Properties

Label 2160.2.w.d.1457.3
Level $2160$
Weight $2$
Character 2160.1457
Analytic conductor $17.248$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(593,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.3
Root \(-1.54779 - 1.54779i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1457
Dual form 2160.2.w.d.593.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 1.87083i) q^{5} +(-1.79129 - 1.79129i) q^{7} +O(q^{10})\) \(q+(1.22474 - 1.87083i) q^{5} +(-1.79129 - 1.79129i) q^{7} -5.54506i q^{11} +(1.79129 - 1.79129i) q^{13} +(1.87083 - 1.87083i) q^{17} +3.00000i q^{19} +(4.32032 + 4.32032i) q^{23} +(-2.00000 - 4.58258i) q^{25} -4.38774 q^{29} +1.00000 q^{31} +(-5.54506 + 1.15732i) q^{35} +(-5.00000 - 5.00000i) q^{37} +5.54506i q^{41} +(-3.20871 + 3.20871i) q^{43} +(-0.646084 + 0.646084i) q^{47} -0.582576i q^{49} +(0.0674228 + 0.0674228i) q^{53} +(-10.3739 - 6.79129i) q^{55} -4.38774 q^{59} -1.00000 q^{61} +(-1.15732 - 5.54506i) q^{65} +(-8.58258 - 8.58258i) q^{67} -5.54506i q^{71} +(-10.3739 + 10.3739i) q^{73} +(-9.93280 + 9.93280i) q^{77} -10.5826i q^{79} +(8.70806 + 8.70806i) q^{83} +(-1.20871 - 5.79129i) q^{85} +16.6352 q^{89} -6.41742 q^{91} +(5.61249 + 3.67423i) q^{95} +(-3.58258 - 3.58258i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{7} - 4 q^{13} - 16 q^{25} + 8 q^{31} - 40 q^{37} - 44 q^{43} - 28 q^{55} - 8 q^{61} - 32 q^{67} - 28 q^{73} - 28 q^{85} - 88 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.22474 1.87083i 0.547723 0.836660i
\(6\) 0 0
\(7\) −1.79129 1.79129i −0.677043 0.677043i 0.282287 0.959330i \(-0.408907\pi\)
−0.959330 + 0.282287i \(0.908907\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.54506i 1.67190i −0.548806 0.835950i \(-0.684917\pi\)
0.548806 0.835950i \(-0.315083\pi\)
\(12\) 0 0
\(13\) 1.79129 1.79129i 0.496814 0.496814i −0.413631 0.910445i \(-0.635740\pi\)
0.910445 + 0.413631i \(0.135740\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.87083 1.87083i 0.453743 0.453743i −0.442852 0.896595i \(-0.646033\pi\)
0.896595 + 0.442852i \(0.146033\pi\)
\(18\) 0 0
\(19\) 3.00000i 0.688247i 0.938924 + 0.344124i \(0.111824\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.32032 + 4.32032i 0.900849 + 0.900849i 0.995510 0.0946609i \(-0.0301767\pi\)
−0.0946609 + 0.995510i \(0.530177\pi\)
\(24\) 0 0
\(25\) −2.00000 4.58258i −0.400000 0.916515i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.38774 −0.814783 −0.407392 0.913254i \(-0.633562\pi\)
−0.407392 + 0.913254i \(0.633562\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.54506 + 1.15732i −0.937287 + 0.195623i
\(36\) 0 0
\(37\) −5.00000 5.00000i −0.821995 0.821995i 0.164399 0.986394i \(-0.447432\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.54506i 0.865993i 0.901396 + 0.432997i \(0.142544\pi\)
−0.901396 + 0.432997i \(0.857456\pi\)
\(42\) 0 0
\(43\) −3.20871 + 3.20871i −0.489324 + 0.489324i −0.908093 0.418769i \(-0.862462\pi\)
0.418769 + 0.908093i \(0.362462\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.646084 + 0.646084i −0.0942410 + 0.0942410i −0.752656 0.658415i \(-0.771227\pi\)
0.658415 + 0.752656i \(0.271227\pi\)
\(48\) 0 0
\(49\) 0.582576i 0.0832251i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.0674228 + 0.0674228i 0.00926123 + 0.00926123i 0.711722 0.702461i \(-0.247915\pi\)
−0.702461 + 0.711722i \(0.747915\pi\)
\(54\) 0 0
\(55\) −10.3739 6.79129i −1.39881 0.915737i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.38774 −0.571235 −0.285618 0.958344i \(-0.592199\pi\)
−0.285618 + 0.958344i \(0.592199\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.15732 5.54506i −0.143548 0.687780i
\(66\) 0 0
\(67\) −8.58258 8.58258i −1.04853 1.04853i −0.998761 0.0497677i \(-0.984152\pi\)
−0.0497677 0.998761i \(-0.515848\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.54506i 0.658078i −0.944316 0.329039i \(-0.893275\pi\)
0.944316 0.329039i \(-0.106725\pi\)
\(72\) 0 0
\(73\) −10.3739 + 10.3739i −1.21417 + 1.21417i −0.244526 + 0.969643i \(0.578632\pi\)
−0.969643 + 0.244526i \(0.921368\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.93280 + 9.93280i −1.13195 + 1.13195i
\(78\) 0 0
\(79\) 10.5826i 1.19063i −0.803491 0.595316i \(-0.797027\pi\)
0.803491 0.595316i \(-0.202973\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.70806 + 8.70806i 0.955834 + 0.955834i 0.999065 0.0432314i \(-0.0137653\pi\)
−0.0432314 + 0.999065i \(0.513765\pi\)
\(84\) 0 0
\(85\) −1.20871 5.79129i −0.131103 0.628153i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.6352 1.76333 0.881663 0.471879i \(-0.156424\pi\)
