Properties

Label 288.5.t.b.79.16
Level $288$
Weight $5$
Character 288.79
Analytic conductor $29.771$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,5,Mod(79,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.79");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 288.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.7705493681\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.16
Character \(\chi\) \(=\) 288.79
Dual form 288.5.t.b.175.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.44945 + 7.82320i) q^{3} +(2.53773 - 1.46516i) q^{5} +(-39.8426 - 23.0032i) q^{7} +(-41.4048 - 69.6178i) q^{9} +O(q^{10})\) \(q+(-4.44945 + 7.82320i) q^{3} +(2.53773 - 1.46516i) q^{5} +(-39.8426 - 23.0032i) q^{7} +(-41.4048 - 69.6178i) q^{9} +(-27.1224 + 46.9774i) q^{11} +(174.611 - 100.811i) q^{13} +(0.170730 + 26.3723i) q^{15} -88.7146 q^{17} +357.083 q^{19} +(357.236 - 209.345i) q^{21} +(214.383 - 123.774i) q^{23} +(-308.207 + 533.830i) q^{25} +(728.863 - 14.1572i) q^{27} +(-18.7746 - 10.8395i) q^{29} +(349.016 - 201.504i) q^{31} +(-246.834 - 421.207i) q^{33} -134.813 q^{35} +1263.37i q^{37} +(11.7472 + 1814.57i) q^{39} +(-1106.42 - 1916.37i) q^{41} +(-678.384 + 1175.00i) q^{43} +(-207.075 - 116.007i) q^{45} +(3120.48 + 1801.61i) q^{47} +(-142.209 - 246.314i) q^{49} +(394.731 - 694.032i) q^{51} +4122.82i q^{53} +158.955i q^{55} +(-1588.82 + 2793.53i) q^{57} +(2643.76 + 4579.12i) q^{59} +(4778.25 + 2758.72i) q^{61} +(48.2476 + 3726.20i) q^{63} +(295.410 - 511.664i) q^{65} +(-3090.68 - 5353.21i) q^{67} +(14.4230 + 2227.89i) q^{69} +4832.30i q^{71} +9435.38 q^{73} +(-2804.90 - 4786.41i) q^{75} +(2161.26 - 1247.80i) q^{77} +(-1099.86 - 635.004i) q^{79} +(-3132.28 + 5765.03i) q^{81} +(-1266.75 + 2194.08i) q^{83} +(-225.134 + 129.981i) q^{85} +(168.337 - 98.6477i) q^{87} +5907.27 q^{89} -9275.93 q^{91} +(23.4806 + 3627.00i) q^{93} +(906.180 - 523.183i) q^{95} +(-928.999 + 1609.07i) q^{97} +(4393.46 - 56.8874i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 18 q^{3} + 30 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 88 q + 18 q^{3} + 30 q^{9} - 44 q^{11} - 1156 q^{17} - 860 q^{19} + 5998 q^{25} - 504 q^{27} - 3204 q^{33} + 2508 q^{35} + 2348 q^{41} - 3500 q^{43} + 16462 q^{49} + 12378 q^{51} - 6522 q^{57} + 3508 q^{59} - 2502 q^{65} - 5132 q^{67} + 19004 q^{73} + 39858 q^{75} - 11346 q^{81} - 17090 q^{83} - 8272 q^{89} + 9612 q^{91} + 9980 q^{97} + 11742 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.44945 + 7.82320i −0.494383 + 0.869244i
\(4\) 0 0
\(5\) 2.53773 1.46516i 0.101509 0.0586064i −0.448386 0.893840i \(-0.648001\pi\)
0.549895 + 0.835234i \(0.314668\pi\)
\(6\) 0 0
\(7\) −39.8426 23.0032i −0.813115 0.469452i 0.0349214 0.999390i \(-0.488882\pi\)
−0.848036 + 0.529938i \(0.822215\pi\)
\(8\) 0 0
\(9\) −41.4048 69.6178i −0.511171 0.859479i
\(10\) 0 0
\(11\) −27.1224 + 46.9774i −0.224152 + 0.388243i −0.956065 0.293156i \(-0.905295\pi\)
0.731913 + 0.681398i \(0.238628\pi\)
\(12\) 0 0
\(13\) 174.611 100.811i 1.03320 0.596517i 0.115299 0.993331i \(-0.463217\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(14\) 0 0
\(15\) 0.170730 + 26.3723i 0.000758800 + 0.117210i
\(16\) 0 0
\(17\) −88.7146 −0.306971 −0.153485 0.988151i \(-0.549050\pi\)
−0.153485 + 0.988151i \(0.549050\pi\)
\(18\) 0 0
\(19\) 357.083 0.989149 0.494575 0.869135i \(-0.335324\pi\)
0.494575 + 0.869135i \(0.335324\pi\)
\(20\) 0 0
\(21\) 357.236 209.345i 0.810059 0.474706i
\(22\) 0 0
\(23\) 214.383 123.774i 0.405261 0.233977i −0.283491 0.958975i \(-0.591492\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(24\) 0 0
\(25\) −308.207 + 533.830i −0.493131 + 0.854127i
\(26\) 0 0
\(27\) 728.863 14.1572i 0.999811 0.0194200i
\(28\) 0 0
\(29\) −18.7746 10.8395i −0.0223242 0.0128889i 0.488796 0.872398i \(-0.337436\pi\)
−0.511121 + 0.859509i \(0.670769\pi\)
\(30\) 0 0
\(31\) 349.016 201.504i 0.363180 0.209682i −0.307295 0.951614i \(-0.599424\pi\)
0.670475 + 0.741932i \(0.266090\pi\)
\(32\) 0 0
\(33\) −246.834 421.207i −0.226661 0.386784i
\(34\) 0 0
\(35\) −134.813 −0.110052
\(36\) 0 0
\(37\) 1263.37i 0.922839i 0.887182 + 0.461419i \(0.152660\pi\)
−0.887182 + 0.461419i \(0.847340\pi\)
\(38\) 0 0
\(39\) 11.7472 + 1814.57i 0.00772334 + 1.19301i
\(40\) 0 0
\(41\) −1106.42 1916.37i −0.658189 1.14002i −0.981084 0.193582i \(-0.937989\pi\)
0.322895 0.946435i \(-0.395344\pi\)
\(42\) 0 0
\(43\) −678.384 + 1175.00i −0.366892 + 0.635476i −0.989078 0.147393i \(-0.952912\pi\)
0.622185 + 0.782870i \(0.286245\pi\)
\(44\) 0 0
\(45\) −207.075 116.007i −0.102259 0.0572872i
\(46\) 0 0
\(47\) 3120.48 + 1801.61i 1.41262 + 0.815577i 0.995635 0.0933366i \(-0.0297533\pi\)
0.416985 + 0.908913i \(0.363087\pi\)
\(48\) 0 0
\(49\) −142.209 246.314i −0.0592292 0.102588i
\(50\) 0 0
\(51\) 394.731 694.032i 0.151761 0.266833i
\(52\) 0 0
\(53\) 4122.82i 1.46772i 0.679303 + 0.733858i \(0.262282\pi\)
−0.679303 + 0.733858i \(0.737718\pi\)
\(54\) 0 0
\(55\) 158.955i 0.0525469i
\(56\) 0 0
\(57\) −1588.82 + 2793.53i −0.489019 + 0.859812i
\(58\) 0 0
\(59\) 2643.76 + 4579.12i 0.759482 + 1.31546i 0.943115 + 0.332466i \(0.107881\pi\)
−0.183634 + 0.982995i \(0.558786\pi\)
\(60\) 0 0
\(61\) 4778.25 + 2758.72i 1.28413 + 0.741393i 0.977601 0.210468i \(-0.0674987\pi\)
0.306530 + 0.951861i \(0.400832\pi\)
\(62\) 0 0
\(63\) 48.2476 + 3726.20i 0.0121561 + 0.938826i
\(64\) 0 0
\(65\) 295.410 511.664i 0.0699194 0.121104i
\(66\) 0 0
