Properties

Label 225.4.b.h.199.2
Level $225$
Weight $4$
Character 225.199
Analytic conductor $13.275$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,4,Mod(199,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(2.17945 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 225.199
Dual form 225.4.b.h.199.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.35890i q^{2} -3.28220 q^{4} +30.4356i q^{7} -15.8466i q^{8} -31.4356 q^{11} +60.7424i q^{13} +102.230 q^{14} -79.4848 q^{16} +121.178i q^{17} +14.4356 q^{19} +105.589i q^{22} +13.6932i q^{23} +204.028 q^{26} -99.8958i q^{28} -76.0492 q^{29} +183.049 q^{31} +140.208i q^{32} +407.025 q^{34} -37.3864i q^{37} -48.4877i q^{38} +30.6627 q^{41} -327.564i q^{43} +103.178 q^{44} +45.9941 q^{46} +449.485i q^{47} -583.325 q^{49} -199.369i q^{52} -301.951i q^{53} +482.301 q^{56} +255.441i q^{58} +340.970 q^{59} +619.098 q^{61} -614.844i q^{62} -164.932 q^{64} +256.890i q^{67} -397.731i q^{68} -499.178 q^{71} +19.1288i q^{73} -125.577 q^{74} -47.3805 q^{76} -956.761i q^{77} -257.424 q^{79} -102.993i q^{82} +914.909i q^{83} -1100.26 q^{86} +498.148i q^{88} -1059.68 q^{89} -1848.73 q^{91} -44.9439i q^{92} +1509.77 q^{94} +521.000i q^{97} +1959.33i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 48 q^{4} - 56 q^{11} + 252 q^{14} + 240 q^{16} - 12 q^{19} + 1252 q^{26} + 184 q^{29} + 244 q^{31} + 1384 q^{34} - 784 q^{41} + 64 q^{44} - 1176 q^{46} - 520 q^{49} + 360 q^{56} + 248 q^{59} + 1500 q^{61}+ \cdots + 1192 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.35890i − 1.18755i −0.804631 0.593775i \(-0.797637\pi\)
0.804631 0.593775i \(-0.202363\pi\)
\(3\) 0 0
\(4\) −3.28220 −0.410275
\(5\) 0 0
\(6\) 0 0
\(7\) 30.4356i 1.64337i 0.569944 + 0.821684i \(0.306965\pi\)
−0.569944 + 0.821684i \(0.693035\pi\)
\(8\) − 15.8466i − 0.700328i
\(9\) 0 0
\(10\) 0 0
\(11\) −31.4356 −0.861654 −0.430827 0.902435i \(-0.641778\pi\)
−0.430827 + 0.902435i \(0.641778\pi\)
\(12\) 0 0
\(13\) 60.7424i 1.29592i 0.761676 + 0.647958i \(0.224377\pi\)
−0.761676 + 0.647958i \(0.775623\pi\)
\(14\) 102.230 1.95158
\(15\) 0 0
\(16\) −79.4848 −1.24195
\(17\) 121.178i 1.72882i 0.502786 + 0.864411i \(0.332308\pi\)
−0.502786 + 0.864411i \(0.667692\pi\)
\(18\) 0 0
\(19\) 14.4356 0.174303 0.0871514 0.996195i \(-0.472224\pi\)
0.0871514 + 0.996195i \(0.472224\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 105.589i 1.02326i
\(23\) 13.6932i 0.124141i 0.998072 + 0.0620703i \(0.0197703\pi\)
−0.998072 + 0.0620703i \(0.980230\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 204.028 1.53896
\(27\) 0 0
\(28\) − 99.8958i − 0.674233i
\(29\) −76.0492 −0.486965 −0.243482 0.969905i \(-0.578290\pi\)
−0.243482 + 0.969905i \(0.578290\pi\)
\(30\) 0 0
\(31\) 183.049 1.06054 0.530268 0.847830i \(-0.322091\pi\)
0.530268 + 0.847830i \(0.322091\pi\)
\(32\) 140.208i 0.774550i
\(33\) 0 0
\(34\) 407.025 2.05306
\(35\) 0 0
\(36\) 0 0
\(37\) − 37.3864i − 0.166116i −0.996545 0.0830580i \(-0.973531\pi\)
0.996545 0.0830580i \(-0.0264687\pi\)
\(38\) − 48.4877i − 0.206993i
\(39\) 0 0
\(40\) 0 0
\(41\) 30.6627 0.116798 0.0583990 0.998293i \(-0.481400\pi\)
0.0583990 + 0.998293i \(0.481400\pi\)
\(42\) 0 0
\(43\) − 327.564i − 1.16170i −0.814011 0.580850i \(-0.802720\pi\)
0.814011 0.580850i \(-0.197280\pi\)
\(44\) 103.178 0.353515
\(45\) 0 0
\(46\) 45.9941 0.147423
\(47\) 449.485i 1.39498i 0.716594 + 0.697490i \(0.245700\pi\)
−0.716594 + 0.697490i \(0.754300\pi\)
\(48\) 0 0
\(49\) −583.325 −1.70066
\(50\) 0 0
\(51\) 0 0
\(52\) − 199.369i − 0.531682i
\(53\) − 301.951i − 0.782569i −0.920270 0.391284i \(-0.872031\pi\)
0.920270 0.391284i \(-0.127969\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 482.301 1.15090
\(57\) 0 0
\(58\) 255.441i 0.578295i
\(59\) 340.970 0.752381 0.376190 0.926542i \(-0.377234\pi\)
0.376190 + 0.926542i \(0.377234\pi\)
\(60\) 0 0
\(61\) 619.098 1.29947 0.649733 0.760163i \(-0.274881\pi\)
0.649733 + 0.760163i \(0.274881\pi\)
\(62\) − 614.844i − 1.25944i
\(63\) 0 0
\(64\) −164.932 −0.322133
\(65\) 0 0
\(66\) 0 0
\(67\) 256.890i 0.468419i 0.972186 + 0.234210i \(0.0752502\pi\)
−0.972186 + 0.234210i \(0.924750\pi\)
\(68\) − 397.731i − 0.709293i
\(69\) 0 0
\(70\) 0 0
\(71\) −499.178 −0.834388 −0.417194 0.908818i \(-0.636986\pi\)
−0.417194 + 0.908818i \(0.636986\pi\)
\(72\) 0 0
\(73\) 19.1288i 0.0306693i 0.999882 + 0.0153346i \(0.00488136\pi\)
−0.999882 + 0.0153346i \(0.995119\pi\)
\(74\) −125.577 −0.197271
\(75\) 0 0