0.881663 + 0.471879i \(0.156424\pi\)
\(90\) 0 0
\(91\) −6.41742 −0.672729
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.61249 + 3.67423i 0.575829 + 0.376969i
\(96\) 0 0
\(97\) −3.58258 3.58258i −0.363755 0.363755i 0.501438 0.865194i \(-0.332805\pi\)
−0.865194 + 0.501438i \(0.832805\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.0901i 1.10351i −0.834007 0.551754i \(-0.813959\pi\)
0.834007 0.551754i \(-0.186041\pi\)
\(102\) 0 0
\(103\) 3.58258 3.58258i 0.353002 0.353002i −0.508224 0.861225i \(-0.669698\pi\)
0.861225 + 0.508224i \(0.169698\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.74166 3.74166i 0.361720 0.361720i −0.502726 0.864446i \(-0.667670\pi\)
0.864446 + 0.502726i \(0.167670\pi\)
\(108\) 0 0
\(109\) 13.7477i 1.31679i −0.752671 0.658397i \(-0.771235\pi\)
0.752671 0.658397i \(-0.228765\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.64064 + 8.64064i 0.812843 + 0.812843i 0.985059 0.172216i \(-0.0550928\pi\)
−0.172216 + 0.985059i \(0.555093\pi\)
\(114\) 0 0
\(115\) 13.3739 2.79129i 1.24712 0.260289i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.70239 −0.614407
\(120\) 0 0
\(121\) −19.7477 −1.79525
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.0227 1.87083i −0.985901 0.167332i
\(126\) 0 0
\(127\) 5.00000 + 5.00000i 0.443678 + 0.443678i 0.893246 0.449568i \(-0.148422\pi\)
−0.449568 + 0.893246i \(0.648422\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.61816i 0.665602i 0.942997 + 0.332801i \(0.107994\pi\)
−0.942997 + 0.332801i \(0.892006\pi\)
\(132\) 0 0
\(133\) 5.37386 5.37386i 0.465973 0.465973i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3766 + 10.3766i −0.886534 + 0.886534i −0.994188 0.107654i \(-0.965666\pi\)
0.107654 + 0.994188i \(0.465666\pi\)
\(138\) 0 0
\(139\) 3.16515i 0.268465i −0.990950 0.134232i \(-0.957143\pi\)
0.990950 0.134232i \(-0.0428568\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.93280 9.93280i −0.830623 0.830623i
\(144\) 0 0
\(145\) −5.37386 + 8.20871i −0.446275 + 0.681696i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.85971 0.643892 0.321946 0.946758i \(-0.395663\pi\)
0.321946 + 0.946758i \(0.395663\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.22474 1.87083i 0.0983739 0.150269i
\(156\) 0 0
\(157\) 3.20871 + 3.20871i 0.256083 + 0.256083i 0.823459 0.567376i \(-0.192041\pi\)
−0.567376 + 0.823459i \(0.692041\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.4779i 1.21983i
\(162\) 0 0
\(163\) 5.00000 5.00000i 0.391630 0.391630i −0.483638 0.875268i \(-0.660685\pi\)
0.875268 + 0.483638i \(0.160685\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.6463 + 10.6463i −0.823836 + 0.823836i −0.986656 0.162820i \(-0.947941\pi\)
0.162820 + 0.986656i \(0.447941\pi\)
\(168\) 0 0
\(169\) 6.58258i 0.506352i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.92713 + 7.92713i 0.602689 + 0.602689i 0.941025 0.338337i \(-0.109864\pi\)
−0.338337 + 0.941025i \(0.609864\pi\)
\(174\) 0 0
\(175\) −4.62614 + 11.7913i −0.349703 + 0.891338i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 9.74773 0.724543 0.362271 0.932073i \(-0.382001\pi\)
0.362271 + 0.932073i \(0.382001\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −15.4779 + 3.23042i −1.13796 + 0.237505i
\(186\) 0 0
\(187\) −10.3739 10.3739i −0.758612 0.758612i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.7083i 1.35368i −0.736128 0.676842i \(-0.763348\pi\)
0.736128 0.676842i \(-0.236652\pi\)
\(192\) 0 0
\(193\) 1.79129 1.79129i 0.128940 0.128940i −0.639692 0.768632i \(-0.720938\pi\)
0.768632 + 0.639692i \(0.220938\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.87083 1.87083i 0.133291 0.133291i −0.637314 0.770605i \(-0.719954\pi\)
0.770605 + 0.637314i \(0.219954\pi\)
\(198\) 0 0
\(199\) 16.7477i 1.18721i −0.804755 0.593607i \(-0.797703\pi\)
0.804755 0.593607i \(-0.202297\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.85971 + 7.85971i 0.551643 + 0.551643i
\(204\) 0 0
\(205\) 10.3739 + 6.79129i 0.724542 + 0.474324i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.6352 1.15068
\(210\) 0 0
\(211\) −9.74773 −0.671061 −0.335531 0.942029i \(-0.608916\pi\)
−0.335531 + 0.942029i \(0.608916\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.07310 + 9.93280i 0.141384 + 0.677412i
\(216\) 0 0
\(217\) −1.79129 1.79129i −0.121601 0.121601i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.70239i 0.450851i
\(222\) 0 0
\(223\) −8.58258 + 8.58258i −0.574732 + 0.574732i −0.933447 0.358715i \(-0.883215\pi\)
