Properties

Label 864.5.t.b.559.20
Level $864$
Weight $5$
Character 864.559
Analytic conductor $89.312$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,5,Mod(559,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.559");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 864.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(89.3116481044\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.20
Character \(\chi\) \(=\) 864.559
Dual form 864.5.t.b.847.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.53773 + 1.46516i) q^{5} +(-39.8426 - 23.0032i) q^{7} +O(q^{10})\) \(q+(-2.53773 + 1.46516i) q^{5} +(-39.8426 - 23.0032i) q^{7} +(27.1224 - 46.9774i) q^{11} +(174.611 - 100.811i) q^{13} +88.7146 q^{17} +357.083 q^{19} +(-214.383 + 123.774i) q^{23} +(-308.207 + 533.830i) q^{25} +(18.7746 + 10.8395i) q^{29} +(349.016 - 201.504i) q^{31} +134.813 q^{35} +1263.37i q^{37} +(1106.42 + 1916.37i) q^{41} +(-678.384 + 1175.00i) q^{43} +(-3120.48 - 1801.61i) q^{47} +(-142.209 - 246.314i) q^{49} -4122.82i q^{53} +158.955i q^{55} +(-2643.76 - 4579.12i) q^{59} +(4778.25 + 2758.72i) q^{61} +(-295.410 + 511.664i) q^{65} +(-3090.68 - 5353.21i) q^{67} -4832.30i q^{71} +9435.38 q^{73} +(-2161.26 + 1247.80i) q^{77} +(-1099.86 - 635.004i) q^{79} +(1266.75 - 2194.08i) q^{83} +(-225.134 + 129.981i) q^{85} -5907.27 q^{89} -9275.93 q^{91} +(-906.180 + 523.183i) q^{95} +(-928.999 + 1609.07i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q+O(q^{10}) \) Copy content Toggle raw display \( 88 q + 44 q^{11} + 1156 q^{17} - 860 q^{19} + 5998 q^{25} - 2508 q^{35} - 2348 q^{41} - 3500 q^{43} + 16462 q^{49} - 3508 q^{59} + 2502 q^{65} - 5132 q^{67} + 19004 q^{73} + 17090 q^{83} + 8272 q^{89} + 9612 q^{91} + 9980 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.53773 + 1.46516i −0.101509 + 0.0586064i −0.549895 0.835234i \(-0.685332\pi\)
0.448386 + 0.893840i \(0.351999\pi\)
\(6\) 0 0
\(7\) −39.8426 23.0032i −0.813115 0.469452i 0.0349214 0.999390i \(-0.488882\pi\)
−0.848036 + 0.529938i \(0.822215\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 27.1224 46.9774i 0.224152 0.388243i −0.731913 0.681398i \(-0.761372\pi\)
0.956065 + 0.293156i \(0.0947054\pi\)
\(12\) 0 0
\(13\) 174.611 100.811i 1.03320 0.596517i 0.115299 0.993331i \(-0.463217\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 88.7146 0.306971 0.153485 0.988151i \(-0.450950\pi\)
0.153485 + 0.988151i \(0.450950\pi\)
\(18\) 0 0
\(19\) 357.083 0.989149 0.494575 0.869135i \(-0.335324\pi\)
0.494575 + 0.869135i \(0.335324\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −214.383 + 123.774i −0.405261 + 0.233977i −0.688751 0.724998i \(-0.741841\pi\)
0.283491 + 0.958975i \(0.408508\pi\)
\(24\) 0 0
\(25\) −308.207 + 533.830i −0.493131 + 0.854127i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 18.7746 + 10.8395i 0.0223242 + 0.0128889i 0.511121 0.859509i \(-0.329231\pi\)
−0.488796 + 0.872398i \(0.662564\pi\)
\(30\) 0 0
\(31\) 349.016 201.504i 0.363180 0.209682i −0.307295 0.951614i \(-0.599424\pi\)
0.670475 + 0.741932i \(0.266090\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 134.813 0.110052
\(36\) 0 0
\(37\) 1263.37i 0.922839i 0.887182 + 0.461419i \(0.152660\pi\)
−0.887182 + 0.461419i \(0.847340\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1106.42 + 1916.37i 0.658189 + 1.14002i 0.981084 + 0.193582i \(0.0620106\pi\)
−0.322895 + 0.946435i \(0.604656\pi\)
\(42\) 0 0
\(43\) −678.384 + 1175.00i −0.366892 + 0.635476i −0.989078 0.147393i \(-0.952912\pi\)
0.622185 + 0.782870i \(0.286245\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3120.48 1801.61i −1.41262 0.815577i −0.416985 0.908913i \(-0.636913\pi\)
−0.995635 + 0.0933366i \(0.970247\pi\)
\(48\) 0 0
\(49\) −142.209 246.314i −0.0592292 0.102588i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4122.82i 1.46772i −0.679303 0.733858i \(-0.737718\pi\)
0.679303 0.733858i \(-0.262282\pi\)
\(54\) 0 0
\(55\) 158.955i 0.0525469i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2643.76 4579.12i −0.759482 1.31546i −0.943115 0.332466i \(-0.892119\pi\)
0.183634 0.982995i \(-0.441214\pi\)
\(60\) 0 0
\(61\) 4778.25 + 2758.72i 1.28413 + 0.741393i 0.977601 0.210468i \(-0.0674987\pi\)
0.306530 + 0.951861i \(0.400832\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −295.410 + 511.664i −0.0699194 + 0.121104i
\(66\) 0 0
\(67\) −3090.68 5353.21i −0.688500 1.19252i −0.972323 0.233641i \(-0.924936\pi\)
0.283822 0.958877i \(-0.408397\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4832.30i 0.958600i −0.877651 0.479300i \(-0.840891\pi\)
0.877651 0.479300i \(-0.159109\pi\)
\(72\) 0 0
\(73\) 9435.38 1.77057 0.885286 0.465047i \(-0.153963\pi\)
