Properties

Label 135.2.f.a.53.3
Level $135$
Weight $2$
Character 135.53
Analytic conductor $1.078$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,2,Mod(53,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 135.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.07798042729\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.3
Root \(0.323042 + 0.323042i\) of defining polynomial
Character \(\chi\) \(=\) 135.53
Dual form 135.2.f.a.107.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.323042 + 0.323042i) q^{2} -1.79129i q^{4} +(-1.22474 - 1.87083i) q^{5} +(1.79129 - 1.79129i) q^{7} +(1.22474 - 1.22474i) q^{8} +(0.208712 - 1.00000i) q^{10} +5.54506i q^{11} +(1.79129 + 1.79129i) q^{13} +1.15732 q^{14} -2.79129 q^{16} +(-1.87083 - 1.87083i) q^{17} +3.00000i q^{19} +(-3.35119 + 2.19387i) q^{20} +(-1.79129 + 1.79129i) q^{22} +(4.32032 - 4.32032i) q^{23} +(-2.00000 + 4.58258i) q^{25} +1.15732i q^{26} +(-3.20871 - 3.20871i) q^{28} +4.38774 q^{29} -1.00000 q^{31} +(-3.35119 - 3.35119i) q^{32} -1.20871i q^{34} +(-5.54506 - 1.15732i) q^{35} +(-5.00000 + 5.00000i) q^{37} +(-0.969126 + 0.969126i) q^{38} +(-3.79129 - 0.791288i) q^{40} +5.54506i q^{41} +(3.20871 + 3.20871i) q^{43} +9.93280 q^{44} +2.79129 q^{46} +(-0.646084 - 0.646084i) q^{47} +0.582576i q^{49} +(-2.12645 + 0.834280i) q^{50} +(3.20871 - 3.20871i) q^{52} +(-0.0674228 + 0.0674228i) q^{53} +(10.3739 - 6.79129i) q^{55} -4.38774i q^{56} +(1.41742 + 1.41742i) q^{58} -4.38774 q^{59} -1.00000 q^{61} +(-0.323042 - 0.323042i) q^{62} +3.41742i q^{64} +(1.15732 - 5.54506i) q^{65} +(8.58258 - 8.58258i) q^{67} +(-3.35119 + 3.35119i) q^{68} +(-1.41742 - 2.16515i) q^{70} +5.54506i q^{71} +(-10.3739 - 10.3739i) q^{73} -3.23042 q^{74} +5.37386 q^{76} +(9.93280 + 9.93280i) q^{77} -10.5826i q^{79} +(3.41862 + 5.22202i) q^{80} +(-1.79129 + 1.79129i) q^{82} +(8.70806 - 8.70806i) q^{83} +(-1.20871 + 5.79129i) q^{85} +2.07310i q^{86} +(6.79129 + 6.79129i) q^{88} -16.6352 q^{89} +6.41742 q^{91} +(-7.73893 - 7.73893i) q^{92} -0.417424i q^{94} +(5.61249 - 3.67423i) q^{95} +(-3.58258 + 3.58258i) q^{97} +(-0.188196 + 0.188196i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} + 20 q^{10} - 4 q^{13} - 4 q^{16} + 4 q^{22} - 16 q^{25} - 44 q^{28} - 8 q^{31} - 40 q^{37} - 12 q^{40} + 44 q^{43} + 4 q^{46} + 44 q^{52} + 28 q^{55} + 48 q^{58} - 8 q^{61} + 32 q^{67} - 48 q^{70}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.323042 + 0.323042i 0.228425 + 0.228425i 0.812035 0.583609i \(-0.198360\pi\)
−0.583609 + 0.812035i \(0.698360\pi\)
\(3\) 0 0
\(4\) 1.79129i 0.895644i
\(5\) −1.22474 1.87083i −0.547723 0.836660i
\(6\) 0 0
\(7\) 1.79129 1.79129i 0.677043 0.677043i −0.282287 0.959330i \(-0.591093\pi\)
0.959330 + 0.282287i \(0.0910930\pi\)
\(8\) 1.22474 1.22474i 0.433013 0.433013i
\(9\) 0 0
\(10\) 0.208712 1.00000i 0.0660006 0.316228i
\(11\) 5.54506i 1.67190i 0.548806 + 0.835950i \(0.315083\pi\)
−0.548806 + 0.835950i \(0.684917\pi\)
\(12\) 0 0
\(13\) 1.79129 + 1.79129i 0.496814 + 0.496814i 0.910445 0.413631i \(-0.135740\pi\)
−0.413631 + 0.910445i \(0.635740\pi\)
\(14\) 1.15732 0.309307
\(15\) 0 0
\(16\) −2.79129 −0.697822
\(17\) −1.87083 1.87083i −0.453743 0.453743i 0.442852 0.896595i \(-0.353967\pi\)
−0.896595 + 0.442852i \(0.853967\pi\)
\(18\) 0 0
\(19\) 3.00000i 0.688247i 0.938924 + 0.344124i \(0.111824\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(20\) −3.35119 + 2.19387i −0.749349 + 0.490564i
\(21\) 0 0
\(22\) −1.79129 + 1.79129i −0.381904 + 0.381904i
\(23\) 4.32032 4.32032i 0.900849 0.900849i −0.0946609 0.995510i \(-0.530177\pi\)
0.995510 + 0.0946609i \(0.0301767\pi\)
\(24\) 0 0
\(25\) −2.00000 + 4.58258i −0.400000 + 0.916515i
\(26\) 1.15732i 0.226970i
\(27\) 0 0
\(28\) −3.20871 3.20871i −0.606390 0.606390i
\(29\) 4.38774 0.814783 0.407392 0.913254i \(-0.366438\pi\)
0.407392 + 0.913254i \(0.366438\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) −3.35119 3.35119i −0.592413 0.592413i
\(33\) 0 0
\(34\) 1.20871i 0.207292i
\(35\) −5.54506 1.15732i −0.937287 0.195623i
\(36\) 0 0
\(37\) −5.00000 + 5.00000i −0.821995 + 0.821995i −0.986394 0.164399i \(-0.947432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −0.969126 + 0.969126i −0.157213 + 0.157213i
\(39\) 0 0
\(40\) −3.79129 0.791288i −0.599455 0.125114i
\(41\) 5.54506i 0.865993i 0.901396 + 0.432997i \(0.142544\pi\)
−0.901396 + 0.432997i \(0.857456\pi\)
\(42\) 0 0
\(43\) 3.20871 + 3.20871i 0.489324 + 0.489324i 0.908093 0.418769i \(-0.137538\pi\)
−0.418769 + 0.908093i \(0.637538\pi\)
\(44\) 9.93280 1.49743
\(45\) 0 0
\(46\) 2.79129 0.411553
\(47\) −0.646084 0.646084i −0.0942410 0.0942410i 0.658415 0.752656i \(-0.271227\pi\)
−0.752656 + 0.658415i \(0.771227\pi\)
\(48\) 0 0
\(49\) 0.582576i 0.0832251i
\(50\) −2.12645 + 0.834280i −0.300725 + 0.117985i
\(51\) 0 0
\(52\) 3.20871 3.20871i 0.444968 0.444968i
\(53\) −0.0674228 + 0.0674228i −0.00926123 + 0.00926123i −0.711722 0.702461i \(-0.752085\pi\)
0.702461 + 0.711722i \(0.252085\pi\)
\(54\) 0 0
\(55\) 10.3739 6.79129i 1.39881 0.915737i
\(56\) 4.38774i 0.586337i
\(57\) 0 0
\(58\) 1.41742 + 1.41742i 0.186117 + 0.186117i
\(59\) −4.38774 −0.571235 −0.285618 0.958344i \(-0.592199\pi\)
−0.285618 + 0.958344i \(0.592199\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −0.323042 0.323042i −0.0410264 0.0410264i
\(63\) 0 0
\(64\) 3.41742i 0.427178i
\(65\) 1.15732 5.54506i 0.143548 0.687780i
\(66\) 0 0
\(67\) 8.58258 8.58258i 1.04853 1.04853i 0.0497677 0.998761i \(-0.484152\pi\)
0.998761 0.0497677i \(-0.0158481\pi\)
\(68\) −3.35119 + 3.35119i −0.406392 + 0.406392i
\(69\) 0 0
\(70\) −1.41742 2.16515i −0.169415 0.258785i
\(71\) 5.54506i 0.658078i 0.944316 + 0.329039i \(0.106725\pi\)
−0.944316 + 0.329039i \(0.893275\pi\)
\(72\) 0 0