0.358715 + 0.933447i \(0.383215\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.90465 6.90465i 0.458278 0.458278i −0.439812 0.898090i \(-0.644955\pi\)
0.898090 + 0.439812i \(0.144955\pi\)
\(228\) 0 0
\(229\) 5.83485i 0.385578i −0.981240 0.192789i \(-0.938247\pi\)
0.981240 0.192789i \(-0.0617532\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.7700 16.7700i −1.09864 1.09864i −0.994570 0.104072i \(-0.966813\pi\)
−0.104072 0.994570i \(-0.533187\pi\)
\(234\) 0 0
\(235\) 0.417424 + 2.00000i 0.0272298 + 0.130466i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.2474 0.792222 0.396111 0.918203i \(-0.370360\pi\)
0.396111 + 0.918203i \(0.370360\pi\)
\(240\) 0 0
\(241\) −11.7477 −0.756738 −0.378369 0.925655i \(-0.623515\pi\)
−0.378369 + 0.925655i \(0.623515\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.08990 0.713507i −0.0696311 0.0455843i
\(246\) 0 0
\(247\) 5.37386 + 5.37386i 0.341931 + 0.341931i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 22.1803i 1.40001i −0.714140 0.700003i \(-0.753182\pi\)
0.714140 0.700003i \(-0.246818\pi\)
\(252\) 0 0
\(253\) 23.9564 23.9564i 1.50613 1.50613i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.51691 + 2.51691i −0.157001 + 0.157001i −0.781236 0.624236i \(-0.785411\pi\)
0.624236 + 0.781236i \(0.285411\pi\)
\(258\) 0 0
\(259\) 17.9129i 1.11305i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.780929 0.780929i −0.0481542 0.0481542i 0.682620 0.730774i \(-0.260841\pi\)
−0.730774 + 0.682620i \(0.760841\pi\)
\(264\) 0 0
\(265\) 0.208712 0.0435608i 0.0128211 0.00267592i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.47197 −0.211690 −0.105845 0.994383i \(-0.533755\pi\)
−0.105845 + 0.994383i \(0.533755\pi\)
\(270\) 0 0
\(271\) 1.00000 0.0607457 0.0303728 0.999539i \(-0.490331\pi\)
0.0303728 + 0.999539i \(0.490331\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −25.4107 + 11.0901i −1.53232 + 0.668760i
\(276\) 0 0
\(277\) −13.2087 13.2087i −0.793635 0.793635i 0.188448 0.982083i \(-0.439654\pi\)
−0.982083 + 0.188448i \(0.939654\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.07310i 0.123671i 0.998086 + 0.0618353i \(0.0196954\pi\)
−0.998086 + 0.0618353i \(0.980305\pi\)
\(282\) 0 0
\(283\) 13.2087 13.2087i 0.785176 0.785176i −0.195523 0.980699i \(-0.562640\pi\)
0.980699 + 0.195523i \(0.0626403\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.93280 9.93280i 0.586315 0.586315i
\(288\) 0 0
\(289\) 10.0000i 0.588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.3149 + 12.3149i 0.719442 + 0.719442i 0.968491 0.249049i \(-0.0801179\pi\)
−0.249049 + 0.968491i \(0.580118\pi\)
\(294\) 0 0
\(295\) −5.37386 + 8.20871i −0.312878 + 0.477930i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.4779 0.895108
\(300\) 0 0
\(301\) 11.4955 0.662587
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.22474 + 1.87083i −0.0701287 + 0.107123i
\(306\) 0 0
\(307\) 15.7477 + 15.7477i 0.898770 + 0.898770i 0.995327 0.0965572i \(-0.0307831\pi\)
−0.0965572 + 0.995327i \(0.530783\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.01703i 0.511309i −0.966768 0.255654i \(-0.917709\pi\)
0.966768 0.255654i \(-0.0822909\pi\)
\(312\) 0 0
\(313\) −17.1652 + 17.1652i −0.970232 + 0.970232i −0.999570 0.0293378i \(-0.990660\pi\)
0.0293378 + 0.999570i \(0.490660\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.8938 22.8938i 1.28584 1.28584i 0.348552 0.937289i \(-0.386673\pi\)
0.937289 0.348552i \(-0.113327\pi\)
\(318\) 0 0
\(319\) 24.3303i 1.36224i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.61249 + 5.61249i 0.312287 + 0.312287i
\(324\) 0 0
\(325\) −11.7913 4.62614i −0.654063 0.256612i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.31464 0.127610
\(330\) 0 0
\(331\) −12.7477 −0.700678 −0.350339 0.936623i \(-0.613934\pi\)
−0.350339 + 0.936623i \(0.613934\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −26.5680 + 5.54506i −1.45156 + 0.302959i
\(336\) 0 0
\(337\) 18.2087 + 18.2087i 0.991892 + 0.991892i 0.999967 0.00807564i \(-0.00257058\pi\)
−0.00807564 + 0.999967i \(0.502571\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.54506i 0.300282i
\(342\) 0 0
\(343\) −13.5826 + 13.5826i −0.733390 + 0.733390i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.50579 + 8.50579i −0.456615 + 0.456615i −0.897543 0.440928i \(-0.854649\pi\)
0.440928 + 0.897543i \(0.354649\pi\)
\(348\) 0 0
\(349\) 19.4174i 1.03939i −0.854352 0.519695i \(-0.826045\pi\)
0.854352 0.519695i \(-0.173955\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.3823 12.3823i −0.659043 0.659043i 0.296111 0.955154i \(-0.404310\pi\)
