Properties

Label 75.4.b.c.49.2
Level $75$
Weight $4$
Character 75.49
Analytic conductor $4.425$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,4,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.42514325043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(2.17945 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.4.b.c.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.35890i q^{2} +3.00000i q^{3} -3.28220 q^{4} +10.0767 q^{6} -30.4356i q^{7} -15.8466i q^{8} -9.00000 q^{9} +31.4356 q^{11} -9.84661i q^{12} -60.7424i q^{13} -102.230 q^{14} -79.4848 q^{16} +121.178i q^{17} +30.2301i q^{18} +14.4356 q^{19} +91.3068 q^{21} -105.589i q^{22} +13.6932i q^{23} +47.5398 q^{24} -204.028 q^{26} -27.0000i q^{27} +99.8958i q^{28} +76.0492 q^{29} +183.049 q^{31} +140.208i q^{32} +94.3068i q^{33} +407.025 q^{34} +29.5398 q^{36} +37.3864i q^{37} -48.4877i q^{38} +182.227 q^{39} -30.6627 q^{41} -306.690i q^{42} +327.564i q^{43} -103.178 q^{44} +45.9941 q^{46} +449.485i q^{47} -238.454i q^{48} -583.325 q^{49} -363.534 q^{51} +199.369i q^{52} -301.951i q^{53} -90.6903 q^{54} -482.301 q^{56} +43.3068i q^{57} -255.441i q^{58} -340.970 q^{59} +619.098 q^{61} -614.844i q^{62} +273.920i q^{63} -164.932 q^{64} +316.767 q^{66} -256.890i q^{67} -397.731i q^{68} -41.0796 q^{69} +499.178 q^{71} +142.619i q^{72} -19.1288i q^{73} +125.577 q^{74} -47.3805 q^{76} -956.761i q^{77} -612.083i q^{78} -257.424 q^{79} +81.0000 q^{81} +102.993i q^{82} +914.909i q^{83} -299.687 q^{84} +1100.26 q^{86} +228.148i q^{87} -498.148i q^{88} +1059.68 q^{89} -1848.73 q^{91} -44.9439i q^{92} +549.148i q^{93} +1509.77 q^{94} -420.625 q^{96} -521.000i q^{97} +1959.33i q^{98} -282.920 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 48 q^{4} - 12 q^{6} - 36 q^{9} + 56 q^{11} - 252 q^{14} + 240 q^{16} - 12 q^{19} + 156 q^{21} + 504 q^{24} - 1252 q^{26} - 184 q^{29} + 244 q^{31} + 1384 q^{34} + 432 q^{36} - 108 q^{39} + 784 q^{41}+ \cdots - 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.35890i − 1.18755i −0.804631 0.593775i \(-0.797637\pi\)
0.804631 0.593775i \(-0.202363\pi\)
\(3\) 3.00000i 0.577350i
\(4\) −3.28220 −0.410275
\(5\) 0 0
\(6\) 10.0767 0.685632
\(7\) − 30.4356i − 1.64337i −0.569944 0.821684i \(-0.693035\pi\)
0.569944 0.821684i \(-0.306965\pi\)
\(8\) − 15.8466i − 0.700328i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 31.4356 0.861654 0.430827 0.902435i \(-0.358222\pi\)
0.430827 + 0.902435i \(0.358222\pi\)
\(12\) − 9.84661i − 0.236873i
\(13\) − 60.7424i − 1.29592i −0.761676 0.647958i \(-0.775623\pi\)
0.761676 0.647958i \(-0.224377\pi\)
\(14\) −102.230 −1.95158
\(15\) 0 0
\(16\) −79.4848 −1.24195
\(17\) 121.178i 1.72882i 0.502786 + 0.864411i \(0.332308\pi\)
−0.502786 + 0.864411i \(0.667692\pi\)
\(18\) 30.2301i 0.395850i
\(19\) 14.4356 0.174303 0.0871514 0.996195i \(-0.472224\pi\)
0.0871514 + 0.996195i \(0.472224\pi\)
\(20\) 0 0
\(21\) 91.3068 0.948799
\(22\) − 105.589i − 1.02326i
\(23\) 13.6932i 0.124141i 0.998072 + 0.0620703i \(0.0197703\pi\)
−0.998072 + 0.0620703i \(0.980230\pi\)
\(24\) 47.5398 0.404334
\(25\) 0 0
\(26\) −204.028 −1.53896
\(27\) − 27.0000i − 0.192450i
\(28\) 99.8958i 0.674233i
\(29\) 76.0492 0.486965 0.243482 0.969905i \(-0.421710\pi\)
0.243482 + 0.969905i \(0.421710\pi\)
\(30\) 0 0
\(31\) 183.049 1.06054 0.530268 0.847830i \(-0.322091\pi\)
0.530268 + 0.847830i \(0.322091\pi\)
\(32\) 140.208i 0.774550i
\(33\) 94.3068i 0.497476i
\(34\) 407.025 2.05306
\(35\) 0 0
\(36\) 29.5398 0.136758
\(37\) 37.3864i 0.166116i 0.996545 + 0.0830580i \(0.0264687\pi\)
−0.996545 + 0.0830580i \(0.973531\pi\)
\(38\) − 48.4877i − 0.206993i
\(39\) 182.227 0.748197
