Properties

Label 405.2.m.c.377.3
Level $405$
Weight $2$
Character 405.377
Analytic conductor $3.234$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(53,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.m (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.162447943996702457856.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 377.3
Root \(-0.140577 - 1.40721i\) of defining polynomial
Character \(\chi\) \(=\) 405.377
Dual form 405.2.m.c.188.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.441283 + 0.118242i) q^{2} +(-1.55130 - 0.895644i) q^{4} +(1.00781 + 1.99607i) q^{5} +(0.655657 - 2.44694i) q^{7} +(-1.22474 - 1.22474i) q^{8} +(0.208712 + 1.00000i) q^{10} +(4.80217 - 2.77253i) q^{11} +(0.655657 + 2.44694i) q^{13} +(0.578661 - 1.00227i) q^{14} +(1.39564 + 2.41733i) q^{16} +(1.87083 - 1.87083i) q^{17} -3.00000i q^{19} +(0.224351 - 3.99915i) q^{20} +(2.44694 - 0.655657i) q^{22} +(5.90166 - 1.58135i) q^{23} +(-2.96863 + 4.02334i) q^{25} +1.15732i q^{26} +(-3.20871 + 3.20871i) q^{28} +(2.19387 + 3.79990i) q^{29} +(0.500000 - 0.866025i) q^{31} +(1.22662 + 4.57781i) q^{32} +(1.04678 - 0.604356i) q^{34} +(5.54506 - 1.15732i) q^{35} +(-5.00000 - 5.00000i) q^{37} +(0.354725 - 1.32385i) q^{38} +(1.21037 - 3.67900i) q^{40} +(-4.80217 - 2.77253i) q^{41} +(-4.38318 - 1.17447i) q^{43} -9.93280 q^{44} +2.79129 q^{46} +(-0.882567 - 0.236483i) q^{47} +(0.504525 + 0.291288i) q^{49} +(-1.78573 + 1.42442i) q^{50} +(1.17447 - 4.38318i) q^{52} +(0.0674228 + 0.0674228i) q^{53} +(10.3739 + 6.79129i) q^{55} +(-3.79990 + 2.19387i) q^{56} +(0.518813 + 1.93624i) q^{58} +(-2.19387 + 3.79990i) q^{59} +(0.500000 + 0.866025i) q^{61} +(0.323042 - 0.323042i) q^{62} -3.41742i q^{64} +(-4.22350 + 3.77480i) q^{65} +(-11.7240 + 3.14144i) q^{67} +(-4.57781 + 1.22662i) q^{68} +(2.58379 + 0.144950i) q^{70} +5.54506i q^{71} +(-10.3739 + 10.3739i) q^{73} +(-1.61521 - 2.79763i) q^{74} +(-2.68693 + 4.65390i) q^{76} +(-3.63566 - 13.5685i) q^{77} +(9.16478 - 5.29129i) q^{79} +(-3.41862 + 5.22202i) q^{80} +(-1.79129 - 1.79129i) q^{82} +(-3.18737 + 11.8954i) q^{83} +(5.61976 + 1.84887i) q^{85} +(-1.79535 - 1.03655i) q^{86} +(-9.27707 - 2.48578i) q^{88} +16.6352 q^{89} +6.41742 q^{91} +(-10.5716 - 2.83265i) q^{92} +(-0.361500 - 0.208712i) q^{94} +(5.98822 - 3.02344i) q^{95} +(-1.31131 + 4.89389i) q^{97} +(0.188196 + 0.188196i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{7} + 40 q^{10} + 4 q^{13} + 4 q^{16} - 4 q^{22} + 16 q^{25} - 88 q^{28} + 8 q^{31} - 80 q^{37} + 12 q^{40} - 44 q^{43} + 8 q^{46} - 44 q^{52} + 56 q^{55} - 48 q^{58} + 8 q^{61} - 32 q^{67} + 48 q^{70}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.441283 + 0.118242i 0.312035 + 0.0836094i 0.411438 0.911438i \(-0.365027\pi\)
−0.0994033 + 0.995047i \(0.531693\pi\)
\(3\) 0 0
\(4\) −1.55130 0.895644i −0.775650 0.447822i
\(5\) 1.00781 + 1.99607i 0.450708 + 0.892672i
\(6\) 0 0
\(7\) 0.655657 2.44694i 0.247815 0.924858i −0.724133 0.689661i \(-0.757760\pi\)
0.971948 0.235197i \(-0.0755737\pi\)
\(8\) −1.22474 1.22474i −0.433013 0.433013i
\(9\) 0 0
\(10\) 0.208712 + 1.00000i 0.0660006 + 0.316228i
\(11\) 4.80217 2.77253i 1.44791 0.835950i 0.449551 0.893255i \(-0.351584\pi\)
0.998357 + 0.0573051i \(0.0182508\pi\)
\(12\) 0 0
\(13\) 0.655657 + 2.44694i 0.181846 + 0.678660i 0.995284 + 0.0970075i \(0.0309271\pi\)
−0.813437 + 0.581653i \(0.802406\pi\)
\(14\) 0.578661 1.00227i 0.154654 0.267868i
\(15\) 0 0
\(16\) 1.39564 + 2.41733i 0.348911 + 0.604332i
\(17\) 1.87083 1.87083i 0.453743 0.453743i −0.442852 0.896595i \(-0.646033\pi\)
0.896595 + 0.442852i \(0.146033\pi\)
\(18\) 0 0
\(19\) 3.00000i 0.688247i −0.938924 0.344124i \(-0.888176\pi\)
0.938924 0.344124i \(-0.111824\pi\)
\(20\) 0.224351 3.99915i 0.0501665 0.894238i
\(21\) 0 0
\(22\) 2.44694 0.655657i 0.521690 0.139787i
\(23\) 5.90166 1.58135i 1.23058 0.329733i 0.415776 0.909467i \(-0.363510\pi\)
0.814806 + 0.579734i \(0.196843\pi\)
\(24\) 0 0
\(25\) −2.96863 + 4.02334i −0.593725 + 0.804668i
\(26\) 1.15732i 0.226970i
\(27\) 0 0
\(28\) −3.20871 + 3.20871i −0.606390 + 0.606390i
\(29\) 2.19387 + 3.79990i 0.407392 + 0.705623i 0.994597 0.103815i \(-0.0331051\pi\)
−0.587205 + 0.809438i \(0.699772\pi\)
\(30\) 0 0
\(31\) 0.500000 0.866025i 0.0898027 0.155543i −0.817625 0.575751i \(-0.804710\pi\)
0.907428 + 0.420208i \(0.138043\pi\)
\(32\) 1.22662 + 4.57781i 0.216838 + 0.809251i
\(33\) 0 0
\(34\) 1.04678 0.604356i 0.179521 0.103646i
\(35\) 5.54506 1.15732i 0.937287 0.195623i
\(36\) 0 0
\(37\) −5.00000 5.00000i −0.821995 0.821995i 0.164399 0.986394i \(-0.447432\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0.354725 1.32385i 0.0575439 0.214757i
\(39\) 0 0
\(40\) 1.21037 3.67900i 0.191376 0.581700i
\(41\) −4.80217 2.77253i −0.749972 0.432997i 0.0757116 0.997130i \(-0.475877\pi\)
−0.825684 + 0.564133i \(0.809210\pi\)
\(42\) 0 0
\(43\) −4.38318 1.17447i −0.668429 0.179105i −0.0913820 0.995816i \(-0.529128\pi\)
−0.577047 + 0.816711i \(0.695795\pi\)
\(44\) −9.93280 −1.49743
\(45\) 0 0
\(46\) 2.79129 0.411553
\(47\) −0.882567 0.236483i −0.128736 0.0344946i 0.193876 0.981026i \(-0.437894\pi\)
−0.322612 + 0.946531i \(0.604561\pi\)
\(48\) 0 0
\(49\) 0.504525 + 0.291288i 0.0720751 + 0.0416125i
\(50\) −1.78573 + 1.42442i −0.252541 + 0.201443i
\(51\) 0 0
\(52\) 1.17447 4.38318i 0.162870 0.607838i
\(53\) 0.0674228 + 0.0674228i 0.00926123 + 0.00926123i 0.711722 0.702461i \(-0.247915\pi\)
−0.702461 + 0.711722i \(0.747915\pi\)
\(54\) 0 0
\(55\) 10.3739 + 6.79129i 1.39881 + 0.915737i
\(56\) −3.79990 + 2.19387i −0.507782 + 0.293168i
\(57\) 0 0
\(58\) 0.518813 + 1.93624i 0.0681235 + 0.254240i
\(59\) −2.19387 + 3.79990i −0.285618 + 0.494704i −0.972759 0.231820i \(-0.925532\pi\)
0.687141 + 0.726524i \(0.258865\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0.323042 0.323042i 0.0410264 0.0410264i
\(63\) 0 0
\(64\) 3.41742i 0.427178i
\(65\) −4.22350 + 3.77480i −0.523861 + 0.468207i
\(66\) 0 0
\(67\) −11.7240 + 3.14144i −1.43232 + 0.383788i −0.889836 0.456280i \(-0.849181\pi\)
−0.542480 + 0.840068i \(0.682515\pi\)
\(68\) −4.57781 + 1.22662i −0.555142 + 0.148750i
\(69\) 0 0
\(70\) 2.58379 + 0.144950i 0.308822 + 0.0173248i
\(71\) 5.54506i 0.658078i 0.944316 + 0.329039i \(0.106725\pi\)
−0.944316 + 0.329039i \(0.893275\pi\)
\(72\) 0 0