−0.955154 + 0.296111i \(0.904310\pi\)
\(354\) 0 0
\(355\) −10.3739 6.79129i −0.550588 0.360444i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.7984 1.57270 0.786350 0.617781i \(-0.211968\pi\)
0.786350 + 0.617781i \(0.211968\pi\)
\(360\) 0 0
\(361\) 10.0000 0.526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.70239 + 32.1131i 0.350819 + 1.68087i
\(366\) 0 0
\(367\) 8.95644 + 8.95644i 0.467522 + 0.467522i 0.901111 0.433589i \(-0.142753\pi\)
−0.433589 + 0.901111i \(0.642753\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.241547i 0.0125405i
\(372\) 0 0
\(373\) −3.58258 + 3.58258i −0.185499 + 0.185499i −0.793747 0.608248i \(-0.791873\pi\)
0.608248 + 0.793747i \(0.291873\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.85971 + 7.85971i −0.404796 + 0.404796i
\(378\) 0 0
\(379\) 7.74773i 0.397974i −0.980002 0.198987i \(-0.936235\pi\)
0.980002 0.198987i \(-0.0637652\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.9555 + 20.9555i 1.07078 + 1.07078i 0.997297 + 0.0734797i \(0.0234104\pi\)
0.0734797 + 0.997297i \(0.476590\pi\)
\(384\) 0 0
\(385\) 6.41742 + 30.7477i 0.327062 + 1.56705i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.85971 −0.398503 −0.199251 0.979948i \(-0.563851\pi\)
−0.199251 + 0.979948i \(0.563851\pi\)
\(390\) 0 0
\(391\) 16.1652 0.817507
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −19.7982 12.9610i −0.996155 0.652136i
\(396\) 0 0
\(397\) 26.1216 + 26.1216i 1.31101 + 1.31101i 0.920675 + 0.390330i \(0.127639\pi\)
0.390330 + 0.920675i \(0.372361\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.7083i 0.934247i 0.884192 + 0.467124i \(0.154710\pi\)
−0.884192 + 0.467124i \(0.845290\pi\)
\(402\) 0 0
\(403\) 1.79129 1.79129i 0.0892304 0.0892304i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −27.7253 + 27.7253i −1.37429 + 1.37429i
\(408\) 0 0
\(409\) 24.1652i 1.19489i 0.801910 + 0.597445i \(0.203817\pi\)
−0.801910 + 0.597445i \(0.796183\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.85971 + 7.85971i 0.386751 + 0.386751i
\(414\) 0 0
\(415\) 26.9564 5.62614i 1.32324 0.276176i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.915775 −0.0447385 −0.0223693 0.999750i \(-0.507121\pi\)
−0.0223693 + 0.999750i \(0.507121\pi\)
\(420\) 0 0
\(421\) 39.7477 1.93719 0.968593 0.248652i \(-0.0799876\pi\)
0.968593 + 0.248652i \(0.0799876\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.3149 4.83156i −0.597359 0.234365i
\(426\) 0 0
\(427\) 1.79129 + 1.79129i 0.0866865 + 0.0866865i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.01703i 0.434335i −0.976134 0.217168i \(-0.930318\pi\)
0.976134 0.217168i \(-0.0696818\pi\)
\(432\) 0 0
\(433\) 4.62614 4.62614i 0.222318 0.222318i −0.587156 0.809474i \(-0.699752\pi\)
0.809474 + 0.587156i \(0.199752\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.9610 + 12.9610i −0.620007 + 0.620007i
\(438\) 0 0
\(439\) 10.5826i 0.505079i −0.967587 0.252539i \(-0.918734\pi\)
0.967587 0.252539i \(-0.0812657\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.92713 7.92713i −0.376629 0.376629i 0.493255 0.869885i \(-0.335807\pi\)
−0.869885 + 0.493255i \(0.835807\pi\)
\(444\) 0 0
\(445\) 20.3739 31.1216i 0.965814 1.47530i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13.1632 −0.621211 −0.310605 0.950539i \(-0.600532\pi\)
−0.310605 + 0.950539i \(0.600532\pi\)
\(450\) 0 0
\(451\) 30.7477 1.44785
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.85971 + 12.0059i −0.368469 + 0.562845i
\(456\) 0 0
\(457\) −3.58258 3.58258i −0.167586 0.167586i 0.618332 0.785917i \(-0.287809\pi\)
−0.785917 + 0.618332i \(0.787809\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.5621i 0.678224i −0.940746 0.339112i \(-0.889873\pi\)
0.940746 0.339112i \(-0.110127\pi\)
\(462\) 0 0
\(463\) 7.83485 7.83485i 0.364116 0.364116i −0.501210 0.865326i \(-0.667111\pi\)
0.865326 + 0.501210i \(0.167111\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.34279 + 5.34279i −0.247235 + 0.247235i −0.819835 0.572600i \(-0.805935\pi\)
0.572600 + 0.819835i \(0.305935\pi\)
\(468\) 0 0
\(469\) 30.7477i 1.41980i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.7925 + 17.7925i 0.818101 + 0.818101i
\(474\) 0 0
\(475\) 13.7477 6.00000i 0.630789 0.275299i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.85971 0.359119 0.179560 0.983747i \(-0.442533\pi\)
0.179560 + 0.983747i \(0.442533\pi\)
\(480\) 0 0
\(481\) −17.9129 −0.816757
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.0901 + 2.31464i −0.503577 + 0.105103i
\(486\) 0 0