0.885286 + 0.465047i \(0.153963\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2161.26 + 1247.80i −0.364523 + 0.210457i
\(78\) 0 0
\(79\) −1099.86 635.004i −0.176231 0.101747i 0.409290 0.912405i \(-0.365777\pi\)
−0.585521 + 0.810657i \(0.699110\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1266.75 2194.08i 0.183881 0.318490i −0.759318 0.650720i \(-0.774467\pi\)
0.943199 + 0.332229i \(0.107801\pi\)
\(84\) 0 0
\(85\) −225.134 + 129.981i −0.0311604 + 0.0179904i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5907.27 −0.745773 −0.372887 0.927877i \(-0.621632\pi\)
−0.372887 + 0.927877i \(0.621632\pi\)
\(90\) 0 0
\(91\) −9275.93 −1.12015
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −906.180 + 523.183i −0.100408 + 0.0579704i
\(96\) 0 0
\(97\) −928.999 + 1609.07i −0.0987351 + 0.171014i −0.911161 0.412050i \(-0.864813\pi\)
0.812426 + 0.583064i \(0.198146\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13841.8 7991.56i −1.35690 0.783409i −0.367699 0.929945i \(-0.619854\pi\)
−0.989205 + 0.146536i \(0.953188\pi\)
\(102\) 0 0
\(103\) 17094.2 9869.37i 1.61130 0.930283i 0.622227 0.782837i \(-0.286228\pi\)
0.989070 0.147445i \(-0.0471051\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8611.81 0.752189 0.376095 0.926581i \(-0.377267\pi\)
0.376095 + 0.926581i \(0.377267\pi\)
\(108\) 0 0
\(109\) 19759.0i 1.66307i −0.555470 0.831537i \(-0.687461\pi\)
0.555470 0.831537i \(-0.312539\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8203.89 + 14209.6i 0.642485 + 1.11282i 0.984876 + 0.173259i \(0.0554297\pi\)
−0.342392 + 0.939557i \(0.611237\pi\)
\(114\) 0 0
\(115\) 362.697 628.210i 0.0274251 0.0475017i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3534.62 2040.72i −0.249603 0.144108i
\(120\) 0 0
\(121\) 5849.25 + 10131.2i 0.399512 + 0.691975i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3637.74i 0.232815i
\(126\) 0 0
\(127\) 190.402i 0.0118049i 0.999983 + 0.00590247i \(0.00187883\pi\)
−0.999983 + 0.00590247i \(0.998121\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5339.62 9248.49i −0.311148 0.538925i 0.667463 0.744643i \(-0.267380\pi\)
−0.978611 + 0.205718i \(0.934047\pi\)
\(132\) 0 0
\(133\) −14227.1 8214.03i −0.804292 0.464358i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2673.96 4631.43i 0.142467 0.246759i −0.785958 0.618280i \(-0.787830\pi\)
0.928425 + 0.371520i \(0.121163\pi\)
\(138\) 0 0
\(139\) 4160.16 + 7205.61i 0.215318 + 0.372942i 0.953371 0.301801i \(-0.0975878\pi\)
−0.738053 + 0.674743i \(0.764254\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10937.0i 0.534842i
\(144\) 0 0
\(145\) −63.5266 −0.00302148
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8232.13 + 4752.82i −0.370800 + 0.214082i −0.673808 0.738907i \(-0.735342\pi\)
0.303008 + 0.952988i \(0.402009\pi\)
\(150\) 0 0
\(151\) −23033.8 13298.5i −1.01021 0.583244i −0.0989556 0.995092i \(-0.531550\pi\)
−0.911253 + 0.411848i \(0.864884\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −590.472 + 1022.73i −0.0245774 + 0.0425693i
\(156\) 0 0
\(157\) 14257.2 8231.41i 0.578410 0.333945i −0.182091 0.983282i \(-0.558287\pi\)
0.760501 + 0.649336i \(0.224953\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11388.8 0.439365
\(162\) 0 0
\(163\) 6664.66 0.250843 0.125422 0.992104i \(-0.459972\pi\)
0.125422 + 0.992104i \(0.459972\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19196.1 11082.8i 0.688302 0.397391i −0.114674 0.993403i \(-0.536582\pi\)
0.802976 + 0.596012i \(0.203249\pi\)
\(168\) 0 0
\(169\) 6045.39 10470.9i 0.211666 0.366616i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9709.71 5605.90i −0.324425 0.187307i 0.328938 0.944351i \(-0.393309\pi\)
−0.653363 + 0.757045i \(0.726643\pi\)
\(174\) 0 0
\(175\) 24559.5 14179.5i 0.801944 0.463002i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16987.5 −0.530179 −0.265090 0.964224i \(-0.585402\pi\)
−0.265090 + 0.964224i \(0.585402\pi\)
\(180\) 0 0
\(181\) 48494.7i 1.48026i −0.672465 0.740129i \(-0.734764\pi\)
0.672465 0.740129i \(-0.265236\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1851.03 3206.08i −0.0540842 0.0936766i
\(186\) 0 0
\(187\) 2406.15 4167.58i 0.0688082 0.119179i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −31625.9 18259.2i −0.866915 0.500514i −0.000593302 1.00000i \(-0.500189\pi\)
−0.866322 + 0.499486i \(0.833522\pi\)
\(192\) 0 0
\(193\) −12557.9 21750.9i −0.337133 0.583932i 0.646759 0.762694i \(-0.276124\pi\)
−0.983892 + 0.178762i \(0.942791\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 28539.7i 0.735388i −0.929947 0.367694i \(-0.880147\pi\)
0.929947 0.367694i \(-0.119853\pi\)
\(198\) 0 0
\(199\) 63914.2i 1.61395i −0.590583 0.806977i \(-0.701102\pi\)
0.590583 0.806977i \(-0.298898\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −498.687 863.752i −0.0121014 0.0209603i