\(73\) −10.3739 + 10.3739i −1.21417 + 1.21417i −0.244526 + 0.969643i \(0.578632\pi\)
−0.969643 + 0.244526i \(0.921368\pi\)
\(74\) −1.61521 2.79763i −0.187764 0.325217i
\(75\) 0 0
\(76\) −2.68693 + 4.65390i −0.308212 + 0.533839i
\(77\) −3.63566 13.5685i −0.414322 1.54627i
\(78\) 0 0
\(79\) 9.16478 5.29129i 1.03112 0.595316i 0.113813 0.993502i \(-0.463693\pi\)
0.917305 + 0.398186i \(0.130360\pi\)
\(80\) −3.41862 + 5.22202i −0.382213 + 0.583840i
\(81\) 0 0
\(82\) −1.79129 1.79129i −0.197815 0.197815i
\(83\) −3.18737 + 11.8954i −0.349859 + 1.30569i 0.536972 + 0.843600i \(0.319568\pi\)
−0.886831 + 0.462093i \(0.847099\pi\)
\(84\) 0 0
\(85\) 5.61976 + 1.84887i 0.609548 + 0.200538i
\(86\) −1.79535 1.03655i −0.193598 0.111774i
\(87\) 0 0
\(88\) −9.27707 2.48578i −0.988939 0.264985i
\(89\) 16.6352 1.76333 0.881663 0.471879i \(-0.156424\pi\)
0.881663 + 0.471879i \(0.156424\pi\)
\(90\) 0 0
\(91\) 6.41742 0.672729
\(92\) −10.5716 2.83265i −1.10216 0.295324i
\(93\) 0 0
\(94\) −0.361500 0.208712i −0.0372859 0.0215270i
\(95\) 5.98822 3.02344i 0.614379 0.310198i
\(96\) 0 0
\(97\) −1.31131 + 4.89389i −0.133144 + 0.496899i −0.999999 0.00166135i \(-0.999471\pi\)
0.866855 + 0.498561i \(0.166138\pi\)
\(98\) 0.188196 + 0.188196i 0.0190107 + 0.0190107i
\(99\) 0 0
\(100\) 8.20871 3.58258i 0.820871 0.358258i
\(101\) −9.60433 + 5.54506i −0.955667 + 0.551754i −0.894837 0.446394i \(-0.852708\pi\)
−0.0608300 + 0.998148i \(0.519375\pi\)
\(102\) 0 0
\(103\) −1.31131 4.89389i −0.129208 0.482209i 0.870747 0.491731i \(-0.163636\pi\)
−0.999955 + 0.00952189i \(0.996969\pi\)
\(104\) 2.19387 3.79990i 0.215127 0.372610i
\(105\) 0 0
\(106\) 0.0217804 + 0.0377247i 0.00211550 + 0.00366415i
\(107\) −3.74166 + 3.74166i −0.361720 + 0.361720i −0.864446 0.502726i \(-0.832330\pi\)
0.502726 + 0.864446i \(0.332330\pi\)
\(108\) 0 0
\(109\) 13.7477i 1.31679i −0.752671 0.658397i \(-0.771235\pi\)
0.752671 0.658397i \(-0.228765\pi\)
\(110\) 3.77480 + 4.22350i 0.359913 + 0.402695i
\(111\) 0 0
\(112\) 6.83013 1.83013i 0.645386 0.172931i
\(113\) −11.8033 + 3.16269i −1.11036 + 0.297521i −0.766978 0.641673i \(-0.778240\pi\)
−0.343386 + 0.939194i \(0.611574\pi\)
\(114\) 0 0
\(115\) 9.10426 + 10.1865i 0.848976 + 0.949892i
\(116\) 7.85971i 0.729756i
\(117\) 0 0
\(118\) −1.41742 + 1.41742i −0.130484 + 0.130484i
\(119\) −3.35119 5.80444i −0.307203 0.532092i
\(120\) 0 0
\(121\) 9.87386 17.1020i 0.897624 1.55473i
\(122\) 0.118242 + 0.441283i 0.0107051 + 0.0399519i
\(123\) 0 0
\(124\) −1.55130 + 0.895644i −0.139311 + 0.0804312i
\(125\) −11.0227 1.87083i −0.985901 0.167332i
\(126\) 0 0
\(127\) −5.00000 5.00000i −0.443678 0.443678i 0.449568 0.893246i \(-0.351578\pi\)
−0.893246 + 0.449568i \(0.851578\pi\)
\(128\) 2.85732 10.6637i 0.252554 0.942545i
\(129\) 0 0
\(130\) −2.31010 + 1.16636i −0.202609 + 0.102297i
\(131\) 6.59752 + 3.80908i 0.576428 + 0.332801i 0.759713 0.650259i \(-0.225340\pi\)
−0.183285 + 0.983060i \(0.558673\pi\)
\(132\) 0 0
\(133\) −7.34083 1.96697i −0.636531 0.170558i
\(134\) −5.54506 −0.479021
\(135\) 0 0
\(136\) −4.58258 −0.392953
\(137\) 14.1747 + 3.79811i 1.21103 + 0.324494i 0.807165 0.590325i \(-0.201001\pi\)
0.403863 + 0.914819i \(0.367667\pi\)
\(138\) 0 0
\(139\) −2.74110 1.58258i −0.232497 0.134232i 0.379226 0.925304i \(-0.376190\pi\)
−0.611724 + 0.791072i \(0.709524\pi\)
\(140\) −9.63861 3.17105i −0.814611 0.268002i
\(141\) 0 0
\(142\) −0.655657 + 2.44694i −0.0550215 + 0.205343i
\(143\) 9.93280 + 9.93280i 0.830623 + 0.830623i
\(144\) 0 0
\(145\) −5.37386 + 8.20871i −0.446275 + 0.681696i
\(146\) −5.80444 + 3.35119i −0.480379 + 0.277347i
\(147\) 0 0
\(148\) 3.27828 + 12.2347i 0.269473 + 1.00569i
\(149\) −3.92985 + 6.80671i −0.321946 + 0.557627i −0.980890 0.194565i \(-0.937670\pi\)
0.658943 + 0.752193i \(0.271004\pi\)
\(150\) 0 0
\(151\) −1.00000 1.73205i −0.0813788 0.140952i 0.822464 0.568818i \(-0.192599\pi\)
−0.903842 + 0.427865i \(0.859266\pi\)
\(152\) −3.67423 + 3.67423i −0.298020 + 0.298020i
\(153\) 0 0
\(154\) 6.41742i 0.517131i
\(155\) 2.23256 + 0.125246i 0.179323 + 0.0100600i
\(156\) 0 0
\(157\) −4.38318 + 1.17447i −0.349816 + 0.0937329i −0.429448 0.903091i \(-0.641292\pi\)
0.0796324 + 0.996824i \(0.474625\pi\)
\(158\) 4.66992 1.25130i 0.371519 0.0995481i
\(159\) 0 0
\(160\) −7.90145 + 7.06201i −0.624665 + 0.558301i
\(161\) 15.4779i 1.21983i
\(162\) 0 0
\(163\) −5.00000 + 5.00000i −0.391630 + 0.391630i −0.875268 0.483638i \(-0.839315\pi\)
0.483638 + 0.875268i \(0.339315\pi\)
\(164\) 4.96640 + 8.60206i 0.387811 + 0.671708i
\(165\) 0 0
\(166\) −2.81307 + 4.87238i −0.218336 + 0.378170i
\(167\) 3.89682 + 14.5431i 0.301545 + 1.12538i 0.935879 + 0.352322i \(0.114608\pi\)
−0.634334 + 0.773059i \(0.718726\pi\)
\(168\) 0 0
\(169\) 5.70068 3.29129i 0.438514 0.253176i
\(170\) 2.26129 + 1.48036i 0.173433 + 0.113539i
\(171\) 0 0
\(172\) 5.74773 + 5.74773i 0.438260 + 0.438260i
\(173\) 2.90153 10.8287i 0.220599 0.823288i −0.763521 0.645783i \(-0.776531\pi\)
0.984120 0.177504i \(-0.0568024\pi\)
\(174\) 0 0
\(175\) 7.89849 + 9.90200i 0.597069 + 0.748521i
\(176\) 13.4042 + 7.73893i 1.01038 + 0.583344i
\(177\) 0 0
\(178\) 7.34083 + 1.96697i 0.550219 + 0.147431i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 9.74773 0.724543 0.362271 0.932073i \(-0.382001\pi\)
0.362271 + 0.932073i \(0.382001\pi\)
\(182\) 2.83190 + 0.758806i 0.209915 + 0.0562465i
\(183\) 0 0
\(184\) −9.16478 5.29129i −0.675637 0.390079i
\(185\) 4.94131 15.0194i 0.363292 1.10425i
\(186\) 0 0
\(187\) 3.79710 14.1710i 0.277671 1.03628i
\(188\) 1.15732 + 1.15732i 0.0844064 + 0.0844064i
\(189\) 0 0
\(190\) 3.00000 0.626136i 0.217643 0.0454247i
\(191\) 16.2019 9.35414i 1.17232 0.676842i 0.218098 0.975927i \(-0.430015\pi\)
0.954227 + 0.299085i \(0.0966813\pi\)
\(192\) 0 0
\(193\) 0.655657 + 2.44694i 0.0471952 + 0.176135i 0.985500 0.169674i \(-0.0542713\pi\)
−0.938305 + 0.345809i \(0.887605\pi\)
\(194\) −1.15732 + 2.00454i −0.0830909 + 0.143918i
\(195\) 0 0
\(196\) −0.521780 0.903750i −0.0372700 0.0645536i
\(197\) 1.87083 1.87083i 0.133291 0.133291i −0.637314 0.770605i \(-0.719954\pi\)
0.770605 + 0.637314i \(0.219954\pi\)
\(198\) 0 0
\(199\) 16.7477i 1.18721i 0.804755 + 0.593607i \(0.202297\pi\)
−0.804755 + 0.593607i \(0.797703\pi\)
\(200\) 8.56337 1.29175i 0.605522 0.0913407i
\(201\) 0 0