\(73\) −10.3739 10.3739i −1.21417 1.21417i −0.969643 0.244526i \(-0.921368\pi\)
−0.244526 0.969643i \(-0.578632\pi\)
\(74\) −3.23042 −0.375529
\(75\) 0 0
\(76\) 5.37386 0.616424
\(77\) 9.93280 + 9.93280i 1.13195 + 1.13195i
\(78\) 0 0
\(79\) 10.5826i 1.19063i −0.803491 0.595316i \(-0.797027\pi\)
0.803491 0.595316i \(-0.202973\pi\)
\(80\) 3.41862 + 5.22202i 0.382213 + 0.583840i
\(81\) 0 0
\(82\) −1.79129 + 1.79129i −0.197815 + 0.197815i
\(83\) 8.70806 8.70806i 0.955834 0.955834i −0.0432314 0.999065i \(-0.513765\pi\)
0.999065 + 0.0432314i \(0.0137653\pi\)
\(84\) 0 0
\(85\) −1.20871 + 5.79129i −0.131103 + 0.628153i
\(86\) 2.07310i 0.223548i
\(87\) 0 0
\(88\) 6.79129 + 6.79129i 0.723954 + 0.723954i
\(89\) −16.6352 −1.76333 −0.881663 0.471879i \(-0.843576\pi\)
−0.881663 + 0.471879i \(0.843576\pi\)
\(90\) 0 0
\(91\) 6.41742 0.672729
\(92\) −7.73893 7.73893i −0.806840 0.806840i
\(93\) 0 0
\(94\) 0.417424i 0.0430540i
\(95\) 5.61249 3.67423i 0.575829 0.376969i
\(96\) 0 0
\(97\) −3.58258 + 3.58258i −0.363755 + 0.363755i −0.865194 0.501438i \(-0.832805\pi\)
0.501438 + 0.865194i \(0.332805\pi\)
\(98\) −0.188196 + 0.188196i −0.0190107 + 0.0190107i
\(99\) 0 0
\(100\) 8.20871 + 3.58258i 0.820871 + 0.358258i
\(101\) 11.0901i 1.10351i −0.834007 0.551754i \(-0.813959\pi\)
0.834007 0.551754i \(-0.186041\pi\)
\(102\) 0 0
\(103\) −3.58258 3.58258i −0.353002 0.353002i 0.508224 0.861225i \(-0.330302\pi\)
−0.861225 + 0.508224i \(0.830302\pi\)
\(104\) 4.38774 0.430253
\(105\) 0 0
\(106\) −0.0435608 −0.00423100
\(107\) 3.74166 + 3.74166i 0.361720 + 0.361720i 0.864446 0.502726i \(-0.167670\pi\)
−0.502726 + 0.864446i \(0.667670\pi\)
\(108\) 0 0
\(109\) 13.7477i 1.31679i 0.752671 + 0.658397i \(0.228765\pi\)
−0.752671 + 0.658397i \(0.771235\pi\)
\(110\) 5.54506 + 1.15732i 0.528701 + 0.110346i
\(111\) 0 0
\(112\) −5.00000 + 5.00000i −0.472456 + 0.472456i
\(113\) −8.64064 + 8.64064i −0.812843 + 0.812843i −0.985059 0.172216i \(-0.944907\pi\)
0.172216 + 0.985059i \(0.444907\pi\)
\(114\) 0 0
\(115\) −13.3739 2.79129i −1.24712 0.260289i
\(116\) 7.85971i 0.729756i
\(117\) 0 0
\(118\) −1.41742 1.41742i −0.130484 0.130484i
\(119\) −6.70239 −0.614407
\(120\) 0 0
\(121\) −19.7477 −1.79525
\(122\) −0.323042 0.323042i −0.0292468 0.0292468i
\(123\) 0 0
\(124\) 1.79129i 0.160862i
\(125\) 11.0227 1.87083i 0.985901 0.167332i
\(126\) 0 0
\(127\) −5.00000 + 5.00000i −0.443678 + 0.443678i −0.893246 0.449568i \(-0.851578\pi\)
0.449568 + 0.893246i \(0.351578\pi\)
\(128\) −7.80636 + 7.80636i −0.689991 + 0.689991i
\(129\) 0 0
\(130\) 2.16515 1.41742i 0.189896 0.124316i
\(131\) 7.61816i 0.665602i −0.942997 0.332801i \(-0.892006\pi\)
0.942997 0.332801i \(-0.107994\pi\)
\(132\) 0 0
\(133\) 5.37386 + 5.37386i 0.465973 + 0.465973i
\(134\) 5.54506 0.479021
\(135\) 0 0
\(136\) −4.58258 −0.392953
\(137\) 10.3766 + 10.3766i 0.886534 + 0.886534i 0.994188 0.107654i \(-0.0343339\pi\)
−0.107654 + 0.994188i \(0.534334\pi\)
\(138\) 0 0
\(139\) 3.16515i 0.268465i −0.990950 0.134232i \(-0.957143\pi\)
0.990950 0.134232i \(-0.0428568\pi\)
\(140\) −2.07310 + 9.93280i −0.175209 + 0.839475i
\(141\) 0 0
\(142\) −1.79129 + 1.79129i −0.150322 + 0.150322i
\(143\) −9.93280 + 9.93280i −0.830623 + 0.830623i
\(144\) 0 0
\(145\) −5.37386 8.20871i −0.446275 0.681696i
\(146\) 6.70239i 0.554693i
\(147\) 0 0
\(148\) 8.95644 + 8.95644i 0.736215 + 0.736215i
\(149\) −7.85971 −0.643892 −0.321946 0.946758i \(-0.604337\pi\)
−0.321946 + 0.946758i \(0.604337\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 3.67423 + 3.67423i 0.298020 + 0.298020i
\(153\) 0 0
\(154\) 6.41742i 0.517131i
\(155\) 1.22474 + 1.87083i 0.0983739 + 0.150269i
\(156\) 0 0
\(157\) 3.20871 3.20871i 0.256083 0.256083i −0.567376 0.823459i \(-0.692041\pi\)
0.823459 + 0.567376i \(0.192041\pi\)
\(158\) 3.41862 3.41862i 0.271970 0.271970i
\(159\) 0 0
\(160\) −2.16515 + 10.3739i −0.171170 + 0.820126i
\(161\) 15.4779i 1.21983i
\(162\) 0 0
\(163\) −5.00000 5.00000i −0.391630 0.391630i 0.483638 0.875268i \(-0.339315\pi\)
−0.875268 + 0.483638i \(0.839315\pi\)
\(164\) 9.93280 0.775622
\(165\) 0 0
\(166\) 5.62614 0.436673
\(167\) −10.6463 10.6463i −0.823836 0.823836i 0.162820 0.986656i \(-0.447941\pi\)
−0.986656 + 0.162820i \(0.947941\pi\)
\(168\) 0 0
\(169\) 6.58258i 0.506352i
\(170\) −2.26129 + 1.48036i −0.173433 + 0.113539i
\(171\) 0 0
\(172\) 5.74773 5.74773i 0.438260 0.438260i
\(173\) −7.92713 + 7.92713i −0.602689 + 0.602689i −0.941025 0.338337i \(-0.890136\pi\)
0.338337 + 0.941025i \(0.390136\pi\)
\(174\) 0 0
\(175\) 4.62614 + 11.7913i 0.349703 + 0.891338i
\(176\) 15.4779i 1.16669i
\(177\) 0 0
\(178\) −5.37386 5.37386i −0.402788 0.402788i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 9.74773 0.724543 0.362271 0.932073i \(-0.382001\pi\)
0.362271 + 0.932073i \(0.382001\pi\)
\(182\) 2.07310 + 2.07310i 0.153668 + 0.153668i
\(183\) 0 0
\(184\) 10.5826i 0.780158i
\(185\) 15.4779 + 3.23042i 1.13796 + 0.237505i
\(186\) 0 0
\(187\) 10.3739 10.3739i 0.758612 0.758612i
\(188\) −1.15732 + 1.15732i −0.0844064 + 0.0844064i
\(189\) 0 0
\(190\) 3.00000 + 0.626136i 0.217643 + 0.0454247i
\(191\) 18.7083i 1.35368i 0.736128 + 0.676842i \(0.236652\pi\)
−0.736128 + 0.676842i \(0.763348\pi\)
\(192\) 0 0
\(193\) 1.79129 + 1.79129i 0.128940 + 0.128940i 0.768632 0.639692i \(-0.220938\pi\)
−0.639692 + 0.768632i \(0.720938\pi\)
\(194\) −2.31464 −0.166182
\(195\) 0 0
\(196\) 1.04356 0.0745401
\(197\) −1.87083 1.87083i −0.133291 0.133291i 0.637314 0.770605i \(-0.280046\pi\)
−0.770605 + 0.637314i \(0.780046\pi\)
\(198\) 0 0
\(199\) 16.7477i 1.18721i −0.804755 0.593607i \(-0.797703\pi\)
0.804755 0.593607i \(-0.202297\pi\)
\(200\) 3.16300 + 8.06198i 0.223658 + 0.570068i
\(201\) 0 0
\(202\) 3.58258 3.58258i 0.252069 0.252069i
\(203\) 7.85971 7.85971i 0.551643 0.551643i