\(487\) −0.373864 0.373864i −0.0169414 0.0169414i 0.698585 0.715527i \(-0.253813\pi\)
−0.715527 + 0.698585i \(0.753813\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.5621i 0.657178i 0.944473 + 0.328589i \(0.106573\pi\)
−0.944473 + 0.328589i \(0.893427\pi\)
\(492\) 0 0
\(493\) −8.20871 + 8.20871i −0.369702 + 0.369702i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.93280 + 9.93280i −0.445547 + 0.445547i
\(498\) 0 0
\(499\) 27.3303i 1.22347i 0.791062 + 0.611736i \(0.209529\pi\)
−0.791062 + 0.611736i \(0.790471\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.5678 + 16.5678i 0.738720 + 0.738720i 0.972330 0.233610i \(-0.0750539\pi\)
−0.233610 + 0.972330i \(0.575054\pi\)
\(504\) 0 0
\(505\) −20.7477 13.5826i −0.923262 0.604417i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.5510 0.777933 0.388966 0.921252i \(-0.372832\pi\)
0.388966 + 0.921252i \(0.372832\pi\)
\(510\) 0 0
\(511\) 37.1652 1.64409
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.31464 11.0901i −0.101995 0.488689i
\(516\) 0 0
\(517\) 3.58258 + 3.58258i 0.157561 + 0.157561i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 27.7253i 1.21467i −0.794447 0.607334i \(-0.792239\pi\)
0.794447 0.607334i \(-0.207761\pi\)
\(522\) 0 0
\(523\) −15.3739 + 15.3739i −0.672252 + 0.672252i −0.958235 0.285983i \(-0.907680\pi\)
0.285983 + 0.958235i \(0.407680\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.87083 1.87083i 0.0814946 0.0814946i
\(528\) 0 0
\(529\) 14.3303i 0.623057i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.93280 + 9.93280i 0.430238 + 0.430238i
\(534\) 0 0
\(535\) −2.41742 11.5826i −0.104514 0.500758i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.23042 −0.139144
\(540\) 0 0
\(541\) −19.4955 −0.838175 −0.419088 0.907946i \(-0.637650\pi\)
−0.419088 + 0.907946i \(0.637650\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −25.7196 16.8375i −1.10171 0.721237i
\(546\) 0 0
\(547\) 23.9564 + 23.9564i 1.02430 + 1.02430i 0.999697 + 0.0246062i \(0.00783317\pi\)
0.0246062 + 0.999697i \(0.492167\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.1632i 0.560772i
\(552\) 0 0
\(553\) −18.9564 + 18.9564i −0.806110 + 0.806110i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.0568 26.0568i 1.10406 1.10406i 0.110145 0.993916i \(-0.464869\pi\)
0.993916 0.110145i \(-0.0351314\pi\)
\(558\) 0 0
\(559\) 11.4955i 0.486206i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.64064 8.64064i −0.364159 0.364159i 0.501182 0.865342i \(-0.332899\pi\)
−0.865342 + 0.501182i \(0.832899\pi\)
\(564\) 0 0
\(565\) 26.7477 5.58258i 1.12529 0.234861i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.8826 1.21082 0.605412 0.795913i \(-0.293009\pi\)
0.605412 + 0.795913i \(0.293009\pi\)
\(570\) 0 0
\(571\) 22.4955 0.941405 0.470703 0.882292i \(-0.344000\pi\)
0.470703 + 0.882292i \(0.344000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.1575 28.4388i 0.465302 1.18598i
\(576\) 0 0
\(577\) −10.3739 10.3739i −0.431870 0.431870i 0.457394 0.889264i \(-0.348783\pi\)
−0.889264 + 0.457394i \(0.848783\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 31.1973i 1.29428i
\(582\) 0 0
\(583\) 0.373864 0.373864i 0.0154838 0.0154838i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.0118 27.0118i 1.11490 1.11490i 0.122418 0.992479i \(-0.460935\pi\)
0.992479 0.122418i \(-0.0390649\pi\)
\(588\) 0 0
\(589\) 3.00000i 0.123613i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 29.8658 + 29.8658i 1.22644 + 1.22644i 0.965300 + 0.261143i \(0.0840993\pi\)
0.261143 + 0.965300i \(0.415901\pi\)
\(594\) 0 0
\(595\) −8.20871 + 12.5390i −0.336524 + 0.514049i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.8826 1.18011 0.590056 0.807362i \(-0.299106\pi\)
0.590056 + 0.807362i \(0.299106\pi\)
\(600\) 0 0
\(601\) 39.7477 1.62134 0.810672 0.585501i \(-0.199102\pi\)
0.810672 + 0.585501i \(0.199102\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −24.1859 + 36.9446i −0.983298 + 1.50201i
\(606\) 0 0
\(607\) −13.9564 13.9564i −0.566474 0.566474i 0.364665 0.931139i \(-0.381184\pi\)
−0.931139 + 0.364665i \(0.881184\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.31464i 0.0936405i
\(612\) 0 0
\(613\) 10.0000 10.0000i 0.403896 0.403896i −0.475707 0.879604i \(-0.657808\pi\)
0.879604 + 0.475707i \(0.157808\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.1183 14.1183i 0.568380 0.568380i −0.363294 0.931675i \(-0.618348\pi\)
0.931675 + 0.363294i \(0.118348\pi\)
\(618\) 0 0
\(619\) 19.5826i 0.787090i −0.919305 0.393545i \(-0.871249\pi\)