\(202\) −4.89389 + 1.31131i −0.344333 + 0.0922637i
\(203\) 10.7366 2.87685i 0.753559 0.201915i
\(204\) 0 0
\(205\) 0.694496 12.3797i 0.0485057 0.864634i
\(206\) 2.31464i 0.161269i
\(207\) 0 0
\(208\) −5.00000 + 5.00000i −0.346688 + 0.346688i
\(209\) −8.31759 14.4065i −0.575340 0.996518i
\(210\) 0 0
\(211\) −4.87386 + 8.44178i −0.335531 + 0.581156i −0.983587 0.180437i \(-0.942249\pi\)
0.648056 + 0.761593i \(0.275582\pi\)
\(212\) −0.0442062 0.164980i −0.00303609 0.0113309i
\(213\) 0 0
\(214\) −2.09355 + 1.20871i −0.143112 + 0.0826259i
\(215\) −2.07310 9.93280i −0.141384 0.677412i
\(216\) 0 0
\(217\) −1.79129 1.79129i −0.121601 0.121601i
\(218\) 1.62555 6.06664i 0.110096 0.410885i
\(219\) 0 0
\(220\) −10.0104 19.8266i −0.674901 1.33671i
\(221\) 5.80444 + 3.35119i 0.390449 + 0.225426i
\(222\) 0 0
\(223\) −11.7240 3.14144i −0.785098 0.210366i −0.156067 0.987746i \(-0.549882\pi\)
−0.629031 + 0.777380i \(0.716548\pi\)
\(224\) 12.0059 0.802178
\(225\) 0 0
\(226\) −5.58258 −0.371347
\(227\) 9.43193 + 2.52728i 0.626019 + 0.167741i 0.557863 0.829933i \(-0.311622\pi\)
0.0681566 + 0.997675i \(0.478288\pi\)
\(228\) 0 0
\(229\) 5.05313 + 2.91742i 0.333920 + 0.192789i 0.657580 0.753385i \(-0.271580\pi\)
−0.323660 + 0.946173i \(0.604913\pi\)
\(230\) 2.81310 + 5.57162i 0.185490 + 0.367382i
\(231\) 0 0
\(232\) 1.96697 7.34083i 0.129138 0.481949i
\(233\) −16.7700 16.7700i −1.09864 1.09864i −0.994570 0.104072i \(-0.966813\pi\)
−0.104072 0.994570i \(-0.533187\pi\)
\(234\) 0 0
\(235\) −0.417424 2.00000i −0.0272298 0.130466i
\(236\) 6.80671 3.92985i 0.443079 0.255812i
\(237\) 0 0
\(238\) −0.792500 2.95765i −0.0513702 0.191716i
\(239\) 6.12372 10.6066i 0.396111 0.686084i −0.597131 0.802143i \(-0.703693\pi\)
0.993242 + 0.116059i \(0.0370263\pi\)
\(240\) 0 0
\(241\) 5.87386 + 10.1738i 0.378369 + 0.655354i 0.990825 0.135150i \(-0.0431518\pi\)
−0.612456 + 0.790504i \(0.709818\pi\)
\(242\) 6.37934 6.37934i 0.410080 0.410080i
\(243\) 0 0
\(244\) 1.79129i 0.114675i
\(245\) −0.0729652 + 1.30063i −0.00466157 + 0.0830944i
\(246\) 0 0
\(247\) 7.34083 1.96697i 0.467086 0.125155i
\(248\) −1.67303 + 0.448288i −0.106238 + 0.0284663i
\(249\) 0 0
\(250\) −4.64293 2.12891i −0.293644 0.134644i
\(251\) 22.1803i 1.40001i 0.714140 + 0.700003i \(0.246818\pi\)
−0.714140 + 0.700003i \(0.753182\pi\)
\(252\) 0 0
\(253\) 23.9564 23.9564i 1.50613 1.50613i
\(254\) −1.61521 2.79763i −0.101347 0.175539i
\(255\) 0 0
\(256\) −0.895644 + 1.55130i −0.0559777 + 0.0969563i
\(257\) −0.921254 3.43817i −0.0574662 0.214467i 0.931222 0.364453i \(-0.118744\pi\)
−0.988688 + 0.149986i \(0.952077\pi\)
\(258\) 0 0
\(259\) −15.5130 + 8.95644i −0.963931 + 0.556526i
\(260\) 9.93280 2.07310i 0.616006 0.128568i
\(261\) 0 0
\(262\) 2.46099 + 2.46099i 0.152040 + 0.152040i
\(263\) 0.285840 1.06677i 0.0176256 0.0657798i −0.956553 0.291559i \(-0.905826\pi\)
0.974179 + 0.225779i \(0.0724927\pi\)
\(264\) 0 0
\(265\) −0.0666313 + 0.202530i −0.00409313 + 0.0124413i
\(266\) −3.00681 1.73598i −0.184359 0.106440i
\(267\) 0 0
\(268\) 21.0011 + 5.62722i 1.28285 + 0.343737i
\(269\) −3.47197 −0.211690 −0.105845 0.994383i \(-0.533755\pi\)
−0.105845 + 0.994383i \(0.533755\pi\)
\(270\) 0 0
\(271\) −1.00000 −0.0607457 −0.0303728 0.999539i \(-0.509669\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 7.13341 + 1.91139i 0.432527 + 0.115895i
\(273\) 0 0
\(274\) 5.80598 + 3.35208i 0.350752 + 0.202507i
\(275\) −3.10100 + 27.5514i −0.186998 + 1.66141i
\(276\) 0 0
\(277\) −4.83472 + 18.0434i −0.290490 + 1.08413i 0.654243 + 0.756285i \(0.272987\pi\)
−0.944733 + 0.327840i \(0.893679\pi\)
\(278\) −1.02248 1.02248i −0.0613241 0.0613241i
\(279\) 0 0
\(280\) −8.20871 5.37386i −0.490564 0.321150i
\(281\) 1.79535 1.03655i 0.107102 0.0618353i −0.445492 0.895286i \(-0.646971\pi\)
0.552594 + 0.833450i \(0.313638\pi\)
\(282\) 0 0
\(283\) −4.83472 18.0434i −0.287395 1.07257i −0.947072 0.321022i \(-0.895974\pi\)
0.659677 0.751549i \(-0.270693\pi\)
\(284\) 4.96640 8.60206i 0.294702 0.510438i
\(285\) 0 0
\(286\) 3.20871 + 5.55765i 0.189735 + 0.328631i
\(287\) −9.93280 + 9.93280i −0.586315 + 0.586315i
\(288\) 0 0
\(289\) 10.0000i 0.588235i
\(290\) −3.34201 + 2.98695i −0.196249 + 0.175400i
\(291\) 0 0
\(292\) 25.3843 6.80169i 1.48550 0.398039i
\(293\) −16.8224 + 4.50756i −0.982777 + 0.263334i −0.714214 0.699928i \(-0.753215\pi\)
−0.268563 + 0.963262i \(0.586549\pi\)
\(294\) 0 0
\(295\) −9.79589 0.549546i −0.570338 0.0319958i
\(296\) 12.2474i 0.711868i
\(297\) 0 0
\(298\) −2.53901 + 2.53901i −0.147081 + 0.147081i
\(299\) 7.73893 + 13.4042i 0.447554 + 0.775186i
\(300\) 0 0
\(301\) −5.74773 + 9.95536i −0.331293 + 0.573817i
\(302\) −0.236483 0.882567i −0.0136081 0.0507860i
\(303\) 0 0
\(304\) 7.25198 4.18693i 0.415929 0.240137i
\(305\) −1.22474 + 1.87083i −0.0701287 + 0.107123i
\(306\) 0 0
\(307\) −15.7477 15.7477i −0.898770 0.898770i 0.0965572 0.995327i \(-0.469217\pi\)
−0.995327 + 0.0965572i \(0.969217\pi\)
\(308\) −6.51251 + 24.3050i −0.371085 + 1.38491i
\(309\) 0 0
\(310\) 0.970381 + 0.319250i 0.0551140 + 0.0181322i
\(311\) −7.80898 4.50851i −0.442806 0.255654i 0.261981 0.965073i \(-0.415624\pi\)
−0.704787 + 0.709419i \(0.748958\pi\)
\(312\) 0 0
\(313\) 23.4480 + 6.28288i 1.32536 + 0.355129i 0.850984 0.525192i \(-0.176007\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(314\) −2.07310 −0.116992
\(315\) 0 0
\(316\) −18.9564 −1.06638
\(317\) −31.2735 8.37970i −1.75649 0.470651i −0.770500 0.637440i \(-0.779993\pi\)
−0.985993 + 0.166789i \(0.946660\pi\)
\(318\) 0 0
\(319\) 21.0707 + 12.1652i 1.17973 + 0.681118i
\(320\) 6.82143 3.44412i 0.381330 0.192532i
\(321\) 0 0
\(322\) 1.83013 6.83013i 0.101989 0.380628i
\(323\) −5.61249 5.61249i −0.312287 0.312287i
\(324\) 0 0
\(325\) −11.7913 4.62614i −0.654063 0.256612i
\(326\) −2.79763 + 1.61521i −0.154946 + 0.0894582i
\(327\) 0 0
\(328\) 2.48578 + 9.27707i 0.137254 + 0.512241i
\(329\) −1.15732 + 2.00454i −0.0638052 + 0.110514i
\(330\) 0 0
\(331\) −6.37386 11.0399i −0.350339 0.606805i 0.635970 0.771714i \(-0.280600\pi\)
−0.986309 + 0.164909i \(0.947267\pi\)
\(332\) 15.5986 15.5986i 0.856087 0.856087i
\(333\) 0 0
\(334\) 6.87841i 0.376370i
\(335\) −18.0862 20.2360i −0.988153 1.10561i
\(336\) 0 0
\(337\) −24.8736 + 6.66485i −1.35495 + 0.363058i −0.861959 0.506977i \(-0.830763\pi\)
−0.492990 + 0.870035i \(0.664096\pi\)
