908258 0.233823i
\(653\) 23755.5 13715.3i 0.0557107 0.0321646i −0.471886 0.881660i \(-0.656427\pi\)
0.527597 + 0.849495i \(0.323093\pi\)
\(654\) 0 0
\(655\) 27101.0 + 15646.8i 0.0631689 + 0.0364706i
\(656\) −540136. 170758.i −1.25515 0.396802i
\(657\) 0 0
\(658\) −50708.9 + 661141.i −0.117120 + 1.52701i
\(659\) 215117. 372594.i 0.495341 0.857957i −0.504644 0.863327i \(-0.668376\pi\)
0.999986 + 0.00537093i \(0.00170963\pi\)
\(660\) 0 0
\(661\) −122972. + 70998.0i −0.281451 + 0.162496i −0.634080 0.773267i \(-0.718621\pi\)
0.352629 + 0.935763i \(0.385288\pi\)
\(662\) 391219. 187559.i 0.892697 0.427978i
\(663\) 0 0
\(664\) −118280. 110908.i −0.268272 0.251552i
\(665\) 48139.5 0.108857
\(666\) 0 0
\(667\) 5366.61 0.0120628
\(668\) 276502. + 222090.i 0.619649 + 0.497710i
\(669\) 0 0
\(670\) 31322.1 + 65333.1i 0.0697752 + 0.145540i
\(671\) 259195. 149646.i 0.575681 0.332370i
\(672\) 0 0
\(673\) −78759.2 + 136415.i −0.173889 + 0.301184i −0.939776 0.341791i \(-0.888967\pi\)
0.765887 + 0.642975i \(0.222300\pi\)
\(674\) 1115.74 14547.0i 0.00245609 0.0320224i
\(675\) 0 0
\(676\) 191190. + 29501.7i 0.418380 + 0.0645585i
\(677\) 606737. + 350300.i 1.32380 + 0.764298i 0.984333 0.176319i \(-0.0564190\pi\)
0.339470 + 0.940617i \(0.389752\pi\)
\(678\) 0 0
\(679\) 74027.5 42739.8i 0.160566 0.0927028i
\(680\) 4820.50 + 15923.9i 0.0104250 + 0.0344375i
\(681\) 0 0
\(682\) −49385.6 + 72163.8i −0.106177 + 0.155150i
\(683\) −408773. −0.876275 −0.438137 0.898908i \(-0.644362\pi\)
−0.438137 + 0.898908i \(0.644362\pi\)
\(684\) 0 0
\(685\) 15671.1i 0.0333978i
\(686\) −279098. + 407827.i −0.593074 + 0.866618i
\(687\) 0 0
\(688\) 74917.4 + 339157.i 0.158273 + 0.716512i
\(689\) −415627. 719887.i −0.875518 1.51644i
\(690\) 0 0
\(691\) −309805. + 536598.i −0.648832 + 1.12381i 0.334570 + 0.942371i \(0.391409\pi\)
−0.983402 + 0.181439i \(0.941924\pi\)
\(692\) −27357.0 + 177291.i −0.0571289 + 0.370232i
\(693\) 0 0
\(694\) −52776.2 + 688094.i −0.109577 + 1.42866i
\(695\) −21114.7 12190.6i −0.0437135 0.0252380i
\(696\) 0 0
\(697\) 98155.2 + 170010.i 0.202045 + 0.349952i
\(698\) 275843. + 575367.i 0.566176 + 1.18096i
\(699\) 0 0
\(700\) 353758. + 284143.i 0.721955 + 0.579884i
\(701\) 98886.5i 0.201234i 0.994925 + 0.100617i \(0.0320816\pi\)
−0.994925 + 0.100617i \(0.967918\pi\)
\(702\) 0 0
\(703\) 451126.i 0.912825i
\(704\) 184883. 123228.i 0.373037 0.248637i
\(705\) 0 0
\(706\) 148283. 71090.0i 0.297496 0.142626i
\(707\) −367662. 636809.i −0.735546 1.27400i
\(708\) 0 0
\(709\) 16701.3 + 9642.51i 0.0332245 + 0.0191822i 0.516520 0.856275i \(-0.327227\pi\)
−0.483296 + 0.875457i \(0.660560\pi\)
\(710\) 4331.57 56474.9i 0.00859268 0.112031i
\(711\) 0 0
\(712\) 86060.7 368140.i 0.169764 0.726194i
\(713\) −49882.0 + 86398.2i −0.0981217 + 0.169952i