\(67\) −3090.68 5353.21i −0.688500 1.19252i −0.972323 0.233641i \(-0.924936\pi\)
0.283822 0.958877i \(-0.408397\pi\)
\(68\) 0 0
\(69\) 14.4230 + 2227.89i 0.00302940 + 0.467945i
\(70\) 0 0
\(71\) 4832.30i 0.958600i 0.877651 + 0.479300i \(0.159109\pi\)
−0.877651 + 0.479300i \(0.840891\pi\)
\(72\) 0 0
\(73\) 9435.38 1.77057 0.885286 0.465047i \(-0.153963\pi\)
0.885286 + 0.465047i \(0.153963\pi\)
\(74\) 0 0
\(75\) −2804.90 4786.41i −0.498650 0.850917i
\(76\) 0 0
\(77\) 2161.26 1247.80i 0.364523 0.210457i
\(78\) 0 0
\(79\) −1099.86 635.004i −0.176231 0.101747i 0.409290 0.912405i \(-0.365777\pi\)
−0.585521 + 0.810657i \(0.699110\pi\)
\(80\) 0 0
\(81\) −3132.28 + 5765.03i −0.477409 + 0.878681i
\(82\) 0 0
\(83\) −1266.75 + 2194.08i −0.183881 + 0.318490i −0.943199 0.332229i \(-0.892199\pi\)
0.759318 + 0.650720i \(0.225533\pi\)
\(84\) 0 0
\(85\) −225.134 + 129.981i −0.0311604 + 0.0179904i
\(86\) 0 0
\(87\) 168.337 98.6477i 0.0222403 0.0130331i
\(88\) 0 0
\(89\) 5907.27 0.745773 0.372887 0.927877i \(-0.378368\pi\)
0.372887 + 0.927877i \(0.378368\pi\)
\(90\) 0 0
\(91\) −9275.93 −1.12015
\(92\) 0 0
\(93\) 23.4806 + 3627.00i 0.00271484 + 0.419355i
\(94\) 0 0
\(95\) 906.180 523.183i 0.100408 0.0579704i
\(96\) 0 0
\(97\) −928.999 + 1609.07i −0.0987351 + 0.171014i −0.911161 0.412050i \(-0.864813\pi\)
0.812426 + 0.583064i \(0.198146\pi\)
\(98\) 0 0
\(99\) 4393.46 56.8874i 0.448267 0.00580425i
\(100\) 0 0
\(101\) 13841.8 + 7991.56i 1.35690 + 0.783409i 0.989205 0.146536i \(-0.0468123\pi\)
0.367699 + 0.929945i \(0.380146\pi\)
\(102\) 0 0
\(103\) 17094.2 9869.37i 1.61130 0.930283i 0.622227 0.782837i \(-0.286228\pi\)
0.989070 0.147445i \(-0.0471051\pi\)
\(104\) 0 0
\(105\) 599.844 1054.67i 0.0544076 0.0956617i
\(106\) 0 0
\(107\) −8611.81 −0.752189 −0.376095 0.926581i \(-0.622733\pi\)
−0.376095 + 0.926581i \(0.622733\pi\)
\(108\) 0 0
\(109\) 19759.0i 1.66307i −0.555470 0.831537i \(-0.687461\pi\)
0.555470 0.831537i \(-0.312539\pi\)
\(110\) 0 0
\(111\) −9883.56 5621.28i −0.802172 0.456236i
\(112\) 0 0
\(113\) −8203.89 14209.6i −0.642485 1.11282i −0.984876 0.173259i \(-0.944570\pi\)
0.342392 0.939557i \(-0.388763\pi\)
\(114\) 0 0
\(115\) 362.697 628.210i 0.0274251 0.0475017i
\(116\) 0 0
\(117\) −14248.0 7981.92i −1.04083 0.583090i
\(118\) 0 0
\(119\) 3534.62 + 2040.72i 0.249603 + 0.144108i
\(120\) 0 0
\(121\) 5849.25 + 10131.2i 0.399512 + 0.691975i
\(122\) 0 0
\(123\) 19915.1 128.927i 1.31635 0.00852183i
\(124\) 0 0
\(125\) 3637.74i 0.232815i
\(126\) 0 0
\(127\) 190.402i 0.0118049i 0.999983 + 0.00590247i \(0.00187883\pi\)
−0.999983 + 0.00590247i \(0.998121\pi\)
\(128\) 0 0
\(129\) −6173.79 10535.2i −0.370999 0.633088i
\(130\) 0 0
\(131\) 5339.62 + 9248.49i 0.311148 + 0.538925i 0.978611 0.205718i \(-0.0659530\pi\)
−0.667463 + 0.744643i \(0.732620\pi\)
\(132\) 0 0
\(133\) −14227.1 8214.03i −0.804292 0.464358i
\(134\) 0 0
\(135\) 1828.91 1103.83i 0.100352 0.0605666i
\(136\) 0 0
\(137\) −2673.96 + 4631.43i −0.142467 + 0.246759i −0.928425 0.371520i \(-0.878837\pi\)
0.785958 + 0.618280i \(0.212170\pi\)
\(138\) 0 0
\(139\) 4160.16 + 7205.61i 0.215318 + 0.372942i 0.953371 0.301801i \(-0.0975878\pi\)
−0.738053 + 0.674743i \(0.764254\pi\)
\(140\) 0 0
\(141\) −27978.7 + 16395.9i −1.40731 + 0.824704i
\(142\) 0 0
\(143\) 10937.0i 0.534842i
\(144\) 0 0
\(145\) −63.5266 −0.00302148
\(146\) 0 0
\(147\) 2559.72 16.5712i 0.118456 0.000766864i
\(148\) 0 0
\(149\) 8232.13 4752.82i 0.370800 0.214082i −0.303008 0.952988i \(-0.597991\pi\)
0.673808 + 0.738907i \(0.264658\pi\)
\(150\) 0 0
\(151\) −23033.8 13298.5i −1.01021 0.583244i −0.0989556 0.995092i \(-0.531550\pi\)
−0.911253 + 0.411848i \(0.864884\pi\)
\(152\) 0 0
\(153\) 3673.21 + 6176.12i 0.156914 + 0.263835i
\(154\) 0 0
\(155\) 590.472 1022.73i 0.0245774 0.0425693i
\(156\) 0 0
\(157\) 14257.2 8231.41i 0.578410 0.333945i −0.182091 0.983282i \(-0.558287\pi\)
0.760501 + 0.649336i \(0.224953\pi\)
\(158\) 0 0
\(159\) −32253.6 18344.3i −1.27580 0.725614i
\(160\) 0 0
\(161\) −11388.8 −0.439365
\(162\) 0 0
\(163\) 6664.66 0.250843 0.125422 0.992104i \(-0.459972\pi\)
0.125422 + 0.992104i \(0.459972\pi\)
\(164\) 0 0
\(165\) −1243.53 707.260i −0.0456761 0.0259783i
\(166\) 0 0
\(167\) −19196.1 + 11082.8i −0.688302 + 0.397391i −0.802976 0.596012i \(-0.796751\pi\)
0.114674 + 0.993403i \(0.463418\pi\)
\(168\) 0 0
\(169\) 6045.39 10470.9i 0.211666 0.366616i
\(170\) 0 0
\(171\) −14785.0 24859.3i −0.505624 0.850153i
\(172\) 0 0
\(173\) 9709.71 + 5605.90i 0.324425 + 0.187307i 0.653363 0.757045i \(-0.273357\pi\)
−0.328938 + 0.944351i \(0.606691\pi\)
\(174\) 0 0
\(175\) 24559.5 14179.5i 0.801944 0.463002i
\(176\) 0 0
\(177\) −47586.6 + 308.068i −1.51893 + 0.00983331i
\(178\) 0 0
\(179\) 16987.5 0.530179 0.265090 0.964224i \(-0.414598\pi\)
0.265090 + 0.964224i \(0.414598\pi\)
\(180\) 0 0
\(181\) 48494.7i 1.48026i −0.672465 0.740129i \(-0.734764\pi\)
0.672465 0.740129i \(-0.265236\pi\)
\(182\) 0 0
\(183\) −42842.6 + 25106.4i −1.27930 + 0.749691i
\(184\) 0 0
\(185\) 1851.03 + 3206.08i 0.0540842 + 0.0936766i
\(186\) 0 0
\(187\) 2406.15 4167.58i 0.0688082 0.119179i
\(188\) 0 0
\(189\) −29365.5 16202.1i −0.822079 0.453573i
\(190\) 0 0
\(191\) 31625.9 + 18259.2i 0.866915 + 0.500514i 0.866322 0.499486i \(-0.166478\pi\)
0.000593302 1.00000i \(0.499811\pi\)
\(192\) 0 0
\(193\) −12557.9 21750.9i −0.337133 0.583932i 0.646759 0.762694i \(-0.276124\pi\)
−0.983892 + 0.178762i \(0.942791\pi\)
\(194\) 0 0
\(195\) 2688.44 + 4587.67i 0.0707019 + 0.120649i