\(338\) 2.90478 0.778334i 0.157999 0.0423358i
\(339\) 0 0
\(340\) −7.06201 7.90145i −0.382991 0.428516i
\(341\) 5.54506i 0.300282i
\(342\) 0 0
\(343\) 13.5826 13.5826i 0.733390 0.733390i
\(344\) 3.92985 + 6.80671i 0.211884 + 0.366993i
\(345\) 0 0
\(346\) 2.56080 4.43543i 0.137669 0.238450i
\(347\) 3.11334 + 11.6191i 0.167133 + 0.623747i 0.997759 + 0.0669166i \(0.0213162\pi\)
−0.830626 + 0.556831i \(0.812017\pi\)
\(348\) 0 0
\(349\) −16.8160 + 9.70871i −0.900139 + 0.519695i −0.877245 0.480042i \(-0.840621\pi\)
−0.0228937 + 0.999738i \(0.507288\pi\)
\(350\) 2.31464 + 5.30352i 0.123723 + 0.283485i
\(351\) 0 0
\(352\) 18.5826 + 18.5826i 0.990455 + 0.990455i
\(353\) −4.53223 + 16.9145i −0.241226 + 0.900270i 0.734016 + 0.679132i \(0.237644\pi\)
−0.975243 + 0.221138i \(0.929023\pi\)
\(354\) 0 0
\(355\) −11.0684 + 5.58839i −0.587448 + 0.296601i
\(356\) −25.8062 14.8992i −1.36772 0.789656i
\(357\) 0 0
\(358\) 0 0
\(359\) −29.7984 −1.57270 −0.786350 0.617781i \(-0.788032\pi\)
−0.786350 + 0.617781i \(0.788032\pi\)
\(360\) 0 0
\(361\) 10.0000 0.526316
\(362\) 4.30151 + 1.15259i 0.226082 + 0.0605786i
\(363\) 0 0
\(364\) −9.95536 5.74773i −0.521802 0.301263i
\(365\) −31.1619 10.2521i −1.63109 0.536619i
\(366\) 0 0
\(367\) −3.27828 + 12.2347i −0.171125 + 0.638647i 0.826054 + 0.563591i \(0.190580\pi\)
−0.997179 + 0.0750567i \(0.976086\pi\)
\(368\) 12.0593 + 12.0593i 0.628632 + 0.628632i
\(369\) 0 0
\(370\) 3.95644 6.04356i 0.205685 0.314190i
\(371\) 0.209186 0.120774i 0.0108604 0.00627025i
\(372\) 0 0
\(373\) −1.31131 4.89389i −0.0678973 0.253396i 0.923632 0.383281i \(-0.125206\pi\)
−0.991529 + 0.129885i \(0.958539\pi\)
\(374\) 3.35119 5.80444i 0.173286 0.300140i
\(375\) 0 0
\(376\) 0.791288 + 1.37055i 0.0408076 + 0.0706808i
\(377\) −7.85971 + 7.85971i −0.404796 + 0.404796i
\(378\) 0 0
\(379\) 7.74773i 0.397974i 0.980002 + 0.198987i \(0.0637652\pi\)
−0.980002 + 0.198987i \(0.936235\pi\)
\(380\) −11.9975 0.673054i −0.615457 0.0345269i
\(381\) 0 0
\(382\) 8.25566 2.21210i 0.422396 0.113181i
\(383\) 28.6258 7.67025i 1.46271 0.391931i 0.562284 0.826944i \(-0.309923\pi\)
0.900424 + 0.435013i \(0.143256\pi\)
\(384\) 0 0
\(385\) 23.4196 20.9315i 1.19357 1.06677i
\(386\) 1.15732i 0.0589061i
\(387\) 0 0
\(388\) 6.41742 6.41742i 0.325795 0.325795i
\(389\) 3.92985 + 6.80671i 0.199251 + 0.345114i 0.948286 0.317417i \(-0.102816\pi\)
−0.749034 + 0.662531i \(0.769482\pi\)
\(390\) 0 0
\(391\) 8.08258 13.9994i 0.408753 0.707982i
\(392\) −0.261162 0.974668i −0.0131906 0.0492282i
\(393\) 0 0
\(394\) 1.04678 0.604356i 0.0527358 0.0304470i
\(395\) 19.7982 + 12.9610i 0.996155 + 0.652136i
\(396\) 0 0
\(397\) 26.1216 + 26.1216i 1.31101 + 1.31101i 0.920675 + 0.390330i \(0.127639\pi\)
0.390330 + 0.920675i \(0.372361\pi\)
\(398\) −1.98028 + 7.39049i −0.0992623 + 0.370452i
\(399\) 0 0
\(400\) −13.8689 1.56099i −0.693443 0.0780496i
\(401\) −16.2019 9.35414i −0.809082 0.467124i 0.0375551 0.999295i \(-0.488043\pi\)
−0.846637 + 0.532171i \(0.821376\pi\)
\(402\) 0 0
\(403\) 2.44694 + 0.655657i 0.121891 + 0.0326606i
\(404\) 19.8656 0.988351
\(405\) 0 0
\(406\) 5.07803 0.252018
\(407\) −37.8735 10.1482i −1.87732 0.503026i
\(408\) 0 0
\(409\) −20.9276 12.0826i −1.03480 0.597445i −0.116447 0.993197i \(-0.537151\pi\)
−0.918357 + 0.395752i \(0.870484\pi\)
\(410\) 1.77026 5.38083i 0.0874270 0.265740i
\(411\) 0 0
\(412\) −2.34894 + 8.76636i −0.115724 + 0.431888i
\(413\) 7.85971 + 7.85971i 0.386751 + 0.386751i
\(414\) 0 0
\(415\) −26.9564 + 5.62614i −1.32324 + 0.276176i
\(416\) −10.3974 + 6.00295i −0.509775 + 0.294319i
\(417\) 0 0
\(418\) −1.96697 7.34083i −0.0962077 0.359052i
\(419\) −0.457887 + 0.793084i −0.0223693 + 0.0387447i −0.876993 0.480503i \(-0.840454\pi\)
0.854624 + 0.519247i \(0.173788\pi\)
\(420\) 0 0
\(421\) −19.8739 34.4225i −0.968593 1.67765i −0.699636 0.714500i \(-0.746654\pi\)
−0.268957 0.963152i \(-0.586679\pi\)
\(422\) −3.14892 + 3.14892i −0.153287 + 0.153287i
\(423\) 0 0
\(424\) 0.165151i 0.00802046i
\(425\) 1.97318 + 13.0808i 0.0957135 + 0.634511i
\(426\) 0 0
\(427\) 2.44694 0.655657i 0.118416 0.0317295i
\(428\) 9.15563 2.45324i 0.442554 0.118582i
\(429\) 0 0
\(430\) 0.259647 4.62831i 0.0125213 0.223197i
\(431\) 9.01703i 0.434335i 0.976134 + 0.217168i \(0.0696818\pi\)
−0.976134 + 0.217168i \(0.930318\pi\)
\(432\) 0 0
\(433\) 4.62614 4.62614i 0.222318 0.222318i −0.587156 0.809474i \(-0.699752\pi\)
0.809474 + 0.587156i \(0.199752\pi\)
\(434\) −0.578661 1.00227i −0.0277766 0.0481105i
\(435\) 0 0
\(436\) −12.3131 + 21.3269i −0.589689 + 1.02137i
\(437\) −4.74404 17.7050i −0.226938 0.846945i
\(438\) 0 0
\(439\) 9.16478 5.29129i 0.437411 0.252539i −0.265088 0.964224i \(-0.585401\pi\)
0.702499 + 0.711685i \(0.252068\pi\)
\(440\) −4.38774 21.0229i −0.209177 1.00223i
\(441\) 0 0
\(442\) 2.16515 + 2.16515i 0.102986 + 0.102986i
\(443\) 2.90153 10.8287i 0.137856 0.514485i −0.862114 0.506715i \(-0.830860\pi\)
0.999970 0.00777070i \(-0.00247352\pi\)
\(444\) 0 0
\(445\) 16.7652 + 33.2051i 0.794745 + 1.57407i
\(446\) −4.80217 2.77253i −0.227389 0.131283i
\(447\) 0 0
\(448\) −8.36225 2.24066i −0.395079 0.105861i
\(449\) −13.1632 −0.621211 −0.310605 0.950539i \(-0.600532\pi\)
−0.310605 + 0.950539i \(0.600532\pi\)
\(450\) 0 0
\(451\) −30.7477 −1.44785
\(452\) 21.1432 + 5.66529i 0.994491 + 0.266473i
\(453\) 0 0
\(454\) 3.86333 + 2.23049i 0.181315 + 0.104682i
\(455\) 6.46756 + 12.8097i 0.303204 + 0.600526i
\(456\) 0 0
\(457\) −1.31131 + 4.89389i −0.0613407 + 0.228926i −0.989790 0.142532i \(-0.954476\pi\)
0.928450 + 0.371459i \(0.121142\pi\)
\(458\) 1.88490 + 1.88490i 0.0880756 + 0.0880756i
\(459\) 0 0
\(460\) −5.00000 23.9564i −0.233126 1.11697i
\(461\) −12.6111 + 7.28105i −0.587359 + 0.339112i −0.764053 0.645154i \(-0.776793\pi\)
0.176693 + 0.984266i \(0.443460\pi\)
\(462\) 0 0
\(463\) −2.86775 10.7026i −0.133276 0.497392i 0.866723 0.498789i \(-0.166222\pi\)
−0.999999 + 0.00139730i \(0.999555\pi\)
\(464\) −6.12372 + 10.6066i −0.284287 + 0.492399i
\(465\) 0 0
\(466\) −5.41742 9.38325i −0.250957 0.434671i
\(467\) 5.34279 5.34279i 0.247235 0.247235i −0.572600 0.819835i \(-0.694065\pi\)
0.819835 + 0.572600i \(0.194065\pi\)
\(468\) 0 0
\(469\) 30.7477i 1.41980i
\(470\) 0.0522807 0.931924i 0.00241153 0.0429864i
\(471\) 0 0
\(472\) 7.34083 1.96697i 0.337889 0.0905372i