\(204\) 0 0
\(205\) 10.3739 6.79129i 0.724542 0.474324i
\(206\) 2.31464i 0.161269i
\(207\) 0 0
\(208\) −5.00000 5.00000i −0.346688 0.346688i
\(209\) −16.6352 −1.15068
\(210\) 0 0
\(211\) 9.74773 0.671061 0.335531 0.942029i \(-0.391084\pi\)
0.335531 + 0.942029i \(0.391084\pi\)
\(212\) 0.120774 + 0.120774i 0.00829476 + 0.00829476i
\(213\) 0 0
\(214\) 2.41742i 0.165252i
\(215\) 2.07310 9.93280i 0.141384 0.677412i
\(216\) 0 0
\(217\) −1.79129 + 1.79129i −0.121601 + 0.121601i
\(218\) −4.44109 + 4.44109i −0.300789 + 0.300789i
\(219\) 0 0
\(220\) −12.1652 18.5826i −0.820174 1.25284i
\(221\) 6.70239i 0.450851i
\(222\) 0 0
\(223\) 8.58258 + 8.58258i 0.574732 + 0.574732i 0.933447 0.358715i \(-0.116785\pi\)
−0.358715 + 0.933447i \(0.616785\pi\)
\(224\) −12.0059 −0.802178
\(225\) 0 0
\(226\) −5.58258 −0.371347
\(227\) 6.90465 + 6.90465i 0.458278 + 0.458278i 0.898090 0.439812i \(-0.144955\pi\)
−0.439812 + 0.898090i \(0.644955\pi\)
\(228\) 0 0
\(229\) 5.83485i 0.385578i 0.981240 + 0.192789i \(0.0617532\pi\)
−0.981240 + 0.192789i \(0.938247\pi\)
\(230\) −3.41862 5.22202i −0.225417 0.344330i
\(231\) 0 0
\(232\) 5.37386 5.37386i 0.352811 0.352811i
\(233\) 16.7700 16.7700i 1.09864 1.09864i 0.104072 0.994570i \(-0.466813\pi\)
0.994570 0.104072i \(-0.0331872\pi\)
\(234\) 0 0
\(235\) −0.417424 + 2.00000i −0.0272298 + 0.130466i
\(236\) 7.85971i 0.511623i
\(237\) 0 0
\(238\) −2.16515 2.16515i −0.140346 0.140346i
\(239\) 12.2474 0.792222 0.396111 0.918203i \(-0.370360\pi\)
0.396111 + 0.918203i \(0.370360\pi\)
\(240\) 0 0
\(241\) −11.7477 −0.756738 −0.378369 0.925655i \(-0.623515\pi\)
−0.378369 + 0.925655i \(0.623515\pi\)
\(242\) −6.37934 6.37934i −0.410080 0.410080i
\(243\) 0 0
\(244\) 1.79129i 0.114675i
\(245\) 1.08990 0.713507i 0.0696311 0.0455843i
\(246\) 0 0
\(247\) −5.37386 + 5.37386i −0.341931 + 0.341931i
\(248\) −1.22474 + 1.22474i −0.0777714 + 0.0777714i
\(249\) 0 0
\(250\) 4.16515 + 2.95644i 0.263427 + 0.186982i
\(251\) 22.1803i 1.40001i 0.714140 + 0.700003i \(0.246818\pi\)
−0.714140 + 0.700003i \(0.753182\pi\)
\(252\) 0 0
\(253\) 23.9564 + 23.9564i 1.50613 + 1.50613i
\(254\) −3.23042 −0.202695
\(255\) 0 0
\(256\) 1.79129 0.111955
\(257\) 2.51691 + 2.51691i 0.157001 + 0.157001i 0.781236 0.624236i \(-0.214589\pi\)
−0.624236 + 0.781236i \(0.714589\pi\)
\(258\) 0 0
\(259\) 17.9129i 1.11305i
\(260\) −9.93280 2.07310i −0.616006 0.128568i
\(261\) 0 0
\(262\) 2.46099 2.46099i 0.152040 0.152040i
\(263\) −0.780929 + 0.780929i −0.0481542 + 0.0481542i −0.730774 0.682620i \(-0.760841\pi\)
0.682620 + 0.730774i \(0.260841\pi\)
\(264\) 0 0
\(265\) 0.208712 + 0.0435608i 0.0128211 + 0.00267592i
\(266\) 3.47197i 0.212880i
\(267\) 0 0
\(268\) −15.3739 15.3739i −0.939108 0.939108i
\(269\) 3.47197 0.211690 0.105845 0.994383i \(-0.466245\pi\)
0.105845 + 0.994383i \(0.466245\pi\)
\(270\) 0 0
\(271\) −1.00000 −0.0607457 −0.0303728 0.999539i \(-0.509669\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 5.22202 + 5.22202i 0.316632 + 0.316632i
\(273\) 0 0
\(274\) 6.70417i 0.405013i
\(275\) −25.4107 11.0901i −1.53232 0.668760i
\(276\) 0 0
\(277\) −13.2087 + 13.2087i −0.793635 + 0.793635i −0.982083 0.188448i \(-0.939654\pi\)
0.188448 + 0.982083i \(0.439654\pi\)
\(278\) 1.02248 1.02248i 0.0613241 0.0613241i
\(279\) 0 0
\(280\) −8.20871 + 5.37386i −0.490564 + 0.321150i
\(281\) 2.07310i 0.123671i 0.998086 + 0.0618353i \(0.0196954\pi\)
−0.998086 + 0.0618353i \(0.980305\pi\)
\(282\) 0 0
\(283\) −13.2087 13.2087i −0.785176 0.785176i 0.195523 0.980699i \(-0.437360\pi\)
−0.980699 + 0.195523i \(0.937360\pi\)
\(284\) 9.93280 0.589404
\(285\) 0 0
\(286\) −6.41742 −0.379470
\(287\) 9.93280 + 9.93280i 0.586315 + 0.586315i
\(288\) 0 0
\(289\) 10.0000i 0.588235i
\(290\) 0.915775 4.38774i 0.0537762 0.257657i
\(291\) 0 0
\(292\) −18.5826 + 18.5826i −1.08746 + 1.08746i
\(293\) −12.3149 + 12.3149i −0.719442 + 0.719442i −0.968491 0.249049i \(-0.919882\pi\)
0.249049 + 0.968491i \(0.419882\pi\)
\(294\) 0 0
\(295\) 5.37386 + 8.20871i 0.312878 + 0.477930i
\(296\) 12.2474i 0.711868i
\(297\) 0 0
\(298\) −2.53901 2.53901i −0.147081 0.147081i
\(299\) 15.4779 0.895108
\(300\) 0 0
\(301\) 11.4955 0.662587
\(302\) 0.646084 + 0.646084i 0.0371779 + 0.0371779i
\(303\) 0 0
\(304\) 8.37386i 0.480274i
\(305\) 1.22474 + 1.87083i 0.0701287 + 0.107123i
\(306\) 0 0
\(307\) −15.7477 + 15.7477i −0.898770 + 0.898770i −0.995327 0.0965572i \(-0.969217\pi\)
0.0965572 + 0.995327i \(0.469217\pi\)
\(308\) 17.7925 17.7925i 1.01382 1.01382i
\(309\) 0 0
\(310\) −0.208712 + 1.00000i −0.0118541 + 0.0567962i
\(311\) 9.01703i 0.511309i 0.966768 + 0.255654i \(0.0822909\pi\)
−0.966768 + 0.255654i \(0.917709\pi\)
\(312\) 0 0
\(313\) −17.1652 17.1652i −0.970232 0.970232i 0.0293378 0.999570i \(-0.490660\pi\)
−0.999570 + 0.0293378i \(0.990660\pi\)
\(314\) 2.07310 0.116992
\(315\) 0 0
\(316\) −18.9564 −1.06638
\(317\) −22.8938 22.8938i −1.28584 1.28584i −0.937289 0.348552i \(-0.886673\pi\)
−0.348552 0.937289i \(-0.613327\pi\)
\(318\) 0 0
\(319\) 24.3303i 1.36224i
\(320\) 6.39342 4.18547i 0.357403 0.233975i
\(321\) 0 0
\(322\) 5.00000 5.00000i 0.278639 0.278639i
\(323\) 5.61249 5.61249i 0.312287 0.312287i
\(324\) 0 0
\(325\) −11.7913 + 4.62614i −0.654063 + 0.256612i
\(326\) 3.23042i 0.178916i
\(327\) 0 0
\(328\) 6.79129 + 6.79129i 0.374986 + 0.374986i
\(329\) −2.31464 −0.127610
\(330\) 0 0
\(331\) 12.7477 0.700678 0.350339 0.936623i \(-0.386066\pi\)
0.350339 + 0.936623i \(0.386066\pi\)
\(332\) −15.5986 15.5986i −0.856087 0.856087i
\(333\) 0 0
\(334\) 6.87841i 0.376370i
\(335\) −26.5680 5.54506i −1.45156 0.302959i
\(336\) 0 0
\(337\) 18.2087 18.2087i 0.991892 0.991892i −0.00807564 0.999967i \(-0.502571\pi\)
0.999967 + 0.00807564i \(0.00257058\pi\)
\(338\) 2.12645 2.12645i 0.115664 0.115664i
\(339\) 0 0