\(40\) 0 0
\(41\) −30.6627 −0.116798 −0.0583990 0.998293i \(-0.518600\pi\)
−0.0583990 + 0.998293i \(0.518600\pi\)
\(42\) − 306.690i − 1.12675i
\(43\) 327.564i 1.16170i 0.814011 + 0.580850i \(0.197280\pi\)
−0.814011 + 0.580850i \(0.802720\pi\)
\(44\) −103.178 −0.353515
\(45\) 0 0
\(46\) 45.9941 0.147423
\(47\) 449.485i 1.39498i 0.716594 + 0.697490i \(0.245700\pi\)
−0.716594 + 0.697490i \(0.754300\pi\)
\(48\) − 238.454i − 0.717040i
\(49\) −583.325 −1.70066
\(50\) 0 0
\(51\) −363.534 −0.998136
\(52\) 199.369i 0.531682i
\(53\) − 301.951i − 0.782569i −0.920270 0.391284i \(-0.872031\pi\)
0.920270 0.391284i \(-0.127969\pi\)
\(54\) −90.6903 −0.228544
\(55\) 0 0
\(56\) −482.301 −1.15090
\(57\) 43.3068i 0.100634i
\(58\) − 255.441i − 0.578295i
\(59\) −340.970 −0.752381 −0.376190 0.926542i \(-0.622766\pi\)
−0.376190 + 0.926542i \(0.622766\pi\)
\(60\) 0 0
\(61\) 619.098 1.29947 0.649733 0.760163i \(-0.274881\pi\)
0.649733 + 0.760163i \(0.274881\pi\)
\(62\) − 614.844i − 1.25944i
\(63\) 273.920i 0.547789i
\(64\) −164.932 −0.322133
\(65\) 0 0
\(66\) 316.767 0.590778
\(67\) − 256.890i − 0.468419i −0.972186 0.234210i \(-0.924750\pi\)
0.972186 0.234210i \(-0.0752502\pi\)
\(68\) − 397.731i − 0.709293i
\(69\) −41.0796 −0.0716726
\(70\) 0 0
\(71\) 499.178 0.834388 0.417194 0.908818i \(-0.363014\pi\)
0.417194 + 0.908818i \(0.363014\pi\)
\(72\) 142.619i 0.233443i
\(73\) − 19.1288i − 0.0306693i −0.999882 0.0153346i \(-0.995119\pi\)
0.999882 0.0153346i \(-0.00488136\pi\)
\(74\) 125.577 0.197271
\(75\) 0 0
\(76\) −47.3805 −0.0715121
\(77\) − 956.761i − 1.41601i
\(78\) − 612.083i − 0.888522i
\(79\) −257.424 −0.366613 −0.183307 0.983056i \(-0.558680\pi\)
−0.183307 + 0.983056i \(0.558680\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 102.993i 0.138703i
\(83\) 914.909i 1.20993i 0.796252 + 0.604965i \(0.206813\pi\)
−0.796252 + 0.604965i \(0.793187\pi\)
\(84\) −299.687 −0.389269
\(85\) 0 0
\(86\) 1100.26 1.37958
\(87\) 228.148i 0.281149i
\(88\) − 498.148i − 0.603440i
\(89\) 1059.68 1.26209 0.631045 0.775746i \(-0.282626\pi\)
0.631045 + 0.775746i \(0.282626\pi\)
\(90\) 0 0
\(91\) −1848.73 −2.12967
\(92\) − 44.9439i − 0.0509318i
\(93\) 549.148i 0.612300i
\(94\) 1509.77 1.65661
\(95\) 0 0
\(96\) −420.625 −0.447186
\(97\) − 521.000i − 0.545356i −0.962105 0.272678i \(-0.912091\pi\)
0.962105 0.272678i \(-0.0879094\pi\)
\(98\) 1959.33i 2.01962i
\(99\) −282.920 −0.287218
\(100\) 0 0
\(101\) 347.080 0.341938 0.170969 0.985276i \(-0.445310\pi\)
0.170969 + 0.985276i \(0.445310\pi\)
\(102\) 1221.07i 1.18534i
\(103\) − 770.749i − 0.737322i −0.929564 0.368661i \(-0.879816\pi\)
0.929564 0.368661i \(-0.120184\pi\)
\(104\) −962.561 −0.907566
\(105\) 0 0
\(106\) −1014.22 −0.929339
\(107\) 1415.37i 1.27878i 0.768883 + 0.639390i \(0.220813\pi\)
−0.768883 + 0.639390i \(0.779187\pi\)
\(108\) 88.6195i 0.0789575i
\(109\) −908.386 −0.798235 −0.399118 0.916900i \(-0.630683\pi\)
−0.399118 + 0.916900i \(0.630683\pi\)
\(110\) 0 0
\(111\) −112.159 −0.0959071
\(112\) 2419.17i 2.04098i
\(113\) − 2049.94i − 1.70657i −0.521447 0.853283i \(-0.674608\pi\)
0.521447 0.853283i \(-0.325392\pi\)
\(114\) 145.463 0.119508
\(115\) 0 0
\(116\) −249.609 −0.199790
\(117\) 546.681i 0.431972i
\(118\) 1145.28i 0.893490i
\(119\) 3688.12 2.84109
\(120\) 0 0
\(121\) −342.803 −0.257553
\(122\) − 2079.49i − 1.54318i
\(123\) − 91.9882i − 0.0674333i
\(124\) −600.804 −0.435111
\(125\) 0 0
\(126\) 920.071 0.650527
\(127\) − 281.644i − 0.196786i −0.995148 0.0983932i \(-0.968630\pi\)
0.995148 0.0983932i \(-0.0313703\pi\)
\(128\) 1675.66i 1.15710i
\(129\) −982.693 −0.670708
\(130\) 0 0
\(131\) 243.056 0.162106 0.0810531 0.996710i \(-0.474172\pi\)