\(76\) −47.3805 −0.0715121
\(77\) − 956.761i − 1.41601i
\(78\) 0 0
\(79\) −257.424 −0.366613 −0.183307 0.983056i \(-0.558680\pi\)
−0.183307 + 0.983056i \(0.558680\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 102.993i − 0.138703i
\(83\) 914.909i 1.20993i 0.796252 + 0.604965i \(0.206813\pi\)
−0.796252 + 0.604965i \(0.793187\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1100.26 −1.37958
\(87\) 0 0
\(88\) 498.148i 0.603440i
\(89\) −1059.68 −1.26209 −0.631045 0.775746i \(-0.717374\pi\)
−0.631045 + 0.775746i \(0.717374\pi\)
\(90\) 0 0
\(91\) −1848.73 −2.12967
\(92\) − 44.9439i − 0.0509318i
\(93\) 0 0
\(94\) 1509.77 1.65661
\(95\) 0 0
\(96\) 0 0
\(97\) 521.000i 0.545356i 0.962105 + 0.272678i \(0.0879094\pi\)
−0.962105 + 0.272678i \(0.912091\pi\)
\(98\) 1959.33i 2.01962i
\(99\) 0 0
\(100\) 0 0
\(101\) −347.080 −0.341938 −0.170969 0.985276i \(-0.554690\pi\)
−0.170969 + 0.985276i \(0.554690\pi\)
\(102\) 0 0
\(103\) 770.749i 0.737322i 0.929564 + 0.368661i \(0.120184\pi\)
−0.929564 + 0.368661i \(0.879816\pi\)
\(104\) 962.561 0.907566
\(105\) 0 0
\(106\) −1014.22 −0.929339
\(107\) 1415.37i 1.27878i 0.768883 + 0.639390i \(0.220813\pi\)
−0.768883 + 0.639390i \(0.779187\pi\)
\(108\) 0 0
\(109\) −908.386 −0.798235 −0.399118 0.916900i \(-0.630683\pi\)
−0.399118 + 0.916900i \(0.630683\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 2419.17i − 2.04098i
\(113\) − 2049.94i − 1.70657i −0.521447 0.853283i \(-0.674608\pi\)
0.521447 0.853283i \(-0.325392\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 249.609 0.199790
\(117\) 0 0
\(118\) − 1145.28i − 0.893490i
\(119\) −3688.12 −2.84109
\(120\) 0 0
\(121\) −342.803 −0.257553
\(122\) − 2079.49i − 1.54318i
\(123\) 0 0
\(124\) −600.804 −0.435111
\(125\) 0 0
\(126\) 0 0
\(127\) 281.644i 0.196786i 0.995148 + 0.0983932i \(0.0313703\pi\)
−0.995148 + 0.0983932i \(0.968630\pi\)
\(128\) 1675.66i 1.15710i
\(129\) 0 0
\(130\) 0 0
\(131\) −243.056 −0.162106 −0.0810531 0.996710i \(-0.525828\pi\)
−0.0810531 + 0.996710i \(0.525828\pi\)
\(132\) 0 0
\(133\) 439.356i 0.286444i
\(134\) 862.867 0.556271
\(135\) 0 0
\(136\) 1920.26 1.21074
\(137\) − 909.386i − 0.567110i −0.958956 0.283555i \(-0.908486\pi\)
0.958956 0.283555i \(-0.0915139\pi\)
\(138\) 0 0
\(139\) 2049.52 1.25063 0.625317 0.780371i \(-0.284970\pi\)
0.625317 + 0.780371i \(0.284970\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1676.69i 0.990877i
\(143\) − 1909.47i − 1.11663i
\(144\) 0 0
\(145\) 0 0
\(146\) 64.2517 0.0364213
\(147\) 0 0
\(148\) 122.710i 0.0681533i
\(149\) 3601.14 1.97998 0.989990 0.141136i \(-0.0450753\pi\)
0.989990 + 0.141136i \(0.0450753\pi\)
\(150\) 0 0
\(151\) 1383.38 0.745550 0.372775 0.927922i \(-0.378406\pi\)
0.372775 + 0.927922i \(0.378406\pi\)
\(152\) − 228.755i − 0.122069i
\(153\) 0 0
\(154\) −3213.66 −1.68159
\(155\) 0 0
\(156\) 0 0
\(157\) − 131.749i − 0.0669729i −0.999439 0.0334864i \(-0.989339\pi\)
0.999439 0.0334864i \(-0.0106611\pi\)
\(158\) 864.661i 0.435372i
\(159\) 0 0
\(160\) 0 0
\(161\) −416.761 −0.204009
\(162\) 0 0
\(163\) − 2897.74i − 1.39244i −0.717827 0.696222i \(-0.754863\pi\)
0.717827 0.696222i \(-0.245137\pi\)
\(164\) −100.641 −0.0479193
\(165\) 0 0
\(166\) 3073.09 1.43685
\(167\) − 260.283i − 0.120607i −0.998180 0.0603034i \(-0.980793\pi\)
0.998180 0.0603034i \(-0.0192068\pi\)
\(168\) 0 0
\(169\) −1492.64 −0.679398
\(170\) 0 0
\(171\) 0 0
\(172\) 1075.13i 0.476617i
\(173\) − 1935.83i − 0.850742i −0.905019 0.425371i \(-0.860144\pi\)
0.905019 0.425371i \(-0.139856\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2498.65 1.07013
\(177\) 0 0
\(178\) 3559.36i 1.49880i
\(179\) 576.627 0.240777 0.120389 0.992727i \(-0.461586\pi\)
0.120389 + 0.992727i \(0.461586\pi\)
\(180\) 0 0
\(181\) −1962.04 −0.805733 −0.402866 0.915259i \(-0.631986\pi\)
−0.402866 + 0.915259i \(0.631986\pi\)
\(182\) 6209.70i 2.52909i
\(183\) 0 0
\(184\) 216.991 0.0869390
\(185\) 0 0
\(186\) 0 0
\(187\) − 3809.30i − 1.48965i
\(188\) − 1475.30i − 0.572326i
\(189\) 0 0
\(190\) 0 0
\(191\) 4318.75 1.63609 0.818047 0.575152i \(-0.195057\pi\)
0.818047 + 0.575152i \(0.195057\pi\)
\(192\) 0 0
\(193\) − 2.97647i − 0.00111011i −1.00000 0.000555054i \(-0.999823\pi\)
1.00000 0.000555054i \(-0.000176679\pi\)
\(194\) 1749.99 0.647638
\(195\) 0 0
\(196\) 1914.59 0.697738
\(197\) − 569.705i − 0.206040i −0.994679 0.103020i \(-0.967149\pi\)
0.994679 0.103020i \(-0.0328505\pi\)
\(198\) 0 0
\(199\) 3050.73 1.08674 0.543368 0.839494i \(-0.317149\pi\)
