Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [22,13,Mod(7,22)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(22, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([7]))
N = Newforms(chi, 13, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("22.7");
S:= CuspForms(chi, 13);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 22 = 2 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 13 \) |
Character orbit: | \([\chi]\) | \(=\) | 22.d (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(20.1078639801\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −26.6001 | + | 36.6119i | −319.732 | + | 984.033i | −632.867 | − | 1947.76i | −20129.5 | + | 14624.9i | −27522.4 | − | 37881.4i | −68815.6 | + | 22359.6i | 88145.7 | + | 28640.3i | −436148. | − | 316880.i | − | 1.12601e6i | |
7.2 | −26.6001 | + | 36.6119i | −191.068 | + | 588.048i | −632.867 | − | 1947.76i | −2891.36 | + | 2100.69i | −16447.1 | − | 22637.5i | 136173. | − | 44245.2i | 88145.7 | + | 28640.3i | 120651. | + | 87658.4i | − | 161737.i | |
7.3 | −26.6001 | + | 36.6119i | −123.108 | + | 378.886i | −632.867 | − | 1947.76i | 9050.01 | − | 6575.22i | −10597.1 | − | 14585.6i | −73754.4 | + | 23964.3i | 88145.7 | + | 28640.3i | 301546. | + | 219086.i | 506240.i | ||
7.4 | −26.6001 | + | 36.6119i | 103.669 | − | 319.061i | −632.867 | − | 1947.76i | −5380.08 | + | 3908.86i | 8923.84 | + | 12282.6i | −84352.8 | + | 27407.9i | 88145.7 | + | 28640.3i | 338892. | + | 246219.i | − | 300951.i | |
7.5 | −26.6001 | + | 36.6119i | 212.654 | − | 654.482i | −632.867 | − | 1947.76i | 23105.0 | − | 16786.8i | 18305.2 | + | 25195.0i | 58390.5 | − | 18972.2i | 88145.7 | + | 28640.3i | 46820.2 | + | 34016.8i | 1.29245e6i | ||
7.6 | −26.6001 | + | 36.6119i | 264.981 | − | 815.527i | −632.867 | − | 1947.76i | −19531.7 | + | 14190.6i | 22809.5 | + | 31394.6i | 187247. | − | 60840.2i | 88145.7 | + | 28640.3i | −164924. | − | 119824.i | − | 1.09256e6i | |
7.7 | 26.6001 | − | 36.6119i | −334.229 | + | 1028.65i | −632.867 | − | 1947.76i | 14882.4 | − | 10812.7i | 28770.4 | + | 39599.1i | −20015.5 | + | 6503.44i | −88145.7 | − | 28640.3i | −516471. | − | 375238.i | − | 832491.i | |
7.8 | 26.6001 | − | 36.6119i | −215.213 | + | 662.356i | −632.867 | − | 1947.76i | −6730.35 | + | 4889.89i | 18525.5 | + | 25498.1i | 127422. | − | 41402.0i | −88145.7 | − | 28640.3i | 37545.4 | + | 27278.3i | 376483.i | ||
7.9 | 26.6001 | − | 36.6119i | 48.3765 | − | 148.888i | −632.867 | − | 1947.76i | −17010.2 | + | 12358.6i | −4164.24 | − | 5731.59i | 19106.9 | − | 6208.20i | −88145.7 | − | 28640.3i | 410118. | + | 297968.i | 951517.i | ||
7.10 | 26.6001 | − | 36.6119i | 90.5465 | − | 278.674i | −632.867 | − | 1947.76i | 20021.7 | − | 14546.6i | −7794.23 | − | 10727.8i | 95102.6 | − | 30900.7i | −88145.7 | − | 28640.3i | 360484. | + | 261907.i | − | 1.11997e6i | |
7.11 | 26.6001 | − | 36.6119i | 163.298 | − | 502.579i | −632.867 | − | 1947.76i | 5397.24 | − | 3921.32i | −14056.6 | − | 19347.3i | −214881. | + | 69819.2i | −88145.7 | − | 28640.3i | 204025. | + | 148233.i | − | 301911.i | |
7.12 | 26.6001 | − | 36.6119i | 430.939 | − | 1326.29i | −632.867 | − | 1947.76i | −6380.03 | + | 4635.37i | −37095.2 | − | 51057.1i | 104479. | − | 33947.2i | −88145.7 | − | 28640.3i | −1.14340e6 | − | 830731.i | 356887.i | ||
13.1 | −43.0399 | − | 13.9845i | −974.141 | + | 707.755i | 1656.87 | + | 1203.78i | 1693.39 | + | 5211.73i | 51824.5 | − | 16838.8i | 23282.7 | − | 32045.9i | −54477.1 | − | 74981.2i | 283809. | − | 873474.i | − | 247993.i | |
13.2 | −43.0399 | − | 13.9845i | −450.921 | + | 327.613i | 1656.87 | + | 1203.78i | −2750.10 | − | 8463.94i | 23989.1 | − | 7794.53i | −63696.9 | + | 87671.2i | −54477.1 | − | 74981.2i | −68225.1 | + | 209975.i | 402746.i | ||
13.3 | −43.0399 | − | 13.9845i | 178.144 | − | 129.429i | 1656.87 | + | 1203.78i | 636.648 | + | 1959.40i | −9477.29 | + | 3079.36i | 74339.7 | − | 102320.i | −54477.1 | − | 74981.2i | −149241. | + | 459317.i | − | 93235.6i | |
13.4 | −43.0399 | − | 13.9845i | 296.805 | − | 215.641i | 1656.87 | + | 1203.78i | 8358.15 | + | 25723.7i | −15790.1 | + | 5130.51i | −25261.8 | + | 34770.0i | −54477.1 | − | 74981.2i | −122632. | + | 377424.i | − | 1.22403e6i | |
13.5 | −43.0399 | − | 13.9845i | 547.628 | − | 397.875i | 1656.87 | + | 1203.78i | −7656.05 | − | 23562.9i | −29134.0 | + | 9466.20i | −86058.9 | + | 118450.i | −54477.1 | − | 74981.2i | −22632.3 | + | 69655.1i | 1.12121e6i | ||
13.6 | −43.0399 | − | 13.9845i | 1147.47 | − | 833.682i | 1656.87 | + | 1203.78i | −187.556 | − | 577.239i | −61045.4 | + | 19834.9i | 79191.6 | − | 108998.i | −54477.1 | − | 74981.2i | 457426. | − | 1.40781e6i | 27467.2i | ||
13.7 | 43.0399 | + | 13.9845i | −907.619 | + | 659.424i | 1656.87 | + | 1203.78i | −5263.46 | − | 16199.3i | −48285.5 | + | 15688.9i | 2402.42 | − | 3306.65i | 54477.1 | + | 74981.2i | 224708. | − | 691580.i | − | 770822.i | |
13.8 | 43.0399 | + | 13.9845i | −884.677 | + | 642.756i | 1656.87 | + | 1203.78i | 8997.22 | + | 27690.6i | −47065.0 | + | 15292.4i | −64750.0 | + | 89120.7i | 54477.1 | + | 74981.2i | 205295. | − | 631832.i | 1.31762e6i | ||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.d | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 22.13.d.a | ✓ | 48 |
11.d | odd | 10 | 1 | inner | 22.13.d.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
22.13.d.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
22.13.d.a | ✓ | 48 | 11.d | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{13}^{\mathrm{new}}(22, [\chi])\).