\(196\) 0 0
\(197\) 28539.7i 0.735388i 0.929947 + 0.367694i \(0.119853\pi\)
−0.929947 + 0.367694i \(0.880147\pi\)
\(198\) 0 0
\(199\) 63914.2i 1.61395i −0.590583 0.806977i \(-0.701102\pi\)
0.590583 0.806977i \(-0.298898\pi\)
\(200\) 0 0
\(201\) 55631.0 360.146i 1.37697 0.00891429i
\(202\) 0 0
\(203\) 498.687 + 863.752i 0.0121014 + 0.0209603i
\(204\) 0 0
\(205\) −5615.57 3242.15i −0.133624 0.0771481i
\(206\) 0 0
\(207\) −17493.4 9800.03i −0.408256 0.228711i
\(208\) 0 0
\(209\) −9684.94 + 16774.8i −0.221720 + 0.384030i
\(210\) 0 0
\(211\) 7822.71 + 13549.3i 0.175708 + 0.304336i 0.940406 0.340053i \(-0.110445\pi\)
−0.764698 + 0.644389i \(0.777112\pi\)
\(212\) 0 0
\(213\) −37804.0 21501.1i −0.833257 0.473916i
\(214\) 0 0
\(215\) 3975.76i 0.0860089i
\(216\) 0 0
\(217\) −18541.0 −0.393743
\(218\) 0 0
\(219\) −41982.2 + 73814.8i −0.875341 + 1.53906i
\(220\) 0 0
\(221\) −15490.5 + 8943.44i −0.317162 + 0.183113i
\(222\) 0 0
\(223\) −44835.1 25885.6i −0.901589 0.520532i −0.0238733 0.999715i \(-0.507600\pi\)
−0.877715 + 0.479183i \(0.840933\pi\)
\(224\) 0 0
\(225\) 49925.3 646.443i 0.986179 0.0127692i
\(226\) 0 0
\(227\) 28229.2 48894.4i 0.547831 0.948871i −0.450592 0.892730i \(-0.648787\pi\)
0.998423 0.0561410i \(-0.0178797\pi\)
\(228\) 0 0
\(229\) 48956.6 28265.1i 0.933556 0.538989i 0.0456218 0.998959i \(-0.485473\pi\)
0.887935 + 0.459970i \(0.152140\pi\)
\(230\) 0 0
\(231\) 145.402 + 22460.0i 0.00272487 + 0.420906i
\(232\) 0 0
\(233\) 72322.4 1.33217 0.666087 0.745874i \(-0.267968\pi\)
0.666087 + 0.745874i \(0.267968\pi\)
\(234\) 0 0
\(235\) 10558.6 0.191192
\(236\) 0 0
\(237\) 9861.52 5778.99i 0.175569 0.102886i
\(238\) 0 0
\(239\) 86456.7 49915.8i 1.51357 0.873861i 0.513698 0.857971i \(-0.328275\pi\)
0.999874 0.0158894i \(-0.00505797\pi\)
\(240\) 0 0
\(241\) −13108.7 + 22704.9i −0.225697 + 0.390918i −0.956528 0.291640i \(-0.905799\pi\)
0.730832 + 0.682558i \(0.239132\pi\)
\(242\) 0 0
\(243\) −31164.0 50155.6i −0.527765 0.849390i
\(244\) 0 0
\(245\) −721.778 416.719i −0.0120246 0.00694242i
\(246\) 0 0
\(247\) 62350.4 35998.0i 1.02199 0.590045i
\(248\) 0 0
\(249\) −11528.4 19672.5i −0.185939 0.317293i
\(250\) 0 0
\(251\) −110168. −1.74866 −0.874332 0.485328i \(-0.838700\pi\)
−0.874332 + 0.485328i \(0.838700\pi\)
\(252\) 0 0
\(253\) 13428.2i 0.209786i
\(254\) 0 0
\(255\) −15.1462 2339.61i −0.000232929 0.0359801i
\(256\) 0 0
\(257\) 21395.2 + 37057.7i 0.323930 + 0.561063i 0.981295 0.192509i \(-0.0616625\pi\)
−0.657365 + 0.753572i \(0.728329\pi\)
\(258\) 0 0
\(259\) 29061.4 50335.8i 0.433229 0.750374i
\(260\) 0 0
\(261\) 22.7352 + 1755.86i 0.000333748 + 0.0257756i
\(262\) 0 0
\(263\) 70761.8 + 40854.3i 1.02303 + 0.590645i 0.914979 0.403501i \(-0.132207\pi\)
0.108048 + 0.994146i \(0.465540\pi\)
\(264\) 0 0
\(265\) 6040.58 + 10462.6i 0.0860175 + 0.148987i
\(266\) 0 0
\(267\) −26284.1 + 46213.7i −0.368698 + 0.648259i
\(268\) 0 0
\(269\) 71867.3i 0.993177i 0.867986 + 0.496589i \(0.165414\pi\)
−0.867986 + 0.496589i \(0.834586\pi\)
\(270\) 0 0
\(271\) 57719.4i 0.785929i 0.919554 + 0.392964i \(0.128550\pi\)
−0.919554 + 0.392964i \(0.871450\pi\)
\(272\) 0 0
\(273\) 41272.8 72567.4i 0.553781 0.973680i
\(274\) 0 0
\(275\) −16718.6 28957.5i −0.221072 0.382909i
\(276\) 0 0
\(277\) 17169.2 + 9912.65i 0.223764 + 0.129190i 0.607692 0.794173i \(-0.292095\pi\)
−0.383928 + 0.923363i \(0.625429\pi\)
\(278\) 0 0
\(279\) −28479.2 15954.5i −0.365864 0.204962i
\(280\) 0 0
\(281\) −62271.1 + 107857.i −0.788631 + 1.36595i 0.138175 + 0.990408i \(0.455876\pi\)
−0.926806 + 0.375541i \(0.877457\pi\)
\(282\) 0 0
\(283\) 28575.7 + 49494.6i 0.356799 + 0.617995i 0.987424 0.158093i \(-0.0505347\pi\)
−0.630625 + 0.776088i \(0.717201\pi\)
\(284\) 0 0
\(285\) 60.9647 + 9417.10i 0.000750566 + 0.115938i
\(286\) 0 0
\(287\) 101804.i 1.23595i
\(288\) 0 0
\(289\) −75650.7 −0.905769
\(290\) 0 0
\(291\) −8454.56 14427.2i −0.0998401 0.170371i
\(292\) 0 0
\(293\) 25459.0 14698.8i 0.296555 0.171216i −0.344339 0.938845i \(-0.611897\pi\)
0.640894 + 0.767629i \(0.278564\pi\)
\(294\) 0 0
\(295\) 13418.3 + 7747.04i 0.154189 + 0.0890209i
\(296\) 0 0
\(297\) −19103.4 + 34624.0i −0.216570 + 0.392523i
\(298\) 0 0
\(299\) 24955.7 43224.5i 0.279143 0.483490i
\(300\) 0 0
\(301\) 54057.2 31210.0i 0.596652 0.344477i
\(302\) 0 0
\(303\) −124108. + 72729.0i −1.35180 + 0.792177i
\(304\) 0 0
\(305\) 16167.9 0.173801
\(306\) 0 0
\(307\) 77280.8 0.819964 0.409982 0.912094i \(-0.365535\pi\)
0.409982 + 0.912094i \(0.365535\pi\)
\(308\) 0 0
\(309\) 1150.04 + 177645.i 0.0120447 + 1.86053i
\(310\) 0 0
\(311\) −88843.4 + 51293.7i −0.918553 + 0.530327i −0.883173 0.469047i \(-0.844597\pi\)
−0.0353799 + 0.999374i \(0.511264\pi\)
\(312\) 0 0
\(313\) 20566.6 35622.4i 0.209930 0.363609i −0.741762 0.670663i \(-0.766010\pi\)
0.951692 + 0.307054i \(0.0993431\pi\)
\(314\) 0 0
\(315\) 5581.91 + 9385.40i 0.0562551 + 0.0945870i
\(316\) 0 0
\(317\) 109026. + 62945.9i 1.08495 + 0.626396i 0.932227 0.361873i \(-0.117863\pi\)
0.152723 + 0.988269i \(0.451196\pi\)
\(318\) 0 0
\(319\) 1018.43 587.989i 0.0100080 0.00577813i
\(320\) 0 0
\(321\) 38317.8 67371.9i 0.371870 0.653836i
\(322\) 0 0
\(323\) −31678.5 −0.303640
\(324\) 0 0
\(325\) 124283.i 1.17664i
\(326\) 0 0
\(327\) 154578. + 87916.6i 1.44562 + 0.822196i
\(328\) 0 0
\(329\) −82885.4 143562.i −0.765748 1.32632i
\(330\) 0 0
\(331\) −54232.0 + 93932.5i −0.494993 + 0.857354i −0.999983 0.00577154i \(-0.998163\pi\)
0.504990 + 0.863125i \(0.331496\pi\)