0.0810531 + 0.996710i \(0.474172\pi\)
\(132\) − 309.534i − 0.204102i
\(133\) − 439.356i − 0.286444i
\(134\) −862.867 −0.556271
\(135\) 0 0
\(136\) 1920.26 1.21074
\(137\) − 909.386i − 0.567110i −0.958956 0.283555i \(-0.908486\pi\)
0.958956 0.283555i \(-0.0915139\pi\)
\(138\) 137.982i 0.0851148i
\(139\) 2049.52 1.25063 0.625317 0.780371i \(-0.284970\pi\)
0.625317 + 0.780371i \(0.284970\pi\)
\(140\) 0 0
\(141\) −1348.45 −0.805392
\(142\) − 1676.69i − 0.990877i
\(143\) − 1909.47i − 1.11663i
\(144\) 715.363 0.413983
\(145\) 0 0
\(146\) −64.2517 −0.0364213
\(147\) − 1749.98i − 0.981875i
\(148\) − 122.710i − 0.0681533i
\(149\) −3601.14 −1.97998 −0.989990 0.141136i \(-0.954925\pi\)
−0.989990 + 0.141136i \(0.954925\pi\)
\(150\) 0 0
\(151\) 1383.38 0.745550 0.372775 0.927922i \(-0.378406\pi\)
0.372775 + 0.927922i \(0.378406\pi\)
\(152\) − 228.755i − 0.122069i
\(153\) − 1090.60i − 0.576274i
\(154\) −3213.66 −1.68159
\(155\) 0 0
\(156\) −598.106 −0.306967
\(157\) 131.749i 0.0669729i 0.999439 + 0.0334864i \(0.0106611\pi\)
−0.999439 + 0.0334864i \(0.989339\pi\)
\(158\) 864.661i 0.435372i
\(159\) 905.852 0.451816
\(160\) 0 0
\(161\) 416.761 0.204009
\(162\) − 272.071i − 0.131950i
\(163\) 2897.74i 1.39244i 0.717827 + 0.696222i \(0.245137\pi\)
−0.717827 + 0.696222i \(0.754863\pi\)
\(164\) 100.641 0.0479193
\(165\) 0 0
\(166\) 3073.09 1.43685
\(167\) − 260.283i − 0.120607i −0.998180 0.0603034i \(-0.980793\pi\)
0.998180 0.0603034i \(-0.0192068\pi\)
\(168\) − 1446.90i − 0.664470i
\(169\) −1492.64 −0.679398
\(170\) 0 0
\(171\) −129.920 −0.0581009
\(172\) − 1075.13i − 0.476617i
\(173\) − 1935.83i − 0.850742i −0.905019 0.425371i \(-0.860144\pi\)
0.905019 0.425371i \(-0.139856\pi\)
\(174\) 766.324 0.333879
\(175\) 0 0
\(176\) −2498.65 −1.07013
\(177\) − 1022.91i − 0.434387i
\(178\) − 3559.36i − 1.49880i
\(179\) −576.627 −0.240777 −0.120389 0.992727i \(-0.538414\pi\)
−0.120389 + 0.992727i \(0.538414\pi\)
\(180\) 0 0
\(181\) −1962.04 −0.805733 −0.402866 0.915259i \(-0.631986\pi\)
−0.402866 + 0.915259i \(0.631986\pi\)
\(182\) 6209.70i 2.52909i
\(183\) 1857.30i 0.750247i
\(184\) 216.991 0.0869390
\(185\) 0 0
\(186\) 1844.53 0.727137
\(187\) 3809.30i 1.48965i
\(188\) − 1475.30i − 0.572326i
\(189\) −821.761 −0.316266
\(190\) 0 0
\(191\) −4318.75 −1.63609 −0.818047 0.575152i \(-0.804943\pi\)
−0.818047 + 0.575152i \(0.804943\pi\)
\(192\) − 494.796i − 0.185984i
\(193\) 2.97647i 0.00111011i 1.00000 0.000555054i \(0.000176679\pi\)
−1.00000 0.000555054i \(0.999823\pi\)
\(194\) −1749.99 −0.647638
\(195\) 0 0
\(196\) 1914.59 0.697738
\(197\) − 569.705i − 0.206040i −0.994679 0.103020i \(-0.967149\pi\)
0.994679 0.103020i \(-0.0328505\pi\)
\(198\) 950.301i 0.341086i
\(199\) 3050.73 1.08674 0.543368 0.839494i \(-0.317149\pi\)
0.543368 + 0.839494i \(0.317149\pi\)
\(200\) 0 0
\(201\) 770.670 0.270442
\(202\) − 1165.81i − 0.406068i
\(203\) − 2314.60i − 0.800262i
\(204\) 1193.19 0.409510
\(205\) 0 0
\(206\) −2588.87 −0.875607
\(207\) − 123.239i − 0.0413802i
\(208\) 4828.09i 1.60946i
\(209\) 453.792 0.150189
\(210\) 0 0
\(211\) −50.5104 −0.0164800 −0.00824000 0.999966i \(-0.502623\pi\)
−0.00824000 + 0.999966i \(0.502623\pi\)
\(212\) 991.064i 0.321069i
\(213\) 1497.53i 0.481734i
\(214\) 4754.10 1.51862
\(215\) 0 0
\(216\) −427.858 −0.134778
\(217\) − 5571.21i − 1.74285i
\(218\) 3051.18i 0.947944i
\(219\) 57.3864 0.0177069
\(220\) 0 0
\(221\) 7360.64 2.24041
\(222\) 376.732i 0.113894i
\(223\) 5453.55i 1.63765i 0.574040 + 0.818827i \(0.305375\pi\)
−0.574040 + 0.818827i \(0.694625\pi\)
\(224\) 4267.33 1.27287
\(225\) 0 0
\(226\) −6885.54 −2.02663