\(204\) 0 0
\(205\) −5615.57 3242.15i −0.133624 0.0771481i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9684.94 16774.8i 0.221720 0.384030i
\(210\) 0 0
\(211\) 7822.71 + 13549.3i 0.175708 + 0.304336i 0.940406 0.340053i \(-0.110445\pi\)
−0.764698 + 0.644389i \(0.777112\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3975.76i 0.0860089i
\(216\) 0 0
\(217\) −18541.0 −0.393743
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15490.5 8943.44i 0.317162 0.183113i
\(222\) 0 0
\(223\) −44835.1 25885.6i −0.901589 0.520532i −0.0238733 0.999715i \(-0.507600\pi\)
−0.877715 + 0.479183i \(0.840933\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −28229.2 + 48894.4i −0.547831 + 0.948871i 0.450592 + 0.892730i \(0.351213\pi\)
−0.998423 + 0.0561410i \(0.982120\pi\)
\(228\) 0 0
\(229\) 48956.6 28265.1i 0.933556 0.538989i 0.0456218 0.998959i \(-0.485473\pi\)
0.887935 + 0.459970i \(0.152140\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −72322.4 −1.33217 −0.666087 0.745874i \(-0.732032\pi\)
−0.666087 + 0.745874i \(0.732032\pi\)
\(234\) 0 0
\(235\) 10558.6 0.191192
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −86456.7 + 49915.8i −1.51357 + 0.873861i −0.513698 + 0.857971i \(0.671725\pi\)
−0.999874 + 0.0158894i \(0.994942\pi\)
\(240\) 0 0
\(241\) −13108.7 + 22704.9i −0.225697 + 0.390918i −0.956528 0.291640i \(-0.905799\pi\)
0.730832 + 0.682558i \(0.239132\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 721.778 + 416.719i 0.0120246 + 0.00694242i
\(246\) 0 0
\(247\) 62350.4 35998.0i 1.02199 0.590045i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 110168. 1.74866 0.874332 0.485328i \(-0.161300\pi\)
0.874332 + 0.485328i \(0.161300\pi\)
\(252\) 0 0
\(253\) 13428.2i 0.209786i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21395.2 37057.7i −0.323930 0.561063i 0.657365 0.753572i \(-0.271671\pi\)
−0.981295 + 0.192509i \(0.938338\pi\)
\(258\) 0 0
\(259\) 29061.4 50335.8i 0.433229 0.750374i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −70761.8 40854.3i −1.02303 0.590645i −0.108048 0.994146i \(-0.534460\pi\)
−0.914979 + 0.403501i \(0.867793\pi\)
\(264\) 0 0
\(265\) 6040.58 + 10462.6i 0.0860175 + 0.148987i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 71867.3i 0.993177i −0.867986 0.496589i \(-0.834586\pi\)
0.867986 0.496589i \(-0.165414\pi\)
\(270\) 0 0
\(271\) 57719.4i 0.785929i 0.919554 + 0.392964i \(0.128550\pi\)
−0.919554 + 0.392964i \(0.871450\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16718.6 + 28957.5i 0.221072 + 0.382909i
\(276\) 0 0
\(277\) 17169.2 + 9912.65i 0.223764 + 0.129190i 0.607692 0.794173i \(-0.292095\pi\)
−0.383928 + 0.923363i \(0.625429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 62271.1 107857.i 0.788631 1.36595i −0.138175 0.990408i \(-0.544124\pi\)
0.926806 0.375541i \(-0.122543\pi\)
\(282\) 0 0
\(283\) 28575.7 + 49494.6i 0.356799 + 0.617995i 0.987424 0.158093i \(-0.0505347\pi\)
−0.630625 + 0.776088i \(0.717201\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 101804.i 1.23595i
\(288\) 0 0
\(289\) −75650.7 −0.905769
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −25459.0 + 14698.8i −0.296555 + 0.171216i −0.640894 0.767629i \(-0.721436\pi\)
0.344339 + 0.938845i \(0.388103\pi\)
\(294\) 0 0
\(295\) 13418.3 + 7747.04i 0.154189 + 0.0890209i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24955.7 + 43224.5i −0.279143 + 0.483490i
\(300\) 0 0
\(301\) 54057.2 31210.0i 0.596652 0.344477i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16167.9 −0.173801
\(306\) 0 0
\(307\) 77280.8 0.819964 0.409982 0.912094i \(-0.365535\pi\)
0.409982 + 0.912094i \(0.365535\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 88843.4 51293.7i 0.918553 0.530327i 0.0353799 0.999374i \(-0.488736\pi\)
0.883173 + 0.469047i \(0.155403\pi\)
\(312\) 0 0
\(313\) 20566.6 35622.4i 0.209930 0.363609i −0.741762 0.670663i \(-0.766010\pi\)
0.951692 + 0.307054i \(0.0993431\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −109026. 62945.9i −1.08495 0.626396i −0.152723 0.988269i \(-0.548804\pi\)
−0.932227 + 0.361873i \(0.882137\pi\)
\(318\) 0 0
\(319\) 1018.43 587.989i 0.0100080 0.00577813i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 31678.5 0.303640
\(324\) 0 0
\(325\) 124283.i 1.17664i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 82885.4 + 143562.i 0.765748 + 1.32632i
\(330\) 0 0
\(331\) −54232.0 + 93932.5i −0.494993 + 0.857354i −0.999983 0.00577154i \(-0.998163\pi\)
0.504990 + 0.863125i \(0.331496\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15686.6 + 9056.67i 0.139778 + 0.0807010i
\(336\) 0 0
\(337\) −1823.71 3158.77i −0.0160582 0.0278136i 0.857885 0.513842i \(-0.171778\pi\)