0.543368 + 0.839494i \(0.317149\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1165.81i 0.406068i
\(203\) − 2314.60i − 0.800262i
\(204\) 0 0
\(205\) 0 0
\(206\) 2588.87 0.875607
\(207\) 0 0
\(208\) − 4828.09i − 1.60946i
\(209\) −453.792 −0.150189
\(210\) 0 0
\(211\) −50.5104 −0.0164800 −0.00824000 0.999966i \(-0.502623\pi\)
−0.00824000 + 0.999966i \(0.502623\pi\)
\(212\) 991.064i 0.321069i
\(213\) 0 0
\(214\) 4754.10 1.51862
\(215\) 0 0
\(216\) 0 0
\(217\) 5571.21i 1.74285i
\(218\) 3051.18i 0.947944i
\(219\) 0 0
\(220\) 0 0
\(221\) −7360.64 −2.24041
\(222\) 0 0
\(223\) − 5453.55i − 1.63765i −0.574040 0.818827i \(-0.694625\pi\)
0.574040 0.818827i \(-0.305375\pi\)
\(224\) −4267.33 −1.27287
\(225\) 0 0
\(226\) −6885.54 −2.02663
\(227\) 4777.14i 1.39678i 0.715715 + 0.698392i \(0.246101\pi\)
−0.715715 + 0.698392i \(0.753899\pi\)
\(228\) 0 0
\(229\) 2085.51 0.601808 0.300904 0.953654i \(-0.402712\pi\)
0.300904 + 0.953654i \(0.402712\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1205.12i 0.341035i
\(233\) 6484.53i 1.82324i 0.411030 + 0.911622i \(0.365169\pi\)
−0.411030 + 0.911622i \(0.634831\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1119.13 −0.308683
\(237\) 0 0
\(238\) 12388.0i 3.37394i
\(239\) 2234.62 0.604792 0.302396 0.953182i \(-0.402214\pi\)
0.302396 + 0.953182i \(0.402214\pi\)
\(240\) 0 0
\(241\) −2393.01 −0.639616 −0.319808 0.947482i \(-0.603618\pi\)
−0.319808 + 0.947482i \(0.603618\pi\)
\(242\) 1151.44i 0.305857i
\(243\) 0 0
\(244\) −2032.01 −0.533139
\(245\) 0 0
\(246\) 0 0
\(247\) 876.852i 0.225882i
\(248\) − 2900.71i − 0.742722i
\(249\) 0 0
\(250\) 0 0
\(251\) 612.661 0.154067 0.0770335 0.997029i \(-0.475455\pi\)
0.0770335 + 0.997029i \(0.475455\pi\)
\(252\) 0 0
\(253\) − 430.454i − 0.106966i
\(254\) 946.014 0.233694
\(255\) 0 0
\(256\) 4308.91 1.05198
\(257\) 306.112i 0.0742987i 0.999310 + 0.0371493i \(0.0118277\pi\)
−0.999310 + 0.0371493i \(0.988172\pi\)
\(258\) 0 0
\(259\) 1137.88 0.272990
\(260\) 0 0
\(261\) 0 0
\(262\) 816.401i 0.192509i
\(263\) 283.839i 0.0665484i 0.999446 + 0.0332742i \(0.0105935\pi\)
−0.999446 + 0.0332742i \(0.989407\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1475.75 0.340166
\(267\) 0 0
\(268\) − 843.165i − 0.192181i
\(269\) 2426.21 0.549920 0.274960 0.961456i \(-0.411335\pi\)
0.274960 + 0.961456i \(0.411335\pi\)
\(270\) 0 0
\(271\) −174.946 −0.0392148 −0.0196074 0.999808i \(-0.506242\pi\)
−0.0196074 + 0.999808i \(0.506242\pi\)
\(272\) − 9631.80i − 2.14711i
\(273\) 0 0
\(274\) −3054.54 −0.673472
\(275\) 0 0
\(276\) 0 0
\(277\) − 7807.07i − 1.69344i −0.532042 0.846718i \(-0.678575\pi\)
0.532042 0.846718i \(-0.321425\pi\)
\(278\) − 6884.14i − 1.48519i
\(279\) 0 0
\(280\) 0 0
\(281\) −584.171 −0.124017 −0.0620084 0.998076i \(-0.519751\pi\)
−0.0620084 + 0.998076i \(0.519751\pi\)
\(282\) 0 0
\(283\) 5897.31i 1.23872i 0.785106 + 0.619362i \(0.212609\pi\)
−0.785106 + 0.619362i \(0.787391\pi\)
\(284\) 1638.40 0.342329
\(285\) 0 0
\(286\) −6413.73 −1.32605
\(287\) 933.239i 0.191942i
\(288\) 0 0
\(289\) −9771.10 −1.98883
\(290\) 0 0
\(291\) 0 0
\(292\) − 62.7846i − 0.0125828i
\(293\) 1609.73i 0.320960i 0.987039 + 0.160480i \(0.0513042\pi\)
−0.987039 + 0.160480i \(0.948696\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −592.448 −0.116336
\(297\) 0 0
\(298\) − 12095.9i − 2.35133i
\(299\) −831.758 −0.160876
\(300\) 0 0
\(301\) 9969.62 1.90910
\(302\) − 4646.64i − 0.885378i
\(303\) 0 0
\(304\) −1147.41 −0.216475
\(305\) 0 0
\(306\) 0 0
\(307\) 234.473i 0.0435898i 0.999762 + 0.0217949i \(0.00693809\pi\)
−0.999762 + 0.0217949i \(0.993062\pi\)
\(308\) 3140.28i 0.580955i
\(309\) 0 0
\(310\) 0 0
\(311\) 1795.25 0.327329 0.163665 0.986516i \(-0.447669\pi\)
0.163665 + 0.986516i \(0.447669\pi\)
\(312\) 0 0
\(313\) 8440.61i 1.52425i 0.647427 + 0.762127i \(0.275845\pi\)
−0.647427 + 0.762127i \(0.724155\pi\)
\(314\) −442.533 −0.0795336
\(315\) 0 0
\(316\) 844.917 0.150412
\(317\) − 10551.7i − 1.86953i −0.355264 0.934766i \(-0.615609\pi\)
0.355264 0.934766i \(-0.384391\pi\)
\(318\) 0 0
\(319\) 2390.65 0.419595
\(320\) 0 0
\(321\) 0 0
\(322\) 1399.86i 0.242270i
\(323\) 1749.28i 0.301339i
\(324\) 0 0
\(325\) 0 0
\(326\) −9733.21 −1.65360
\(327\) 0 0
\(328\) − 485.900i − 0.0817968i
\(329\) −13680.3 −2.29247
\(330\) 0 0
\(331\) 6743.17 1.11975 0.559876 0.828576i \(-0.310849\pi\)
0.559876 + 0.828576i \(0.310849\pi\)
\(332\) − 3002.91i − 0.496405i
\(333\) 0 0
\(334\) −874.265 −0.143227