\(714\) 0 0
\(715\) −16024.4 27755.1i −0.0313452 0.0542914i
\(716\) 98413.7 + 253357.i 0.191968 + 0.494205i
\(717\) 0 0
\(718\) −172503. + 252068.i −0.334618 + 0.488954i
\(719\) 124940.i 0.241681i 0.992672 + 0.120841i \(0.0385590\pi\)
−0.992672 + 0.120841i \(0.961441\pi\)
\(720\) 0 0
\(721\) −908107. −1.74689
\(722\) −9285.15 6354.33i −0.0178121 0.0121898i
\(723\) 0 0
\(724\) −723267. + 280945.i −1.37982 + 0.535975i
\(725\) 11572.9 6681.64i 0.0220175 0.0127118i
\(726\) 0 0
\(727\) 237638. + 137200.i 0.449621 + 0.259589i 0.707670 0.706543i \(-0.249746\pi\)
−0.258049 + 0.966132i \(0.583080\pi\)
\(728\) −135137. + 578074.i −0.254984 + 1.09074i
\(729\) 0 0
\(730\) 110271. + 8457.67i 0.206926 + 0.0158710i
\(731\) 60182.6 104239.i 0.112625 0.195073i
\(732\) 0 0
\(733\) −196395. + 113389.i −0.365530 + 0.211039i −0.671504 0.741001i \(-0.734351\pi\)
0.305974 + 0.952040i \(0.401018\pi\)
\(734\) 205514. + 428671.i 0.381460 + 0.795667i
\(735\) 0 0
\(736\) 199561. 156308.i 0.368400 0.288554i
\(737\) −335306. −0.617315
\(738\) 0 0
\(739\) −173966. −0.318549 −0.159274 0.987234i \(-0.550915\pi\)
−0.159274 + 0.987234i \(0.550915\pi\)
\(740\) 37093.0 46180.7i 0.0677374 0.0843330i
\(741\) 0 0
\(742\) 684142. 327992.i 1.24262 0.595739i
\(743\) 223552. 129068.i 0.404949 0.233797i −0.283668 0.958923i \(-0.591551\pi\)
0.688617 + 0.725125i \(0.258218\pi\)
\(744\) 0 0
\(745\) 13927.3 24122.8i 0.0250931 0.0434625i
\(746\) −531606. 40773.7i −0.955239 0.0732660i
\(747\) 0 0
\(748\) −76096.3 11742.1i −0.136007 0.0209866i
\(749\) 343117. + 198099.i 0.611616 + 0.353117i
\(750\) 0 0
\(751\) 439854. 253950.i 0.779881 0.450264i −0.0565073 0.998402i \(-0.517996\pi\)
0.836388 + 0.548138i \(0.184663\pi\)
\(752\) 900711. 198961.i 1.59276 0.351829i
\(753\) 0 0
\(754\) 14428.7 + 9874.34i 0.0253796 + 0.0173686i
\(755\) −77937.9 −0.136727
\(756\) 0 0
\(757\) 146756.i 0.256097i 0.991768 + 0.128048i \(0.0408713\pi\)
−0.991768 + 0.128048i \(0.959129\pi\)
\(758\) 467734. + 320096.i 0.814068 + 0.557111i
\(759\) 0 0
\(760\) −19402.9 64095.0i −0.0335923 0.110968i
\(761\) −106335. 184178.i −0.183615 0.318030i 0.759494 0.650514i \(-0.225447\pi\)
−0.943109 + 0.332484i \(0.892113\pi\)
\(762\) 0 0
\(763\) 454519. 787250.i 0.780734 1.35227i
\(764\) 89105.7 577461.i 0.152658 0.989319i
\(765\) 0 0
\(766\) 202558. + 15536.0i 0.345216 + 0.0264778i
\(767\) −923255. 533042.i −1.56939 0.906088i
\(768\) 0 0
\(769\) 44021.9 + 76248.2i 0.0744417 + 0.128937i 0.900843 0.434144i \(-0.142949\pi\)
−0.826402 + 0.563081i \(0.809616\pi\)
\(770\) 26377.0 12645.7i 0.0444881 0.0213285i
\(771\) 0 0
\(772\) 251648. 313302.i 0.422240 0.525689i
\(773\) 956337.i 1.60049i 0.599675 + 0.800243i \(0.295296\pi\)
−0.599675 + 0.800243i \(0.704704\pi\)
\(774\) 0 0