−0.873943 + 0.486029i \(0.838445\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 21861.1i 0.188003i
\(342\) 0 0
\(343\) 123546.i 1.05013i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −86264.4 149414.i −0.716428 1.24089i −0.962406 0.271615i \(-0.912442\pi\)
0.245978 0.969275i \(-0.420891\pi\)
\(348\) 0 0
\(349\) −138147. 79759.0i −1.13420 0.654831i −0.189212 0.981936i \(-0.560593\pi\)
−0.944988 + 0.327106i \(0.893927\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20555.4 35603.0i 0.164959 0.285718i −0.771681 0.636009i \(-0.780584\pi\)
0.936641 + 0.350291i \(0.113917\pi\)
\(354\) 0 0
\(355\) 7080.09 + 12263.1i 0.0561800 + 0.0973067i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 76360.8i 0.592491i 0.955112 + 0.296245i \(0.0957346\pi\)
−0.955112 + 0.296245i \(0.904265\pi\)
\(360\) 0 0
\(361\) −2812.82 −0.0215838
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −23944.4 + 13824.3i −0.179729 + 0.103767i
\(366\) 0 0
\(367\) 102925. + 59423.6i 0.764165 + 0.441191i 0.830789 0.556587i \(-0.187889\pi\)
−0.0666239 + 0.997778i \(0.521223\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −94837.8 + 164264.i −0.689023 + 1.19342i
\(372\) 0 0
\(373\) 115434. 66645.9i 0.829691 0.479023i −0.0240556 0.999711i \(-0.507658\pi\)
0.853747 + 0.520688i \(0.174325\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4371.00 0.0307537
\(378\) 0 0
\(379\) −141694. −0.986447 −0.493224 0.869902i \(-0.664182\pi\)
−0.493224 + 0.869902i \(0.664182\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 43983.8 25394.1i 0.299844 0.173115i −0.342529 0.939507i \(-0.611283\pi\)
0.642373 + 0.766392i \(0.277950\pi\)
\(384\) 0 0
\(385\) 3656.46 6333.17i 0.0246683 0.0427267i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 103180. + 59570.8i 0.681860 + 0.393672i 0.800555 0.599259i \(-0.204538\pi\)
−0.118696 + 0.992931i \(0.537871\pi\)
\(390\) 0 0
\(391\) −19018.9 + 10980.6i −0.124403 + 0.0718242i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3721.53 0.0238521
\(396\) 0 0
\(397\) 200049.i 1.26927i 0.772812 + 0.634635i \(0.218850\pi\)
−0.772812 + 0.634635i \(0.781150\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13977.6 + 24209.9i 0.0869248 + 0.150558i 0.906210 0.422828i \(-0.138963\pi\)
−0.819285 + 0.573387i \(0.805629\pi\)
\(402\) 0 0
\(403\) 40627.9 70369.6i 0.250158 0.433286i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 59349.6 + 34265.5i 0.358285 + 0.206856i
\(408\) 0 0
\(409\) −27650.2 47891.6i −0.165292 0.286294i 0.771467 0.636270i \(-0.219523\pi\)
−0.936759 + 0.349975i \(0.886190\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 243259.i 1.42616i
\(414\) 0 0
\(415\) 7423.98i 0.0431063i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −76753.4 132941.i −0.437189 0.757234i 0.560282 0.828302i \(-0.310693\pi\)
−0.997472 + 0.0710675i \(0.977359\pi\)
\(420\) 0 0
\(421\) −230275. 132949.i −1.29922 0.750105i −0.318950 0.947771i \(-0.603330\pi\)
−0.980269 + 0.197667i \(0.936664\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −27342.4 + 47358.5i −0.151377 + 0.262192i
\(426\) 0 0
\(427\) −126919. 219830.i −0.696097 1.20568i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 187074.i 1.00707i 0.863976 + 0.503533i \(0.167967\pi\)
−0.863976 + 0.503533i \(0.832033\pi\)
\(432\) 0 0
\(433\) 252526. 1.34688 0.673441 0.739241i \(-0.264815\pi\)
0.673441 + 0.739241i \(0.264815\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −76552.5 + 44197.6i −0.400863 + 0.231439i
\(438\) 0 0
\(439\) −138415. 79914.0i −0.718215 0.414662i 0.0958801 0.995393i \(-0.469433\pi\)
−0.814095 + 0.580731i \(0.802767\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 152813. 264680.i 0.778670 1.34870i −0.154038 0.988065i \(-0.549228\pi\)
0.932708 0.360632i \(-0.117439\pi\)
\(444\) 0 0
\(445\) 14991.1 8655.09i 0.0757028 0.0437070i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −338152. −1.67733 −0.838667 0.544645i \(-0.816664\pi\)
−0.838667 + 0.544645i \(0.816664\pi\)
\(450\) 0 0
\(451\) 120035. 0.590138
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 23539.8 13590.7i 0.113705 0.0656477i
\(456\) 0 0
\(457\) −1641.07 + 2842.42i −0.00785770 + 0.0136099i −0.869928 0.493180i \(-0.835835\pi\)
0.862070 + 0.506790i \(0.169168\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 215070. + 124171.i 1.01199 + 0.584275i 0.911775 0.410690i \(-0.134712\pi\)
0.100220 + 0.994965i \(0.468045\pi\)
\(462\) 0 0
\(463\) −42958.9 + 24802.3i −0.200397 + 0.115699i −0.596841 0.802360i \(-0.703578\pi\)
0.396444 + 0.918059i \(0.370244\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18727.6 0.0858712 0.0429356 0.999078i \(-0.486329\pi\)
0.0429356 + 0.999078i \(0.486329\pi\)
\(468\) 0 0