\(335\) 0 0
\(336\) 0 0
\(337\) − 8437.26i − 1.36382i −0.731437 0.681909i \(-0.761150\pi\)
0.731437 0.681909i \(-0.238850\pi\)
\(338\) 5013.62i 0.806819i
\(339\) 0 0
\(340\) 0 0
\(341\) −5754.26 −0.913814
\(342\) 0 0
\(343\) − 7314.45i − 1.15144i
\(344\) −5190.78 −0.813571
\(345\) 0 0
\(346\) −6502.25 −1.01030
\(347\) 1848.85i 0.286027i 0.989721 + 0.143013i \(0.0456792\pi\)
−0.989721 + 0.143013i \(0.954321\pi\)
\(348\) 0 0
\(349\) 1148.38 0.176136 0.0880678 0.996114i \(-0.471931\pi\)
0.0880678 + 0.996114i \(0.471931\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 4407.54i − 0.667393i
\(353\) − 5753.60i − 0.867516i −0.901029 0.433758i \(-0.857187\pi\)
0.901029 0.433758i \(-0.142813\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3478.09 0.517804
\(357\) 0 0
\(358\) − 1936.83i − 0.285935i
\(359\) 5452.01 0.801521 0.400761 0.916183i \(-0.368746\pi\)
0.400761 + 0.916183i \(0.368746\pi\)
\(360\) 0 0
\(361\) −6650.61 −0.969619
\(362\) 6590.31i 0.956848i
\(363\) 0 0
\(364\) 6067.91 0.873749
\(365\) 0 0
\(366\) 0 0
\(367\) 8385.93i 1.19276i 0.802703 + 0.596379i \(0.203394\pi\)
−0.802703 + 0.596379i \(0.796606\pi\)
\(368\) − 1088.40i − 0.154176i
\(369\) 0 0
\(370\) 0 0
\(371\) 9190.05 1.28605
\(372\) 0 0
\(373\) − 2728.30i − 0.378730i −0.981907 0.189365i \(-0.939357\pi\)
0.981907 0.189365i \(-0.0606429\pi\)
\(374\) −12795.1 −1.76903
\(375\) 0 0
\(376\) 7122.81 0.976944
\(377\) − 4619.41i − 0.631065i
\(378\) 0 0
\(379\) −3348.99 −0.453895 −0.226947 0.973907i \(-0.572875\pi\)
−0.226947 + 0.973907i \(0.572875\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 14506.2i − 1.94294i
\(383\) 10430.3i 1.39155i 0.718261 + 0.695774i \(0.244938\pi\)
−0.718261 + 0.695774i \(0.755062\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9.99766 −0.00131831
\(387\) 0 0
\(388\) − 1710.03i − 0.223746i
\(389\) 9827.23 1.28088 0.640438 0.768010i \(-0.278753\pi\)
0.640438 + 0.768010i \(0.278753\pi\)
\(390\) 0 0
\(391\) −1659.32 −0.214617
\(392\) 9243.73i 1.19102i
\(393\) 0 0
\(394\) −1913.58 −0.244682
\(395\) 0 0
\(396\) 0 0
\(397\) − 436.382i − 0.0551672i −0.999619 0.0275836i \(-0.991219\pi\)
0.999619 0.0275836i \(-0.00878125\pi\)
\(398\) − 10247.1i − 1.29055i
\(399\) 0 0
\(400\) 0 0
\(401\) 14501.5 1.80591 0.902955 0.429736i \(-0.141393\pi\)
0.902955 + 0.429736i \(0.141393\pi\)
\(402\) 0 0
\(403\) 11118.8i 1.37436i
\(404\) 1139.19 0.140289
\(405\) 0 0
\(406\) −7774.51 −0.950351
\(407\) 1175.26i 0.143134i
\(408\) 0 0
\(409\) 12058.4 1.45782 0.728911 0.684609i \(-0.240027\pi\)
0.728911 + 0.684609i \(0.240027\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 2529.76i − 0.302505i
\(413\) 10377.6i 1.23644i
\(414\) 0 0
\(415\) 0 0
\(416\) −8516.60 −1.00375
\(417\) 0 0
\(418\) 1524.24i 0.178356i
\(419\) 6042.95 0.704577 0.352288 0.935892i \(-0.385404\pi\)
0.352288 + 0.935892i \(0.385404\pi\)
\(420\) 0 0
\(421\) −9994.67 −1.15703 −0.578516 0.815671i \(-0.696368\pi\)
−0.578516 + 0.815671i \(0.696368\pi\)
\(422\) 169.659i 0.0195708i
\(423\) 0 0
\(424\) −4784.90 −0.548054
\(425\) 0 0
\(426\) 0 0
\(427\) 18842.6i 2.13550i
\(428\) − 4645.55i − 0.524652i
\(429\) 0 0
\(430\) 0 0
\(431\) −9327.32 −1.04242 −0.521208 0.853430i \(-0.674518\pi\)
−0.521208 + 0.853430i \(0.674518\pi\)
\(432\) 0 0
\(433\) 7861.22i 0.872485i 0.899829 + 0.436243i \(0.143691\pi\)
−0.899829 + 0.436243i \(0.856309\pi\)
\(434\) 18713.1 2.06972
\(435\) 0 0
\(436\) 2981.51 0.327496
\(437\) 197.670i 0.0216380i
\(438\) 0 0
\(439\) −7412.06 −0.805828 −0.402914 0.915238i \(-0.632003\pi\)
−0.402914 + 0.915238i \(0.632003\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24723.6i 2.66060i
\(443\) − 3043.66i − 0.326430i −0.986591 0.163215i \(-0.947814\pi\)
0.986591 0.163215i \(-0.0521864\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −18317.9 −1.94480
\(447\) 0 0
\(448\) − 5019.81i − 0.529383i
\(449\) −9547.87 −1.00355 −0.501773 0.864999i \(-0.667319\pi\)
−0.501773 + 0.864999i \(0.667319\pi\)
\(450\) 0 0
\(451\) −963.902 −0.100639
\(452\) 6728.31i 0.700162i
\(453\) 0 0
\(454\) 16045.9 1.65875
\(455\) 0 0
\(456\) 0 0
\(457\) 13401.9i 1.37180i 0.727695 + 0.685901i \(0.240592\pi\)
−0.727695 + 0.685901i \(0.759408\pi\)
\(458\) − 7005.00i − 0.714677i
\(459\) 0 0
\(460\) 0 0
\(461\) 4137.03 0.417962 0.208981 0.977920i \(-0.432985\pi\)
0.208981 + 0.977920i \(0.432985\pi\)
\(462\) 0 0
\(463\) 13976.3i 1.40288i 0.712729 + 0.701439i \(0.247459\pi\)
−0.712729 + 0.701439i \(0.752541\pi\)