\(340\) 10.3739 + 2.16515i 0.562602 + 0.117422i
\(341\) 5.54506i 0.300282i
\(342\) 0 0
\(343\) 13.5826 + 13.5826i 0.733390 + 0.733390i
\(344\) 7.85971 0.423767
\(345\) 0 0
\(346\) −5.12159 −0.275338
\(347\) −8.50579 8.50579i −0.456615 0.456615i 0.440928 0.897543i \(-0.354649\pi\)
−0.897543 + 0.440928i \(0.854649\pi\)
\(348\) 0 0
\(349\) 19.4174i 1.03939i 0.854352 + 0.519695i \(0.173955\pi\)
−0.854352 + 0.519695i \(0.826045\pi\)
\(350\) −2.31464 + 5.30352i −0.123723 + 0.283485i
\(351\) 0 0
\(352\) 18.5826 18.5826i 0.990455 0.990455i
\(353\) 12.3823 12.3823i 0.659043 0.659043i −0.296111 0.955154i \(-0.595690\pi\)
0.955154 + 0.296111i \(0.0956897\pi\)
\(354\) 0 0
\(355\) 10.3739 6.79129i 0.550588 0.360444i
\(356\) 29.7984i 1.57931i
\(357\) 0 0
\(358\) 0 0
\(359\) 29.7984 1.57270 0.786350 0.617781i \(-0.211968\pi\)
0.786350 + 0.617781i \(0.211968\pi\)
\(360\) 0 0
\(361\) 10.0000 0.526316
\(362\) 3.14892 + 3.14892i 0.165504 + 0.165504i
\(363\) 0 0
\(364\) 11.4955i 0.602526i
\(365\) −6.70239 + 32.1131i −0.350819 + 1.68087i
\(366\) 0 0
\(367\) −8.95644 + 8.95644i −0.467522 + 0.467522i −0.901111 0.433589i \(-0.857247\pi\)
0.433589 + 0.901111i \(0.357247\pi\)
\(368\) −12.0593 + 12.0593i −0.628632 + 0.628632i
\(369\) 0 0
\(370\) 3.95644 + 6.04356i 0.205685 + 0.314190i
\(371\) 0.241547i 0.0125405i
\(372\) 0 0
\(373\) −3.58258 3.58258i −0.185499 0.185499i 0.608248 0.793747i \(-0.291873\pi\)
−0.793747 + 0.608248i \(0.791873\pi\)
\(374\) 6.70239 0.346572
\(375\) 0 0
\(376\) −1.58258 −0.0816151
\(377\) 7.85971 + 7.85971i 0.404796 + 0.404796i
\(378\) 0 0
\(379\) 7.74773i 0.397974i −0.980002 0.198987i \(-0.936235\pi\)
0.980002 0.198987i \(-0.0637652\pi\)
\(380\) −6.58161 10.0536i −0.337630 0.515738i
\(381\) 0 0
\(382\) −6.04356 + 6.04356i −0.309215 + 0.309215i
\(383\) 20.9555 20.9555i 1.07078 1.07078i 0.0734797 0.997297i \(-0.476590\pi\)
0.997297 0.0734797i \(-0.0234104\pi\)
\(384\) 0 0
\(385\) 6.41742 30.7477i 0.327062 1.56705i
\(386\) 1.15732i 0.0589061i
\(387\) 0 0
\(388\) 6.41742 + 6.41742i 0.325795 + 0.325795i
\(389\) 7.85971 0.398503 0.199251 0.979948i \(-0.436149\pi\)
0.199251 + 0.979948i \(0.436149\pi\)
\(390\) 0 0
\(391\) −16.1652 −0.817507
\(392\) 0.713507 + 0.713507i 0.0360375 + 0.0360375i
\(393\) 0 0
\(394\) 1.20871i 0.0608940i
\(395\) −19.7982 + 12.9610i −0.996155 + 0.652136i
\(396\) 0 0
\(397\) 26.1216 26.1216i 1.31101 1.31101i 0.390330 0.920675i \(-0.372361\pi\)
0.920675 0.390330i \(-0.127639\pi\)
\(398\) 5.41022 5.41022i 0.271190 0.271190i
\(399\) 0 0
\(400\) 5.58258 12.7913i 0.279129 0.639564i
\(401\) 18.7083i 0.934247i 0.884192 + 0.467124i \(0.154710\pi\)
−0.884192 + 0.467124i \(0.845290\pi\)
\(402\) 0 0
\(403\) −1.79129 1.79129i −0.0892304 0.0892304i
\(404\) −19.8656 −0.988351
\(405\) 0 0
\(406\) 5.07803 0.252018
\(407\) −27.7253 27.7253i −1.37429 1.37429i
\(408\) 0 0
\(409\) 24.1652i 1.19489i −0.801910 0.597445i \(-0.796183\pi\)
0.801910 0.597445i \(-0.203817\pi\)
\(410\) 5.54506 + 1.15732i 0.273851 + 0.0571561i
\(411\) 0 0
\(412\) −6.41742 + 6.41742i −0.316164 + 0.316164i
\(413\) −7.85971 + 7.85971i −0.386751 + 0.386751i
\(414\) 0 0
\(415\) −26.9564 5.62614i −1.32324 0.276176i
\(416\) 12.0059i 0.588638i
\(417\) 0 0
\(418\) −5.37386 5.37386i −0.262844 0.262844i
\(419\) −0.915775 −0.0447385 −0.0223693 0.999750i \(-0.507121\pi\)
−0.0223693 + 0.999750i \(0.507121\pi\)
\(420\) 0 0
\(421\) 39.7477 1.93719 0.968593 0.248652i \(-0.0799876\pi\)
0.968593 + 0.248652i \(0.0799876\pi\)
\(422\) 3.14892 + 3.14892i 0.153287 + 0.153287i
\(423\) 0 0
\(424\) 0.165151i 0.00802046i
\(425\) 12.3149 4.83156i 0.597359 0.234365i
\(426\) 0 0
\(427\) −1.79129 + 1.79129i −0.0866865 + 0.0866865i
\(428\) 6.70239 6.70239i 0.323972 0.323972i
\(429\) 0 0
\(430\) 3.87841 2.53901i 0.187034 0.122442i
\(431\) 9.01703i 0.434335i 0.976134 + 0.217168i \(0.0696818\pi\)
−0.976134 + 0.217168i \(0.930318\pi\)
\(432\) 0 0
\(433\) 4.62614 + 4.62614i 0.222318 + 0.222318i 0.809474 0.587156i \(-0.199752\pi\)
−0.587156 + 0.809474i \(0.699752\pi\)
\(434\) −1.15732 −0.0555532
\(435\) 0 0
\(436\) 24.6261 1.17938
\(437\) 12.9610 + 12.9610i 0.620007 + 0.620007i
\(438\) 0 0
\(439\) 10.5826i 0.505079i −0.967587 0.252539i \(-0.918734\pi\)
0.967587 0.252539i \(-0.0812657\pi\)
\(440\) 4.38774 21.0229i 0.209177 1.00223i
\(441\) 0 0
\(442\) 2.16515 2.16515i 0.102986 0.102986i
\(443\) −7.92713 + 7.92713i −0.376629 + 0.376629i −0.869885 0.493255i \(-0.835807\pi\)
0.493255 + 0.869885i \(0.335807\pi\)
\(444\) 0 0
\(445\) 20.3739 + 31.1216i 0.965814 + 1.47530i
\(446\) 5.54506i 0.262566i
\(447\) 0 0
\(448\) 6.12159 + 6.12159i 0.289218 + 0.289218i
\(449\) 13.1632 0.621211 0.310605 0.950539i \(-0.399468\pi\)
0.310605 + 0.950539i \(0.399468\pi\)
\(450\) 0 0
\(451\) −30.7477 −1.44785
\(452\) 15.4779 + 15.4779i 0.728018 + 0.728018i
\(453\) 0 0
\(454\) 4.46099i 0.209364i
\(455\) −7.85971 12.0059i −0.368469 0.562845i
\(456\) 0 0
\(457\) −3.58258 + 3.58258i −0.167586 + 0.167586i −0.785917 0.618332i \(-0.787809\pi\)
0.618332 + 0.785917i \(0.287809\pi\)
\(458\) −1.88490 + 1.88490i −0.0880756 + 0.0880756i
\(459\) 0 0
\(460\) −5.00000 + 23.9564i −0.233126 + 1.11697i
\(461\) 14.5621i 0.678224i −0.940746 0.339112i \(-0.889873\pi\)
0.940746 0.339112i \(-0.110127\pi\)
\(462\) 0 0
\(463\) −7.83485 7.83485i −0.364116 0.364116i 0.501210 0.865326i \(-0.332889\pi\)
−0.865326 + 0.501210i \(0.832889\pi\)
\(464\) −12.2474 −0.568574
\(465\) 0 0
\(466\) 10.8348 0.501915
\(467\) −5.34279 5.34279i −0.247235 0.247235i 0.572600 0.819835i \(-0.305935\pi\)
−0.819835 + 0.572600i \(0.805935\pi\)
\(468\) 0 0
\(469\) 30.7477i 1.41980i
\(470\) −0.780929 + 0.511238i −0.0360216 + 0.0235817i
\(471\) 0 0
\(472\) −5.37386 + 5.37386i −0.247352 + 0.247352i
\(473\) −17.7925 + 17.7925i −0.818101 + 0.818101i