0.919305 0.393545i \(-0.128751\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −29.7984 29.7984i −1.19385 1.19385i
\(624\) 0 0
\(625\) −17.0000 + 18.3303i −0.680000 + 0.733212i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.7083 −0.745948
\(630\) 0 0
\(631\) −39.7477 −1.58233 −0.791166 0.611601i \(-0.790526\pi\)
−0.791166 + 0.611601i \(0.790526\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.4779 3.23042i 0.614220 0.128195i
\(636\) 0 0
\(637\) −1.04356 1.04356i −0.0413474 0.0413474i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 37.4166i 1.47787i −0.673779 0.738933i \(-0.735330\pi\)
0.673779 0.738933i \(-0.264670\pi\)
\(642\) 0 0
\(643\) −1.79129 + 1.79129i −0.0706415 + 0.0706415i −0.741545 0.670903i \(-0.765907\pi\)
0.670903 + 0.741545i \(0.265907\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.5060 + 18.5060i −0.727547 + 0.727547i −0.970130 0.242584i \(-0.922005\pi\)
0.242584 + 0.970130i \(0.422005\pi\)
\(648\) 0 0
\(649\) 24.3303i 0.955048i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.4835 17.4835i −0.684184 0.684184i 0.276756 0.960940i \(-0.410741\pi\)
−0.960940 + 0.276756i \(0.910741\pi\)
\(654\) 0 0
\(655\) 14.2523 + 9.33030i 0.556882 + 0.364565i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 37.6581 1.46695 0.733476 0.679715i \(-0.237897\pi\)
0.733476 + 0.679715i \(0.237897\pi\)
\(660\) 0 0
\(661\) 23.4955 0.913867 0.456934 0.889501i \(-0.348948\pi\)
0.456934 + 0.889501i \(0.348948\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.47197 16.6352i −0.134637 0.645085i
\(666\) 0 0
\(667\) −18.9564 18.9564i −0.733996 0.733996i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.54506i 0.214065i
\(672\) 0 0
\(673\) −22.5390 + 22.5390i −0.868815 + 0.868815i −0.992341 0.123526i \(-0.960580\pi\)
0.123526 + 0.992341i \(0.460580\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.5171 + 12.5171i −0.481073 + 0.481073i −0.905474 0.424401i \(-0.860485\pi\)
0.424401 + 0.905474i \(0.360485\pi\)
\(678\) 0 0
\(679\) 12.8348i 0.492556i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.0674228 0.0674228i −0.00257986 0.00257986i 0.705816 0.708396i \(-0.250581\pi\)
−0.708396 + 0.705816i \(0.750581\pi\)
\(684\) 0 0
\(685\) 6.70417 + 32.1216i 0.256153 + 1.22730i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.241547 0.00920221
\(690\) 0 0
\(691\) 11.7477 0.446905 0.223452 0.974715i \(-0.428267\pi\)
0.223452 + 0.974715i \(0.428267\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.92146 3.87650i −0.224614 0.147044i
\(696\) 0 0
\(697\) 10.3739 + 10.3739i 0.392938 + 0.392938i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 47.8325i 1.80661i −0.429001 0.903304i \(-0.641134\pi\)
0.429001 0.903304i \(-0.358866\pi\)
\(702\) 0 0
\(703\) 15.0000 15.0000i 0.565736 0.565736i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.8656 + 19.8656i −0.747123 + 0.747123i
\(708\) 0 0
\(709\) 42.6606i 1.60215i −0.598562 0.801076i \(-0.704261\pi\)
0.598562 0.801076i \(-0.295739\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.32032 + 4.32032i 0.161797 + 0.161797i
\(714\) 0 0
\(715\) −30.7477 + 6.41742i −1.14990 + 0.239998i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −29.7984 −1.11129 −0.555647 0.831419i \(-0.687529\pi\)
−0.555647 + 0.831419i \(0.687529\pi\)
\(720\) 0 0
\(721\) −12.8348 −0.477995
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.77548 + 20.1072i 0.325913 + 0.746761i
\(726\) 0 0
\(727\) −37.1652 37.1652i −1.37838 1.37838i −0.847359 0.531020i \(-0.821809\pi\)
−0.531020 0.847359i \(-0.678191\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.0059i 0.444054i
\(732\) 0 0
\(733\) 26.4174 26.4174i 0.975750 0.975750i −0.0239630 0.999713i \(-0.507628\pi\)
0.999713 + 0.0239630i \(0.00762839\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −47.5909 + 47.5909i −1.75303 + 1.75303i
\(738\) 0 0
\(739\) 24.4955i 0.901080i 0.892756 + 0.450540i \(0.148769\pi\)
−0.892756 + 0.450540i \(0.851231\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.1126 12.1126i −0.444368 0.444368i 0.449109 0.893477i \(-0.351742\pi\)
−0.893477 + 0.449109i \(0.851742\pi\)
\(744\) 0 0
\(745\) 9.62614 14.7042i 0.352674 0.538719i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.4048 −0.489800
\(750\) 0 0
\(751\) −9.74773 −0.355700 −0.177850 0.984058i \(-0.556914\pi\)
−0.177850 + 0.984058i \(0.556914\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.44949 + 3.74166i −0.0891461 + 0.136173i
\(756\) 0 0
\(757\) −5.00000 5.00000i −0.181728 0.181728i 0.610380 0.792108i \(-0.291017\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.01703i 0.326867i 0.986554 + 0.163434i \(0.0522569\pi\)