\(227\) 4777.14i 1.39678i 0.715715 + 0.698392i \(0.246101\pi\)
−0.715715 + 0.698392i \(0.753899\pi\)
\(228\) − 142.142i − 0.0412875i
\(229\) 2085.51 0.601808 0.300904 0.953654i \(-0.402712\pi\)
0.300904 + 0.953654i \(0.402712\pi\)
\(230\) 0 0
\(231\) 2870.28 0.817536
\(232\) − 1205.12i − 0.341035i
\(233\) 6484.53i 1.82324i 0.411030 + 0.911622i \(0.365169\pi\)
−0.411030 + 0.911622i \(0.634831\pi\)
\(234\) 1836.25 0.512988
\(235\) 0 0
\(236\) 1119.13 0.308683
\(237\) − 772.271i − 0.211664i
\(238\) − 12388.0i − 3.37394i
\(239\) −2234.62 −0.604792 −0.302396 0.953182i \(-0.597786\pi\)
−0.302396 + 0.953182i \(0.597786\pi\)
\(240\) 0 0
\(241\) −2393.01 −0.639616 −0.319808 0.947482i \(-0.603618\pi\)
−0.319808 + 0.947482i \(0.603618\pi\)
\(242\) 1151.44i 0.305857i
\(243\) 243.000i 0.0641500i
\(244\) −2032.01 −0.533139
\(245\) 0 0
\(246\) −308.979 −0.0800805
\(247\) − 876.852i − 0.225882i
\(248\) − 2900.71i − 0.742722i
\(249\) −2744.73 −0.698554
\(250\) 0 0
\(251\) −612.661 −0.154067 −0.0770335 0.997029i \(-0.524545\pi\)
−0.0770335 + 0.997029i \(0.524545\pi\)
\(252\) − 899.062i − 0.224744i
\(253\) 430.454i 0.106966i
\(254\) −946.014 −0.233694
\(255\) 0 0
\(256\) 4308.91 1.05198
\(257\) 306.112i 0.0742987i 0.999310 + 0.0371493i \(0.0118277\pi\)
−0.999310 + 0.0371493i \(0.988172\pi\)
\(258\) 3300.77i 0.796499i
\(259\) 1137.88 0.272990
\(260\) 0 0
\(261\) −684.443 −0.162322
\(262\) − 816.401i − 0.192509i
\(263\) 283.839i 0.0665484i 0.999446 + 0.0332742i \(0.0105935\pi\)
−0.999446 + 0.0332742i \(0.989407\pi\)
\(264\) 1494.44 0.348396
\(265\) 0 0
\(266\) −1475.75 −0.340166
\(267\) 3179.04i 0.728668i
\(268\) 843.165i 0.192181i
\(269\) −2426.21 −0.549920 −0.274960 0.961456i \(-0.588665\pi\)
−0.274960 + 0.961456i \(0.588665\pi\)
\(270\) 0 0
\(271\) −174.946 −0.0392148 −0.0196074 0.999808i \(-0.506242\pi\)
−0.0196074 + 0.999808i \(0.506242\pi\)
\(272\) − 9631.80i − 2.14711i
\(273\) − 5546.19i − 1.22956i
\(274\) −3054.54 −0.673472
\(275\) 0 0
\(276\) 134.832 0.0294055
\(277\) 7807.07i 1.69344i 0.532042 + 0.846718i \(0.321425\pi\)
−0.532042 + 0.846718i \(0.678575\pi\)
\(278\) − 6884.14i − 1.48519i
\(279\) −1647.44 −0.353512
\(280\) 0 0
\(281\) 584.171 0.124017 0.0620084 0.998076i \(-0.480249\pi\)
0.0620084 + 0.998076i \(0.480249\pi\)
\(282\) 4529.32i 0.956444i
\(283\) − 5897.31i − 1.23872i −0.785106 0.619362i \(-0.787391\pi\)
0.785106 0.619362i \(-0.212609\pi\)
\(284\) −1638.40 −0.342329
\(285\) 0 0
\(286\) −6413.73 −1.32605
\(287\) 933.239i 0.191942i
\(288\) − 1261.88i − 0.258183i
\(289\) −9771.10 −1.98883
\(290\) 0 0
\(291\) 1563.00 0.314861
\(292\) 62.7846i 0.0125828i
\(293\) 1609.73i 0.320960i 0.987039 + 0.160480i \(0.0513042\pi\)
−0.987039 + 0.160480i \(0.948696\pi\)
\(294\) −5877.99 −1.16603
\(295\) 0 0
\(296\) 592.448 0.116336
\(297\) − 848.761i − 0.165825i
\(298\) 12095.9i 2.35133i
\(299\) 831.758 0.160876
\(300\) 0 0
\(301\) 9969.62 1.90910
\(302\) − 4646.64i − 0.885378i
\(303\) 1041.24i 0.197418i
\(304\) −1147.41 −0.216475
\(305\) 0 0
\(306\) −3663.22 −0.684354
\(307\) − 234.473i − 0.0435898i −0.999762 0.0217949i \(-0.993062\pi\)
0.999762 0.0217949i \(-0.00693809\pi\)
\(308\) 3140.28i 0.580955i
\(309\) 2312.25 0.425693
\(310\) 0 0
\(311\) −1795.25 −0.327329 −0.163665 0.986516i \(-0.552331\pi\)
−0.163665 + 0.986516i \(0.552331\pi\)
\(312\) − 2887.68i − 0.523983i
\(313\) − 8440.61i − 1.52425i −0.647427 0.762127i \(-0.724155\pi\)
0.647427 0.762127i \(-0.275845\pi\)
\(314\) 442.533 0.0795336
\(315\) 0 0
\(316\) 844.917 0.150412
\(317\) − 10551.7i − 1.86953i −0.355264 0.934766i \(-0.615609\pi\)
0.355264 0.934766i \(-0.384391\pi\)
\(318\) − 3042.67i − 0.536554i
\(319\) 2390.65 0.419595