\(474\) 0 0
\(475\) −13.7477 6.00000i −0.630789 0.275299i
\(476\) 12.0059i 0.550290i
\(477\) 0 0
\(478\) 3.95644 + 3.95644i 0.180963 + 0.180963i
\(479\) 7.85971 0.359119 0.179560 0.983747i \(-0.442533\pi\)
0.179560 + 0.983747i \(0.442533\pi\)
\(480\) 0 0
\(481\) −17.9129 −0.816757
\(482\) −3.79501 3.79501i −0.172858 0.172858i
\(483\) 0 0
\(484\) 35.3739i 1.60790i
\(485\) 11.0901 + 2.31464i 0.503577 + 0.105103i
\(486\) 0 0
\(487\) 0.373864 0.373864i 0.0169414 0.0169414i −0.698585 0.715527i \(-0.746187\pi\)
0.715527 + 0.698585i \(0.246187\pi\)
\(488\) −1.22474 + 1.22474i −0.0554416 + 0.0554416i
\(489\) 0 0
\(490\) 0.582576 + 0.121591i 0.0263181 + 0.00549290i
\(491\) 14.5621i 0.657178i −0.944473 0.328589i \(-0.893427\pi\)
0.944473 0.328589i \(-0.106573\pi\)
\(492\) 0 0
\(493\) −8.20871 8.20871i −0.369702 0.369702i
\(494\) −3.47197 −0.156211
\(495\) 0 0
\(496\) 2.79129 0.125333
\(497\) 9.93280 + 9.93280i 0.445547 + 0.445547i
\(498\) 0 0
\(499\) 27.3303i 1.22347i 0.791062 + 0.611736i \(0.209529\pi\)
−0.791062 + 0.611736i \(0.790471\pi\)
\(500\) −3.35119 19.7448i −0.149870 0.883016i
\(501\) 0 0
\(502\) −7.16515 + 7.16515i −0.319796 + 0.319796i
\(503\) 16.5678 16.5678i 0.738720 0.738720i −0.233610 0.972330i \(-0.575054\pi\)
0.972330 + 0.233610i \(0.0750539\pi\)
\(504\) 0 0
\(505\) −20.7477 + 13.5826i −0.923262 + 0.604417i
\(506\) 15.4779i 0.688075i
\(507\) 0 0
\(508\) 8.95644 + 8.95644i 0.397378 + 0.397378i
\(509\) −17.5510 −0.777933 −0.388966 0.921252i \(-0.627168\pi\)
−0.388966 + 0.921252i \(0.627168\pi\)
\(510\) 0 0
\(511\) −37.1652 −1.64409
\(512\) 16.1914 + 16.1914i 0.715564 + 0.715564i
\(513\) 0 0
\(514\) 1.62614i 0.0717258i
\(515\) −2.31464 + 11.0901i −0.101995 + 0.488689i
\(516\) 0 0
\(517\) 3.58258 3.58258i 0.157561 0.157561i
\(518\) −5.78661 + 5.78661i −0.254249 + 0.254249i
\(519\) 0 0
\(520\) −5.37386 8.20871i −0.235660 0.359976i
\(521\) 27.7253i 1.21467i −0.794447 0.607334i \(-0.792239\pi\)
0.794447 0.607334i \(-0.207761\pi\)
\(522\) 0 0
\(523\) 15.3739 + 15.3739i 0.672252 + 0.672252i 0.958235 0.285983i \(-0.0923200\pi\)
−0.285983 + 0.958235i \(0.592320\pi\)
\(524\) −13.6463 −0.596142
\(525\) 0 0
\(526\) −0.504546 −0.0219992
\(527\) 1.87083 + 1.87083i 0.0814946 + 0.0814946i
\(528\) 0 0
\(529\) 14.3303i 0.623057i
\(530\) 0.0533508 + 0.0814947i 0.00231741 + 0.00353990i
\(531\) 0 0
\(532\) 9.62614 9.62614i 0.417346 0.417346i
\(533\) −9.93280 + 9.93280i −0.430238 + 0.430238i
\(534\) 0 0
\(535\) 2.41742 11.5826i 0.104514 0.500758i
\(536\) 21.0229i 0.908052i
\(537\) 0 0
\(538\) 1.12159 + 1.12159i 0.0483552 + 0.0483552i
\(539\) −3.23042 −0.139144
\(540\) 0 0
\(541\) −19.4955 −0.838175 −0.419088 0.907946i \(-0.637650\pi\)
−0.419088 + 0.907946i \(0.637650\pi\)
\(542\) −0.323042 0.323042i −0.0138758 0.0138758i
\(543\) 0 0
\(544\) 12.5390i 0.537606i
\(545\) 25.7196 16.8375i 1.10171 0.721237i
\(546\) 0 0
\(547\) −23.9564 + 23.9564i −1.02430 + 1.02430i −0.0246062 + 0.999697i \(0.507833\pi\)
−0.999697 + 0.0246062i \(0.992167\pi\)
\(548\) 18.5875 18.5875i 0.794019 0.794019i
\(549\) 0 0
\(550\) −4.62614 11.7913i −0.197259 0.502782i
\(551\) 13.1632i 0.560772i
\(552\) 0 0
\(553\) −18.9564 18.9564i −0.806110 0.806110i
\(554\) −8.53394 −0.362572
\(555\) 0 0
\(556\) −5.66970 −0.240449
\(557\) −26.0568 26.0568i −1.10406 1.10406i −0.993916 0.110145i \(-0.964869\pi\)
−0.110145 0.993916i \(-0.535131\pi\)
\(558\) 0 0
\(559\) 11.4955i 0.486206i
\(560\) 15.4779 + 3.23042i 0.654059 + 0.136510i
\(561\) 0 0
\(562\) −0.669697 + 0.669697i −0.0282495 + 0.0282495i
\(563\) −8.64064 + 8.64064i −0.364159 + 0.364159i −0.865342 0.501182i \(-0.832899\pi\)
0.501182 + 0.865342i \(0.332899\pi\)
\(564\) 0 0
\(565\) 26.7477 + 5.58258i 1.12529 + 0.234861i
\(566\) 8.53394i 0.358708i
\(567\) 0 0
\(568\) 6.79129 + 6.79129i 0.284956 + 0.284956i
\(569\) −28.8826 −1.21082 −0.605412 0.795913i \(-0.706991\pi\)
−0.605412 + 0.795913i \(0.706991\pi\)
\(570\) 0 0
\(571\) −22.4955 −0.941405 −0.470703 0.882292i \(-0.656000\pi\)
−0.470703 + 0.882292i \(0.656000\pi\)
\(572\) 17.7925 + 17.7925i 0.743942 + 0.743942i
\(573\) 0 0
\(574\) 6.41742i 0.267858i
\(575\) 11.1575 + 28.4388i 0.465302 + 1.18598i
\(576\) 0 0
\(577\) −10.3739 + 10.3739i −0.431870 + 0.431870i −0.889264 0.457394i \(-0.848783\pi\)
0.457394 + 0.889264i \(0.348783\pi\)
\(578\) 3.23042 3.23042i 0.134368 0.134368i
\(579\) 0 0
\(580\) −14.7042 + 9.62614i −0.610557 + 0.399704i
\(581\) 31.1973i 1.29428i
\(582\) 0 0
\(583\) −0.373864 0.373864i −0.0154838 0.0154838i
\(584\) −25.4107 −1.05150
\(585\) 0 0
\(586\) −7.95644 −0.328677
\(587\) 27.0118 + 27.0118i 1.11490 + 1.11490i 0.992479 + 0.122418i \(0.0390649\pi\)
0.122418 + 0.992479i \(0.460935\pi\)
\(588\) 0 0
\(589\) 3.00000i 0.123613i
\(590\) −0.915775 + 4.38774i −0.0377019 + 0.180640i
\(591\) 0 0
\(592\) 13.9564 13.9564i 0.573606 0.573606i
\(593\) −29.8658 + 29.8658i −1.22644 + 1.22644i −0.261143 + 0.965300i \(0.584099\pi\)
−0.965300 + 0.261143i \(0.915901\pi\)
\(594\) 0 0
\(595\) 8.20871 + 12.5390i 0.336524 + 0.514049i
\(596\) 14.0790i 0.576698i
\(597\) 0 0
\(598\) 5.00000 + 5.00000i 0.204465 + 0.204465i
\(599\) 28.8826 1.18011 0.590056 0.807362i \(-0.299106\pi\)
0.590056 + 0.807362i \(0.299106\pi\)
\(600\) 0 0
\(601\) 39.7477 1.62134 0.810672 0.585501i \(-0.199102\pi\)
0.810672 + 0.585501i \(0.199102\pi\)
\(602\) 3.71351 + 3.71351i 0.151352 + 0.151352i
\(603\) 0 0
\(604\) 3.58258i 0.145773i
\(605\) 24.1859 + 36.9446i 0.983298 + 1.50201i
\(606\) 0 0
\(607\) 13.9564 13.9564i 0.566474 0.566474i −0.364665 0.931139i \(-0.618816\pi\)
0.931139 + 0.364665i \(0.118816\pi\)
\(608\) 10.0536 10.0536i 0.407726 0.407726i
\(609\) 0 0
\(610\) −0.208712 + 1.00000i −0.00845051 + 0.0404888i
\(611\) 2.31464i 0.0936405i
\(612\) 0 0