\(464\) 6044.75 0.604786
\(465\) 0 0
\(466\) 21780.9 2.16519
\(467\) 10796.5i 1.06982i 0.844910 + 0.534908i \(0.179654\pi\)
−0.844910 + 0.534908i \(0.820346\pi\)
\(468\) 0 0
\(469\) −7818.60 −0.769785
\(470\) 0 0
\(471\) 0 0
\(472\) − 5403.21i − 0.526913i
\(473\) 10297.2i 1.00098i
\(474\) 0 0
\(475\) 0 0
\(476\) 12105.2 1.16563
\(477\) 0 0
\(478\) − 7505.85i − 0.718221i
\(479\) 14568.4 1.38966 0.694830 0.719174i \(-0.255479\pi\)
0.694830 + 0.719174i \(0.255479\pi\)
\(480\) 0 0
\(481\) 2270.94 0.215272
\(482\) 8037.89i 0.759577i
\(483\) 0 0
\(484\) 1125.15 0.105668
\(485\) 0 0
\(486\) 0 0
\(487\) − 11456.6i − 1.06601i −0.846113 0.533004i \(-0.821063\pi\)
0.846113 0.533004i \(-0.178937\pi\)
\(488\) − 9810.61i − 0.910052i
\(489\) 0 0
\(490\) 0 0
\(491\) 19666.5 1.80761 0.903804 0.427948i \(-0.140763\pi\)
0.903804 + 0.427948i \(0.140763\pi\)
\(492\) 0 0
\(493\) − 9215.48i − 0.841875i
\(494\) 2945.26 0.268246
\(495\) 0 0
\(496\) −14549.6 −1.31713
\(497\) − 15192.8i − 1.37121i
\(498\) 0 0
\(499\) −8379.31 −0.751722 −0.375861 0.926676i \(-0.622653\pi\)
−0.375861 + 0.926676i \(0.622653\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 2057.87i − 0.182962i
\(503\) − 15678.1i − 1.38976i −0.719124 0.694881i \(-0.755457\pi\)
0.719124 0.694881i \(-0.244543\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1445.85 −0.127028
\(507\) 0 0
\(508\) − 924.413i − 0.0807366i
\(509\) −17037.3 −1.48363 −0.741813 0.670606i \(-0.766034\pi\)
−0.741813 + 0.670606i \(0.766034\pi\)
\(510\) 0 0
\(511\) −582.197 −0.0504009
\(512\) − 1067.93i − 0.0921798i
\(513\) 0 0
\(514\) 1028.20 0.0882334
\(515\) 0 0
\(516\) 0 0
\(517\) − 14129.8i − 1.20199i
\(518\) − 3822.02i − 0.324189i
\(519\) 0 0
\(520\) 0 0
\(521\) 8776.12 0.737982 0.368991 0.929433i \(-0.379703\pi\)
0.368991 + 0.929433i \(0.379703\pi\)
\(522\) 0 0
\(523\) − 11120.4i − 0.929753i −0.885375 0.464877i \(-0.846099\pi\)
0.885375 0.464877i \(-0.153901\pi\)
\(524\) 797.759 0.0665082
\(525\) 0 0
\(526\) 953.385 0.0790296
\(527\) 22181.5i 1.83348i
\(528\) 0 0
\(529\) 11979.5 0.984589
\(530\) 0 0
\(531\) 0 0
\(532\) − 1442.06i − 0.117521i
\(533\) 1862.53i 0.151360i
\(534\) 0 0
\(535\) 0 0
\(536\) 4070.83 0.328047
\(537\) 0 0
\(538\) − 8149.39i − 0.653058i
\(539\) 18337.2 1.46538
\(540\) 0 0
\(541\) 21730.6 1.72693 0.863467 0.504405i \(-0.168288\pi\)
0.863467 + 0.504405i \(0.168288\pi\)
\(542\) 587.626i 0.0465695i
\(543\) 0 0
\(544\) −16990.2 −1.33906
\(545\) 0 0
\(546\) 0 0
\(547\) − 6926.17i − 0.541392i −0.962665 0.270696i \(-0.912746\pi\)
0.962665 0.270696i \(-0.0872539\pi\)
\(548\) 2984.79i 0.232671i
\(549\) 0 0
\(550\) 0 0
\(551\) −1097.82 −0.0848793
\(552\) 0 0
\(553\) − 7834.85i − 0.602480i
\(554\) −26223.2 −2.01104
\(555\) 0 0
\(556\) −6726.95 −0.513104
\(557\) 6589.22i 0.501246i 0.968085 + 0.250623i \(0.0806355\pi\)
−0.968085 + 0.250623i \(0.919364\pi\)
\(558\) 0 0
\(559\) 19897.0 1.50547
\(560\) 0 0
\(561\) 0 0
\(562\) 1962.17i 0.147276i
\(563\) 3839.63i 0.287426i 0.989619 + 0.143713i \(0.0459043\pi\)
−0.989619 + 0.143713i \(0.954096\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 19808.5 1.47105
\(567\) 0 0
\(568\) 7910.28i 0.584345i
\(569\) −20874.0 −1.53794 −0.768968 0.639287i \(-0.779229\pi\)
−0.768968 + 0.639287i \(0.779229\pi\)
\(570\) 0 0
\(571\) 21175.9 1.55199 0.775994 0.630740i \(-0.217248\pi\)
0.775994 + 0.630740i \(0.217248\pi\)
\(572\) 6267.28i 0.458126i
\(573\) 0 0
\(574\) 3134.66 0.227941
\(575\) 0 0
\(576\) 0 0
\(577\) − 14924.2i − 1.07678i −0.842695 0.538391i \(-0.819032\pi\)
0.842695 0.538391i \(-0.180968\pi\)
\(578\) 32820.1i 2.36183i
\(579\) 0 0
\(580\) 0 0
\(581\) −27845.8 −1.98836
\(582\) 0 0
\(583\) 9492.00i 0.674303i
\(584\) 303.127 0.0214785
\(585\) 0 0
\(586\) 5406.92 0.381156
\(587\) − 25218.0i − 1.77318i −0.462552 0.886592i \(-0.653066\pi\)
0.462552 0.886592i \(-0.346934\pi\)
\(588\) 0 0
\(589\) 2642.42 0.184854
\(590\) 0 0
\(591\) 0 0
\(592\) 2971.65i 0.206308i
\(593\) 5011.77i 0.347063i 0.984828 + 0.173532i \(0.0555179\pi\)
−0.984828 + 0.173532i \(0.944482\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −11819.7 −0.812337
\(597\) 0 0
\(598\) 2793.79i 0.191048i
\(599\) 4943.41 0.337199 0.168600 0.985685i \(-0.446075\pi\)
0.168600 + 0.985685i \(0.446075\pi\)
\(600\) 0 0
\(601\) −24334.8 −1.65164 −0.825821 0.563932i \(-0.809288\pi\)
−0.825821 + 0.563932i \(0.809288\pi\)
\(602\) − 33486.9i − 2.26715i
\(603\) 0 0
\(604\) −4540.54 −0.305881
\(605\) 0 0
\(606\) 0 0