\(320\) 0 0
\(321\) −4246.12 −0.738304
\(322\) − 1399.86i − 0.242270i
\(323\) 1749.28i 0.301339i
\(324\) −265.858 −0.0455861
\(325\) 0 0
\(326\) 9733.21 1.65360
\(327\) − 2725.16i − 0.460861i
\(328\) 485.900i 0.0817968i
\(329\) 13680.3 2.29247
\(330\) 0 0
\(331\) 6743.17 1.11975 0.559876 0.828576i \(-0.310849\pi\)
0.559876 + 0.828576i \(0.310849\pi\)
\(332\) − 3002.91i − 0.496405i
\(333\) − 336.478i − 0.0553720i
\(334\) −874.265 −0.143227
\(335\) 0 0
\(336\) −7257.50 −1.17836
\(337\) 8437.26i 1.36382i 0.731437 + 0.681909i \(0.238850\pi\)
−0.731437 + 0.681909i \(0.761150\pi\)
\(338\) 5013.62i 0.806819i
\(339\) 6149.82 0.985287
\(340\) 0 0
\(341\) 5754.26 0.913814
\(342\) 436.389i 0.0689978i
\(343\) 7314.45i 1.15144i
\(344\) 5190.78 0.813571
\(345\) 0 0
\(346\) −6502.25 −1.01030
\(347\) 1848.85i 0.286027i 0.989721 + 0.143013i \(0.0456792\pi\)
−0.989721 + 0.143013i \(0.954321\pi\)
\(348\) − 748.826i − 0.115349i
\(349\) 1148.38 0.176136 0.0880678 0.996114i \(-0.471931\pi\)
0.0880678 + 0.996114i \(0.471931\pi\)
\(350\) 0 0
\(351\) −1640.04 −0.249399
\(352\) 4407.54i 0.667393i
\(353\) − 5753.60i − 0.867516i −0.901029 0.433758i \(-0.857187\pi\)
0.901029 0.433758i \(-0.142813\pi\)
\(354\) −3435.85 −0.515856
\(355\) 0 0
\(356\) −3478.09 −0.517804
\(357\) 11064.4i 1.64030i
\(358\) 1936.83i 0.285935i
\(359\) −5452.01 −0.801521 −0.400761 0.916183i \(-0.631254\pi\)
−0.400761 + 0.916183i \(0.631254\pi\)
\(360\) 0 0
\(361\) −6650.61 −0.969619
\(362\) 6590.31i 0.956848i
\(363\) − 1028.41i − 0.148698i
\(364\) 6067.91 0.873749
\(365\) 0 0
\(366\) 6238.47 0.890956
\(367\) − 8385.93i − 1.19276i −0.802703 0.596379i \(-0.796606\pi\)
0.802703 0.596379i \(-0.203394\pi\)
\(368\) − 1088.40i − 0.154176i
\(369\) 275.965 0.0389327
\(370\) 0 0
\(371\) −9190.05 −1.28605
\(372\) − 1802.41i − 0.251212i
\(373\) 2728.30i 0.378730i 0.981907 + 0.189365i \(0.0606429\pi\)
−0.981907 + 0.189365i \(0.939357\pi\)
\(374\) 12795.1 1.76903
\(375\) 0 0
\(376\) 7122.81 0.976944
\(377\) − 4619.41i − 0.631065i
\(378\) 2760.21i 0.375582i
\(379\) −3348.99 −0.453895 −0.226947 0.973907i \(-0.572875\pi\)
−0.226947 + 0.973907i \(0.572875\pi\)
\(380\) 0 0
\(381\) 844.932 0.113615
\(382\) 14506.2i 1.94294i
\(383\) 10430.3i 1.39155i 0.718261 + 0.695774i \(0.244938\pi\)
−0.718261 + 0.695774i \(0.755062\pi\)
\(384\) −5026.97 −0.668051
\(385\) 0 0
\(386\) 9.99766 0.00131831
\(387\) − 2948.08i − 0.387233i
\(388\) 1710.03i 0.223746i
\(389\) −9827.23 −1.28088 −0.640438 0.768010i \(-0.721247\pi\)
−0.640438 + 0.768010i \(0.721247\pi\)
\(390\) 0 0
\(391\) −1659.32 −0.214617
\(392\) 9243.73i 1.19102i
\(393\) 729.168i 0.0935921i
\(394\) −1913.58 −0.244682
\(395\) 0 0
\(396\) 928.602 0.117838
\(397\) 436.382i 0.0551672i 0.999619 + 0.0275836i \(0.00878125\pi\)
−0.999619 + 0.0275836i \(0.991219\pi\)
\(398\) − 10247.1i − 1.29055i
\(399\) 1318.07 0.165378
\(400\) 0 0
\(401\) −14501.5 −1.80591 −0.902955 0.429736i \(-0.858607\pi\)
−0.902955 + 0.429736i \(0.858607\pi\)
\(402\) − 2588.60i − 0.321163i
\(403\) − 11118.8i − 1.37436i
\(404\) −1139.19 −0.140289
\(405\) 0 0
\(406\) −7774.51 −0.950351
\(407\) 1175.26i 0.143134i
\(408\) 5760.78i 0.699022i
\(409\) 12058.4 1.45782 0.728911 0.684609i \(-0.240027\pi\)
0.728911 + 0.684609i \(0.240027\pi\)
\(410\) 0 0
\(411\) 2728.16 0.327421
\(412\) 2529.76i 0.302505i
\(413\) 10377.6i 1.23644i
\(414\) −413.947 −0.0491410
\(415\) 0 0
\(416\) 8516.60 1.00375
\(417\) 6148.57i 0.722054i
\(418\) − 1524.24i − 0.178356i
\(419\) −6042.95 −0.704577 −0.352288 0.935892i \(-0.614596\pi\)
−0.352288 + 0.935892i \(0.614596\pi\)
\(420\) 0 0
\(421\) −9994.67 −1.15703 −0.578516 0.815671i \(-0.696368\pi\)