\(613\) 10.0000 + 10.0000i 0.403896 + 0.403896i 0.879604 0.475707i \(-0.157808\pi\)
−0.475707 + 0.879604i \(0.657808\pi\)
\(614\) −10.1744 −0.410603
\(615\) 0 0
\(616\) 24.3303 0.980296
\(617\) −14.1183 14.1183i −0.568380 0.568380i 0.363294 0.931675i \(-0.381652\pi\)
−0.931675 + 0.363294i \(0.881652\pi\)
\(618\) 0 0
\(619\) 19.5826i 0.787090i −0.919305 0.393545i \(-0.871249\pi\)
0.919305 0.393545i \(-0.128751\pi\)
\(620\) 3.35119 2.19387i 0.134587 0.0881080i
\(621\) 0 0
\(622\) −2.91288 + 2.91288i −0.116796 + 0.116796i
\(623\) −29.7984 + 29.7984i −1.19385 + 1.19385i
\(624\) 0 0
\(625\) −17.0000 18.3303i −0.680000 0.733212i
\(626\) 11.0901i 0.443251i
\(627\) 0 0
\(628\) −5.74773 5.74773i −0.229359 0.229359i
\(629\) 18.7083 0.745948
\(630\) 0 0
\(631\) 39.7477 1.58233 0.791166 0.611601i \(-0.209474\pi\)
0.791166 + 0.611601i \(0.209474\pi\)
\(632\) −12.9610 12.9610i −0.515559 0.515559i
\(633\) 0 0
\(634\) 14.7913i 0.587437i
\(635\) 15.4779 + 3.23042i 0.614220 + 0.128195i
\(636\) 0 0
\(637\) −1.04356 + 1.04356i −0.0413474 + 0.0413474i
\(638\) −7.85971 + 7.85971i −0.311169 + 0.311169i
\(639\) 0 0
\(640\) 24.1652 + 5.04356i 0.955211 + 0.199364i
\(641\) 37.4166i 1.47787i −0.673779 0.738933i \(-0.735330\pi\)
0.673779 0.738933i \(-0.264670\pi\)
\(642\) 0 0
\(643\) 1.79129 + 1.79129i 0.0706415 + 0.0706415i 0.741545 0.670903i \(-0.234093\pi\)
−0.670903 + 0.741545i \(0.734093\pi\)
\(644\) −27.7253 −1.09253
\(645\) 0 0
\(646\) 3.62614 0.142668
\(647\) −18.5060 18.5060i −0.727547 0.727547i 0.242584 0.970130i \(-0.422005\pi\)
−0.970130 + 0.242584i \(0.922005\pi\)
\(648\) 0 0
\(649\) 24.3303i 0.955048i
\(650\) −5.30352 2.31464i −0.208021 0.0907878i
\(651\) 0 0
\(652\) −8.95644 + 8.95644i −0.350761 + 0.350761i
\(653\) 17.4835 17.4835i 0.684184 0.684184i −0.276756 0.960940i \(-0.589259\pi\)
0.960940 + 0.276756i \(0.0892595\pi\)
\(654\) 0 0
\(655\) −14.2523 + 9.33030i −0.556882 + 0.364565i
\(656\) 15.4779i 0.604309i
\(657\) 0 0
\(658\) −0.747727 0.747727i −0.0291494 0.0291494i
\(659\) 37.6581 1.46695 0.733476 0.679715i \(-0.237897\pi\)
0.733476 + 0.679715i \(0.237897\pi\)
\(660\) 0 0
\(661\) 23.4955 0.913867 0.456934 0.889501i \(-0.348948\pi\)
0.456934 + 0.889501i \(0.348948\pi\)
\(662\) 4.11805 + 4.11805i 0.160053 + 0.160053i
\(663\) 0 0
\(664\) 21.3303i 0.827776i
\(665\) 3.47197 16.6352i 0.134637 0.645085i
\(666\) 0 0
\(667\) 18.9564 18.9564i 0.733996 0.733996i
\(668\) −19.0706 + 19.0706i −0.737864 + 0.737864i
\(669\) 0 0
\(670\) −6.79129 10.3739i −0.262370 0.400777i
\(671\) 5.54506i 0.214065i
\(672\) 0 0
\(673\) −22.5390 22.5390i −0.868815 0.868815i 0.123526 0.992341i \(-0.460580\pi\)
−0.992341 + 0.123526i \(0.960580\pi\)
\(674\) 11.7644 0.453146
\(675\) 0 0
\(676\) −11.7913 −0.453511
\(677\) 12.5171 + 12.5171i 0.481073 + 0.481073i 0.905474 0.424401i \(-0.139515\pi\)
−0.424401 + 0.905474i \(0.639515\pi\)
\(678\) 0 0
\(679\) 12.8348i 0.492556i
\(680\) 5.61249 + 8.57321i 0.215229 + 0.328768i
\(681\) 0 0
\(682\) 1.79129 1.79129i 0.0685920 0.0685920i
\(683\) −0.0674228 + 0.0674228i −0.00257986 + 0.00257986i −0.708396 0.705816i \(-0.750581\pi\)
0.705816 + 0.708396i \(0.250581\pi\)
\(684\) 0 0
\(685\) 6.70417 32.1216i 0.256153 1.22730i
\(686\) 8.77548i 0.335049i
\(687\) 0 0
\(688\) −8.95644 8.95644i −0.341461 0.341461i
\(689\) −0.241547 −0.00920221
\(690\) 0 0
\(691\) −11.7477 −0.446905 −0.223452 0.974715i \(-0.571733\pi\)
−0.223452 + 0.974715i \(0.571733\pi\)
\(692\) 14.1998 + 14.1998i 0.539794 + 0.539794i
\(693\) 0 0
\(694\) 5.49545i 0.208605i
\(695\) −5.92146 + 3.87650i −0.224614 + 0.147044i
\(696\) 0 0
\(697\) 10.3739 10.3739i 0.392938 0.392938i
\(698\) −6.27264 + 6.27264i −0.237423 + 0.237423i
\(699\) 0 0
\(700\) 21.1216 8.28674i 0.798321 0.313209i
\(701\) 47.8325i 1.80661i −0.429001 0.903304i \(-0.641134\pi\)
0.429001 0.903304i \(-0.358866\pi\)
\(702\) 0 0
\(703\) −15.0000 15.0000i −0.565736 0.565736i
\(704\) −18.9498 −0.714199
\(705\) 0 0
\(706\) 8.00000 0.301084
\(707\) −19.8656 19.8656i −0.747123 0.747123i
\(708\) 0 0
\(709\) 42.6606i 1.60215i 0.598562 + 0.801076i \(0.295739\pi\)
−0.598562 + 0.801076i \(0.704261\pi\)
\(710\) 5.54506 + 1.15732i 0.208103 + 0.0434335i
\(711\) 0 0
\(712\) −20.3739 + 20.3739i −0.763543 + 0.763543i
\(713\) −4.32032 + 4.32032i −0.161797 + 0.161797i
\(714\) 0 0
\(715\) 30.7477 + 6.41742i 1.14990 + 0.239998i
\(716\) 0 0
\(717\) 0 0
\(718\) 9.62614 + 9.62614i 0.359244 + 0.359244i
\(719\) −29.7984 −1.11129 −0.555647 0.831419i \(-0.687529\pi\)
−0.555647 + 0.831419i \(0.687529\pi\)
\(720\) 0 0
\(721\) −12.8348 −0.477995
\(722\) 3.23042 + 3.23042i 0.120224 + 0.120224i
\(723\) 0 0
\(724\) 17.4610i 0.648932i
\(725\) −8.77548 + 20.1072i −0.325913 + 0.746761i
\(726\) 0 0
\(727\) 37.1652 37.1652i 1.37838 1.37838i 0.531020 0.847359i \(-0.321809\pi\)
0.847359 0.531020i \(-0.178191\pi\)
\(728\) 7.85971 7.85971i 0.291300 0.291300i
\(729\) 0 0
\(730\) −12.5390 + 8.20871i −0.464090 + 0.303818i
\(731\) 12.0059i 0.444054i
\(732\) 0 0
\(733\) 26.4174 + 26.4174i 0.975750 + 0.975750i 0.999713 0.0239630i \(-0.00762839\pi\)
−0.0239630 + 0.999713i \(0.507628\pi\)
\(734\) −5.78661 −0.213588
\(735\) 0 0
\(736\) −28.9564 −1.06735
\(737\) 47.5909 + 47.5909i 1.75303 + 1.75303i
\(738\) 0 0
\(739\) 24.4955i 0.901080i 0.892756 + 0.450540i \(0.148769\pi\)
−0.892756 + 0.450540i \(0.851231\pi\)
\(740\) 5.78661 27.7253i 0.212720 1.01920i
\(741\) 0 0
\(742\) −0.0780299 + 0.0780299i −0.00286457 + 0.00286457i
\(743\) −12.1126 + 12.1126i −0.444368 + 0.444368i −0.893477 0.449109i \(-0.851742\pi\)
0.449109 + 0.893477i \(0.351742\pi\)
\(744\) 0 0
\(745\) 9.62614 + 14.7042i 0.352674 + 0.538719i
\(746\) 2.31464i 0.0847451i
\(747\) 0 0
\(748\) −18.5826 18.5826i −0.679446 0.679446i
\(749\) 13.4048 0.489800
\(750\) 0 0