\(607\) 28973.8i 1.93741i 0.248207 + 0.968707i \(0.420159\pi\)
−0.248207 + 0.968707i \(0.579841\pi\)
\(608\) 2023.99i 0.135006i
\(609\) 0 0
\(610\) 0 0
\(611\) −27302.8 −1.80778
\(612\) 0 0
\(613\) − 15139.1i − 0.997490i −0.866749 0.498745i \(-0.833794\pi\)
0.866749 0.498745i \(-0.166206\pi\)
\(614\) 787.571 0.0517651
\(615\) 0 0
\(616\) −15161.4 −0.991673
\(617\) − 13894.8i − 0.906617i −0.891354 0.453309i \(-0.850244\pi\)
0.891354 0.453309i \(-0.149756\pi\)
\(618\) 0 0
\(619\) 4589.69 0.298021 0.149011 0.988836i \(-0.452391\pi\)
0.149011 + 0.988836i \(0.452391\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 6030.07i − 0.388720i
\(623\) − 32252.0i − 2.07408i
\(624\) 0 0
\(625\) 0 0
\(626\) 28351.2 1.81013
\(627\) 0 0
\(628\) 432.428i 0.0274773i
\(629\) 4530.41 0.287185
\(630\) 0 0
\(631\) 3005.77 0.189632 0.0948160 0.995495i \(-0.469774\pi\)
0.0948160 + 0.995495i \(0.469774\pi\)
\(632\) 4079.29i 0.256749i
\(633\) 0 0
\(634\) −35442.0 −2.22016
\(635\) 0 0
\(636\) 0 0
\(637\) − 35432.6i − 2.20391i
\(638\) − 8029.96i − 0.498290i
\(639\) 0 0
\(640\) 0 0
\(641\) 5631.47 0.347004 0.173502 0.984834i \(-0.444492\pi\)
0.173502 + 0.984834i \(0.444492\pi\)
\(642\) 0 0
\(643\) − 11305.1i − 0.693358i −0.937984 0.346679i \(-0.887309\pi\)
0.937984 0.346679i \(-0.112691\pi\)
\(644\) 1367.89 0.0836997
\(645\) 0 0
\(646\) 5875.64 0.357855
\(647\) 8614.30i 0.523436i 0.965144 + 0.261718i \(0.0842891\pi\)
−0.965144 + 0.261718i \(0.915711\pi\)
\(648\) 0 0
\(649\) −10718.6 −0.648291
\(650\) 0 0
\(651\) 0 0
\(652\) 9510.96i 0.571285i
\(653\) 12639.8i 0.757479i 0.925503 + 0.378739i \(0.123642\pi\)
−0.925503 + 0.378739i \(0.876358\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2437.22 −0.145057
\(657\) 0 0
\(658\) 45950.9i 2.72242i
\(659\) 13640.4 0.806306 0.403153 0.915133i \(-0.367914\pi\)
0.403153 + 0.915133i \(0.367914\pi\)
\(660\) 0 0
\(661\) −17052.0 −1.00340 −0.501699 0.865042i \(-0.667291\pi\)
−0.501699 + 0.865042i \(0.667291\pi\)
\(662\) − 22649.6i − 1.32976i
\(663\) 0 0
\(664\) 14498.2 0.847348
\(665\) 0 0
\(666\) 0 0
\(667\) − 1041.36i − 0.0604521i
\(668\) 854.302i 0.0494820i
\(669\) 0 0
\(670\) 0 0
\(671\) −19461.7 −1.11969
\(672\) 0 0
\(673\) 16419.7i 0.940467i 0.882542 + 0.470234i \(0.155830\pi\)
−0.882542 + 0.470234i \(0.844170\pi\)
\(674\) −28339.9 −1.61960
\(675\) 0 0
\(676\) 4899.14 0.278740
\(677\) 8670.47i 0.492221i 0.969242 + 0.246110i \(0.0791525\pi\)
−0.969242 + 0.246110i \(0.920847\pi\)
\(678\) 0 0
\(679\) −15856.9 −0.896220
\(680\) 0 0
\(681\) 0 0
\(682\) 19328.0i 1.08520i
\(683\) 5973.36i 0.334647i 0.985902 + 0.167324i \(0.0535125\pi\)
−0.985902 + 0.167324i \(0.946488\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −24568.5 −1.36739
\(687\) 0 0
\(688\) 26036.4i 1.44277i
\(689\) 18341.2 1.01414
\(690\) 0 0
\(691\) −15316.3 −0.843212 −0.421606 0.906779i \(-0.638533\pi\)
−0.421606 + 0.906779i \(0.638533\pi\)
\(692\) 6353.78i 0.349038i
\(693\) 0 0
\(694\) 6210.09 0.339671
\(695\) 0 0
\(696\) 0 0
\(697\) 3715.65i 0.201923i
\(698\) − 3857.29i − 0.209170i
\(699\) 0 0
\(700\) 0 0
\(701\) −34583.1 −1.86332 −0.931660 0.363333i \(-0.881639\pi\)
−0.931660 + 0.363333i \(0.881639\pi\)
\(702\) 0 0
\(703\) − 539.695i − 0.0289545i
\(704\) 5184.74 0.277567
\(705\) 0 0
\(706\) −19325.8 −1.03022
\(707\) − 10563.6i − 0.561929i
\(708\) 0 0
\(709\) −11194.1 −0.592955 −0.296477 0.955040i \(-0.595812\pi\)
−0.296477 + 0.955040i \(0.595812\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 16792.4i 0.883877i
\(713\) 2506.53i 0.131655i
\(714\) 0 0
\(715\) 0 0
\(716\) −1892.61 −0.0987850
\(717\) 0 0
\(718\) − 18312.8i − 0.951847i
\(719\) −15491.9 −0.803549 −0.401774 0.915739i \(-0.631606\pi\)
−0.401774 + 0.915739i \(0.631606\pi\)
\(720\) 0 0
\(721\) −23458.2 −1.21169
\(722\) 22338.7i 1.15147i
\(723\) 0 0
\(724\) 6439.83 0.330572
\(725\) 0 0
\(726\) 0 0
\(727\) − 6272.72i − 0.320003i −0.987117 0.160002i \(-0.948850\pi\)
0.987117 0.160002i \(-0.0511500\pi\)
\(728\) 29296.1i 1.49146i
\(729\) 0 0
\(730\) 0 0
\(731\) 39693.6 2.00837
\(732\) 0 0
\(733\) − 24980.5i − 1.25877i −0.777095 0.629383i \(-0.783308\pi\)
0.777095 0.629383i \(-0.216692\pi\)
\(734\) 28167.5 1.41646
\(735\) 0 0
\(736\) −1919.90 −0.0961530
\(737\) − 8075.49i − 0.403615i
\(738\) 0 0
\(739\) 30660.7 1.52621 0.763107 0.646272i \(-0.223673\pi\)
0.763107 + 0.646272i \(0.223673\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 30868.5i − 1.52725i