−0.986554 + 0.163434i \(0.947743\pi\)
\(762\) 0 0
\(763\) −24.6261 + 24.6261i −0.891526 + 0.891526i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.85971 + 7.85971i −0.283798 + 0.283798i
\(768\) 0 0
\(769\) 27.3303i 0.985556i −0.870155 0.492778i \(-0.835981\pi\)
0.870155 0.492778i \(-0.164019\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.8098 + 36.8098i 1.32396 + 1.32396i 0.910545 + 0.413411i \(0.135663\pi\)
0.413411 + 0.910545i \(0.364337\pi\)
\(774\) 0 0
\(775\) −2.00000 4.58258i −0.0718421 0.164611i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.6352 −0.596018
\(780\) 0 0
\(781\) −30.7477 −1.10024
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.93280 2.07310i 0.354517 0.0739920i
\(786\) 0 0
\(787\) 37.5390 + 37.5390i 1.33812 + 1.33812i 0.897879 + 0.440242i \(0.145107\pi\)
0.440242 + 0.897879i \(0.354893\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 30.9557i 1.10066i
\(792\) 0 0
\(793\) −1.79129 + 1.79129i −0.0636105 + 0.0636105i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.51691 + 2.51691i −0.0891536 + 0.0891536i −0.750277 0.661123i \(-0.770080\pi\)
0.661123 + 0.750277i \(0.270080\pi\)
\(798\) 0 0
\(799\) 2.41742i 0.0855223i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 57.5237 + 57.5237i 2.02997 + 2.02997i
\(804\) 0 0
\(805\) −28.9564 18.9564i −1.02058 0.668127i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.9616 1.51045 0.755225 0.655465i \(-0.227527\pi\)
0.755225 + 0.655465i \(0.227527\pi\)
\(810\) 0 0
\(811\) −23.4955 −0.825037 −0.412518 0.910949i \(-0.635351\pi\)
−0.412518 + 0.910949i \(0.635351\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.23042 15.4779i −0.113157 0.542166i
\(816\) 0 0
\(817\) −9.62614 9.62614i −0.336776 0.336776i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.61816i 0.265876i −0.991124 0.132938i \(-0.957559\pi\)
0.991124 0.132938i \(-0.0424411\pi\)
\(822\) 0 0
\(823\) 23.9564 23.9564i 0.835069 0.835069i −0.153136 0.988205i \(-0.548937\pi\)
0.988205 + 0.153136i \(0.0489373\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −31.6692 + 31.6692i −1.10125 + 1.10125i −0.106987 + 0.994260i \(0.534120\pi\)
−0.994260 + 0.106987i \(0.965880\pi\)
\(828\) 0 0
\(829\) 34.7477i 1.20684i −0.797424 0.603419i \(-0.793805\pi\)
0.797424 0.603419i \(-0.206195\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.08990 1.08990i −0.0377628 0.0377628i
\(834\) 0 0
\(835\) 6.87841 + 32.9564i 0.238037 + 1.14050i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35.1019 −1.21185 −0.605927 0.795521i \(-0.707197\pi\)
−0.605927 + 0.795521i \(0.707197\pi\)
\(840\) 0 0
\(841\) −9.74773 −0.336129
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.3149 + 8.06198i 0.423644 + 0.277340i
\(846\) 0 0
\(847\) 35.3739 + 35.3739i 1.21546 + 1.21546i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 43.2032i 1.48099i
\(852\) 0 0
\(853\) 4.33030 4.33030i 0.148267 0.148267i −0.629077 0.777343i \(-0.716567\pi\)
0.777343 + 0.629077i \(0.216567\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.25857 6.25857i 0.213789 0.213789i −0.592086 0.805875i \(-0.701695\pi\)
0.805875 + 0.592086i \(0.201695\pi\)
\(858\) 0 0
\(859\) 45.6606i 1.55792i −0.627074 0.778960i \(-0.715748\pi\)
0.627074 0.778960i \(-0.284252\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.2590 + 26.2590i 0.893868 + 0.893868i 0.994885 0.101017i \(-0.0322097\pi\)
−0.101017 + 0.994885i \(0.532210\pi\)
\(864\) 0 0
\(865\) 24.5390 5.12159i 0.834352 0.174139i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −58.6811 −1.99062
\(870\) 0 0
\(871\) −30.7477 −1.04185
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.3936 + 23.0960i 0.554206 + 0.780788i
\(876\) 0 0
\(877\) 3.20871 + 3.20871i 0.108351 + 0.108351i 0.759204 0.650853i \(-0.225589\pi\)
−0.650853 + 0.759204i \(0.725589\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 35.3435i 1.19075i 0.803447 + 0.595376i \(0.202997\pi\)
−0.803447 + 0.595376i \(0.797003\pi\)
\(882\) 0 0
\(883\) 25.3739 25.3739i 0.853898 0.853898i −0.136712 0.990611i \(-0.543654\pi\)
0.990611 + 0.136712i \(0.0436536\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.7873 35.7873i 1.20162 1.20162i 0.227946 0.973674i \(-0.426799\pi\)
0.973674 0.227946i \(-0.0732009\pi\)
\(888\) 0 0
\(889\) 17.9129i 0.600779i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.93825 1.93825i −0.0648611 0.0648611i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.38774 −0.146339
\(900\) 0 0
\(901\) 0.252273 0.00840443