\(775\) 248420.i 0.413602i
\(776\) −86742.9 81336.9i −0.144049 0.135072i
\(777\) 0 0
\(778\) −206023. 429733.i −0.340374 0.709969i
\(779\) −395082. 684302.i −0.651047 1.12765i
\(780\) 0 0
\(781\) 227009. + 131064.i 0.372169 + 0.214872i
\(782\) −87587.2 6717.86i −0.143228 0.0109854i
\(783\) 0 0
\(784\) 69424.5 + 21947.8i 0.112949 + 0.0357075i
\(785\) −24120.7 + 41778.2i −0.0391426 + 0.0677970i
\(786\) 0 0
\(787\) −150134. 260040.i −0.242398 0.419846i 0.718999 0.695012i \(-0.244601\pi\)
−0.961397 + 0.275165i \(0.911267\pi\)
\(788\) −425650. + 165339.i −0.685489 + 0.266271i
\(789\) 0 0
\(790\) −12284.8 8407.14i −0.0196840 0.0134708i
\(791\) 754861.i 1.20646i
\(792\) 0 0
\(793\) 1.11244e6 1.76902
\(794\) 451921. 660362.i 0.716839 1.04747i
\(795\) 0 0
\(796\) 953238. 370275.i 1.50444 0.584383i
\(797\) 189436. 109371.i 0.298226 0.172181i −0.343420 0.939182i \(-0.611585\pi\)
0.641646 + 0.767001i \(0.278252\pi\)
\(798\) 0 0
\(799\) −276832. 159829.i −0.433633 0.250358i
\(800\) 235736. 585535.i 0.368338 0.914898i
\(801\) 0 0
\(802\) −8551.44 + 111493.i −0.0132951 + 0.173341i
\(803\) −255910. + 443249.i −0.396877 + 0.687412i
\(804\) 0 0
\(805\) 28901.6 16686.4i 0.0445996 0.0257496i
\(806\) −293082. + 140510.i −0.451148 + 0.216290i
\(807\) 0 0
\(808\) −699688. + 746191.i −1.07172 + 1.14295i
\(809\) 373854. 0.571223 0.285611 0.958346i \(-0.407803\pi\)
0.285611 + 0.958346i \(0.407803\pi\)
\(810\) 0 0
\(811\) −389516. −0.592220 −0.296110 0.955154i \(-0.595690\pi\)
−0.296110 + 0.955154i \(0.595690\pi\)
\(812\) −9993.24 + 12441.6i −0.0151563 + 0.0188696i
\(813\) 0 0
\(814\) 118506. + 247185.i 0.178851 + 0.373055i
\(815\) −16913.1 + 9764.78i −0.0254629 + 0.0147010i
\(816\) 0 0
\(817\) −242239. + 419571.i −0.362911 + 0.628581i
\(818\) 16916.3 220554.i 0.0252813 0.329616i
\(819\) 0 0
\(820\) −15821.8 + 102535.i −0.0235303 + 0.152492i
\(821\) −766580. 442585.i −1.13729 0.656614i −0.191531 0.981486i \(-0.561345\pi\)
−0.945758 + 0.324872i \(0.894679\pi\)
\(822\) 0 0
\(823\) 556310. 321186.i 0.821329 0.474195i −0.0295455 0.999563i \(-0.509406\pi\)
0.850875 + 0.525369i \(0.176073\pi\)
\(824\) 366018. + 1.20909e6i 0.539073 + 1.78076i
\(825\) 0 0
\(826\) 549536. 803000.i 0.805445 1.17694i
\(827\) 144563. 0.211372 0.105686 0.994400i \(-0.466296\pi\)
0.105686 + 0.994400i \(0.466296\pi\)
\(828\) 0 0
\(829\) 390583.i 0.568335i 0.958775 + 0.284167i \(0.0917171\pi\)
−0.958775 + 0.284167i \(0.908283\pi\)
\(830\) −16771.2 + 24506.6i −0.0243449 + 0.0355735i
\(831\) 0 0
\(832\) 824140. 53068.3i 1.19057 0.0766635i
\(833\) −12616.0 21851.6i −0.0181816 0.0314915i
\(834\) 0 0
\(835\) 32476.3 56250.6i 0.0465793 0.0806778i
\(836\) 306293. + 47262.8i 0.438253 + 0.0676250i
\(837\) 0 0
\(838\) −46957.4 + 612229.i −0.0668677 + 0.871818i