\(743\) − 17205.7i − 0.849551i −0.905299 0.424776i \(-0.860353\pi\)
0.905299 0.424776i \(-0.139647\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −9164.09 −0.449760
\(747\) 0 0
\(748\) 12502.9i 0.611165i
\(749\) −43077.8 −2.10151
\(750\) 0 0
\(751\) 18397.1 0.893901 0.446950 0.894559i \(-0.352510\pi\)
0.446950 + 0.894559i \(0.352510\pi\)
\(752\) − 35727.2i − 1.73250i
\(753\) 0 0
\(754\) −15516.1 −0.749422
\(755\) 0 0
\(756\) 0 0
\(757\) 22305.1i 1.07093i 0.844557 + 0.535465i \(0.179864\pi\)
−0.844557 + 0.535465i \(0.820136\pi\)
\(758\) 11248.9i 0.539023i
\(759\) 0 0
\(760\) 0 0
\(761\) −14458.5 −0.688727 −0.344364 0.938836i \(-0.611905\pi\)
−0.344364 + 0.938836i \(0.611905\pi\)
\(762\) 0 0
\(763\) − 27647.3i − 1.31179i
\(764\) −14175.0 −0.671249
\(765\) 0 0
\(766\) 35034.3 1.65253
\(767\) 20711.3i 0.975022i
\(768\) 0 0
\(769\) 39897.6 1.87093 0.935463 0.353424i \(-0.114983\pi\)
0.935463 + 0.353424i \(0.114983\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.76938i 0 0.000455450i
\(773\) 20070.2i 0.933863i 0.884294 + 0.466931i \(0.154641\pi\)
−0.884294 + 0.466931i \(0.845359\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8256.08 0.381928
\(777\) 0 0
\(778\) − 33008.7i − 1.52110i
\(779\) 442.635 0.0203582
\(780\) 0 0
\(781\) 15692.0 0.718953
\(782\) 5573.47i 0.254868i
\(783\) 0 0
\(784\) 46365.5 2.11213
\(785\) 0 0
\(786\) 0 0
\(787\) 10733.0i 0.486137i 0.970009 + 0.243069i \(0.0781540\pi\)
−0.970009 + 0.243069i \(0.921846\pi\)
\(788\) 1869.89i 0.0845329i
\(789\) 0 0
\(790\) 0 0
\(791\) 62391.1 2.80452
\(792\) 0 0
\(793\) 37605.5i 1.68400i
\(794\) −1465.76 −0.0655139
\(795\) 0 0
\(796\) −10013.1 −0.445861
\(797\) 14335.8i 0.637140i 0.947899 + 0.318570i \(0.103203\pi\)
−0.947899 + 0.318570i \(0.896797\pi\)
\(798\) 0 0
\(799\) −54467.7 −2.41167
\(800\) 0 0
\(801\) 0 0
\(802\) − 48709.0i − 2.14461i
\(803\) − 601.325i − 0.0264263i
\(804\) 0 0
\(805\) 0 0
\(806\) 37347.1 1.63213
\(807\) 0 0
\(808\) 5500.03i 0.239468i
\(809\) 20920.7 0.909187 0.454593 0.890699i \(-0.349785\pi\)
0.454593 + 0.890699i \(0.349785\pi\)
\(810\) 0 0
\(811\) 12816.5 0.554931 0.277465 0.960736i \(-0.410506\pi\)
0.277465 + 0.960736i \(0.410506\pi\)
\(812\) 7596.99i 0.328328i
\(813\) 0 0
\(814\) 3947.59 0.169979
\(815\) 0 0
\(816\) 0 0
\(817\) − 4728.59i − 0.202488i
\(818\) − 40502.9i − 1.73124i
\(819\) 0 0
\(820\) 0 0
\(821\) −7253.55 −0.308344 −0.154172 0.988044i \(-0.549271\pi\)
−0.154172 + 0.988044i \(0.549271\pi\)
\(822\) 0 0
\(823\) − 35288.1i − 1.49461i −0.664479 0.747307i \(-0.731346\pi\)
0.664479 0.747307i \(-0.268654\pi\)
\(824\) 12213.8 0.516367
\(825\) 0 0
\(826\) 34857.3 1.46833
\(827\) 32205.9i 1.35418i 0.735899 + 0.677092i \(0.236760\pi\)
−0.735899 + 0.677092i \(0.763240\pi\)
\(828\) 0 0
\(829\) −29993.3 −1.25659 −0.628294 0.777976i \(-0.716246\pi\)
−0.628294 + 0.777976i \(0.716246\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 10018.4i − 0.417457i
\(833\) − 70686.2i − 2.94013i
\(834\) 0 0
\(835\) 0 0
\(836\) 1489.44 0.0616187
\(837\) 0 0
\(838\) − 20297.7i − 0.836720i
\(839\) −35608.7 −1.46526 −0.732628 0.680629i \(-0.761706\pi\)
−0.732628 + 0.680629i \(0.761706\pi\)
\(840\) 0 0
\(841\) −18605.5 −0.762865
\(842\) 33571.1i 1.37403i
\(843\) 0 0
\(844\) 165.785 0.00676134
\(845\) 0 0
\(846\) 0 0
\(847\) − 10433.4i − 0.423255i
\(848\) 24000.5i 0.971911i
\(849\) 0 0
\(850\) 0 0
\(851\) 511.940 0.0206217
\(852\) 0 0
\(853\) 11229.3i 0.450744i 0.974273 + 0.225372i \(0.0723598\pi\)
−0.974273 + 0.225372i \(0.927640\pi\)
\(854\) 63290.5 2.53601
\(855\) 0 0
\(856\) 22428.9 0.895565
\(857\) − 22136.1i − 0.882327i −0.897427 0.441164i \(-0.854566\pi\)
0.897427 0.441164i \(-0.145434\pi\)
\(858\) 0 0
\(859\) 820.727 0.0325994 0.0162997 0.999867i \(-0.494811\pi\)
0.0162997 + 0.999867i \(0.494811\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 31329.5i 1.23792i
\(863\) − 245.223i − 0.00967264i −0.999988 0.00483632i \(-0.998461\pi\)
0.999988 0.00483632i \(-0.00153945\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 26405.0 1.03612
\(867\) 0 0
\(868\) − 18285.8i − 0.715048i
\(869\) 8092.27 0.315894
\(870\) 0 0
\(871\) −15604.1 −0.607032
\(872\) 14394.8i 0.559026i
\(873\) 0 0
\(874\) 663.952 0.0256963
\(875\) 0 0
\(876\) 0 0
\(877\) 37727.8i 1.45265i 0.687350 + 0.726326i \(0.258774\pi\)
−0.687350 + 0.726326i \(0.741226\pi\)
\(878\) 24896.4i 0.956961i
\(879\) 0 0
\(880\) 0 0
\(881\) −21738.8 −0.831326 −0.415663 0.909519i \(-0.636450\pi\)
−0.415663 + 0.909519i \(0.636450\pi\)