\(469\) 284381.i 1.29287i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 36798.8 + 63737.4i 0.164479 + 0.284887i
\(474\) 0 0
\(475\) −110055. + 190621.i −0.487780 + 0.844859i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 343234. + 198166.i 1.49596 + 0.863691i 0.999989 0.00465021i \(-0.00148021\pi\)
0.495967 + 0.868341i \(0.334814\pi\)
\(480\) 0 0
\(481\) 127362. + 220597.i 0.550489 + 0.953475i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5444.52i 0.0231460i
\(486\) 0 0
\(487\) 240262.i 1.01304i 0.862228 + 0.506520i \(0.169068\pi\)
−0.862228 + 0.506520i \(0.830932\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 98040.3 + 169811.i 0.406670 + 0.704372i 0.994514 0.104601i \(-0.0333567\pi\)
−0.587845 + 0.808974i \(0.700023\pi\)
\(492\) 0 0
\(493\) 1665.58 + 961.625i 0.00685287 + 0.00395651i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −111158. + 192532.i −0.450017 + 0.779452i
\(498\) 0 0
\(499\) −130948. 226808.i −0.525892 0.910871i −0.999545 0.0301596i \(-0.990398\pi\)
0.473654 0.880711i \(-0.342935\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 311251.i 1.23020i 0.788450 + 0.615099i \(0.210884\pi\)
−0.788450 + 0.615099i \(0.789116\pi\)
\(504\) 0 0
\(505\) 46835.6 0.183651
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 317446. 183278.i 1.22528 0.707415i 0.259240 0.965813i \(-0.416528\pi\)
0.966039 + 0.258398i \(0.0831945\pi\)
\(510\) 0 0
\(511\) −375930. 217043.i −1.43968 0.831199i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28920.4 + 50091.6i −0.109041 + 0.188864i
\(516\) 0 0
\(517\) −169270. + 97727.9i −0.633283 + 0.365626i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 526988. 1.94145 0.970723 0.240203i \(-0.0772142\pi\)
0.970723 + 0.240203i \(0.0772142\pi\)
\(522\) 0 0
\(523\) −311012. −1.13703 −0.568517 0.822671i \(-0.692483\pi\)
−0.568517 + 0.822671i \(0.692483\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30962.8 17876.4i 0.111486 0.0643663i
\(528\) 0 0
\(529\) −109280. + 189279.i −0.390509 + 0.676382i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 386384. + 223079.i 1.36008 + 0.785242i
\(534\) 0 0
\(535\) −21854.5 + 12617.7i −0.0763541 + 0.0440831i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15428.2 −0.0531054
\(540\) 0 0
\(541\) 377631.i 1.29025i 0.764078 + 0.645124i \(0.223194\pi\)
−0.764078 + 0.645124i \(0.776806\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 28950.0 + 50143.0i 0.0974667 + 0.168817i
\(546\) 0 0
\(547\) 51766.7 89662.5i 0.173012 0.299665i −0.766460 0.642292i \(-0.777983\pi\)
0.939471 + 0.342627i \(0.111317\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6704.10 + 3870.61i 0.0220819 + 0.0127490i
\(552\) 0 0
\(553\) 29214.2 + 50600.4i 0.0955308 + 0.165464i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 321643.i 1.03673i 0.855161 + 0.518363i \(0.173458\pi\)
−0.855161 + 0.518363i \(0.826542\pi\)
\(558\) 0 0
\(559\) 273556.i 0.875431i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15717.8 27224.0i −0.0495878 0.0858885i 0.840166 0.542329i \(-0.182457\pi\)
−0.889754 + 0.456441i \(0.849124\pi\)
\(564\) 0 0
\(565\) −41638.5 24040.0i −0.130436 0.0753074i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −118855. + 205862.i −0.367106 + 0.635846i −0.989112 0.147166i \(-0.952985\pi\)
0.622006 + 0.783013i \(0.286318\pi\)
\(570\) 0 0
\(571\) 259870. + 450108.i 0.797047 + 1.38053i 0.921531 + 0.388304i \(0.126939\pi\)
−0.124484 + 0.992222i \(0.539728\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 152592.i 0.461526i
\(576\) 0 0
\(577\) −150655. −0.452513 −0.226257 0.974068i \(-0.572649\pi\)
−0.226257 + 0.974068i \(0.572649\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −100942. + 58278.7i −0.299032 + 0.172646i
\(582\) 0 0
\(583\) −193679. 111821.i −0.569830 0.328992i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 222883. 386045.i 0.646846 1.12037i −0.337025 0.941496i \(-0.609421\pi\)
0.983872 0.178875i \(-0.0572458\pi\)
\(588\) 0 0
\(589\) 124628. 71953.8i 0.359239 0.207407i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 59064.6 0.167965 0.0839823 0.996467i \(-0.473236\pi\)
0.0839823 + 0.996467i \(0.473236\pi\)
\(594\) 0 0
\(595\) 11959.9 0.0337826
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −354748. + 204814.i −0.988703 + 0.570828i −0.904886 0.425653i \(-0.860044\pi\)
−0.0838164 + 0.996481i \(0.526711\pi\)
\(600\) 0 0
\(601\) 268772. 465527.i 0.744107 1.28883i −0.206505 0.978446i \(-0.566209\pi\)
0.950611 0.310385i \(-0.100458\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −29687.6 17140.2i −0.0811082 0.0468279i
\(606\) 0 0
\(607\) 377551. 217979.i 1.02470 0.591614i 0.109242 0.994015i \(-0.465158\pi\)
0.915463 + 0.402402i \(0.131824\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −726491. −1.94602