−0.578516 + 0.815671i \(0.696368\pi\)
\(422\) 169.659i 0.0195708i
\(423\) − 4045.36i − 0.464994i
\(424\) −4784.90 −0.548054
\(425\) 0 0
\(426\) 5030.07 0.572083
\(427\) − 18842.6i − 2.13550i
\(428\) − 4645.55i − 0.524652i
\(429\) 5728.42 0.644687
\(430\) 0 0
\(431\) 9327.32 1.04242 0.521208 0.853430i \(-0.325482\pi\)
0.521208 + 0.853430i \(0.325482\pi\)
\(432\) 2146.09i 0.239013i
\(433\) − 7861.22i − 0.872485i −0.899829 0.436243i \(-0.856309\pi\)
0.899829 0.436243i \(-0.143691\pi\)
\(434\) −18713.1 −2.06972
\(435\) 0 0
\(436\) 2981.51 0.327496
\(437\) 197.670i 0.0216380i
\(438\) − 192.755i − 0.0210279i
\(439\) −7412.06 −0.805828 −0.402914 0.915238i \(-0.632003\pi\)
−0.402914 + 0.915238i \(0.632003\pi\)
\(440\) 0 0
\(441\) 5249.93 0.566886
\(442\) − 24723.6i − 2.66060i
\(443\) − 3043.66i − 0.326430i −0.986591 0.163215i \(-0.947814\pi\)
0.986591 0.163215i \(-0.0521864\pi\)
\(444\) 368.129 0.0393483
\(445\) 0 0
\(446\) 18317.9 1.94480
\(447\) − 10803.4i − 1.14314i
\(448\) 5019.81i 0.529383i
\(449\) 9547.87 1.00355 0.501773 0.864999i \(-0.332681\pi\)
0.501773 + 0.864999i \(0.332681\pi\)
\(450\) 0 0
\(451\) −963.902 −0.100639
\(452\) 6728.31i 0.700162i
\(453\) 4150.14i 0.430443i
\(454\) 16045.9 1.65875
\(455\) 0 0
\(456\) 686.266 0.0704766
\(457\) − 13401.9i − 1.37180i −0.727695 0.685901i \(-0.759408\pi\)
0.727695 0.685901i \(-0.240592\pi\)
\(458\) − 7005.00i − 0.714677i
\(459\) 3271.81 0.332712
\(460\) 0 0
\(461\) −4137.03 −0.417962 −0.208981 0.977920i \(-0.567015\pi\)
−0.208981 + 0.977920i \(0.567015\pi\)
\(462\) − 9640.99i − 0.970865i
\(463\) − 13976.3i − 1.40288i −0.712729 0.701439i \(-0.752541\pi\)
0.712729 0.701439i \(-0.247459\pi\)
\(464\) −6044.75 −0.604786
\(465\) 0 0
\(466\) 21780.9 2.16519
\(467\) 10796.5i 1.06982i 0.844910 + 0.534908i \(0.179654\pi\)
−0.844910 + 0.534908i \(0.820346\pi\)
\(468\) − 1794.32i − 0.177227i
\(469\) −7818.60 −0.769785
\(470\) 0 0
\(471\) −395.248 −0.0386668
\(472\) 5403.21i 0.526913i
\(473\) 10297.2i 1.00098i
\(474\) −2593.98 −0.251362
\(475\) 0 0
\(476\) −12105.2 −1.16563
\(477\) 2717.56i 0.260856i
\(478\) 7505.85i 0.718221i
\(479\) −14568.4 −1.38966 −0.694830 0.719174i \(-0.744521\pi\)
−0.694830 + 0.719174i \(0.744521\pi\)
\(480\) 0 0
\(481\) 2270.94 0.215272
\(482\) 8037.89i 0.759577i
\(483\) 1250.28i 0.117784i
\(484\) 1125.15 0.105668
\(485\) 0 0
\(486\) 816.212 0.0761814
\(487\) 11456.6i 1.06601i 0.846113 + 0.533004i \(0.178937\pi\)
−0.846113 + 0.533004i \(0.821063\pi\)
\(488\) − 9810.61i − 0.910052i
\(489\) −8693.21 −0.803928
\(490\) 0 0
\(491\) −19666.5 −1.80761 −0.903804 0.427948i \(-0.859237\pi\)
−0.903804 + 0.427948i \(0.859237\pi\)
\(492\) 301.924i 0.0276662i
\(493\) 9215.48i 0.841875i
\(494\) −2945.26 −0.268246
\(495\) 0 0
\(496\) −14549.6 −1.31713
\(497\) − 15192.8i − 1.37121i
\(498\) 9219.26i 0.829568i
\(499\) −8379.31 −0.751722 −0.375861 0.926676i \(-0.622653\pi\)
−0.375861 + 0.926676i \(0.622653\pi\)
\(500\) 0 0
\(501\) 780.850 0.0696323
\(502\) 2057.87i 0.182962i
\(503\) − 15678.1i − 1.38976i −0.719124 0.694881i \(-0.755457\pi\)
0.719124 0.694881i \(-0.244543\pi\)
\(504\) 4340.71 0.383632
\(505\) 0 0
\(506\) 1445.85 0.127028
\(507\) − 4477.91i − 0.392251i
\(508\) 924.413i 0.0807366i
\(509\) 17037.3 1.48363 0.741813 0.670606i \(-0.233966\pi\)
0.741813 + 0.670606i \(0.233966\pi\)
\(510\) 0 0
\(511\) −582.197 −0.0504009
\(512\) − 1067.93i − 0.0921798i
\(513\) − 389.761i − 0.0335446i
\(514\) 1028.20 0.0882334
\(515\) 0 0
\(516\) 3225.40 0.275175
\(517\) 14129.8i 1.20199i
\(518\) − 3822.02i − 0.324189i
\(519\) 5807.49 0.491176
\(520\) 0 0
\(521\) −8776.12 −0.737982 −0.368991 0.929433i \(-0.620297\pi\)