\(882\) 0 0
\(883\) 44340.4i 1.68989i 0.534852 + 0.844946i \(0.320368\pi\)
−0.534852 + 0.844946i \(0.679632\pi\)
\(884\) 24159.1 0.919184
\(885\) 0 0
\(886\) −10223.3 −0.387652
\(887\) 681.008i 0.0257790i 0.999917 + 0.0128895i \(0.00410298\pi\)
−0.999917 + 0.0128895i \(0.995897\pi\)
\(888\) 0 0
\(889\) −8572.00 −0.323392
\(890\) 0 0
\(891\) 0 0
\(892\) 17899.7i 0.671889i
\(893\) 6488.58i 0.243149i
\(894\) 0 0
\(895\) 0 0
\(896\) −50999.6 −1.90154
\(897\) 0 0
\(898\) 32070.3i 1.19176i
\(899\) −13920.7 −0.516443
\(900\) 0 0
\(901\) 36589.8 1.35292
\(902\) 3237.65i 0.119514i
\(903\) 0 0
\(904\) −32484.6 −1.19516
\(905\) 0 0
\(906\) 0 0
\(907\) 5348.01i 0.195786i 0.995197 + 0.0978929i \(0.0312103\pi\)
−0.995197 + 0.0978929i \(0.968790\pi\)
\(908\) − 15679.5i − 0.573066i
\(909\) 0 0
\(910\) 0 0
\(911\) −14488.7 −0.526930 −0.263465 0.964669i \(-0.584865\pi\)
−0.263465 + 0.964669i \(0.584865\pi\)
\(912\) 0 0
\(913\) − 28760.7i − 1.04254i
\(914\) 45015.6 1.62908
\(915\) 0 0
\(916\) −6845.05 −0.246907
\(917\) − 7397.56i − 0.266400i
\(918\) 0 0
\(919\) 22546.9 0.809308 0.404654 0.914470i \(-0.367392\pi\)
0.404654 + 0.914470i \(0.367392\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 13895.9i − 0.496351i
\(923\) − 30321.3i − 1.08130i
\(924\) 0 0
\(925\) 0 0
\(926\) 46944.9 1.66599
\(927\) 0 0
\(928\) − 10662.7i − 0.377178i
\(929\) −13980.7 −0.493747 −0.246874 0.969048i \(-0.579403\pi\)
−0.246874 + 0.969048i \(0.579403\pi\)
\(930\) 0 0
\(931\) −8420.65 −0.296429
\(932\) − 21283.5i − 0.748032i
\(933\) 0 0
\(934\) 36264.5 1.27046
\(935\) 0 0
\(936\) 0 0
\(937\) 26362.6i 0.919133i 0.888143 + 0.459567i \(0.151995\pi\)
−0.888143 + 0.459567i \(0.848005\pi\)
\(938\) 26261.9i 0.914159i
\(939\) 0 0
\(940\) 0 0
\(941\) 14715.6 0.509792 0.254896 0.966968i \(-0.417959\pi\)
0.254896 + 0.966968i \(0.417959\pi\)
\(942\) 0 0
\(943\) 419.871i 0.0144994i
\(944\) −27101.9 −0.934419
\(945\) 0 0
\(946\) 34587.2 1.18872
\(947\) 11818.2i 0.405532i 0.979227 + 0.202766i \(0.0649931\pi\)
−0.979227 + 0.202766i \(0.935007\pi\)
\(948\) 0 0
\(949\) −1161.93 −0.0397448
\(950\) 0 0
\(951\) 0 0
\(952\) 58444.2i 1.98969i
\(953\) − 43832.3i − 1.48989i −0.667125 0.744945i \(-0.732476\pi\)
0.667125 0.744945i \(-0.267524\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −7334.46 −0.248131
\(957\) 0 0
\(958\) − 48933.8i − 1.65029i
\(959\) 27677.7 0.931971
\(960\) 0 0
\(961\) 3716.00 0.124736
\(962\) − 7627.86i − 0.255647i
\(963\) 0 0
\(964\) 7854.36 0.262419
\(965\) 0 0
\(966\) 0 0
\(967\) 10696.2i 0.355706i 0.984057 + 0.177853i \(0.0569152\pi\)
−0.984057 + 0.177853i \(0.943085\pi\)
\(968\) 5432.27i 0.180372i
\(969\) 0 0
\(970\) 0 0
\(971\) −27933.0 −0.923187 −0.461593 0.887092i \(-0.652722\pi\)
−0.461593 + 0.887092i \(0.652722\pi\)
\(972\) 0 0
\(973\) 62378.4i 2.05525i
\(974\) −38481.4 −1.26594
\(975\) 0 0
\(976\) −49208.9 −1.61387
\(977\) − 24341.7i − 0.797094i −0.917148 0.398547i \(-0.869515\pi\)
0.917148 0.398547i \(-0.130485\pi\)
\(978\) 0 0
\(979\) 33311.7 1.08748
\(980\) 0 0
\(981\) 0 0
\(982\) − 66057.7i − 2.14662i
\(983\) 12553.0i 0.407301i 0.979044 + 0.203651i \(0.0652807\pi\)
−0.979044 + 0.203651i \(0.934719\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −30953.9 −0.999769
\(987\) 0 0
\(988\) − 2878.01i − 0.0926737i
\(989\) 4485.41 0.144214
\(990\) 0 0
\(991\) −45631.8 −1.46271 −0.731353 0.681999i \(-0.761111\pi\)
−0.731353 + 0.681999i \(0.761111\pi\)
\(992\) 25665.0i 0.821437i
\(993\) 0 0
\(994\) −51031.0 −1.62838
\(995\) 0 0
\(996\) 0 0
\(997\) − 34499.0i − 1.09588i −0.836517 0.547941i \(-0.815412\pi\)
0.836517 0.547941i \(-0.184588\pi\)
\(998\) 28145.3i 0.892708i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.b.h.199.2 4
3.2 odd 2 75.4.b.c.49.3 4
5.2 odd 4 225.4.a.j.1.2 2
5.3 odd 4 225.4.a.n.1.1 2
5.4 even 2 inner 225.4.b.h.199.3 4
12.11 even 2 1200.4.f.v.49.3 4
15.2 even 4 75.4.a.e.1.1 yes 2
15.8 even 4 75.4.a.d.1.2 2
15.14 odd 2 75.4.b.c.49.2 4
60.23 odd 4 1200.4.a.bl.1.1 2
60.47 odd 4 1200.4.a.bu.1.2 2
60.59 even 2 1200.4.f.v.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.4.a.d.1.2 2 15.8 even 4
75.4.a.e.1.1 yes 2 15.2 even 4
75.4.b.c.49.2 4 15.14 odd 2
75.4.b.c.49.3 4 3.2 odd 2
225.4.a.j.1.2 2 5.2 odd 4
225.4.a.n.1.1 2 5.3 odd 4
225.4.b.h.199.2 4 1.1 even 1 trivial
225.4.b.h.199.3 4 5.4 even 2 inner
1200.4.a.bl.1.1 2 60.23 odd 4
1200.4.a.bu.1.2 2 60.47 odd 4
1200.4.f.v.49.2 4 60.59 even 2
1200.4.f.v.49.3 4 12.11 even 2