\(473\) −24.3050 + 6.51251i −1.11755 + 0.299446i
\(474\) 0 0
\(475\) 12.0700 + 8.90588i 0.553810 + 0.408630i
\(476\) 12.0059i 0.550290i
\(477\) 0 0
\(478\) 3.95644 3.95644i 0.180963 0.180963i
\(479\) 3.92985 + 6.80671i 0.179560 + 0.311006i 0.941730 0.336370i \(-0.109199\pi\)
−0.762170 + 0.647377i \(0.775866\pi\)
\(480\) 0 0
\(481\) 8.95644 15.5130i 0.408378 0.707332i
\(482\) 1.38907 + 5.18408i 0.0632704 + 0.236128i
\(483\) 0 0
\(484\) −30.6347 + 17.6869i −1.39248 + 0.803951i
\(485\) −11.0901 + 2.31464i −0.503577 + 0.105103i
\(486\) 0 0
\(487\) 0.373864 + 0.373864i 0.0169414 + 0.0169414i 0.715527 0.698585i \(-0.246187\pi\)
−0.698585 + 0.715527i \(0.746187\pi\)
\(488\) 0.448288 1.67303i 0.0202930 0.0757346i
\(489\) 0 0
\(490\) −0.185987 + 0.565321i −0.00840205 + 0.0255386i
\(491\) 12.6111 + 7.28105i 0.569133 + 0.328589i 0.756803 0.653643i \(-0.226760\pi\)
−0.187670 + 0.982232i \(0.560094\pi\)
\(492\) 0 0
\(493\) 11.2133 + 3.00460i 0.505022 + 0.135320i
\(494\) 3.47197 0.156211
\(495\) 0 0
\(496\) 2.79129 0.125333
\(497\) 13.5685 + 3.63566i 0.608629 + 0.163082i
\(498\) 0 0
\(499\) 23.6687 + 13.6652i 1.05956 + 0.611736i 0.925310 0.379212i \(-0.123805\pi\)
0.134248 + 0.990948i \(0.457138\pi\)
\(500\) 15.4239 + 12.7746i 0.689779 + 0.571299i
\(501\) 0 0
\(502\) −2.62263 + 9.78778i −0.117054 + 0.436850i
\(503\) −16.5678 16.5678i −0.738720 0.738720i 0.233610 0.972330i \(-0.424946\pi\)
−0.972330 + 0.233610i \(0.924946\pi\)
\(504\) 0 0
\(505\) −20.7477 13.5826i −0.923262 0.604417i
\(506\) 13.4042 7.73893i 0.595891 0.344038i
\(507\) 0 0
\(508\) 3.27828 + 12.2347i 0.145450 + 0.542828i
\(509\) −8.77548 + 15.1996i −0.388966 + 0.673710i −0.992311 0.123771i \(-0.960501\pi\)
0.603344 + 0.797481i \(0.293834\pi\)
\(510\) 0 0
\(511\) 18.5826 + 32.1860i 0.822045 + 1.42382i
\(512\) −16.1914 + 16.1914i −0.715564 + 0.715564i
\(513\) 0 0
\(514\) 1.62614i 0.0717258i
\(515\) 8.44701 7.54960i 0.372220 0.332675i
\(516\) 0 0
\(517\) −4.89389 + 1.31131i −0.215233 + 0.0576715i
\(518\) −7.90466 + 2.11805i −0.347311 + 0.0930616i
\(519\) 0 0
\(520\) 9.79589 + 0.549546i 0.429578 + 0.0240992i
\(521\) 27.7253i 1.21467i −0.794447 0.607334i \(-0.792239\pi\)
0.794447 0.607334i \(-0.207761\pi\)
\(522\) 0 0
\(523\) 15.3739 15.3739i 0.672252 0.672252i −0.285983 0.958235i \(-0.592320\pi\)
0.958235 + 0.285983i \(0.0923200\pi\)
\(524\) −6.82316 11.8181i −0.298071 0.516274i
\(525\) 0 0
\(526\) 0.252273 0.436950i 0.0109996 0.0190519i
\(527\) −0.684771 2.55560i −0.0298291 0.111324i
\(528\) 0 0
\(529\) 12.4104 7.16515i 0.539583 0.311528i
\(530\) −0.0533508 + 0.0814947i −0.00231741 + 0.00353990i
\(531\) 0 0
\(532\) 9.62614 + 9.62614i 0.417346 + 0.417346i
\(533\) 3.63566 13.5685i 0.157478 0.587715i
\(534\) 0 0
\(535\) −11.2395 3.69774i −0.485927 0.159867i
\(536\) 18.2064 + 10.5115i 0.786396 + 0.454026i
\(537\) 0 0
\(538\) −1.53212 0.410531i −0.0660544 0.0176992i
\(539\) 3.23042 0.139144
\(540\) 0 0
\(541\) −19.4955 −0.838175 −0.419088 0.907946i \(-0.637650\pi\)
−0.419088 + 0.907946i \(0.637650\pi\)
\(542\) −0.441283 0.118242i −0.0189547 0.00507891i
\(543\) 0 0
\(544\) 10.8591 + 6.26951i 0.465580 + 0.268803i
\(545\) 27.4415 13.8551i 1.17546 0.593489i
\(546\) 0 0
\(547\) −8.76867 + 32.7251i −0.374921 + 1.39922i 0.478539 + 0.878066i \(0.341167\pi\)
−0.853460 + 0.521158i \(0.825500\pi\)
\(548\) −18.5875 18.5875i −0.794019 0.794019i
\(549\) 0 0
\(550\) −4.62614 + 11.7913i −0.197259 + 0.502782i
\(551\) 11.3997 6.58161i 0.485643 0.280386i
\(552\) 0 0
\(553\) −6.93854 25.8950i −0.295057 1.10117i
\(554\) −4.26697 + 7.39060i −0.181286 + 0.313997i
\(555\) 0 0
\(556\) 2.83485 + 4.91010i 0.120224 + 0.208235i
\(557\) 26.0568 26.0568i 1.10406 1.10406i 0.110145 0.993916i \(-0.464869\pi\)
0.993916 0.110145i \(-0.0351314\pi\)
\(558\) 0 0
\(559\) 11.4955i 0.486206i
\(560\) 10.5366 + 11.7890i 0.445251 + 0.498177i
\(561\) 0 0
\(562\) 0.914823 0.245126i 0.0385895 0.0103400i
\(563\) −11.8033 + 3.16269i −0.497451 + 0.133292i −0.498817 0.866707i \(-0.666232\pi\)
0.00136574 + 0.999999i \(0.499565\pi\)
\(564\) 0 0
\(565\) −18.2085 20.3729i −0.766038 0.857095i
\(566\) 8.53394i 0.358708i
\(567\) 0 0
\(568\) 6.79129 6.79129i 0.284956 0.284956i
\(569\) −14.4413 25.0131i −0.605412 1.04860i −0.991986 0.126346i \(-0.959675\pi\)
0.386575 0.922258i \(-0.373658\pi\)
\(570\) 0 0
\(571\) 11.2477 19.4816i 0.470703 0.815281i −0.528736 0.848786i \(-0.677334\pi\)
0.999439 + 0.0335054i \(0.0106671\pi\)
\(572\) −6.51251 24.3050i −0.272302 1.01624i
\(573\) 0 0
\(574\) −5.55765 + 3.20871i −0.231972 + 0.133929i
\(575\) −11.1575 + 28.4388i −0.465302 + 1.18598i
\(576\) 0 0
\(577\) −10.3739 10.3739i −0.431870 0.431870i 0.457394 0.889264i \(-0.348783\pi\)
−0.889264 + 0.457394i \(0.848783\pi\)
\(578\) −1.18242 + 4.41283i −0.0491820 + 0.183550i
\(579\) 0 0
\(580\) 15.6886 7.92111i 0.651432 0.328906i
\(581\) 27.0176 + 15.5986i 1.12088 + 0.647141i
\(582\) 0 0
\(583\) 0.510707 + 0.136844i 0.0211513 + 0.00566748i
\(584\) 25.4107 1.05150
\(585\) 0 0
\(586\) −7.95644 −0.328677
\(587\) 36.8988 + 9.88701i 1.52298 + 0.408081i 0.920721 0.390222i \(-0.127602\pi\)
0.602256 + 0.798303i \(0.294268\pi\)
\(588\) 0 0
\(589\) −2.59808 1.50000i −0.107052 0.0618064i
\(590\) −4.25778 1.40079i −0.175290 0.0576695i
\(591\) 0 0
\(592\) 5.10841 19.0649i 0.209954 0.783561i
\(593\) 29.8658 + 29.8658i 1.22644 + 1.22644i 0.965300 + 0.261143i \(0.0840993\pi\)
0.261143 + 0.965300i \(0.415901\pi\)
\(594\) 0 0
\(595\) 8.20871 12.5390i 0.336524 0.514049i
\(596\) 12.1928 7.03950i 0.499435 0.288349i
\(597\) 0 0
\(598\) 1.83013 + 6.83013i 0.0748395 + 0.279305i
\(599\) 14.4413 25.0131i 0.590056 1.02201i −0.404168 0.914685i \(-0.632439\pi\)
0.994224 0.107323i \(-0.0342278\pi\)
\(600\) 0 0
\(601\) −19.8739 34.4225i −0.810672 1.40412i −0.912394 0.409312i \(-0.865769\pi\)
0.101723 0.994813i \(-0.467565\pi\)
\(602\) −3.71351 + 3.71351i −0.151352 + 0.151352i
\(603\) 0 0
\(604\) 3.58258i 0.145773i
\(605\) 44.0879 + 2.47332i 1.79243 + 0.100555i
\(606\) 0 0
\(607\) −19.0649 + 5.10841i −0.773818 + 0.207344i −0.624058 0.781378i \(-0.714517\pi\)
−0.149761 + 0.988722i \(0.547850\pi\)
\(608\) 13.7334 3.67986i 0.556965 0.149238i
\(609\) 0 0
\(610\) −0.761669 + 0.680750i −0.0308391 + 0.0275628i
\(611\) 2.31464i 0.0936405i
\(612\) 0 0