\(612\) 0 0
\(613\) 184751.i 0.491662i 0.969313 + 0.245831i \(0.0790608\pi\)
−0.969313 + 0.245831i \(0.920939\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −70628.6 122332.i −0.185528 0.321344i 0.758226 0.651992i \(-0.226066\pi\)
−0.943754 + 0.330647i \(0.892733\pi\)
\(618\) 0 0
\(619\) 132429. 229374.i 0.345623 0.598637i −0.639844 0.768505i \(-0.721001\pi\)
0.985467 + 0.169868i \(0.0543342\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 235361. + 135886.i 0.606399 + 0.350105i
\(624\) 0 0
\(625\) −187299. 324412.i −0.479486 0.830494i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 112079.i 0.283285i
\(630\) 0 0
\(631\) 699879.i 1.75778i 0.477026 + 0.878889i \(0.341715\pi\)
−0.477026 + 0.878889i \(0.658285\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −278.969 483.188i −0.000691844 0.00119831i
\(636\) 0 0
\(637\) −49662.5 28672.7i −0.122391 0.0706625i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 159686. 276584.i 0.388643 0.673149i −0.603625 0.797269i \(-0.706277\pi\)
0.992267 + 0.124120i \(0.0396107\pi\)
\(642\) 0 0
\(643\) 120033. + 207903.i 0.290321 + 0.502850i 0.973886 0.227040i \(-0.0729047\pi\)
−0.683565 + 0.729890i \(0.739571\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 160526.i 0.383475i −0.981446 0.191737i \(-0.938588\pi\)
0.981446 0.191737i \(-0.0614122\pi\)
\(648\) 0 0
\(649\) −286820. −0.680957
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23755.5 + 13715.3i −0.0557107 + 0.0321646i −0.527597 0.849495i \(-0.676907\pi\)
0.471886 + 0.881660i \(0.343573\pi\)
\(654\) 0 0
\(655\) 27101.0 + 15646.8i 0.0631689 + 0.0364706i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −215117. + 372594.i −0.495341 + 0.857957i −0.999986 0.00537093i \(-0.998290\pi\)
0.504644 + 0.863327i \(0.331624\pi\)
\(660\) 0 0
\(661\) 122972. 70998.0i 0.281451 0.162496i −0.352629 0.935763i \(-0.614712\pi\)
0.634080 + 0.773267i \(0.281379\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 48139.5 0.108857
\(666\) 0 0
\(667\) −5366.61 −0.0120628
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 259195. 149646.i 0.575681 0.332370i
\(672\) 0 0
\(673\) −78759.2 + 136415.i −0.173889 + 0.301184i −0.939776 0.341791i \(-0.888967\pi\)
0.765887 + 0.642975i \(0.222300\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −606737. 350300.i −1.32380 0.764298i −0.339470 0.940617i \(-0.610248\pi\)
−0.984333 + 0.176319i \(0.943581\pi\)
\(678\) 0 0
\(679\) 74027.5 42739.8i 0.160566 0.0927028i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 408773. 0.876275 0.438137 0.898908i \(-0.355638\pi\)
0.438137 + 0.898908i \(0.355638\pi\)
\(684\) 0 0
\(685\) 15671.1i 0.0333978i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −415627. 719887.i −0.875518 1.51644i
\(690\) 0 0
\(691\) 309805. 536598.i 0.648832 1.12381i −0.334570 0.942371i \(-0.608591\pi\)
0.983402 0.181439i \(-0.0580756\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21114.7 12190.6i −0.0437135 0.0252380i
\(696\) 0 0
\(697\) 98155.2 + 170010.i 0.202045 + 0.349952i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 98886.5i 0.201234i −0.994925 0.100617i \(-0.967918\pi\)
0.994925 0.100617i \(-0.0320816\pi\)
\(702\) 0 0
\(703\) 451126.i 0.912825i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 367662. + 636809.i 0.735546 + 1.27400i
\(708\) 0 0
\(709\) −16701.3 9642.51i −0.0332245 0.0191822i 0.483296 0.875457i \(-0.339440\pi\)
−0.516520 + 0.856275i \(0.672773\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −49882.0 + 86398.2i −0.0981217 + 0.169952i
\(714\) 0 0
\(715\) 16024.4 + 27755.1i 0.0313452 + 0.0542914i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 124940.i 0.241681i 0.992672 + 0.120841i \(0.0385590\pi\)
−0.992672 + 0.120841i \(0.961441\pi\)
\(720\) 0 0
\(721\) −908107. −1.74689
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11572.9 + 6681.64i −0.0220175 + 0.0127118i
\(726\) 0 0
\(727\) 237638. + 137200.i 0.449621 + 0.259589i 0.707670 0.706543i \(-0.249746\pi\)
−0.258049 + 0.966132i \(0.583080\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −60182.6 + 104239.i −0.112625 + 0.195073i
\(732\) 0 0
\(733\) 196395. 113389.i 0.365530 0.211039i −0.305974 0.952040i \(-0.598982\pi\)
0.671504 + 0.741001i \(0.265649\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −335306. −0.617315
\(738\) 0 0
\(739\) 173966. 0.318549 0.159274 0.987234i \(-0.449085\pi\)
0.159274 + 0.987234i \(0.449085\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 223552. 129068.i 0.404949 0.233797i −0.283668 0.958923i \(-0.591551\pi\)
0.688617 + 0.725125i \(0.258218\pi\)
\(744\) 0 0
\(745\) 13927.3 24122.8i 0.0250931 0.0434625i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −343117. 198099.i −0.611616 0.353117i