\(751\) 9.74773 0.355700 0.177850 0.984058i \(-0.443086\pi\)
0.177850 + 0.984058i \(0.443086\pi\)
\(752\) 1.80341 + 1.80341i 0.0657634 + 0.0657634i
\(753\) 0 0
\(754\) 5.07803i 0.184931i
\(755\) −2.44949 3.74166i −0.0891461 0.136173i
\(756\) 0 0
\(757\) −5.00000 + 5.00000i −0.181728 + 0.181728i −0.792108 0.610380i \(-0.791017\pi\)
0.610380 + 0.792108i \(0.291017\pi\)
\(758\) 2.50284 2.50284i 0.0909073 0.0909073i
\(759\) 0 0
\(760\) 2.37386 11.3739i 0.0861091 0.412573i
\(761\) 9.01703i 0.326867i 0.986554 + 0.163434i \(0.0522569\pi\)
−0.986554 + 0.163434i \(0.947743\pi\)
\(762\) 0 0
\(763\) 24.6261 + 24.6261i 0.891526 + 0.891526i
\(764\) 33.5119 1.21242
\(765\) 0 0
\(766\) 13.5390 0.489184
\(767\) −7.85971 7.85971i −0.283798 0.283798i
\(768\) 0 0
\(769\) 27.3303i 0.985556i 0.870155 + 0.492778i \(0.164019\pi\)
−0.870155 + 0.492778i \(0.835981\pi\)
\(770\) 12.0059 7.85971i 0.432663 0.283244i
\(771\) 0 0
\(772\) 3.20871 3.20871i 0.115484 0.115484i
\(773\) −36.8098 + 36.8098i −1.32396 + 1.32396i −0.413411 + 0.910545i \(0.635663\pi\)
−0.910545 + 0.413411i \(0.864337\pi\)
\(774\) 0 0
\(775\) 2.00000 4.58258i 0.0718421 0.164611i
\(776\) 8.77548i 0.315021i
\(777\) 0 0
\(778\) 2.53901 + 2.53901i 0.0910281 + 0.0910281i
\(779\) −16.6352 −0.596018
\(780\) 0 0
\(781\) −30.7477 −1.10024
\(782\) −5.22202 5.22202i −0.186739 0.186739i
\(783\) 0 0
\(784\) 1.62614i 0.0580763i
\(785\) −9.93280 2.07310i −0.354517 0.0739920i
\(786\) 0 0
\(787\) −37.5390 + 37.5390i −1.33812 + 1.33812i −0.440242 + 0.897879i \(0.645107\pi\)
−0.897879 + 0.440242i \(0.854893\pi\)
\(788\) −3.35119 + 3.35119i −0.119381 + 0.119381i
\(789\) 0 0
\(790\) −10.5826 2.20871i −0.376511 0.0785825i
\(791\) 30.9557i 1.10066i
\(792\) 0 0
\(793\) −1.79129 1.79129i −0.0636105 0.0636105i
\(794\) 16.8767 0.598933
\(795\) 0 0
\(796\) −30.0000 −1.06332
\(797\) 2.51691 + 2.51691i 0.0891536 + 0.0891536i 0.750277 0.661123i \(-0.229920\pi\)
−0.661123 + 0.750277i \(0.729920\pi\)
\(798\) 0 0
\(799\) 2.41742i 0.0855223i
\(800\) 22.0595 8.65471i 0.779920 0.305990i
\(801\) 0 0
\(802\) −6.04356 + 6.04356i −0.213406 + 0.213406i
\(803\) 57.5237 57.5237i 2.02997 2.02997i
\(804\) 0 0
\(805\) −28.9564 + 18.9564i −1.02058 + 0.668127i
\(806\) 1.15732i 0.0407649i
\(807\) 0 0
\(808\) −13.5826 13.5826i −0.477833 0.477833i
\(809\) −42.9616 −1.51045 −0.755225 0.655465i \(-0.772473\pi\)
−0.755225 + 0.655465i \(0.772473\pi\)
\(810\) 0 0
\(811\) 23.4955 0.825037 0.412518 0.910949i \(-0.364649\pi\)
0.412518 + 0.910949i \(0.364649\pi\)
\(812\) −14.0790 14.0790i −0.494076 0.494076i
\(813\) 0 0
\(814\) 17.9129i 0.627846i
\(815\) −3.23042 + 15.4779i −0.113157 + 0.542166i
\(816\) 0 0
\(817\) −9.62614 + 9.62614i −0.336776 + 0.336776i
\(818\) 7.80636 7.80636i 0.272943 0.272943i
\(819\) 0 0
\(820\) −12.1652 18.5826i −0.424826 0.648932i
\(821\) 7.61816i 0.265876i −0.991124 0.132938i \(-0.957559\pi\)
0.991124 0.132938i \(-0.0424411\pi\)
\(822\) 0 0
\(823\) −23.9564 23.9564i −0.835069 0.835069i 0.153136 0.988205i \(-0.451063\pi\)
−0.988205 + 0.153136i \(0.951063\pi\)
\(824\) −8.77548 −0.305708
\(825\) 0 0
\(826\) −5.07803 −0.176687
\(827\) −31.6692 31.6692i −1.10125 1.10125i −0.994260 0.106987i \(-0.965880\pi\)
−0.106987 0.994260i \(-0.534120\pi\)
\(828\) 0 0
\(829\) 34.7477i 1.20684i 0.797424 + 0.603419i \(0.206195\pi\)
−0.797424 + 0.603419i \(0.793805\pi\)
\(830\) −6.89058 10.5255i −0.239176 0.365347i
\(831\) 0 0
\(832\) −6.12159 + 6.12159i −0.212228 + 0.212228i
\(833\) 1.08990 1.08990i 0.0377628 0.0377628i
\(834\) 0 0
\(835\) −6.87841 + 32.9564i −0.238037 + 1.14050i
\(836\) 29.7984i 1.03060i
\(837\) 0 0
\(838\) −0.295834 0.295834i −0.0102194 0.0102194i
\(839\) −35.1019 −1.21185 −0.605927 0.795521i \(-0.707197\pi\)
−0.605927 + 0.795521i \(0.707197\pi\)
\(840\) 0 0
\(841\) −9.74773 −0.336129
\(842\) 12.8402 + 12.8402i 0.442502 + 0.442502i
\(843\) 0 0
\(844\) 17.4610i 0.601032i
\(845\) −12.3149 + 8.06198i −0.423644 + 0.277340i
\(846\) 0 0
\(847\) −35.3739 + 35.3739i −1.21546 + 1.21546i
\(848\) 0.188196 0.188196i 0.00646269 0.00646269i
\(849\) 0 0
\(850\) 5.53901 + 2.41742i 0.189987 + 0.0829170i
\(851\) 43.2032i 1.48099i
\(852\) 0 0
\(853\) 4.33030 + 4.33030i 0.148267 + 0.148267i 0.777343 0.629077i \(-0.216567\pi\)
−0.629077 + 0.777343i \(0.716567\pi\)
\(854\) −1.15732 −0.0396027
\(855\) 0 0
\(856\) 9.16515 0.313258
\(857\) −6.25857 6.25857i −0.213789 0.213789i 0.592086 0.805875i \(-0.298305\pi\)
−0.805875 + 0.592086i \(0.798305\pi\)
\(858\) 0 0
\(859\) 45.6606i 1.55792i −0.627074 0.778960i \(-0.715748\pi\)
0.627074 0.778960i \(-0.284252\pi\)
\(860\) −17.7925 3.71351i −0.606720 0.126630i
\(861\) 0 0
\(862\) −2.91288 + 2.91288i −0.0992130 + 0.0992130i
\(863\) 26.2590 26.2590i 0.893868 0.893868i −0.101017 0.994885i \(-0.532210\pi\)
0.994885 + 0.101017i \(0.0322097\pi\)
\(864\) 0 0
\(865\) 24.5390 + 5.12159i 0.834352 + 0.174139i
\(866\) 2.98887i 0.101566i
\(867\) 0 0
\(868\) 3.20871 + 3.20871i 0.108911 + 0.108911i
\(869\) 58.6811 1.99062
\(870\) 0 0
\(871\) 30.7477 1.04185
\(872\) 16.8375 + 16.8375i 0.570188 + 0.570188i
\(873\) 0 0
\(874\) 8.37386i 0.283250i
\(875\) 16.3936 23.0960i 0.554206 0.780788i
\(876\) 0 0
\(877\) 3.20871 3.20871i 0.108351 0.108351i −0.650853 0.759204i \(-0.725589\pi\)
0.759204 + 0.650853i \(0.225589\pi\)
\(878\) 3.41862 3.41862i 0.115373 0.115373i
\(879\) 0 0
\(880\) −28.9564 + 18.9564i −0.976121 + 0.639021i
\(881\) 35.3435i 1.19075i 0.803447 + 0.595376i \(0.202997\pi\)
−0.803447 + 0.595376i \(0.797003\pi\)
\(882\) 0 0
\(883\) −25.3739 25.3739i −0.853898 0.853898i 0.136712 0.990611i \(-0.456346\pi\)
−0.990611 + 0.136712i \(0.956346\pi\)
\(884\) −12.0059 −0.403802
\(885\) 0 0
\(886\) −5.12159 −0.172063
\(887\) 35.7873 + 35.7873i 1.20162 + 1.20162i 0.973674 + 0.227946i \(0.0732009\pi\)
0.227946 + 0.973674i \(0.426799\pi\)