\(839\) 21529.2 + 12429.9i 0.0305846 + 0.0176580i 0.515214 0.857061i \(-0.327712\pi\)
−0.484630 + 0.874719i \(0.661046\pi\)
\(840\) 0 0
\(841\) −353406. 612116.i −0.499668 0.865450i
\(842\) 459799. + 959071.i 0.648551 + 1.35278i
\(843\) 0 0
\(844\) 156760. 195166.i 0.220065 0.273980i
\(845\) 35429.8i 0.0496199i
\(846\) 0 0
\(847\) 538205.i 0.750207i
\(848\) −712451. 778697.i −0.990748 1.08287i
\(849\) 0 0
\(850\) −197243. + 94562.5i −0.273001 + 0.130882i
\(851\) 156372. + 270844.i 0.215923 + 0.373990i
\(852\) 0 0
\(853\) −264635. 152787.i −0.363705 0.209985i 0.307000 0.951710i \(-0.400675\pi\)
−0.670705 + 0.741724i \(0.734008\pi\)
\(854\) −77648.4 + 1.01238e6i −0.106467 + 1.38812i
\(855\) 0 0
\(856\) 125462. 536686.i 0.171224 0.732442i
\(857\) 221670. 383944.i 0.301818 0.522764i −0.674730 0.738065i \(-0.735740\pi\)
0.976548 + 0.215301i \(0.0690732\pi\)
\(858\) 0 0
\(859\) 228055. + 395003.i 0.309067 + 0.535320i 0.978159 0.207860i \(-0.0666498\pi\)
−0.669091 + 0.743180i \(0.733317\pi\)
\(860\) 59295.9 23032.8i 0.0801729 0.0311423i
\(861\) 0 0
\(862\) −422610. + 617531.i −0.568755 + 0.831083i
\(863\) 432830.i 0.581160i 0.956851 + 0.290580i \(0.0938483\pi\)
−0.956851 + 0.290580i \(0.906152\pi\)
\(864\) 0 0
\(865\) 32854.2 0.0439095
\(866\) 833589. + 570470.i 1.11152 + 0.760672i
\(867\) 0 0
\(868\) −107413. 276526.i −0.142567 0.367026i
\(869\) 59661.6 34445.6i 0.0790052 0.0456136i
\(870\) 0 0
\(871\) −1.07933e6 623151.i −1.42272 0.821405i
\(872\) −1.23138e6 287861.i −1.61941 0.378573i
\(873\) 0 0
\(874\) 352545. + 27039.9i 0.461522 + 0.0353983i
\(875\) 83679.4 144937.i 0.109296 0.189305i
\(876\) 0 0
\(877\) −439842. + 253943.i −0.571870 + 0.330169i −0.757896 0.652376i \(-0.773773\pi\)
0.186026 + 0.982545i \(0.440439\pi\)
\(878\) −276379. 576485.i −0.358522 0.747823i
\(879\) 0 0
\(880\) −27468.4 30022.6i −0.0354706 0.0387688i
\(881\) 630033. 0.811730 0.405865 0.913933i \(-0.366970\pi\)
0.405865 + 0.913933i \(0.366970\pi\)
\(882\) 0 0
\(883\) −111488. −0.142990 −0.0714950 0.997441i \(-0.522777\pi\)
−0.0714950 + 0.997441i \(0.522777\pi\)
\(884\) −223127. 179218.i −0.285527 0.229339i
\(885\) 0 0
\(886\) −1.10237e6 + 528498.i −1.40430 + 0.673249i
\(887\) −642963. + 371215.i −0.817220 + 0.471822i −0.849457 0.527658i \(-0.823070\pi\)
0.0322369 + 0.999480i \(0.489737\pi\)
\(888\) 0 0
\(889\) 4379.84 7586.11i 0.00554185 0.00959877i
\(890\) −69037.9 5295.15i −0.0871581 0.00668495i
\(891\) 0 0
\(892\) 126322. 818649.i 0.158763 1.02889i
\(893\) 1.11427e6 + 643324.i 1.39729 + 0.806727i
\(894\) 0 0
\(895\) 43109.6 24889.4i 0.0538181 0.0310719i
\(896\) −9230.17 + 753711.i −0.0114972 + 0.938834i
\(897\) 0 0
\(898\) −1.11624e6 763905.i −1.38422 0.947298i
\(899\) −8736.86 −0.0108103
\(900\) 0 0
\(901\) 365754.i 0.450546i