\(750\) 0 0
\(751\) 439854. 253950.i 0.779881 0.450264i −0.0565073 0.998402i \(-0.517996\pi\)
0.836388 + 0.548138i \(0.184663\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 77937.9 0.136727
\(756\) 0 0
\(757\) 146756.i 0.256097i −0.991768 0.128048i \(-0.959129\pi\)
0.991768 0.128048i \(-0.0408713\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −106335. 184178.i −0.183615 0.318030i 0.759494 0.650514i \(-0.225447\pi\)
−0.943109 + 0.332484i \(0.892113\pi\)
\(762\) 0 0
\(763\) −454519. + 787250.i −0.780734 + 1.35227i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −923255. 533042.i −1.56939 0.906088i
\(768\) 0 0
\(769\) 44021.9 + 76248.2i 0.0744417 + 0.128937i 0.900843 0.434144i \(-0.142949\pi\)
−0.826402 + 0.563081i \(0.809616\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 956337.i 1.60049i −0.599675 0.800243i \(-0.704704\pi\)
0.599675 0.800243i \(-0.295296\pi\)
\(774\) 0 0
\(775\) 248420.i 0.413602i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 395082. + 684302.i 0.651047 + 1.12765i
\(780\) 0 0
\(781\) −227009. 131064.i −0.372169 0.214872i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −24120.7 + 41778.2i −0.0391426 + 0.0677970i
\(786\) 0 0
\(787\) 150134. + 260040.i 0.242398 + 0.419846i 0.961397 0.275165i \(-0.0887326\pi\)
−0.718999 + 0.695012i \(0.755399\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 754861.i 1.20646i
\(792\) 0 0
\(793\) 1.11244e6 1.76902
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −189436. + 109371.i −0.298226 + 0.172181i −0.641646 0.767001i \(-0.721748\pi\)
0.343420 + 0.939182i \(0.388415\pi\)
\(798\) 0 0
\(799\) −276832. 159829.i −0.433633 0.250358i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 255910. 443249.i 0.396877 0.687412i
\(804\) 0 0
\(805\) −28901.6 + 16686.4i −0.0445996 + 0.0257496i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 373854. 0.571223 0.285611 0.958346i \(-0.407803\pi\)
0.285611 + 0.958346i \(0.407803\pi\)
\(810\) 0 0
\(811\) 389516. 0.592220 0.296110 0.955154i \(-0.404310\pi\)
0.296110 + 0.955154i \(0.404310\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16913.1 + 9764.78i −0.0254629 + 0.0147010i
\(816\) 0 0
\(817\) −242239. + 419571.i −0.362911 + 0.628581i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 766580. + 442585.i 1.13729 + 0.656614i 0.945758 0.324872i \(-0.105321\pi\)
0.191531 + 0.981486i \(0.438655\pi\)
\(822\) 0 0
\(823\) 556310. 321186.i 0.821329 0.474195i −0.0295455 0.999563i \(-0.509406\pi\)
0.850875 + 0.525369i \(0.176073\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −144563. −0.211372 −0.105686 0.994400i \(-0.533704\pi\)
−0.105686 + 0.994400i \(0.533704\pi\)
\(828\) 0 0
\(829\) 390583.i 0.568335i −0.958775 0.284167i \(-0.908283\pi\)
0.958775 0.284167i \(-0.0917171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12616.0 21851.6i −0.0181816 0.0314915i
\(834\) 0 0
\(835\) −32476.3 + 56250.6i −0.0465793 + 0.0806778i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21529.2 + 12429.9i 0.0305846 + 0.0176580i 0.515214 0.857061i \(-0.327712\pi\)
−0.484630 + 0.874719i \(0.661046\pi\)
\(840\) 0 0
\(841\) −353406. 612116.i −0.499668 0.865450i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 35429.8i 0.0496199i
\(846\) 0 0
\(847\) 538205.i 0.750207i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −156372. 270844.i −0.215923 0.373990i
\(852\) 0 0
\(853\) 264635. + 152787.i 0.363705 + 0.209985i 0.670705 0.741724i \(-0.265992\pi\)
−0.307000 + 0.951710i \(0.599325\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 221670. 383944.i 0.301818 0.522764i −0.674730 0.738065i \(-0.735740\pi\)
0.976548 + 0.215301i \(0.0690732\pi\)
\(858\) 0 0
\(859\) −228055. 395003.i −0.309067 0.535320i 0.669091 0.743180i \(-0.266683\pi\)
−0.978159 + 0.207860i \(0.933350\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 432830.i 0.581160i 0.956851 + 0.290580i \(0.0938483\pi\)
−0.956851 + 0.290580i \(0.906152\pi\)
\(864\) 0 0
\(865\) 32854.2 0.0439095
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −59661.6 + 34445.6i −0.0790052 + 0.0456136i
\(870\) 0 0
\(871\) −1.07933e6 623151.i −1.42272 0.821405i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −83679.4 + 144937.i −0.109296 + 0.189305i
\(876\) 0 0
\(877\) 439842. 253943.i 0.571870 0.330169i −0.186026 0.982545i \(-0.559561\pi\)
0.757896 + 0.652376i \(0.226227\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 630033. 0.811730 0.405865 0.913933i \(-0.366970\pi\)
0.405865 + 0.913933i \(0.366970\pi\)
\(882\) 0 0
\(883\) 111488. 0.142990 0.0714950 0.997441i \(-0.477223\pi\)
0.0714950 + 0.997441i \(0.477223\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −642963. + 371215.i −0.817220 + 0.471822i −0.849457 0.527658i \(-0.823070\pi\)