\(332\) 0 0
\(333\) 87952.8 52309.4i 0.793161 0.471728i
\(334\) 0 0
\(335\) −15686.6 9056.67i −0.139778 0.0807010i
\(336\) 0 0
\(337\) −1823.71 3158.77i −0.0160582 0.0278136i 0.857885 0.513842i \(-0.171778\pi\)
−0.873943 + 0.486029i \(0.838445\pi\)
\(338\) 0 0
\(339\) 147667. 955.971i 1.28494 0.00831850i
\(340\) 0 0
\(341\) 21861.1i 0.188003i
\(342\) 0 0
\(343\) 123546.i 1.05013i
\(344\) 0 0
\(345\) 3300.81 + 5632.64i 0.0277321 + 0.0473232i
\(346\) 0 0
\(347\) 86264.4 + 149414.i 0.716428 + 1.24089i 0.962406 + 0.271615i \(0.0875576\pi\)
−0.245978 + 0.969275i \(0.579109\pi\)
\(348\) 0 0
\(349\) −138147. 79759.0i −1.13420 0.654831i −0.189212 0.981936i \(-0.560593\pi\)
−0.944988 + 0.327106i \(0.893927\pi\)
\(350\) 0 0
\(351\) 125840. 75949.7i 1.02142 0.616470i
\(352\) 0 0
\(353\) −20555.4 + 35603.0i −0.164959 + 0.285718i −0.936641 0.350291i \(-0.886083\pi\)
0.771681 + 0.636009i \(0.219416\pi\)
\(354\) 0 0
\(355\) 7080.09 + 12263.1i 0.0561800 + 0.0973067i
\(356\) 0 0
\(357\) −31692.0 + 18572.0i −0.248664 + 0.145721i
\(358\) 0 0
\(359\) 76360.8i 0.592491i −0.955112 0.296245i \(-0.904265\pi\)
0.955112 0.296245i \(-0.0957346\pi\)
\(360\) 0 0
\(361\) −2812.82 −0.0215838
\(362\) 0 0
\(363\) −105284. + 681.593i −0.799007 + 0.00517263i
\(364\) 0 0
\(365\) 23944.4 13824.3i 0.179729 0.103767i
\(366\) 0 0
\(367\) 102925. + 59423.6i 0.764165 + 0.441191i 0.830789 0.556587i \(-0.187889\pi\)
−0.0666239 + 0.997778i \(0.521223\pi\)
\(368\) 0 0
\(369\) −87602.4 + 156373.i −0.643374 + 1.14844i
\(370\) 0 0
\(371\) 94837.8 164264.i 0.689023 1.19342i
\(372\) 0 0
\(373\) 115434. 66645.9i 0.829691 0.479023i −0.0240556 0.999711i \(-0.507658\pi\)
0.853747 + 0.520688i \(0.174325\pi\)
\(374\) 0 0
\(375\) −28458.7 16185.9i −0.202373 0.115100i
\(376\) 0 0
\(377\) −4371.00 −0.0307537
\(378\) 0 0
\(379\) −141694. −0.986447 −0.493224 0.869902i \(-0.664182\pi\)
−0.493224 + 0.869902i \(0.664182\pi\)
\(380\) 0 0
\(381\) −1489.55 847.183i −0.0102614 0.00583616i
\(382\) 0 0
\(383\) −43983.8 + 25394.1i −0.299844 + 0.173115i −0.642373 0.766392i \(-0.722050\pi\)
0.342529 + 0.939507i \(0.388717\pi\)
\(384\) 0 0
\(385\) 3656.46 6333.17i 0.0246683 0.0427267i
\(386\) 0 0
\(387\) 109889. 1422.87i 0.733723 0.00950040i
\(388\) 0 0
\(389\) −103180. 59570.8i −0.681860 0.393672i 0.118696 0.992931i \(-0.462129\pi\)
−0.800555 + 0.599259i \(0.795462\pi\)
\(390\) 0 0
\(391\) −19018.9 + 10980.6i −0.124403 + 0.0718242i
\(392\) 0 0
\(393\) −96111.1 + 622.207i −0.622284 + 0.00402856i
\(394\) 0 0
\(395\) −3721.53 −0.0238521
\(396\) 0 0
\(397\) 200049.i 1.26927i 0.772812 + 0.634635i \(0.218850\pi\)
−0.772812 + 0.634635i \(0.781150\pi\)
\(398\) 0 0
\(399\) 127563. 74753.7i 0.801269 0.469555i
\(400\) 0 0
\(401\) −13977.6 24209.9i −0.0869248 0.150558i 0.819285 0.573387i \(-0.194371\pi\)
−0.906210 + 0.422828i \(0.861037\pi\)
\(402\) 0 0
\(403\) 40627.9 70369.6i 0.250158 0.433286i
\(404\) 0 0
\(405\) 497.796 + 19219.4i 0.00303488 + 0.117173i
\(406\) 0 0
\(407\) −59349.6 34265.5i −0.358285 0.206856i
\(408\) 0 0
\(409\) −27650.2 47891.6i −0.165292 0.286294i 0.771467 0.636270i \(-0.219523\pi\)
−0.936759 + 0.349975i \(0.886190\pi\)
\(410\) 0 0
\(411\) −24334.9 41526.2i −0.144061 0.245832i
\(412\) 0 0
\(413\) 243259.i 1.42616i
\(414\) 0 0
\(415\) 7423.98i 0.0431063i
\(416\) 0 0
\(417\) −74881.3 + 484.769i −0.430627 + 0.00278781i
\(418\) 0 0
\(419\) 76753.4 + 132941.i 0.437189 + 0.757234i 0.997472 0.0710675i \(-0.0226406\pi\)
−0.560282 + 0.828302i \(0.689307\pi\)
\(420\) 0 0
\(421\) −230275. 132949.i −1.29922 0.750105i −0.318950 0.947771i \(-0.603330\pi\)
−0.980269 + 0.197667i \(0.936664\pi\)
\(422\) 0 0
\(423\) −3778.75 291836.i −0.0211187 1.63102i
\(424\) 0 0
\(425\) 27342.4 47358.5i 0.151377 0.262192i
\(426\) 0 0
\(427\) −126919. 219830.i −0.696097 1.20568i
\(428\) 0 0
\(429\) −85562.2 48663.6i −0.464909 0.264417i
\(430\) 0 0
\(431\) 187074.i 1.00707i −0.863976 0.503533i \(-0.832033\pi\)
0.863976 0.503533i \(-0.167967\pi\)
\(432\) 0 0
\(433\) 252526. 1.34688 0.673441 0.739241i \(-0.264815\pi\)
0.673441 + 0.739241i \(0.264815\pi\)
\(434\) 0 0
\(435\) 282.658 496.981i 0.00149377 0.00262640i
\(436\) 0 0
\(437\) 76552.5 44197.6i 0.400863 0.231439i
\(438\) 0 0
\(439\) −138415. 79914.0i −0.718215 0.414662i 0.0958801 0.995393i \(-0.469433\pi\)
−0.814095 + 0.580731i \(0.802767\pi\)
\(440\) 0 0
\(441\) −11259.7 + 20098.9i −0.0578960 + 0.103346i
\(442\) 0 0
\(443\) −152813. + 264680.i −0.778670 + 1.34870i 0.154038 + 0.988065i \(0.450772\pi\)
−0.932708 + 0.360632i \(0.882561\pi\)
\(444\) 0 0
\(445\) 14991.1 8655.09i 0.0757028 0.0437070i
\(446\) 0 0
\(447\) 553.830 + 85549.0i 0.00277180 + 0.428154i
\(448\) 0 0
\(449\) 338152. 1.67733 0.838667 0.544645i \(-0.183336\pi\)
0.838667 + 0.544645i \(0.183336\pi\)
\(450\) 0 0
\(451\) 120035. 0.590138
\(452\) 0 0
\(453\) 206525. 121026.i 1.00641 0.589772i
\(454\) 0 0
\(455\) −23539.8 + 13590.7i −0.113705 + 0.0656477i
\(456\) 0 0
\(457\) −1641.07 + 2842.42i −0.00785770 + 0.0136099i −0.869928 0.493180i \(-0.835835\pi\)
0.862070 + 0.506790i \(0.169168\pi\)
\(458\) 0 0
\(459\) −64660.7 + 1255.95i −0.306913 + 0.00596137i
\(460\) 0 0
\(461\) −215070. 124171.i −1.01199 0.584275i −0.100220 0.994965i \(-0.531955\pi\)
−0.911775 + 0.410690i \(0.865288\pi\)
\(462\) 0 0
\(463\) −42958.9 + 24802.3i −0.200397 + 0.115699i −0.596841 0.802360i \(-0.703578\pi\)
0.396444 + 0.918059i \(0.370244\pi\)
\(464\) 0 0
\(465\) 5373.72 + 9169.95i 0.0248525 + 0.0424093i