\(613\) 10.0000 10.0000i 0.403896 0.403896i −0.475707 0.879604i \(-0.657808\pi\)
0.879604 + 0.475707i \(0.157808\pi\)
\(614\) −5.08718 8.81125i −0.205302 0.355593i
\(615\) 0 0
\(616\) −12.1652 + 21.0707i −0.490148 + 0.848961i
\(617\) 5.16765 + 19.2859i 0.208042 + 0.776422i 0.988501 + 0.151215i \(0.0483187\pi\)
−0.780459 + 0.625207i \(0.785015\pi\)
\(618\) 0 0
\(619\) 16.9590 9.79129i 0.681640 0.393545i −0.118833 0.992914i \(-0.537915\pi\)
0.800473 + 0.599369i \(0.204582\pi\)
\(620\) −3.35119 2.19387i −0.134587 0.0881080i
\(621\) 0 0
\(622\) −2.91288 2.91288i −0.116796 0.116796i
\(623\) 10.9070 40.7054i 0.436979 1.63083i
\(624\) 0 0
\(625\) −7.37451 23.8876i −0.294980 0.955503i
\(626\) 9.60433 + 5.54506i 0.383866 + 0.221625i
\(627\) 0 0
\(628\) 7.85154 + 2.10381i 0.313311 + 0.0839513i
\(629\) −18.7083 −0.745948
\(630\) 0 0
\(631\) 39.7477 1.58233 0.791166 0.611601i \(-0.209474\pi\)
0.791166 + 0.611601i \(0.209474\pi\)
\(632\) −17.7050 4.74404i −0.704267 0.188708i
\(633\) 0 0
\(634\) −12.8096 7.39564i −0.508735 0.293719i
\(635\) 4.94131 15.0194i 0.196090 0.596028i
\(636\) 0 0
\(637\) −0.381970 + 1.42553i −0.0151342 + 0.0564816i
\(638\) 7.85971 + 7.85971i 0.311169 + 0.311169i
\(639\) 0 0
\(640\) 24.1652 5.04356i 0.955211 0.199364i
\(641\) −32.4037 + 18.7083i −1.27987 + 0.738933i −0.976824 0.214043i \(-0.931337\pi\)
−0.303045 + 0.952976i \(0.598003\pi\)
\(642\) 0 0
\(643\) 0.655657 + 2.44694i 0.0258566 + 0.0964981i 0.977648 0.210247i \(-0.0674268\pi\)
−0.951792 + 0.306745i \(0.900760\pi\)
\(644\) −13.8627 + 24.0108i −0.546265 + 0.946159i
\(645\) 0 0
\(646\) −1.81307 3.14033i −0.0713342 0.123554i
\(647\) 18.5060 18.5060i 0.727547 0.727547i −0.242584 0.970130i \(-0.577995\pi\)
0.970130 + 0.242584i \(0.0779949\pi\)
\(648\) 0 0
\(649\) 24.3303i 0.955048i
\(650\) −4.65630 3.43566i −0.182635 0.134758i
\(651\) 0 0
\(652\) 12.2347 3.27828i 0.479149 0.128388i
\(653\) 23.8830 6.39942i 0.934613 0.250429i 0.240792 0.970577i \(-0.422593\pi\)
0.693820 + 0.720148i \(0.255926\pi\)
\(654\) 0 0
\(655\) −0.954143 + 17.0080i −0.0372814 + 0.664557i
\(656\) 15.4779i 0.604309i
\(657\) 0 0
\(658\) −0.747727 + 0.747727i −0.0291494 + 0.0291494i
\(659\) 18.8291 + 32.6129i 0.733476 + 1.27042i 0.955389 + 0.295351i \(0.0954367\pi\)
−0.221913 + 0.975067i \(0.571230\pi\)
\(660\) 0 0
\(661\) −11.7477 + 20.3477i −0.456934 + 0.791432i −0.998797 0.0490343i \(-0.984386\pi\)
0.541863 + 0.840467i \(0.317719\pi\)
\(662\) −1.50731 5.62536i −0.0585833 0.218636i
\(663\) 0 0
\(664\) 18.4726 10.6652i 0.716875 0.413888i
\(665\) −3.47197 16.6352i −0.134637 0.645085i
\(666\) 0 0
\(667\) 18.9564 + 18.9564i 0.733996 + 0.733996i
\(668\) 6.98033 26.0509i 0.270077 1.00794i
\(669\) 0 0
\(670\) −5.58839 11.0684i −0.215898 0.427608i
\(671\) 4.80217 + 2.77253i 0.185386 + 0.107032i
\(672\) 0 0
\(673\) 30.7889 + 8.24985i 1.18682 + 0.318008i 0.797630 0.603147i \(-0.206087\pi\)
0.389194 + 0.921156i \(0.372754\pi\)
\(674\) −11.7644 −0.453146
\(675\) 0 0
\(676\) −11.7913 −0.453511
\(677\) 17.0987 + 4.58159i 0.657158 + 0.176085i 0.571963 0.820279i \(-0.306182\pi\)
0.0851947 + 0.996364i \(0.472849\pi\)
\(678\) 0 0
\(679\) 11.1153 + 6.41742i 0.426566 + 0.246278i
\(680\) −4.61838 9.14716i −0.177107 0.350778i
\(681\) 0 0
\(682\) 0.655657 2.44694i 0.0251064 0.0936984i
\(683\) 0.0674228 + 0.0674228i 0.00257986 + 0.00257986i 0.708396 0.705816i \(-0.249419\pi\)
−0.705816 + 0.708396i \(0.749419\pi\)
\(684\) 0 0
\(685\) 6.70417 + 32.1216i 0.256153 + 1.22730i
\(686\) 7.59979 4.38774i 0.290161 0.167525i
\(687\) 0 0
\(688\) −3.27828 12.2347i −0.124983 0.466444i
\(689\) −0.120774 + 0.209186i −0.00460111 + 0.00796935i
\(690\) 0 0
\(691\) 5.87386 + 10.1738i 0.223452 + 0.387031i 0.955854 0.293842i \(-0.0949340\pi\)
−0.732402 + 0.680873i \(0.761601\pi\)
\(692\) −14.1998 + 14.1998i −0.539794 + 0.539794i
\(693\) 0 0
\(694\) 5.49545i 0.208605i
\(695\) 0.396422 7.06638i 0.0150371 0.268043i
\(696\) 0 0
\(697\) −14.1710 + 3.79710i −0.536763 + 0.143825i
\(698\) −8.56859 + 2.29595i −0.324326 + 0.0869028i
\(699\) 0 0
\(700\) −3.38427 22.4352i −0.127913 0.847971i
\(701\) 47.8325i 1.80661i −0.429001 0.903304i \(-0.641134\pi\)
0.429001 0.903304i \(-0.358866\pi\)
\(702\) 0 0
\(703\) −15.0000 + 15.0000i −0.565736 + 0.565736i
\(704\) −9.47492 16.4110i −0.357099 0.618514i
\(705\) 0 0
\(706\) −4.00000 + 6.92820i −0.150542 + 0.260746i
\(707\) 7.27132 + 27.1369i 0.273466 + 1.02059i
\(708\) 0 0
\(709\) −36.9452 + 21.3303i −1.38750 + 0.801076i −0.993034 0.117832i \(-0.962406\pi\)
−0.394471 + 0.918908i \(0.629072\pi\)
\(710\) −5.54506 + 1.15732i −0.208103 + 0.0434335i
\(711\) 0 0
\(712\) −20.3739 20.3739i −0.763543 0.763543i
\(713\) 1.58135 5.90166i 0.0592219 0.221019i
\(714\) 0 0
\(715\) −9.81621 + 29.8370i −0.367105 + 1.11584i
\(716\) 0 0
\(717\) 0 0
\(718\) −13.1495 3.52341i −0.490737 0.131493i
\(719\) 29.7984 1.11129 0.555647 0.831419i \(-0.312471\pi\)
0.555647 + 0.831419i \(0.312471\pi\)
\(720\) 0 0
\(721\) −12.8348 −0.477995
\(722\) 4.41283 + 1.18242i 0.164229 + 0.0440049i
\(723\) 0 0
\(724\) −15.1217 8.73049i −0.561992 0.324466i
\(725\) −21.8010 2.45379i −0.809671 0.0911314i
\(726\) 0 0
\(727\) 13.6034 50.7685i 0.504522 1.88290i 0.0361968 0.999345i \(-0.488476\pi\)
0.468325 0.883556i \(-0.344858\pi\)
\(728\) −7.85971 7.85971i −0.291300 0.291300i
\(729\) 0 0
\(730\) −12.5390 8.20871i −0.464090 0.303818i
\(731\) −10.3974 + 6.00295i −0.384562 + 0.222027i
\(732\) 0 0
\(733\) 9.66945 + 36.0869i 0.357149 + 1.33290i 0.877758 + 0.479104i \(0.159038\pi\)
−0.520609 + 0.853795i \(0.674295\pi\)
\(734\) −2.89331 + 5.01135i −0.106794 + 0.184972i
\(735\) 0 0
\(736\) 14.4782 + 25.0770i 0.533674 + 0.924351i
\(737\) −47.5909 + 47.5909i −1.75303 + 1.75303i
\(738\) 0 0
\(739\) 24.4955i 0.901080i −0.892756 0.450540i \(-0.851231\pi\)
0.892756 0.450540i \(-0.148769\pi\)
\(740\) −21.1175 + 18.8740i −0.776296 + 0.693822i
\(741\) 0 0
\(742\) 0.106591 0.0285609i 0.00391307 0.00104850i
\(743\) −16.5461 + 4.43352i −0.607018 + 0.162650i −0.549219 0.835678i \(-0.685075\pi\)
−0.0577989 + 0.998328i \(0.518408\pi\)
\(744\) 0 0
\(745\) −17.5472 0.984396i −0.642881 0.0360655i
\(746\) 2.31464i 0.0847451i
\(747\) 0 0
\(748\) −18.5826 + 18.5826i −0.679446 + 0.679446i
\(749\) 6.70239 + 11.6089i 0.244900 + 0.424179i
\(750\) 0 0