0.0322369 + 0.999480i \(0.489737\pi\)
\(888\) 0 0
\(889\) 4379.84 7586.11i 0.00554185 0.00959877i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.11427e6 643324.i −1.39729 0.806727i
\(894\) 0 0
\(895\) 43109.6 24889.4i 0.0538181 0.0310719i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8736.86 0.0108103
\(900\) 0 0
\(901\) 365754.i 0.450546i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 71052.5 + 123067.i 0.0867525 + 0.150260i
\(906\) 0 0
\(907\) 120922. 209443.i 0.146991 0.254596i −0.783123 0.621867i \(-0.786374\pi\)
0.930114 + 0.367271i \(0.119708\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −276542. 159661.i −0.333214 0.192381i 0.324053 0.946039i \(-0.394954\pi\)
−0.657267 + 0.753658i \(0.728288\pi\)
\(912\) 0 0
\(913\) −68714.8 119017.i −0.0824344 0.142781i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 491312.i 0.584277i
\(918\) 0 0
\(919\) 1.48790e6i 1.76175i −0.473350 0.880875i \(-0.656955\pi\)
0.473350 0.880875i \(-0.343045\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −487151. 843771.i −0.571821 0.990424i
\(924\) 0 0
\(925\) −674422. 389378.i −0.788222 0.455080i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −588618. + 1.01952e6i −0.682028 + 1.18131i 0.292333 + 0.956317i \(0.405569\pi\)
−0.974361 + 0.224991i \(0.927765\pi\)
\(930\) 0 0
\(931\) −50780.5 87954.5i −0.0585865 0.101475i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14101.6i 0.0161304i
\(936\) 0 0
\(937\) 904036. 1.02969 0.514845 0.857283i \(-0.327849\pi\)
0.514845 + 0.857283i \(0.327849\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 569128. 328586.i 0.642733 0.371082i −0.142934 0.989732i \(-0.545654\pi\)
0.785666 + 0.618650i \(0.212320\pi\)
\(942\) 0 0
\(943\) −474393. 273891.i −0.533476 0.308003i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 100820. 174625.i 0.112420 0.194718i −0.804325 0.594189i \(-0.797473\pi\)
0.916746 + 0.399471i \(0.130806\pi\)
\(948\) 0 0
\(949\) 1.64752e6 951194.i 1.82935 1.05618i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 638389. 0.702910 0.351455 0.936205i \(-0.385687\pi\)
0.351455 + 0.936205i \(0.385687\pi\)
\(954\) 0 0
\(955\) 107011. 0.117333
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −213075. + 123019.i −0.231684 + 0.133763i
\(960\) 0 0
\(961\) −380552. + 659136.i −0.412067 + 0.713721i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 63737.0 + 36798.6i 0.0684443 + 0.0395163i
\(966\) 0 0
\(967\) 961591. 555175.i 1.02834 0.593714i 0.111833 0.993727i \(-0.464328\pi\)
0.916509 + 0.400013i \(0.130995\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.25193e6 −1.32783 −0.663913 0.747810i \(-0.731105\pi\)
−0.663913 + 0.747810i \(0.731105\pi\)
\(972\) 0 0
\(973\) 382787.i 0.404326i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33214.5 57529.3i −0.0347968 0.0602698i 0.848103 0.529832i \(-0.177745\pi\)
−0.882899 + 0.469562i \(0.844412\pi\)
\(978\) 0 0
\(979\) −160219. + 277508.i −0.167167 + 0.289541i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 130314. + 75236.9i 0.134860 + 0.0778617i 0.565912 0.824465i \(-0.308524\pi\)
−0.431052 + 0.902327i \(0.641857\pi\)
\(984\) 0 0
\(985\) 41815.2 + 72426.0i 0.0430984 + 0.0746487i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 335865.i 0.343378i
\(990\) 0 0
\(991\) 795870.i 0.810391i −0.914230 0.405196i \(-0.867203\pi\)
0.914230 0.405196i \(-0.132797\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 93644.4 + 162197.i 0.0945879 + 0.163831i
\(996\) 0 0
\(997\) −674456. 389398.i −0.678521 0.391745i 0.120776 0.992680i \(-0.461462\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.5.t.b.559.20 88
3.2 odd 2 288.5.t.b.79.16 88
4.3 odd 2 216.5.p.b.19.6 88
8.3 odd 2 inner 864.5.t.b.559.25 88
8.5 even 2 216.5.p.b.19.35 88
9.4 even 3 inner 864.5.t.b.847.25 88
9.5 odd 6 288.5.t.b.175.15 88
12.11 even 2 72.5.p.b.43.39 yes 88
24.5 odd 2 72.5.p.b.43.10 88
24.11 even 2 288.5.t.b.79.15 88
36.23 even 6 72.5.p.b.67.10 yes 88
36.31 odd 6 216.5.p.b.91.35 88
72.5 odd 6 72.5.p.b.67.39 yes 88
72.13 even 6 216.5.p.b.91.6 88
72.59 even 6 288.5.t.b.175.16 88
72.67 odd 6 inner 864.5.t.b.847.20 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.5.p.b.43.10 88 24.5 odd 2
72.5.p.b.43.39 yes 88 12.11 even 2
72.5.p.b.67.10 yes 88 36.23 even 6
72.5.p.b.67.39 yes 88 72.5 odd 6
216.5.p.b.19.6 88 4.3 odd 2
216.5.p.b.19.35 88 8.5 even 2
216.5.p.b.91.6 88 72.13 even 6
216.5.p.b.91.35 88 36.31 odd 6
288.5.t.b.79.15 88 24.11 even 2
288.5.t.b.79.16 88 3.2 odd 2
288.5.t.b.175.15 88 9.5 odd 6
288.5.t.b.175.16 88 72.59 even 6
864.5.t.b.559.20 88 1.1 even 1 trivial
864.5.t.b.559.25 88 8.3 odd 2 inner
864.5.t.b.847.20 88 72.67 odd 6 inner
864.5.t.b.847.25 88 9.4 even 3 inner