\(466\) 0 0
\(467\) −18727.6 −0.0858712 −0.0429356 0.999078i \(-0.513671\pi\)
−0.0429356 + 0.999078i \(0.513671\pi\)
\(468\) 0 0
\(469\) 284381.i 1.29287i
\(470\) 0 0
\(471\) 959.178 + 148162.i 0.00432372 + 0.667876i
\(472\) 0 0
\(473\) −36798.8 63737.4i −0.164479 0.284887i
\(474\) 0 0
\(475\) −110055. + 190621.i −0.487780 + 0.844859i
\(476\) 0 0
\(477\) 287021. 170704.i 1.26147 0.750254i
\(478\) 0 0
\(479\) −343234. 198166.i −1.49596 0.863691i −0.495967 0.868341i \(-0.665186\pi\)
−0.999989 + 0.00465021i \(0.998520\pi\)
\(480\) 0 0
\(481\) 127362. + 220597.i 0.550489 + 0.953475i
\(482\) 0 0
\(483\) 50673.8 89096.6i 0.217215 0.381915i
\(484\) 0 0
\(485\) 5444.52i 0.0231460i
\(486\) 0 0
\(487\) 240262.i 1.01304i 0.862228 + 0.506520i \(0.169068\pi\)
−0.862228 + 0.506520i \(0.830932\pi\)
\(488\) 0 0
\(489\) −29654.0 + 52138.9i −0.124013 + 0.218044i
\(490\) 0 0
\(491\) −98040.3 169811.i −0.406670 0.704372i 0.587845 0.808974i \(-0.299977\pi\)
−0.994514 + 0.104601i \(0.966643\pi\)
\(492\) 0 0
\(493\) 1665.58 + 961.625i 0.00685287 + 0.00395651i
\(494\) 0 0
\(495\) 11066.1 6581.48i 0.0451630 0.0268605i
\(496\) 0 0
\(497\) 111158. 192532.i 0.450017 0.779452i
\(498\) 0 0
\(499\) −130948. 226808.i −0.525892 0.910871i −0.999545 0.0301596i \(-0.990398\pi\)
0.473654 0.880711i \(-0.342935\pi\)
\(500\) 0 0
\(501\) −1291.45 199487.i −0.00514518 0.794766i
\(502\) 0 0
\(503\) 311251.i 1.23020i −0.788450 0.615099i \(-0.789116\pi\)
0.788450 0.615099i \(-0.210884\pi\)
\(504\) 0 0
\(505\) 46835.6 0.183651
\(506\) 0 0
\(507\) 55017.4 + 93884.1i 0.214035 + 0.365238i
\(508\) 0 0
\(509\) −317446. + 183278.i −1.22528 + 0.707415i −0.966039 0.258398i \(-0.916805\pi\)
−0.259240 + 0.965813i \(0.583472\pi\)
\(510\) 0 0
\(511\) −375930. 217043.i −1.43968 0.831199i
\(512\) 0 0
\(513\) 260264. 5055.29i 0.988963 0.0192093i
\(514\) 0 0
\(515\) 28920.4 50091.6i 0.109041 0.188864i
\(516\) 0 0
\(517\) −169270. + 97727.9i −0.633283 + 0.365626i
\(518\) 0 0
\(519\) −87058.9 + 51017.8i −0.323205 + 0.189403i
\(520\) 0 0
\(521\) −526988. −1.94145 −0.970723 0.240203i \(-0.922786\pi\)
−0.970723 + 0.240203i \(0.922786\pi\)
\(522\) 0 0
\(523\) −311012. −1.13703 −0.568517 0.822671i \(-0.692483\pi\)
−0.568517 + 0.822671i \(0.692483\pi\)
\(524\) 0 0
\(525\) 1652.28 + 255225.i 0.00599467 + 0.925986i
\(526\) 0 0
\(527\) −30962.8 + 17876.4i −0.111486 + 0.0643663i
\(528\) 0 0
\(529\) −109280. + 189279.i −0.390509 + 0.676382i
\(530\) 0 0
\(531\) 209324. 373650.i 0.742386 1.32518i
\(532\) 0 0
\(533\) −386384. 223079.i −1.36008 0.785242i
\(534\) 0 0
\(535\) −21854.5 + 12617.7i −0.0763541 + 0.0440831i
\(536\) 0 0
\(537\) −75584.9 + 132896.i −0.262112 + 0.460855i
\(538\) 0 0
\(539\) 15428.2 0.0531054
\(540\) 0 0
\(541\) 377631.i 1.29025i 0.764078 + 0.645124i \(0.223194\pi\)
−0.764078 + 0.645124i \(0.776806\pi\)
\(542\) 0 0
\(543\) 379384. + 215775.i 1.28671 + 0.731815i
\(544\) 0 0
\(545\) −28950.0 50143.0i −0.0974667 0.168817i
\(546\) 0 0
\(547\) 51766.7 89662.5i 0.173012 0.299665i −0.766460 0.642292i \(-0.777983\pi\)
0.939471 + 0.342627i \(0.111317\pi\)
\(548\) 0 0
\(549\) −5786.24 446876.i −0.0191978 1.48266i
\(550\) 0 0
\(551\) −6704.10 3870.61i −0.0220819 0.0127490i
\(552\) 0 0
\(553\) 29214.2 + 50600.4i 0.0955308 + 0.165464i
\(554\) 0 0
\(555\) −33317.9 + 215.694i −0.108166 + 0.000700249i
\(556\) 0 0
\(557\) 321643.i 1.03673i −0.855161 0.518363i \(-0.826542\pi\)
0.855161 0.518363i \(-0.173458\pi\)
\(558\) 0 0
\(559\) 273556.i 0.875431i
\(560\) 0 0
\(561\) 21897.7 + 37367.2i 0.0695782 + 0.118731i
\(562\) 0 0
\(563\) 15717.8 + 27224.0i 0.0495878 + 0.0858885i 0.889754 0.456441i \(-0.150876\pi\)
−0.840166 + 0.542329i \(0.817543\pi\)
\(564\) 0 0
\(565\) −41638.5 24040.0i −0.130436 0.0753074i
\(566\) 0 0
\(567\) 257412. 157642.i 0.800687 0.490348i
\(568\) 0 0
\(569\) 118855. 205862.i 0.367106 0.635846i −0.622006 0.783013i \(-0.713682\pi\)
0.989112 + 0.147166i \(0.0470153\pi\)
\(570\) 0 0
\(571\) 259870. + 450108.i 0.797047 + 1.38053i 0.921531 + 0.388304i \(0.126939\pi\)
−0.124484 + 0.992222i \(0.539728\pi\)
\(572\) 0 0
\(573\) −283564. + 166172.i −0.863657 + 0.506115i
\(574\) 0 0
\(575\) 152592.i 0.461526i
\(576\) 0 0
\(577\) −150655. −0.452513 −0.226257 0.974068i \(-0.572649\pi\)
−0.226257 + 0.974068i \(0.572649\pi\)
\(578\) 0 0
\(579\) 226037. 1463.33i 0.674252 0.00436500i
\(580\) 0 0
\(581\) 100942. 58278.7i 0.299032 0.172646i
\(582\) 0 0
\(583\) −193679. 111821.i −0.569830 0.328992i
\(584\) 0 0
\(585\) −47852.3 + 619.602i −0.139827 + 0.00181051i
\(586\) 0 0
\(587\) −222883. + 386045.i −0.646846 + 1.12037i 0.337025 + 0.941496i \(0.390579\pi\)
−0.983872 + 0.178875i \(0.942754\pi\)
\(588\) 0 0
\(589\) 124628. 71953.8i 0.359239 0.207407i
\(590\) 0 0
\(591\) −223272. 126986.i −0.639232 0.363563i
\(592\) 0 0
\(593\) −59064.6 −0.167965 −0.0839823 0.996467i \(-0.526764\pi\)
−0.0839823 + 0.996467i \(0.526764\pi\)
\(594\) 0 0
\(595\) 11959.9 0.0337826
\(596\) 0 0
\(597\) 500013. + 284383.i 1.40292 + 0.797911i
\(598\) 0 0
\(599\) 354748. 204814.i 0.988703 0.570828i 0.0838164 0.996481i \(-0.473289\pi\)
0.904886 + 0.425653i \(0.139956\pi\)
\(600\) 0 0
\(601\) 268772. 465527.i 0.744107 1.28883i −0.206505 0.978446i \(-0.566209\pi\)
0.950611 0.310385i \(-0.100458\pi\)
\(602\) 0 0
\(603\) −244710. + 436815.i −0.673003 + 1.20133i
\(604\) 0 0
\(605\) 29687.6 + 17140.2i 0.0811082 + 0.0468279i
\(606\) 0 0
\(607\) 377551. 217979.i 1.02470 0.591614i 0.109242 0.994015i \(-0.465158\pi\)