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.9385 18.2363i 0.396848 0.606196i
\(906\) 0 0
\(907\) −17.9129 17.9129i −0.594787 0.594787i 0.344133 0.938921i \(-0.388173\pi\)
−0.938921 + 0.344133i \(0.888173\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24.2534i 0.803549i 0.915739 + 0.401775i \(0.131606\pi\)
−0.915739 + 0.401775i \(0.868394\pi\)
\(912\) 0 0
\(913\) 48.2867 48.2867i 1.59806 1.59806i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.6463 13.6463i 0.450641 0.450641i
\(918\) 0 0
\(919\) 24.0000i 0.791687i 0.918318 + 0.395843i \(0.129548\pi\)
−0.918318 + 0.395843i \(0.870452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.93280 9.93280i −0.326942 0.326942i
\(924\) 0 0
\(925\) −12.9129 + 32.9129i −0.424573 + 1.08217i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.915775 −0.0300456 −0.0150228 0.999887i \(-0.504782\pi\)
−0.0150228 + 0.999887i \(0.504782\pi\)
\(930\) 0 0
\(931\) 1.74773 0.0572794
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −32.1131 + 6.70239i −1.05021 + 0.219191i
\(936\) 0 0
\(937\) −0.747727 0.747727i −0.0244272 0.0244272i 0.694788 0.719215i \(-0.255498\pi\)
−0.719215 + 0.694788i \(0.755498\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.5621i 0.474711i −0.971423 0.237355i \(-0.923719\pi\)
0.971423 0.237355i \(-0.0762806\pi\)
\(942\) 0 0
\(943\) −23.9564 + 23.9564i −0.780129 + 0.780129i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.73054 + 9.73054i −0.316200 + 0.316200i −0.847306 0.531106i \(-0.821777\pi\)
0.531106 + 0.847306i \(0.321777\pi\)
\(948\) 0 0
\(949\) 37.1652i 1.20643i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20.2420 20.2420i −0.655703 0.655703i 0.298658 0.954360i \(-0.403461\pi\)
−0.954360 + 0.298658i \(0.903461\pi\)
\(954\) 0 0
\(955\) −35.0000 22.9129i −1.13257 0.741443i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 37.1750 1.20044
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.15732 5.54506i −0.0372555 0.178502i
\(966\) 0 0
\(967\) −19.3303 19.3303i −0.621621 0.621621i 0.324325 0.945946i \(-0.394863\pi\)
−0.945946 + 0.324325i \(0.894863\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.7083i 0.600377i −0.953880 0.300189i \(-0.902950\pi\)
0.953880 0.300189i \(-0.0970497\pi\)
\(972\) 0 0
\(973\) −5.66970 + 5.66970i −0.181762 + 0.181762i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.56186 1.56186i 0.0499683 0.0499683i −0.681681 0.731649i \(-0.738751\pi\)
0.731649 + 0.681681i \(0.238751\pi\)
\(978\) 0 0
\(979\) 92.2432i 2.94810i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.1800 + 12.1800i 0.388482 + 0.388482i 0.874146 0.485663i \(-0.161422\pi\)
−0.485663 + 0.874146i \(0.661422\pi\)
\(984\) 0 0
\(985\) −1.20871 5.79129i −0.0385128 0.184526i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27.7253 −0.881614
\(990\) 0 0
\(991\) −18.2523 −0.579803 −0.289901 0.957057i \(-0.593622\pi\)
−0.289901 + 0.957057i \(0.593622\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −31.3321 20.5117i −0.993295 0.650264i
\(996\) 0 0
\(997\) 16.7913 + 16.7913i 0.531785 + 0.531785i 0.921103 0.389318i \(-0.127289\pi\)
−0.389318 + 0.921103i \(0.627289\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.w.d.1457.3 8
3.2 odd 2 inner 2160.2.w.d.1457.2 8
4.3 odd 2 135.2.f.a.107.2 yes 8
5.3 odd 4 inner 2160.2.w.d.593.1 8
12.11 even 2 135.2.f.a.107.3 yes 8
15.8 even 4 inner 2160.2.w.d.593.4 8
20.3 even 4 135.2.f.a.53.3 yes 8
20.7 even 4 675.2.f.i.593.2 8
20.19 odd 2 675.2.f.i.107.3 8
36.7 odd 6 405.2.m.c.377.3 16
36.11 even 6 405.2.m.c.377.2 16
36.23 even 6 405.2.m.c.107.3 16
36.31 odd 6 405.2.m.c.107.2 16
60.23 odd 4 135.2.f.a.53.2 8
60.47 odd 4 675.2.f.i.593.3 8
60.59 even 2 675.2.f.i.107.2 8
180.23 odd 12 405.2.m.c.188.3 16
180.43 even 12 405.2.m.c.53.3 16
180.83 odd 12 405.2.m.c.53.2 16
180.103 even 12 405.2.m.c.188.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.f.a.53.2 8 60.23 odd 4
135.2.f.a.53.3 yes 8 20.3 even 4
135.2.f.a.107.2 yes 8 4.3 odd 2
135.2.f.a.107.3 yes 8 12.11 even 2
405.2.m.c.53.2 16 180.83 odd 12
405.2.m.c.53.3 16 180.43 even 12
405.2.m.c.107.2 16 36.31 odd 6
405.2.m.c.107.3 16 36.23 even 6
405.2.m.c.188.2 16 180.103 even 12
405.2.m.c.188.3 16 180.23 odd 12
405.2.m.c.377.2 16 36.11 even 6
405.2.m.c.377.3 16 36.7 odd 6
675.2.f.i.107.2 8 60.59 even 2
675.2.f.i.107.3 8 20.19 odd 2
675.2.f.i.593.2 8 20.7 even 4
675.2.f.i.593.3 8 60.47 odd 4
2160.2.w.d.593.1 8 5.3 odd 4 inner
2160.2.w.d.593.4 8 15.8 even 4 inner
2160.2.w.d.1457.2 8 3.2 odd 2 inner
2160.2.w.d.1457.3 8 1.1 even 1 trivial