−0.368991 + 0.929433i \(0.620297\pi\)
\(522\) 2298.97i 0.192765i
\(523\) 11120.4i 0.929753i 0.885375 + 0.464877i \(0.153901\pi\)
−0.885375 + 0.464877i \(0.846099\pi\)
\(524\) −797.759 −0.0665082
\(525\) 0 0
\(526\) 953.385 0.0790296
\(527\) 22181.5i 1.83348i
\(528\) − 7495.95i − 0.617840i
\(529\) 11979.5 0.984589
\(530\) 0 0
\(531\) 3068.73 0.250794
\(532\) 1442.06i 0.117521i
\(533\) 1862.53i 0.151360i
\(534\) 10678.1 0.865330
\(535\) 0 0
\(536\) −4070.83 −0.328047
\(537\) − 1729.88i − 0.139013i
\(538\) 8149.39i 0.653058i
\(539\) −18337.2 −1.46538
\(540\) 0 0
\(541\) 21730.6 1.72693 0.863467 0.504405i \(-0.168288\pi\)
0.863467 + 0.504405i \(0.168288\pi\)
\(542\) 587.626i 0.0465695i
\(543\) − 5886.13i − 0.465190i
\(544\) −16990.2 −1.33906
\(545\) 0 0
\(546\) −18629.1 −1.46017
\(547\) 6926.17i 0.541392i 0.962665 + 0.270696i \(0.0872539\pi\)
−0.962665 + 0.270696i \(0.912746\pi\)
\(548\) 2984.79i 0.232671i
\(549\) −5571.89 −0.433155
\(550\) 0 0
\(551\) 1097.82 0.0848793
\(552\) 650.973i 0.0501943i
\(553\) 7834.85i 0.602480i
\(554\) 26223.2 2.01104
\(555\) 0 0
\(556\) −6726.95 −0.513104
\(557\) 6589.22i 0.501246i 0.968085 + 0.250623i \(0.0806355\pi\)
−0.968085 + 0.250623i \(0.919364\pi\)
\(558\) 5533.59i 0.419813i
\(559\) 19897.0 1.50547
\(560\) 0 0
\(561\) −11427.9 −0.860047
\(562\) − 1962.17i − 0.147276i
\(563\) 3839.63i 0.287426i 0.989619 + 0.143713i \(0.0459043\pi\)
−0.989619 + 0.143713i \(0.954096\pi\)
\(564\) 4425.90 0.330433
\(565\) 0 0
\(566\) −19808.5 −1.47105
\(567\) − 2465.28i − 0.182596i
\(568\) − 7910.28i − 0.584345i
\(569\) 20874.0 1.53794 0.768968 0.639287i \(-0.220771\pi\)
0.768968 + 0.639287i \(0.220771\pi\)
\(570\) 0 0
\(571\) 21175.9 1.55199 0.775994 0.630740i \(-0.217248\pi\)
0.775994 + 0.630740i \(0.217248\pi\)
\(572\) 6267.28i 0.458126i
\(573\) − 12956.3i − 0.944599i
\(574\) 3134.66 0.227941
\(575\) 0 0
\(576\) 1484.39 0.107378
\(577\) 14924.2i 1.07678i 0.842695 + 0.538391i \(0.180968\pi\)
−0.842695 + 0.538391i \(0.819032\pi\)
\(578\) 32820.1i 2.36183i
\(579\) −8.92941 −0.000640922 0
\(580\) 0 0
\(581\) 27845.8 1.98836
\(582\) − 5249.96i − 0.373914i
\(583\) − 9492.00i − 0.674303i
\(584\) −303.127 −0.0214785
\(585\) 0 0
\(586\) 5406.92 0.381156
\(587\) − 25218.0i − 1.77318i −0.462552 0.886592i \(-0.653066\pi\)
0.462552 0.886592i \(-0.346934\pi\)
\(588\) 5743.78i 0.402839i
\(589\) 2642.42 0.184854
\(590\) 0 0
\(591\) 1709.11 0.118957
\(592\) − 2971.65i − 0.206308i
\(593\) 5011.77i 0.347063i 0.984828 + 0.173532i \(0.0555179\pi\)
−0.984828 + 0.173532i \(0.944482\pi\)
\(594\) −2850.90 −0.196926
\(595\) 0 0
\(596\) 11819.7 0.812337
\(597\) 9152.19i 0.627428i
\(598\) − 2793.79i − 0.191048i
\(599\) −4943.41 −0.337199 −0.168600 0.985685i \(-0.553925\pi\)
−0.168600 + 0.985685i \(0.553925\pi\)
\(600\) 0 0
\(601\) −24334.8 −1.65164 −0.825821 0.563932i \(-0.809288\pi\)
−0.825821 + 0.563932i \(0.809288\pi\)
\(602\) − 33486.9i − 2.26715i
\(603\) 2312.01i 0.156140i
\(604\) −4540.54 −0.305881
\(605\) 0 0
\(606\) 3497.42 0.234444
\(607\) − 28973.8i − 1.93741i −0.248207 0.968707i \(-0.579841\pi\)
0.248207 0.968707i \(-0.420159\pi\)
\(608\) 2023.99i 0.135006i
\(609\) 6943.81 0.462032
\(610\) 0 0
\(611\) 27302.8 1.80778
\(612\) 3579.58i 0.236431i
\(613\) 15139.1i 0.997490i 0.866749 + 0.498745i \(0.166206\pi\)
−0.866749 + 0.498745i \(0.833794\pi\)
\(614\) −787.571 −0.0517651
\(615\) 0 0
\(616\) −15161.4 −0.991673
\(617\) − 13894.8i − 0.906617i −0.891354 0.453309i \(-0.850244\pi\)
0.891354 0.453309i \(-0.149756\pi\)
\(618\) − 7766.61i − 0.505532i
\(619\) 4589.69 0.298021 0.149011 0.988836i \(-0.452391\pi\)
0.149011 + 0.988836i \(0.452391\pi\)