0.915463 + 0.402402i \(0.131824\pi\)
\(608\) 0 0
\(609\) −8976.18 + 58.1103i −0.0242023 + 0.000156682i
\(610\) 0 0
\(611\) 726491. 1.94602
\(612\) 0 0
\(613\) 184751.i 0.491662i 0.969313 + 0.245831i \(0.0790608\pi\)
−0.969313 + 0.245831i \(0.920939\pi\)
\(614\) 0 0
\(615\) 50350.2 29505.9i 0.133122 0.0780116i
\(616\) 0 0
\(617\) 70628.6 + 122332.i 0.185528 + 0.321344i 0.943754 0.330647i \(-0.107267\pi\)
−0.758226 + 0.651992i \(0.773934\pi\)
\(618\) 0 0
\(619\) 132429. 229374.i 0.345623 0.598637i −0.639844 0.768505i \(-0.721001\pi\)
0.985467 + 0.169868i \(0.0543342\pi\)
\(620\) 0 0
\(621\) 154503. 93249.3i 0.400640 0.241803i
\(622\) 0 0
\(623\) −235361. 135886.i −0.606399 0.350105i
\(624\) 0 0
\(625\) −187299. 324412.i −0.479486 0.830494i
\(626\) 0 0
\(627\) −88140.0 150406.i −0.224201 0.382587i
\(628\) 0 0
\(629\) 112079.i 0.283285i
\(630\) 0 0
\(631\) 699879.i 1.75778i 0.477026 + 0.878889i \(0.341715\pi\)
−0.477026 + 0.878889i \(0.658285\pi\)
\(632\) 0 0
\(633\) −140806. + 911.553i −0.351409 + 0.00227496i
\(634\) 0 0
\(635\) 278.969 + 483.188i 0.000691844 + 0.00119831i
\(636\) 0 0
\(637\) −49662.5 28672.7i −0.122391 0.0706625i
\(638\) 0 0
\(639\) 336414. 200081.i 0.823897 0.490008i
\(640\) 0 0
\(641\) −159686. + 276584.i −0.388643 + 0.673149i −0.992267 0.124120i \(-0.960389\pi\)
0.603625 + 0.797269i \(0.293723\pi\)
\(642\) 0 0
\(643\) 120033. + 207903.i 0.290321 + 0.502850i 0.973886 0.227040i \(-0.0729047\pi\)
−0.683565 + 0.729890i \(0.739571\pi\)
\(644\) 0 0
\(645\) −31103.2 17689.9i −0.0747627 0.0425214i
\(646\) 0 0
\(647\) 160526.i 0.383475i 0.981446 + 0.191737i \(0.0614122\pi\)
−0.981446 + 0.191737i \(0.938588\pi\)
\(648\) 0 0
\(649\) −286820. −0.680957
\(650\) 0 0
\(651\) 82497.0 145050.i 0.194660 0.342259i
\(652\) 0 0
\(653\) 23755.5 13715.3i 0.0557107 0.0321646i −0.471886 0.881660i \(-0.656427\pi\)
0.527597 + 0.849495i \(0.323093\pi\)
\(654\) 0 0
\(655\) 27101.0 + 15646.8i 0.0631689 + 0.0364706i
\(656\) 0 0
\(657\) −390670. 656870.i −0.905064 1.52177i
\(658\) 0 0
\(659\) 215117. 372594.i 0.495341 0.857957i −0.504644 0.863327i \(-0.668376\pi\)
0.999986 + 0.00537093i \(0.00170963\pi\)
\(660\) 0 0
\(661\) 122972. 70998.0i 0.281451 0.162496i −0.352629 0.935763i \(-0.614712\pi\)
0.634080 + 0.773267i \(0.281379\pi\)
\(662\) 0 0
\(663\) −1042.15 160979.i −0.00237084 0.366219i
\(664\) 0 0
\(665\) −48139.5 −0.108857
\(666\) 0 0
\(667\) −5366.61 −0.0120628
\(668\) 0 0
\(669\) 401999. 235577.i 0.898200 0.526358i
\(670\) 0 0
\(671\) −259195. + 149646.i −0.575681 + 0.332370i
\(672\) 0 0
\(673\) −78759.2 + 136415.i −0.173889 + 0.301184i −0.939776 0.341791i \(-0.888967\pi\)
0.765887 + 0.642975i \(0.222300\pi\)
\(674\) 0 0
\(675\) −217083. + 393452.i −0.476450 + 0.863543i
\(676\) 0 0
\(677\) 606737. + 350300.i 1.32380 + 0.764298i 0.984333 0.176319i \(-0.0564190\pi\)
0.339470 + 0.940617i \(0.389752\pi\)
\(678\) 0 0
\(679\) 74027.5 42739.8i 0.160566 0.0927028i
\(680\) 0 0
\(681\) 256906. + 438395.i 0.553962 + 0.945305i
\(682\) 0 0
\(683\) −408773. −0.876275 −0.438137 0.898908i \(-0.644362\pi\)
−0.438137 + 0.898908i \(0.644362\pi\)
\(684\) 0 0
\(685\) 15671.1i 0.0333978i
\(686\) 0 0
\(687\) 3293.64 + 508762.i 0.00697850 + 1.07796i
\(688\) 0 0
\(689\) 415627. + 719887.i 0.875518 + 1.51644i
\(690\) 0 0
\(691\) 309805. 536598.i 0.648832 1.12381i −0.334570 0.942371i \(-0.608591\pi\)
0.983402 0.181439i \(-0.0580756\pi\)
\(692\) 0 0
\(693\) −176356. 98796.9i −0.367217 0.205720i
\(694\) 0 0
\(695\) 21114.7 + 12190.6i 0.0437135 + 0.0252380i
\(696\) 0 0
\(697\) 98155.2 + 170010.i 0.202045 + 0.349952i
\(698\) 0 0
\(699\) −321795. + 565792.i −0.658604 + 1.15798i
\(700\) 0 0
\(701\) 98886.5i 0.201234i 0.994925 + 0.100617i \(0.0320816\pi\)
−0.994925 + 0.100617i \(0.967918\pi\)
\(702\) 0 0
\(703\) 451126.i 0.912825i
\(704\) 0 0
\(705\) −46979.8 + 82601.8i −0.0945220 + 0.166192i
\(706\) 0 0
\(707\) −367662. 636809.i −0.735546 1.27400i
\(708\) 0 0
\(709\) −16701.3 9642.51i −0.0332245 0.0191822i 0.483296 0.875457i \(-0.339440\pi\)
−0.516520 + 0.856275i \(0.672773\pi\)
\(710\) 0 0
\(711\) 1331.88 + 102862.i 0.00263466 + 0.203477i
\(712\) 0 0
\(713\) 49882.0 86398.2i 0.0981217 0.169952i
\(714\) 0 0
\(715\) 16024.4 + 27755.1i 0.0313452 + 0.0542914i
\(716\) 0 0
\(717\) 5816.52 + 898466.i 0.0113142 + 1.74768i
\(718\) 0 0
\(719\) 124940.i 0.241681i −0.992672 0.120841i \(-0.961441\pi\)
0.992672 0.120841i \(-0.0385590\pi\)
\(720\) 0 0
\(721\) −908107. −1.74689
\(722\) 0 0
\(723\) −119299. 203576.i −0.228223 0.389449i
\(724\) 0 0
\(725\) 11572.9 6681.64i 0.0220175 0.0127118i
\(726\) 0 0
\(727\) 237638. + 137200.i 0.449621 + 0.259589i 0.707670 0.706543i \(-0.249746\pi\)
−0.258049 + 0.966132i \(0.583080\pi\)
\(728\) 0 0
\(729\) 531040. 20637.3i 0.999246 0.0388327i
\(730\) 0 0
\(731\) 60182.6 104239.i 0.112625 0.195073i
\(732\) 0 0
\(733\) 196395. 113389.i 0.365530 0.211039i −0.305974 0.952040i \(-0.598982\pi\)
0.671504 + 0.741001i \(0.265649\pi\)
\(734\) 0 0
\(735\) 6471.59 3792.44i 0.0119794 0.00702012i
\(736\) 0 0
\(737\) 335306. 0.617315
\(738\) 0 0
\(739\) 173966. 0.318549 0.159274 0.987234i \(-0.449085\pi\)
0.159274 + 0.987234i \(0.449085\pi\)
\(740\) 0 0
\(741\) 4194.73 + 647951.i 0.00763954 + 1.18006i
\(742\) 0 0
\(743\) −223552. + 129068.i −0.404949 + 0.233797i −0.688617 0.725125i \(-0.741782\pi\)
0.283668 + 0.958923i \(0.408449\pi\)
\(744\) 0 0
\(745\) 13927.3 24122.8i 0.0250931 0.0434625i