\(902\) −396235. 271165.i −0.487012 0.333289i
\(903\) 0 0
\(904\) −1.00506e6 + 304251.i −1.22985 + 0.372302i
\(905\) 71052.5 + 123067.i 0.0867525 + 0.150260i
\(906\) 0 0
\(907\) −120922. + 209443.i −0.146991 + 0.254596i −0.930114 0.367271i \(-0.880292\pi\)
0.783123 + 0.621867i \(0.213626\pi\)
\(908\) 892768. + 137759.i 1.08285 + 0.167090i
\(909\) 0 0
\(910\) 108407. + 8314.74i 0.130911 + 0.0100407i
\(911\) −276542. 159661.i −0.333214 0.192381i 0.324053 0.946039i \(-0.394954\pi\)
−0.657267 + 0.753658i \(0.728288\pi\)
\(912\) 0 0
\(913\) −68714.8 119017.i −0.0824344 0.142781i
\(914\) −11838.4 + 5675.58i −0.0141710 + 0.00679388i
\(915\) 0 0
\(916\) −705177. 566407.i −0.840440 0.675053i
\(917\) 491312.i 0.584277i
\(918\) 0 0
\(919\) 1.48790e6i 1.76175i −0.473350 0.880875i \(-0.656955\pi\)
0.473350 0.880875i \(-0.343045\pi\)
\(920\) −33865.9 31755.4i −0.0400117 0.0375181i
\(921\) 0 0
\(922\) −429439. 895745.i −0.505173 1.05371i
\(923\) 487151. + 843771.i 0.571821 + 0.990424i
\(924\) 0 0
\(925\) 674422. + 389378.i 0.788222 + 0.455080i
\(926\) −197837. 15173.9i −0.230721 0.0176961i
\(927\) 0 0
\(928\) 20593.1 + 8290.78i 0.0239125 + 0.00962719i
\(929\) −588618. + 1.01952e6i −0.682028 + 1.18131i 0.292333 + 0.956317i \(0.405569\pi\)
−0.974361 + 0.224991i \(0.927765\pi\)
\(930\) 0 0
\(931\) 50780.5 + 87954.5i 0.0585865 + 0.101475i
\(932\) −418986. 1.07864e6i −0.482356 1.24178i
\(933\) 0 0
\(934\) −61819.9 42306.7i −0.0708654 0.0484970i
\(935\) 14101.6i 0.0161304i
\(936\) 0 0
\(937\) 904036. 1.02969 0.514845 0.857283i \(-0.327849\pi\)
0.514845 + 0.857283i \(0.327849\pi\)
\(938\) 642434. 938746.i 0.730168 1.06695i
\(939\) 0 0
\(940\) −61169.1 157474.i −0.0692271 0.178219i
\(941\) −569128. + 328586.i −0.642733 + 0.371082i −0.785666 0.618650i \(-0.787680\pi\)
0.142934 + 0.989732i \(0.454346\pi\)
\(942\) 0 0
\(943\) −474393. 273891.i −0.533476 0.308003i
\(944\) −1.29064e6 408023.i −1.44831 0.457868i
\(945\) 0 0
\(946\) −22513.4 + 293528.i −0.0251570 + 0.327995i
\(947\) −100820. + 174625.i −0.112420 + 0.194718i −0.916746 0.399471i \(-0.869194\pi\)
0.804325 + 0.594189i \(0.202527\pi\)
\(948\) 0 0
\(949\) −1.64752e6 + 951194.i −1.82935 + 1.05618i
\(950\) 793918. 380621.i 0.879688 0.421741i
\(951\) 0 0
\(952\) 178671. 190547.i 0.197143 0.210246i
\(953\) 638389. 0.702910 0.351455 0.936205i \(-0.385687\pi\)
0.351455 + 0.936205i \(0.385687\pi\)
\(954\) 0 0
\(955\) −107011. −0.117333
\(956\) −1.24533e6 1.00027e6i −1.36260 1.09446i
\(957\) 0 0
\(958\) 685349. + 1.42953e6i 0.746759 + 1.55763i
\(959\) −213075. + 123019.i −0.231684 + 0.133763i
\(960\) 0 0
\(961\) −380552. + 659136.i −0.412067 + 0.713721i
\(962\) −77919.4 + 1.01591e6i −0.0841967 + 1.09775i
\(963\) 0 0
\(964\) −414571. 63970.8i −0.446113 0.0688379i