\(751\) −4.87386 + 8.44178i −0.177850 + 0.308045i −0.941144 0.338006i \(-0.890247\pi\)
0.763294 + 0.646051i \(0.223581\pi\)
\(752\) −0.660092 2.46350i −0.0240711 0.0898345i
\(753\) 0 0
\(754\) −4.39770 + 2.53901i −0.160155 + 0.0924655i
\(755\) 2.44949 3.74166i 0.0891461 0.136173i
\(756\) 0 0
\(757\) −5.00000 5.00000i −0.181728 0.181728i 0.610380 0.792108i \(-0.291017\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(758\) −0.916103 + 3.41894i −0.0332744 + 0.124182i
\(759\) 0 0
\(760\) −11.0370 3.63111i −0.400354 0.131714i
\(761\) −7.80898 4.50851i −0.283075 0.163434i 0.351740 0.936098i \(-0.385590\pi\)
−0.634815 + 0.772664i \(0.718924\pi\)
\(762\) 0 0
\(763\) −33.6399 9.01379i −1.21785 0.326321i
\(764\) −33.5119 −1.21242
\(765\) 0 0
\(766\) 13.5390 0.489184
\(767\) −10.7366 2.87685i −0.387675 0.103877i
\(768\) 0 0
\(769\) 23.6687 + 13.6652i 0.853516 + 0.492778i 0.861836 0.507187i \(-0.169315\pi\)
−0.00831931 + 0.999965i \(0.502648\pi\)
\(770\) 12.8097 6.46756i 0.461628 0.233075i
\(771\) 0 0
\(772\) 1.17447 4.38318i 0.0422701 0.157754i
\(773\) 36.8098 + 36.8098i 1.32396 + 1.32396i 0.910545 + 0.413411i \(0.135663\pi\)
0.413411 + 0.910545i \(0.364337\pi\)
\(774\) 0 0
\(775\) 2.00000 + 4.58258i 0.0718421 + 0.164611i
\(776\) 7.59979 4.38774i 0.272817 0.157511i
\(777\) 0 0
\(778\) 0.929344 + 3.46836i 0.0333186 + 0.124347i
\(779\) −8.31759 + 14.4065i −0.298009 + 0.516166i
\(780\) 0 0
\(781\) 15.3739 + 26.6283i 0.550120 + 0.952836i
\(782\) 5.22202 5.22202i 0.186739 0.186739i
\(783\) 0 0
\(784\) 1.62614i 0.0580763i
\(785\) −6.76176 7.56551i −0.241337 0.270025i
\(786\) 0 0
\(787\) 51.2792 13.7402i 1.82791 0.489786i 0.830201 0.557465i \(-0.188226\pi\)
0.997707 + 0.0676784i \(0.0215592\pi\)
\(788\) −4.57781 + 1.22662i −0.163078 + 0.0436966i
\(789\) 0 0
\(790\) 7.20409 + 8.06042i 0.256310 + 0.286777i
\(791\) 30.9557i 1.10066i
\(792\) 0 0
\(793\) −1.79129 + 1.79129i −0.0636105 + 0.0636105i
\(794\) 8.43837 + 14.6157i 0.299466 + 0.518691i
\(795\) 0 0
\(796\) 15.0000 25.9808i 0.531661 0.920864i
\(797\) −0.921254 3.43817i −0.0326325 0.121786i 0.947688 0.319197i \(-0.103413\pi\)
−0.980321 + 0.197411i \(0.936747\pi\)
\(798\) 0 0
\(799\) −2.09355 + 1.20871i −0.0740645 + 0.0427612i
\(800\) −22.0595 8.65471i −0.779920 0.305990i
\(801\) 0 0
\(802\) −6.04356 6.04356i −0.213406 0.213406i
\(803\) −21.0551 + 78.5789i −0.743020 + 2.77299i
\(804\) 0 0
\(805\) 30.8950 15.5988i 1.08890 0.549785i
\(806\) 1.00227 + 0.578661i 0.0353035 + 0.0203825i
\(807\) 0 0
\(808\) 18.5541 + 4.97157i 0.652732 + 0.174899i
\(809\) 42.9616 1.51045 0.755225 0.655465i \(-0.227527\pi\)
0.755225 + 0.655465i \(0.227527\pi\)
\(810\) 0 0
\(811\) 23.4955 0.825037 0.412518 0.910949i \(-0.364649\pi\)
0.412518 + 0.910949i \(0.364649\pi\)
\(812\) −19.2323 5.15327i −0.674920 0.180844i
\(813\) 0 0
\(814\) −15.5130 8.95644i −0.543731 0.313923i
\(815\) −15.0194 4.94131i −0.526108 0.173087i
\(816\) 0 0
\(817\) −3.52341 + 13.1495i −0.123269 + 0.460044i
\(818\) −7.80636 7.80636i −0.272943 0.272943i
\(819\) 0 0
\(820\) −12.1652 + 18.5826i −0.424826 + 0.648932i
\(821\) −6.59752 + 3.80908i −0.230255 + 0.132938i −0.610690 0.791870i \(-0.709108\pi\)
0.380435 + 0.924808i \(0.375774\pi\)
\(822\) 0 0
\(823\) −8.76867 32.7251i −0.305656 1.14073i −0.932379 0.361483i \(-0.882271\pi\)
0.626722 0.779243i \(-0.284396\pi\)
\(824\) −4.38774 + 7.59979i −0.152854 + 0.264751i
\(825\) 0 0
\(826\) 2.53901 + 4.39770i 0.0883436 + 0.153016i
\(827\) 31.6692 31.6692i 1.10125 1.10125i 0.106987 0.994260i \(-0.465880\pi\)
0.994260 0.106987i \(-0.0341203\pi\)
\(828\) 0 0
\(829\) 34.7477i 1.20684i −0.797424 0.603419i \(-0.793805\pi\)
0.797424 0.603419i \(-0.206195\pi\)
\(830\) −12.5607 0.704650i −0.435987 0.0244588i
\(831\) 0 0
\(832\) 8.36225 2.24066i 0.289909 0.0776808i
\(833\) 1.48883 0.398931i 0.0515849 0.0138221i
\(834\) 0 0
\(835\) −25.1019 + 22.4351i −0.868687 + 0.776399i
\(836\) 29.7984i 1.03060i
\(837\) 0 0
\(838\) −0.295834 + 0.295834i −0.0102194 + 0.0102194i
\(839\) −17.5510 30.3992i −0.605927 1.04950i −0.991904 0.126988i \(-0.959469\pi\)
0.385978 0.922508i \(-0.373864\pi\)
\(840\) 0 0
\(841\) 4.87386 8.44178i 0.168064 0.291096i
\(842\) −4.69983 17.5400i −0.161967 0.604469i
\(843\) 0 0
\(844\) 15.1217 8.73049i 0.520509 0.300516i
\(845\) 12.3149 + 8.06198i 0.423644 + 0.277340i
\(846\) 0 0
\(847\) −35.3739 35.3739i −1.21546 1.21546i
\(848\) −0.0688847 + 0.257081i −0.00236551 + 0.00882820i
\(849\) 0 0
\(850\) −0.675957 + 6.00564i −0.0231851 + 0.205992i
\(851\) −37.4151 21.6016i −1.28257 0.740493i
\(852\) 0 0
\(853\) −5.91530 1.58500i −0.202536 0.0542694i 0.156125 0.987737i \(-0.450100\pi\)
−0.358661 + 0.933468i \(0.616767\pi\)
\(854\) 1.15732 0.0396027
\(855\) 0 0
\(856\) 9.16515 0.313258
\(857\) −8.54937 2.29080i −0.292041 0.0782521i 0.109824 0.993951i \(-0.464971\pi\)
−0.401865 + 0.915699i \(0.631638\pi\)
\(858\) 0 0
\(859\) −39.5432 22.8303i −1.34920 0.778960i −0.361062 0.932542i \(-0.617586\pi\)
−0.988136 + 0.153582i \(0.950919\pi\)
\(860\) −5.68026 + 17.2655i −0.193695 + 0.588749i
\(861\) 0 0
\(862\) −1.06619 + 3.97907i −0.0363145 + 0.135528i
\(863\) −26.2590 26.2590i −0.893868 0.893868i 0.101017 0.994885i \(-0.467790\pi\)
−0.994885 + 0.101017i \(0.967790\pi\)
\(864\) 0 0
\(865\) 24.5390 5.12159i 0.834352 0.174139i
\(866\) 2.58844 1.49444i 0.0879587 0.0507830i
\(867\) 0 0
\(868\) 1.17447 + 4.38318i 0.0398641 + 0.148775i
\(869\) 29.3405 50.8193i 0.995309 1.72393i
\(870\) 0 0
\(871\) −15.3739 26.6283i −0.520923 0.902266i
\(872\) −16.8375 + 16.8375i −0.570188 + 0.570188i
\(873\) 0 0
\(874\) 8.37386i 0.283250i
\(875\) −11.8049 + 25.7453i −0.399079 + 0.870351i
\(876\) 0 0
\(877\) −4.38318 + 1.17447i −0.148010 + 0.0396590i −0.332063 0.943257i \(-0.607745\pi\)
0.184054 + 0.982916i \(0.441078\pi\)
\(878\) 4.66992 1.25130i 0.157602 0.0422293i
\(879\) 0 0
\(880\) −1.93854 + 34.5552i −0.0653481 + 1.16486i
\(881\) 35.3435i 1.19075i 0.803447 + 0.595376i \(0.202997\pi\)
−0.803447 + 0.595376i \(0.797003\pi\)
\(882\) 0 0
\(883\) −25.3739 + 25.3739i −0.853898 + 0.853898i −0.990611 0.136712i \(-0.956346\pi\)
0.136712 + 0.990611i \(0.456346\pi\)
\(884\) −6.00295 10.3974i −0.201901 0.349703i
\(885\) 0 0
\(886\) 2.56080 4.43543i 0.0860316 0.149011i
\(887\) −13.0991 48.8864i −0.439823 1.64144i −0.729253 0.684244i \(-0.760132\pi\)
0.289430 0.957199i \(-0.406534\pi\)