\(746\) 0 0
\(747\) 205197. 2656.93i 0.367730 0.00476145i
\(748\) 0 0
\(749\) 343117. + 198099.i 0.611616 + 0.353117i
\(750\) 0 0
\(751\) 439854. 253950.i 0.779881 0.450264i −0.0565073 0.998402i \(-0.517996\pi\)
0.836388 + 0.548138i \(0.184663\pi\)
\(752\) 0 0
\(753\) 490185. 861863.i 0.864510 1.52002i
\(754\) 0 0
\(755\) −77937.9 −0.136727
\(756\) 0 0
\(757\) 146756.i 0.256097i −0.991768 0.128048i \(-0.959129\pi\)
0.991768 0.128048i \(-0.0408713\pi\)
\(758\) 0 0
\(759\) −105051. 59748.1i −0.182355 0.103715i
\(760\) 0 0
\(761\) 106335. + 184178.i 0.183615 + 0.318030i 0.943109 0.332484i \(-0.107887\pi\)
−0.759494 + 0.650514i \(0.774553\pi\)
\(762\) 0 0
\(763\) −454519. + 787250.i −0.780734 + 1.35227i
\(764\) 0 0
\(765\) 18370.6 + 10291.5i 0.0313907 + 0.0175855i
\(766\) 0 0
\(767\) 923255. + 533042.i 1.56939 + 0.906088i
\(768\) 0 0
\(769\) 44021.9 + 76248.2i 0.0744417 + 0.128937i 0.900843 0.434144i \(-0.142949\pi\)
−0.826402 + 0.563081i \(0.809616\pi\)
\(770\) 0 0
\(771\) −385106. + 2493.11i −0.647846 + 0.00419405i
\(772\) 0 0
\(773\) 956337.i 1.60049i 0.599675 + 0.800243i \(0.295296\pi\)
−0.599675 + 0.800243i \(0.704704\pi\)
\(774\) 0 0
\(775\) 248420.i 0.413602i
\(776\) 0 0
\(777\) 264480. + 451320.i 0.438077 + 0.747554i
\(778\) 0 0
\(779\) −395082. 684302.i −0.651047 1.12765i
\(780\) 0 0
\(781\) −227009. 131064.i −0.372169 0.214872i
\(782\) 0 0
\(783\) −13837.6 7634.74i −0.0225703 0.0124529i
\(784\) 0 0
\(785\) 24120.7 41778.2i 0.0391426 0.0677970i
\(786\) 0 0
\(787\) 150134. + 260040.i 0.242398 + 0.419846i 0.961397 0.275165i \(-0.0887326\pi\)
−0.718999 + 0.695012i \(0.755399\pi\)
\(788\) 0 0
\(789\) −634462. + 371804.i −1.01918 + 0.597255i
\(790\) 0 0
\(791\) 754861.i 1.20646i
\(792\) 0 0
\(793\) 1.11244e6 1.76902
\(794\) 0 0
\(795\) −108728. + 703.888i −0.172031 + 0.00111370i
\(796\) 0 0
\(797\) 189436. 109371.i 0.298226 0.172181i −0.343420 0.939182i \(-0.611585\pi\)
0.641646 + 0.767001i \(0.278252\pi\)
\(798\) 0 0
\(799\) −276832. 159829.i −0.433633 0.250358i
\(800\) 0 0
\(801\) −244589. 411251.i −0.381217 0.640977i
\(802\) 0 0
\(803\) −255910. + 443249.i −0.396877 + 0.687412i
\(804\) 0 0
\(805\) −28901.6 + 16686.4i −0.0445996 + 0.0257496i
\(806\) 0 0
\(807\) −562232. 319770.i −0.863313 0.491010i
\(808\) 0 0
\(809\) −373854. −0.571223 −0.285611 0.958346i \(-0.592197\pi\)
−0.285611 + 0.958346i \(0.592197\pi\)
\(810\) 0 0
\(811\) 389516. 0.592220 0.296110 0.955154i \(-0.404310\pi\)
0.296110 + 0.955154i \(0.404310\pi\)
\(812\) 0 0
\(813\) −451550. 256819.i −0.683164 0.388550i
\(814\) 0 0
\(815\) 16913.1 9764.78i 0.0254629 0.0147010i
\(816\) 0 0
\(817\) −242239. + 419571.i −0.362911 + 0.628581i
\(818\) 0 0
\(819\) 384068. + 645770.i 0.572586 + 0.962742i
\(820\) 0 0
\(821\) −766580. 442585.i −1.13729 0.656614i −0.191531 0.981486i \(-0.561345\pi\)
−0.945758 + 0.324872i \(0.894679\pi\)
\(822\) 0 0
\(823\) 556310. 321186.i 0.821329 0.474195i −0.0295455 0.999563i \(-0.509406\pi\)
0.850875 + 0.525369i \(0.176073\pi\)
\(824\) 0 0
\(825\) 300929. 1948.16i 0.442136 0.00286231i
\(826\) 0 0
\(827\) 144563. 0.211372 0.105686 0.994400i \(-0.466296\pi\)
0.105686 + 0.994400i \(0.466296\pi\)
\(828\) 0 0
\(829\) 390583.i 0.568335i −0.958775 0.284167i \(-0.908283\pi\)
0.958775 0.284167i \(-0.0917171\pi\)
\(830\) 0 0
\(831\) −153942. + 90212.3i −0.222923 + 0.130636i
\(832\) 0 0
\(833\) 12616.0 + 21851.6i 0.0181816 + 0.0314915i
\(834\) 0 0
\(835\) −32476.3 + 56250.6i −0.0465793 + 0.0806778i
\(836\) 0 0
\(837\) 251532. 151810.i 0.359039 0.216695i
\(838\) 0 0
\(839\) −21529.2 12429.9i −0.0305846 0.0176580i 0.484630 0.874719i \(-0.338954\pi\)
−0.515214 + 0.857061i \(0.672288\pi\)
\(840\) 0 0
\(841\) −353406. 612116.i −0.499668 0.865450i
\(842\) 0 0
\(843\) −566712. 967062.i −0.797457 1.36081i
\(844\) 0 0
\(845\) 35429.8i 0.0496199i
\(846\) 0 0
\(847\) 538205.i 0.750207i
\(848\) 0 0
\(849\) −514352. + 3329.83i −0.713584 + 0.00461962i
\(850\) 0 0
\(851\) 156372. + 270844.i 0.215923 + 0.373990i
\(852\) 0 0
\(853\) 264635. + 152787.i 0.363705 + 0.209985i 0.670705 0.741724i \(-0.265992\pi\)
−0.307000 + 0.951710i \(0.599325\pi\)
\(854\) 0 0
\(855\) −73943.1 41424.0i −0.101150 0.0566656i
\(856\) 0 0
\(857\) −221670. + 383944.i −0.301818 + 0.522764i −0.976548 0.215301i \(-0.930927\pi\)
0.674730 + 0.738065i \(0.264260\pi\)
\(858\) 0 0
\(859\) −228055. 395003.i −0.309067 0.535320i 0.669091 0.743180i \(-0.266683\pi\)
−0.978159 + 0.207860i \(0.933350\pi\)
\(860\) 0 0
\(861\) −796435. 452973.i −1.07435 0.611034i
\(862\) 0 0
\(863\) 432830.i 0.581160i −0.956851 0.290580i \(-0.906152\pi\)
0.956851 0.290580i \(-0.0938483\pi\)
\(864\) 0 0
\(865\) 32854.2 0.0439095
\(866\) 0 0
\(867\) 336604. 591831.i 0.447797 0.787334i
\(868\) 0 0
\(869\) 59661.6 34445.6i 0.0790052 0.0456136i
\(870\) 0 0
\(871\) −1.07933e6 623151.i −1.42272 0.821405i
\(872\) 0 0
\(873\) 150485. 1948.51i 0.197454 0.00255667i
\(874\) 0 0
\(875\) 83679.4 144937.i 0.109296 0.189305i
\(876\) 0 0
\(877\) 439842. 253943.i 0.571870 0.330169i −0.186026 0.982545i \(-0.559561\pi\)
0.757896 + 0.652376i \(0.226227\pi\)
\(878\) 0 0
\(879\) 1712.79 + 264572.i 0.00221681 + 0.342426i
\(880\) 0 0
\(881\) −630033. −0.811730 −0.405865 0.913933i \(-0.633030\pi\)
−0.405865 + 0.913933i \(0.633030\pi\)
\(882\) 0 0
\(883\) 111488. 0.142990 0.0714950 0.997441i \(-0.477223\pi\)
0.0714950 + 0.997441i \(0.477223\pi\)
\(884\) 0 0
\(885\) −120311. + 70503.7i −0.153609 + 0.0900172i