\(965\) −63737.0 36798.6i −0.0684443 0.0395163i
\(966\) 0 0
\(967\) 961591. 555175.i 1.02834 0.593714i 0.111833 0.993727i \(-0.464328\pi\)
0.916509 + 0.400013i \(0.130995\pi\)
\(968\) −716590. + 216927.i −0.764751 + 0.231506i
\(969\) 0 0
\(970\) −12299.5 + 17972.4i −0.0130721 + 0.0191013i
\(971\) 1.25193e6 1.32783 0.663913 0.747810i \(-0.268895\pi\)
0.663913 + 0.747810i \(0.268895\pi\)
\(972\) 0 0
\(973\) 382787.i 0.404326i
\(974\) −542765. + 793106.i −0.572129 + 0.836013i
\(975\) 0 0
\(976\) 1.37922e6 304660.i 1.44788 0.319827i
\(977\) −33214.5 57529.3i −0.0347968 0.0602698i 0.848103 0.529832i \(-0.177745\pi\)
−0.882899 + 0.469562i \(0.844412\pi\)
\(978\) 0 0
\(979\) 160219. 277508.i 0.167167 0.289541i
\(980\) 2033.60 13179.0i 0.00211745 0.0137224i
\(981\) 0 0
\(982\) 59980.7 782026.i 0.0621997 0.810957i
\(983\) 130314. + 75236.9i 0.134860 + 0.0778617i 0.565912 0.824465i \(-0.308524\pi\)
−0.431052 + 0.902327i \(0.641857\pi\)
\(984\) 0 0
\(985\) 41815.2 + 72426.0i 0.0430984 + 0.0746487i
\(986\) −3325.74 6936.98i −0.00342085 0.00713538i
\(987\) 0 0
\(988\) 898102. + 721368.i 0.920051 + 0.738997i
\(989\) 335865.i 0.343378i
\(990\) 0 0
\(991\) 795870.i 0.810391i −0.914230 0.405196i \(-0.867203\pi\)
0.914230 0.405196i \(-0.132797\pi\)
\(992\) −324885. + 254470.i −0.330146 + 0.258591i
\(993\) 0 0
\(994\) −801874. + 384436.i −0.811584 + 0.389091i
\(995\) −93644.4 162197.i −0.0945879 0.163831i
\(996\) 0 0
\(997\) 674456. + 389398.i 0.678521 + 0.391745i 0.799298 0.600935i \(-0.205205\pi\)
−0.120776 + 0.992680i \(0.538538\pi\)
\(998\) −80113.1 + 1.04451e6i −0.0804346 + 1.04870i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 216.5.p.b.19.35 88
3.2 odd 2 72.5.p.b.43.10 88
4.3 odd 2 864.5.t.b.559.25 88
8.3 odd 2 inner 216.5.p.b.19.6 88
8.5 even 2 864.5.t.b.559.20 88
9.4 even 3 inner 216.5.p.b.91.6 88
9.5 odd 6 72.5.p.b.67.39 yes 88
12.11 even 2 288.5.t.b.79.15 88
24.5 odd 2 288.5.t.b.79.16 88
24.11 even 2 72.5.p.b.43.39 yes 88
36.23 even 6 288.5.t.b.175.16 88
36.31 odd 6 864.5.t.b.847.20 88
72.5 odd 6 288.5.t.b.175.15 88
72.13 even 6 864.5.t.b.847.25 88
72.59 even 6 72.5.p.b.67.10 yes 88
72.67 odd 6 inner 216.5.p.b.91.35 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.5.p.b.43.10 88 3.2 odd 2
72.5.p.b.43.39 yes 88 24.11 even 2
72.5.p.b.67.10 yes 88 72.59 even 6
72.5.p.b.67.39 yes 88 9.5 odd 6
216.5.p.b.19.6 88 8.3 odd 2 inner
216.5.p.b.19.35 88 1.1 even 1 trivial
216.5.p.b.91.6 88 9.4 even 3 inner
216.5.p.b.91.35 88 72.67 odd 6 inner
288.5.t.b.79.15 88 12.11 even 2
288.5.t.b.79.16 88 24.5 odd 2
288.5.t.b.175.15 88 72.5 odd 6
288.5.t.b.175.16 88 36.23 even 6
864.5.t.b.559.20 88 8.5 even 2
864.5.t.b.559.25 88 4.3 odd 2
864.5.t.b.847.20 88 36.31 odd 6
864.5.t.b.847.25 88 72.13 even 6