\(888\) 0 0
\(889\) −15.5130 + 8.95644i −0.520290 + 0.300389i
\(890\) 3.47197 + 16.6352i 0.116381 + 0.557613i
\(891\) 0 0
\(892\) 15.3739 + 15.3739i 0.514755 + 0.514755i
\(893\) −0.709449 + 2.64770i −0.0237408 + 0.0886019i
\(894\) 0 0
\(895\) 0 0
\(896\) −24.2200 13.9834i −0.809134 0.467154i
\(897\) 0 0
\(898\) −5.80871 1.55644i −0.193839 0.0519391i
\(899\) 4.38774 0.146339
\(900\) 0 0
\(901\) 0.252273 0.00840443
\(902\) −13.5685 3.63566i −0.451780 0.121054i
\(903\) 0 0
\(904\) 18.3296 + 10.5826i 0.609632 + 0.351971i
\(905\) 9.82388 + 19.4572i 0.326557 + 0.646779i
\(906\) 0 0
\(907\) 6.55657 24.4694i 0.217707 0.812495i −0.767489 0.641063i \(-0.778494\pi\)
0.985196 0.171432i \(-0.0548394\pi\)
\(908\) −12.3682 12.3682i −0.410454 0.410454i
\(909\) 0 0
\(910\) 1.33939 + 6.41742i 0.0444005 + 0.212736i
\(911\) −21.0040 + 12.1267i −0.695894 + 0.401775i −0.805816 0.592166i \(-0.798273\pi\)
0.109922 + 0.993940i \(0.464940\pi\)
\(912\) 0 0
\(913\) 17.6742 + 65.9609i 0.584930 + 2.18299i
\(914\) −1.15732 + 2.00454i −0.0382808 + 0.0663043i
\(915\) 0 0
\(916\) −5.22595 9.05161i −0.172670 0.299073i
\(917\) 13.6463 13.6463i 0.450641 0.450641i
\(918\) 0 0
\(919\) 24.0000i 0.791687i −0.918318 0.395843i \(-0.870452\pi\)
0.918318 0.395843i \(-0.129548\pi\)
\(920\) 1.32542 23.6262i 0.0436979 0.778933i
\(921\) 0 0
\(922\) −6.42601 + 1.72184i −0.211629 + 0.0567059i
\(923\) −13.5685 + 3.63566i −0.446611 + 0.119669i
\(924\) 0 0
\(925\) 34.9598 5.27356i 1.14947 0.173394i
\(926\) 5.06197i 0.166347i
\(927\) 0 0
\(928\) −14.7042 + 14.7042i −0.482688 + 0.482688i
\(929\) 0.457887 + 0.793084i 0.0150228 + 0.0260203i 0.873439 0.486933i \(-0.161885\pi\)
−0.858416 + 0.512954i \(0.828551\pi\)
\(930\) 0 0
\(931\) 0.873864 1.51358i 0.0286397 0.0496055i
\(932\) 10.9954 + 41.0353i 0.360166 + 1.34416i
\(933\) 0 0
\(934\) 2.98943 1.72595i 0.0978171 0.0564747i
\(935\) 32.1131 6.70239i 1.05021 0.219191i
\(936\) 0 0
\(937\) −0.747727 0.747727i −0.0244272 0.0244272i 0.694788 0.719215i \(-0.255498\pi\)
−0.719215 + 0.694788i \(0.755498\pi\)
\(938\) −3.63566 + 13.5685i −0.118708 + 0.443026i
\(939\) 0 0
\(940\) −1.14374 + 3.47647i −0.0373046 + 0.113390i
\(941\) 12.6111 + 7.28105i 0.411111 + 0.237355i 0.691267 0.722599i \(-0.257053\pi\)
−0.280156 + 0.959955i \(0.590386\pi\)
\(942\) 0 0
\(943\) −32.7251 8.76867i −1.06568 0.285547i
\(944\) −12.2474 −0.398621
\(945\) 0 0
\(946\) −11.4955 −0.373749
\(947\) −13.2922 3.56162i −0.431937 0.115737i 0.0362982 0.999341i \(-0.488443\pi\)
−0.468235 + 0.883604i \(0.655110\pi\)
\(948\) 0 0
\(949\) −32.1860 18.5826i −1.04480 0.603216i
\(950\) 4.27325 + 5.35720i 0.138643 + 0.173810i
\(951\) 0 0
\(952\) −3.00460 + 11.2133i −0.0973796 + 0.363425i
\(953\) −20.2420 20.2420i −0.655703 0.655703i 0.298658 0.954360i \(-0.403461\pi\)
−0.954360 + 0.298658i \(0.903461\pi\)
\(954\) 0 0
\(955\) 35.0000 + 22.9129i 1.13257 + 0.741443i
\(956\) −18.9995 + 10.9694i −0.614487 + 0.354774i
\(957\) 0 0
\(958\) 0.929344 + 3.46836i 0.0300257 + 0.112058i
\(959\) 18.5875 32.1945i 0.600222 1.03962i
\(960\) 0 0
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) 5.78661 5.78661i 0.186568 0.186568i
\(963\) 0 0
\(964\) 21.0436i 0.677767i
\(965\) −4.22350 + 3.77480i −0.135959 + 0.121515i
\(966\) 0 0
\(967\) −26.4057 + 7.07538i −0.849150 + 0.227529i −0.657050 0.753847i \(-0.728196\pi\)
−0.192099 + 0.981376i \(0.561530\pi\)
\(968\) −33.0386 + 8.85266i −1.06190 + 0.284535i
\(969\) 0 0
\(970\) −5.16758 0.289900i −0.165921 0.00930811i
\(971\) 18.7083i 0.600377i 0.953880 + 0.300189i \(0.0970497\pi\)
−0.953880 + 0.300189i \(0.902950\pi\)
\(972\) 0 0
\(973\) −5.66970 + 5.66970i −0.181762 + 0.181762i
\(974\) 0.120774 + 0.209186i 0.00386984 + 0.00670275i
\(975\) 0 0
\(976\) −1.39564 + 2.41733i −0.0446735 + 0.0773767i
\(977\) 0.571680 + 2.13354i 0.0182897 + 0.0682580i 0.974468 0.224528i \(-0.0720842\pi\)
−0.956178 + 0.292786i \(0.905418\pi\)
\(978\) 0 0
\(979\) 79.8849 46.1216i 2.55313 1.47405i
\(980\) 1.27810 1.95232i 0.0408273 0.0623647i
\(981\) 0 0
\(982\) 4.70417 + 4.70417i 0.150116 + 0.150116i
\(983\) −4.45820 + 16.6382i −0.142194 + 0.530677i 0.857670 + 0.514201i \(0.171911\pi\)
−0.999864 + 0.0164761i \(0.994755\pi\)
\(984\) 0 0
\(985\) 5.61976 + 1.84887i 0.179060 + 0.0589098i
\(986\) 4.59298 + 2.65176i 0.146270 + 0.0844492i
\(987\) 0 0
\(988\) −13.1495 3.52341i −0.418343 0.112095i
\(989\) −27.7253 −0.881614
\(990\) 0 0
\(991\) 18.2523 0.579803 0.289901 0.957057i \(-0.406378\pi\)
0.289901 + 0.957057i \(0.406378\pi\)
\(992\) 4.57781 + 1.22662i 0.145346 + 0.0389453i
\(993\) 0 0
\(994\) 5.55765 + 3.20871i 0.176278 + 0.101774i
\(995\) −33.4297 + 16.8786i −1.05979 + 0.535087i
\(996\) 0 0
\(997\) 6.14604 22.9373i 0.194647 0.726432i −0.797711 0.603040i \(-0.793956\pi\)
0.992358 0.123392i \(-0.0393774\pi\)
\(998\) 8.82883 + 8.82883i 0.279472 + 0.279472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.m.c.377.3 16
3.2 odd 2 inner 405.2.m.c.377.2 16
5.3 odd 4 inner 405.2.m.c.53.3 16
9.2 odd 6 inner 405.2.m.c.107.3 16
9.4 even 3 135.2.f.a.107.2 yes 8
9.5 odd 6 135.2.f.a.107.3 yes 8
9.7 even 3 inner 405.2.m.c.107.2 16
15.8 even 4 inner 405.2.m.c.53.2 16
36.23 even 6 2160.2.w.d.1457.2 8
36.31 odd 6 2160.2.w.d.1457.3 8
45.4 even 6 675.2.f.i.107.3 8
45.13 odd 12 135.2.f.a.53.3 yes 8
45.14 odd 6 675.2.f.i.107.2 8
45.22 odd 12 675.2.f.i.593.2 8
45.23 even 12 135.2.f.a.53.2 8
45.32 even 12 675.2.f.i.593.3 8
45.38 even 12 inner 405.2.m.c.188.3 16
45.43 odd 12 inner 405.2.m.c.188.2 16
180.23 odd 12 2160.2.w.d.593.4 8
180.103 even 12 2160.2.w.d.593.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.f.a.53.2 8 45.23 even 12
135.2.f.a.53.3 yes 8 45.13 odd 12
135.2.f.a.107.2 yes 8 9.4 even 3
135.2.f.a.107.3 yes 8 9.5 odd 6
405.2.m.c.53.2 16 15.8 even 4 inner
405.2.m.c.53.3 16 5.3 odd 4 inner
405.2.m.c.107.2 16 9.7 even 3 inner
405.2.m.c.107.3 16 9.2 odd 6 inner
405.2.m.c.188.2 16 45.43 odd 12 inner
405.2.m.c.188.3 16 45.38 even 12 inner
405.2.m.c.377.2 16 3.2 odd 2 inner
405.2.m.c.377.3 16 1.1 even 1 trivial
675.2.f.i.107.2 8 45.14 odd 6
675.2.f.i.107.3 8 45.4 even 6
675.2.f.i.593.2 8 45.22 odd 12
675.2.f.i.593.3 8 45.32 even 12
2160.2.w.d.593.1 8 180.103 even 12
2160.2.w.d.593.4 8 180.23 odd 12
2160.2.w.d.1457.2 8 36.23 even 6
2160.2.w.d.1457.3 8 36.31 odd 6