\(888\) 0 0
\(889\) 17.9129i 0.600779i
\(890\) −3.47197 + 16.6352i −0.116381 + 0.557613i
\(891\) 0 0
\(892\) 15.3739 15.3739i 0.514755 0.514755i
\(893\) 1.93825 1.93825i 0.0648611 0.0648611i
\(894\) 0 0
\(895\) 0 0
\(896\) 27.9669i 0.934307i
\(897\) 0 0
\(898\) 4.25227 + 4.25227i 0.141900 + 0.141900i
\(899\) −4.38774 −0.146339
\(900\) 0 0
\(901\) 0.252273 0.00840443
\(902\) −9.93280 9.93280i −0.330726 0.330726i
\(903\) 0 0
\(904\) 21.1652i 0.703942i
\(905\) −11.9385 18.2363i −0.396848 0.606196i
\(906\) 0 0
\(907\) 17.9129 17.9129i 0.594787 0.594787i −0.344133 0.938921i \(-0.611827\pi\)
0.938921 + 0.344133i \(0.111827\pi\)
\(908\) 12.3682 12.3682i 0.410454 0.410454i
\(909\) 0 0
\(910\) 1.33939 6.41742i 0.0444005 0.212736i
\(911\) 24.2534i 0.803549i −0.915739 0.401775i \(-0.868394\pi\)
0.915739 0.401775i \(-0.131606\pi\)
\(912\) 0 0
\(913\) 48.2867 + 48.2867i 1.59806 + 1.59806i
\(914\) −2.31464 −0.0765616
\(915\) 0 0
\(916\) 10.4519 0.345340
\(917\) −13.6463 13.6463i −0.450641 0.450641i
\(918\) 0 0
\(919\) 24.0000i 0.791687i 0.918318 + 0.395843i \(0.129548\pi\)
−0.918318 + 0.395843i \(0.870452\pi\)
\(920\) −19.7982 + 12.9610i −0.652727 + 0.427310i
\(921\) 0 0
\(922\) 4.70417 4.70417i 0.154923 0.154923i
\(923\) −9.93280 + 9.93280i −0.326942 + 0.326942i
\(924\) 0 0
\(925\) −12.9129 32.9129i −0.424573 1.08217i
\(926\) 5.06197i 0.166347i
\(927\) 0 0
\(928\) −14.7042 14.7042i −0.482688 0.482688i
\(929\) 0.915775 0.0300456 0.0150228 0.999887i \(-0.495218\pi\)
0.0150228 + 0.999887i \(0.495218\pi\)
\(930\) 0 0
\(931\) −1.74773 −0.0572794
\(932\) −30.0400 30.0400i −0.983992 0.983992i
\(933\) 0 0
\(934\) 3.45189i 0.112949i
\(935\) −32.1131 6.70239i −1.05021 0.219191i
\(936\) 0 0
\(937\) −0.747727 + 0.747727i −0.0244272 + 0.0244272i −0.719215 0.694788i \(-0.755498\pi\)
0.694788 + 0.719215i \(0.255498\pi\)
\(938\) 9.93280 9.93280i 0.324318 0.324318i
\(939\) 0 0
\(940\) 3.58258 + 0.747727i 0.116851 + 0.0243882i
\(941\) 14.5621i 0.474711i −0.971423 0.237355i \(-0.923719\pi\)
0.971423 0.237355i \(-0.0762806\pi\)
\(942\) 0 0
\(943\) 23.9564 + 23.9564i 0.780129 + 0.780129i
\(944\) 12.2474 0.398621
\(945\) 0 0
\(946\) −11.4955 −0.373749
\(947\) −9.73054 9.73054i −0.316200 0.316200i 0.531106 0.847306i \(-0.321777\pi\)
−0.847306 + 0.531106i \(0.821777\pi\)
\(948\) 0 0
\(949\) 37.1652i 1.20643i
\(950\) −2.50284 6.37934i −0.0812029 0.206973i
\(951\) 0 0
\(952\) −8.20871 + 8.20871i −0.266046 + 0.266046i
\(953\) 20.2420 20.2420i 0.655703 0.655703i −0.298658 0.954360i \(-0.596539\pi\)
0.954360 + 0.298658i \(0.0965388\pi\)
\(954\) 0 0
\(955\) 35.0000 22.9129i 1.13257 0.741443i
\(956\) 21.9387i 0.709548i
\(957\) 0 0
\(958\) 2.53901 + 2.53901i 0.0820318 + 0.0820318i
\(959\) 37.1750 1.20044
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) −5.78661 5.78661i −0.186568 0.186568i
\(963\) 0 0
\(964\) 21.0436i 0.677767i
\(965\) 1.15732 5.54506i 0.0372555 0.178502i
\(966\) 0 0
\(967\) 19.3303 19.3303i 0.621621 0.621621i −0.324325 0.945946i \(-0.605137\pi\)
0.945946 + 0.324325i \(0.105137\pi\)
\(968\) −24.1859 + 24.1859i −0.777365 + 0.777365i
\(969\) 0 0
\(970\) 2.83485 + 4.33030i 0.0910215 + 0.139038i
\(971\) 18.7083i 0.600377i 0.953880 + 0.300189i \(0.0970497\pi\)
−0.953880 + 0.300189i \(0.902950\pi\)
\(972\) 0 0
\(973\) −5.66970 5.66970i −0.181762 0.181762i
\(974\) 0.241547 0.00773967
\(975\) 0 0
\(976\) 2.79129 0.0893469
\(977\) −1.56186 1.56186i −0.0499683 0.0499683i 0.681681 0.731649i \(-0.261249\pi\)
−0.731649 + 0.681681i \(0.761249\pi\)
\(978\) 0 0
\(979\) 92.2432i 2.94810i
\(980\) −1.27810 1.95232i −0.0408273 0.0623647i
\(981\) 0 0
\(982\) 4.70417 4.70417i 0.150116 0.150116i
\(983\) 12.1800 12.1800i 0.388482 0.388482i −0.485663 0.874146i \(-0.661422\pi\)
0.874146 + 0.485663i \(0.161422\pi\)
\(984\) 0 0
\(985\) −1.20871 + 5.79129i −0.0385128 + 0.184526i
\(986\) 5.30352i 0.168898i
\(987\) 0 0
\(988\) 9.62614 + 9.62614i 0.306248 + 0.306248i
\(989\) 27.7253 0.881614
\(990\) 0 0
\(991\) 18.2523 0.579803 0.289901 0.957057i \(-0.406378\pi\)
0.289901 + 0.957057i \(0.406378\pi\)
\(992\) 3.35119 + 3.35119i 0.106400 + 0.106400i
\(993\) 0 0
\(994\) 6.41742i 0.203548i
\(995\) −31.3321 + 20.5117i −0.993295 + 0.650264i
\(996\) 0 0
\(997\) 16.7913 16.7913i 0.531785 0.531785i −0.389318 0.921103i \(-0.627289\pi\)
0.921103 + 0.389318i \(0.127289\pi\)
\(998\) −8.82883 + 8.82883i −0.279472 + 0.279472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.2.f.a.53.3 yes 8
3.2 odd 2 inner 135.2.f.a.53.2 8
4.3 odd 2 2160.2.w.d.593.1 8
5.2 odd 4 inner 135.2.f.a.107.2 yes 8
5.3 odd 4 675.2.f.i.107.3 8
5.4 even 2 675.2.f.i.593.2 8
9.2 odd 6 405.2.m.c.53.2 16
9.4 even 3 405.2.m.c.188.2 16
9.5 odd 6 405.2.m.c.188.3 16
9.7 even 3 405.2.m.c.53.3 16
12.11 even 2 2160.2.w.d.593.4 8
15.2 even 4 inner 135.2.f.a.107.3 yes 8
15.8 even 4 675.2.f.i.107.2 8
15.14 odd 2 675.2.f.i.593.3 8
20.7 even 4 2160.2.w.d.1457.3 8
45.2 even 12 405.2.m.c.377.2 16
45.7 odd 12 405.2.m.c.377.3 16
45.22 odd 12 405.2.m.c.107.2 16
45.32 even 12 405.2.m.c.107.3 16
60.47 odd 4 2160.2.w.d.1457.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.f.a.53.2 8 3.2 odd 2 inner
135.2.f.a.53.3 yes 8 1.1 even 1 trivial
135.2.f.a.107.2 yes 8 5.2 odd 4 inner
135.2.f.a.107.3 yes 8 15.2 even 4 inner
405.2.m.c.53.2 16 9.2 odd 6
405.2.m.c.53.3 16 9.7 even 3
405.2.m.c.107.2 16 45.22 odd 12
405.2.m.c.107.3 16 45.32 even 12
405.2.m.c.188.2 16 9.4 even 3
405.2.m.c.188.3 16 9.5 odd 6
405.2.m.c.377.2 16 45.2 even 12
405.2.m.c.377.3 16 45.7 odd 12
675.2.f.i.107.2 8 15.8 even 4
675.2.f.i.107.3 8 5.3 odd 4
675.2.f.i.593.2 8 5.4 even 2
675.2.f.i.593.3 8 15.14 odd 2
2160.2.w.d.593.1 8 4.3 odd 2
2160.2.w.d.593.4 8 12.11 even 2
2160.2.w.d.1457.2 8 60.47 odd 4
2160.2.w.d.1457.3 8 20.7 even 4