\(886\) 0 0
\(887\) 642963. 371215.i 0.817220 0.471822i −0.0322369 0.999480i \(-0.510263\pi\)
0.849457 + 0.527658i \(0.176930\pi\)
\(888\) 0 0
\(889\) 4379.84 7586.11i 0.00554185 0.00959877i
\(890\) 0 0
\(891\) −185871. 303508.i −0.234129 0.382309i
\(892\) 0 0
\(893\) 1.11427e6 + 643324.i 1.39729 + 0.806727i
\(894\) 0 0
\(895\) 43109.6 24889.4i 0.0538181 0.0310719i
\(896\) 0 0
\(897\) 227115. + 387558.i 0.282267 + 0.481673i
\(898\) 0 0
\(899\) −8736.86 −0.0108103
\(900\) 0 0
\(901\) 365754.i 0.450546i
\(902\) 0 0
\(903\) 3636.79 + 561767.i 0.00446008 + 0.688939i
\(904\) 0 0
\(905\) −71052.5 123067.i −0.0867525 0.150260i
\(906\) 0 0
\(907\) 120922. 209443.i 0.146991 0.254596i −0.783123 0.621867i \(-0.786374\pi\)
0.930114 + 0.367271i \(0.119708\pi\)
\(908\) 0 0
\(909\) −16761.8 1.29452e6i −0.0202858 1.56669i
\(910\) 0 0
\(911\) 276542. + 159661.i 0.333214 + 0.192381i 0.657267 0.753658i \(-0.271712\pi\)
−0.324053 + 0.946039i \(0.605046\pi\)
\(912\) 0 0
\(913\) −68714.8 119017.i −0.0824344 0.142781i
\(914\) 0 0
\(915\) −71938.1 + 126485.i −0.0859245 + 0.151076i
\(916\) 0 0
\(917\) 491312.i 0.584277i
\(918\) 0 0
\(919\) 1.48790e6i 1.76175i −0.473350 0.880875i \(-0.656955\pi\)
0.473350 0.880875i \(-0.343045\pi\)
\(920\) 0 0
\(921\) −343857. + 604583.i −0.405376 + 0.712749i
\(922\) 0 0
\(923\) 487151. + 843771.i 0.571821 + 0.990424i
\(924\) 0 0
\(925\) −674422. 389378.i −0.788222 0.455080i
\(926\) 0 0
\(927\) −1.39487e6 781425.i −1.62321 0.909343i
\(928\) 0 0
\(929\) 588618. 1.01952e6i 0.682028 1.18131i −0.292333 0.956317i \(-0.594431\pi\)
0.974361 0.224991i \(-0.0722352\pi\)
\(930\) 0 0
\(931\) −50780.5 87954.5i −0.0585865 0.101475i
\(932\) 0 0
\(933\) −5977.08 923268.i −0.00686635 1.06063i
\(934\) 0 0
\(935\) 14101.6i 0.0161304i
\(936\) 0 0
\(937\) 904036. 1.02969 0.514845 0.857283i \(-0.327849\pi\)
0.514845 + 0.857283i \(0.327849\pi\)
\(938\) 0 0
\(939\) 187171. + 319397.i 0.212279 + 0.362243i
\(940\) 0 0
\(941\) −569128. + 328586.i −0.642733 + 0.371082i −0.785666 0.618650i \(-0.787680\pi\)
0.142934 + 0.989732i \(0.454346\pi\)
\(942\) 0 0
\(943\) −474393. 273891.i −0.533476 0.308003i
\(944\) 0 0
\(945\) −98260.2 + 1908.57i −0.110031 + 0.00213720i
\(946\) 0 0
\(947\) −100820. + 174625.i −0.112420 + 0.194718i −0.916746 0.399471i \(-0.869194\pi\)
0.804325 + 0.594189i \(0.202527\pi\)
\(948\) 0 0
\(949\) 1.64752e6 951194.i 1.82935 1.05618i
\(950\) 0 0
\(951\) −977542. + 572854.i −1.08087 + 0.633407i
\(952\) 0 0
\(953\) −638389. −0.702910 −0.351455 0.936205i \(-0.614313\pi\)
−0.351455 + 0.936205i \(0.614313\pi\)
\(954\) 0 0
\(955\) 107011. 0.117333
\(956\) 0 0
\(957\) 68.5163 + 10583.6i 7.48118e−5 + 0.0115560i
\(958\) 0 0
\(959\) 213075. 123019.i 0.231684 0.133763i
\(960\) 0 0
\(961\) −380552. + 659136.i −0.412067 + 0.713721i
\(962\) 0 0
\(963\) 356571. + 599536.i 0.384497 + 0.646491i
\(964\) 0 0
\(965\) −63737.0 36798.6i −0.0684443 0.0395163i
\(966\) 0 0
\(967\) 961591. 555175.i 1.02834 0.593714i 0.111833 0.993727i \(-0.464328\pi\)
0.916509 + 0.400013i \(0.130995\pi\)
\(968\) 0 0
\(969\) 140952. 247827.i 0.150114 0.263937i
\(970\) 0 0
\(971\) 1.25193e6 1.32783 0.663913 0.747810i \(-0.268895\pi\)
0.663913 + 0.747810i \(0.268895\pi\)
\(972\) 0 0
\(973\) 382787.i 0.404326i
\(974\) 0 0
\(975\) −972290. 552991.i −1.02279 0.581713i
\(976\) 0 0
\(977\) 33214.5 + 57529.3i 0.0347968 + 0.0602698i 0.882899 0.469562i \(-0.155588\pi\)
−0.848103 + 0.529832i \(0.822255\pi\)
\(978\) 0 0
\(979\) −160219. + 277508.i −0.167167 + 0.289541i
\(980\) 0 0
\(981\) −1.37558e6 + 818117.i −1.42938 + 0.850114i
\(982\) 0 0
\(983\) −130314. 75236.9i −0.134860 0.0778617i 0.431052 0.902327i \(-0.358143\pi\)
−0.565912 + 0.824465i \(0.691476\pi\)
\(984\) 0 0
\(985\) 41815.2 + 72426.0i 0.0430984 + 0.0746487i
\(986\) 0 0
\(987\) 1.49191e6 9658.35i 1.53146 0.00991445i
\(988\) 0 0
\(989\) 335865.i 0.343378i
\(990\) 0 0
\(991\) 795870.i 0.810391i −0.914230 0.405196i \(-0.867203\pi\)
0.914230 0.405196i \(-0.132797\pi\)
\(992\) 0 0
\(993\) −493550. 842215.i −0.500533 0.854131i
\(994\) 0 0
\(995\) −93644.4 162197.i −0.0945879 0.163831i
\(996\) 0 0
\(997\) −674456. 389398.i −0.678521 0.391745i 0.120776 0.992680i \(-0.461462\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(998\) 0 0
\(999\) 17885.7 + 920820.i 0.0179215 + 0.922664i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.5.t.b.79.16 88
3.2 odd 2 864.5.t.b.559.20 88
4.3 odd 2 72.5.p.b.43.39 yes 88
8.3 odd 2 inner 288.5.t.b.79.15 88
8.5 even 2 72.5.p.b.43.10 88
9.4 even 3 inner 288.5.t.b.175.15 88
9.5 odd 6 864.5.t.b.847.25 88
12.11 even 2 216.5.p.b.19.6 88
24.5 odd 2 216.5.p.b.19.35 88
24.11 even 2 864.5.t.b.559.25 88
36.23 even 6 216.5.p.b.91.35 88
36.31 odd 6 72.5.p.b.67.10 yes 88
72.5 odd 6 216.5.p.b.91.6 88
72.13 even 6 72.5.p.b.67.39 yes 88
72.59 even 6 864.5.t.b.847.20 88
72.67 odd 6 inner 288.5.t.b.175.16 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.5.p.b.43.10 88 8.5 even 2
72.5.p.b.43.39 yes 88 4.3 odd 2
72.5.p.b.67.10 yes 88 36.31 odd 6
72.5.p.b.67.39 yes 88 72.13 even 6
216.5.p.b.19.6 88 12.11 even 2
216.5.p.b.19.35 88 24.5 odd 2
216.5.p.b.91.6 88 72.5 odd 6
216.5.p.b.91.35 88 36.23 even 6
288.5.t.b.79.15 88 8.3 odd 2 inner
288.5.t.b.79.16 88 1.1 even 1 trivial
288.5.t.b.175.15 88 9.4 even 3 inner
288.5.t.b.175.16 88 72.67 odd 6 inner
864.5.t.b.559.20 88 3.2 odd 2
864.5.t.b.559.25 88 24.11 even 2
864.5.t.b.847.20 88 72.59 even 6
864.5.t.b.847.25 88 9.5 odd 6