\(620\) 0 0
\(621\) 369.717 0.0238909
\(622\) 6030.07i 0.388720i
\(623\) − 32252.0i − 2.07408i
\(624\) −14484.3 −0.929223
\(625\) 0 0
\(626\) −28351.2 −1.81013
\(627\) 1361.37i 0.0867114i
\(628\) − 432.428i − 0.0274773i
\(629\) −4530.41 −0.287185
\(630\) 0 0
\(631\) 3005.77 0.189632 0.0948160 0.995495i \(-0.469774\pi\)
0.0948160 + 0.995495i \(0.469774\pi\)
\(632\) 4079.29i 0.256749i
\(633\) − 151.531i − 0.00951473i
\(634\) −35442.0 −2.22016
\(635\) 0 0
\(636\) −2973.19 −0.185369
\(637\) 35432.6i 2.20391i
\(638\) − 8029.96i − 0.498290i
\(639\) −4492.60 −0.278129
\(640\) 0 0
\(641\) −5631.47 −0.347004 −0.173502 0.984834i \(-0.555508\pi\)
−0.173502 + 0.984834i \(0.555508\pi\)
\(642\) 14262.3i 0.876773i
\(643\) 11305.1i 0.693358i 0.937984 + 0.346679i \(0.112691\pi\)
−0.937984 + 0.346679i \(0.887309\pi\)
\(644\) −1367.89 −0.0836997
\(645\) 0 0
\(646\) 5875.64 0.357855
\(647\) 8614.30i 0.523436i 0.965144 + 0.261718i \(0.0842891\pi\)
−0.965144 + 0.261718i \(0.915711\pi\)
\(648\) − 1283.58i − 0.0778142i
\(649\) −10718.6 −0.648291
\(650\) 0 0
\(651\) 16713.6 1.00623
\(652\) − 9510.96i − 0.571285i
\(653\) 12639.8i 0.757479i 0.925503 + 0.378739i \(0.123642\pi\)
−0.925503 + 0.378739i \(0.876358\pi\)
\(654\) −9153.53 −0.547296
\(655\) 0 0
\(656\) 2437.22 0.145057
\(657\) 172.159i 0.0102231i
\(658\) − 45950.9i − 2.72242i
\(659\) −13640.4 −0.806306 −0.403153 0.915133i \(-0.632086\pi\)
−0.403153 + 0.915133i \(0.632086\pi\)
\(660\) 0 0
\(661\) −17052.0 −1.00340 −0.501699 0.865042i \(-0.667291\pi\)
−0.501699 + 0.865042i \(0.667291\pi\)
\(662\) − 22649.6i − 1.32976i
\(663\) 22081.9i 1.29350i
\(664\) 14498.2 0.847348
\(665\) 0 0
\(666\) −1130.20 −0.0657570
\(667\) 1041.36i 0.0604521i
\(668\) 854.302i 0.0494820i
\(669\) −16360.7 −0.945500
\(670\) 0 0
\(671\) 19461.7 1.11969
\(672\) 12802.0i 0.734892i
\(673\) − 16419.7i − 0.940467i −0.882542 0.470234i \(-0.844170\pi\)
0.882542 0.470234i \(-0.155830\pi\)
\(674\) 28339.9 1.61960
\(675\) 0 0
\(676\) 4899.14 0.278740
\(677\) 8670.47i 0.492221i 0.969242 + 0.246110i \(0.0791525\pi\)
−0.969242 + 0.246110i \(0.920847\pi\)
\(678\) − 20656.6i − 1.17008i
\(679\) −15856.9 −0.896220
\(680\) 0 0
\(681\) −14331.4 −0.806434
\(682\) − 19328.0i − 1.08520i
\(683\) 5973.36i 0.334647i 0.985902 + 0.167324i \(0.0535125\pi\)
−0.985902 + 0.167324i \(0.946488\pi\)
\(684\) 426.425 0.0238374
\(685\) 0 0
\(686\) 24568.5 1.36739
\(687\) 6256.52i 0.347454i
\(688\) − 26036.4i − 1.44277i
\(689\) −18341.2 −1.01414
\(690\) 0 0
\(691\) −15316.3 −0.843212 −0.421606 0.906779i \(-0.638533\pi\)
−0.421606 + 0.906779i \(0.638533\pi\)
\(692\) 6353.78i 0.349038i
\(693\) 8610.85i 0.472005i
\(694\) 6210.09 0.339671
\(695\) 0 0
\(696\) 3615.36 0.196897
\(697\) − 3715.65i − 0.201923i
\(698\) − 3857.29i − 0.209170i
\(699\) −19453.6 −1.05265
\(700\) 0 0
\(701\) 34583.1 1.86332 0.931660 0.363333i \(-0.118361\pi\)
0.931660 + 0.363333i \(0.118361\pi\)
\(702\) 5508.74i 0.296174i
\(703\) 539.695i 0.0289545i
\(704\) −5184.74 −0.277567
\(705\) 0 0
\(706\) −19325.8 −1.03022
\(707\) − 10563.6i − 0.561929i
\(708\) 3357.39i 0.178218i
\(709\) −11194.1 −0.592955 −0.296477 0.955040i \(-0.595812\pi\)
−0.296477 + 0.955040i \(0.595812\pi\)
\(710\) 0 0
\(711\) 2316.81 0.122204
\(712\) − 16792.4i − 0.883877i
\(713\) 2506.53i 0.131655i
\(714\) 37164.1 1.94794
\(715\) 0 0
\(716\) 1892.61 0.0987850
\(717\) − 6703.85i − 0.349177i
\(718\) 18312.8i 0.951847i
\(719\) 15491.9 0.803549 0.401774 0.915739i \(-0.368394\pi\)
0.401774 + 0.915739i \(0.368394\pi\)
\(720\) 0 0
\(721\) −23458.2 −1.21169
\(722\) 22338.7i 1.15147i
\(723\) − 7179.04i − 0.369283i
\(724\) 6439.83 0.330572
\(725\) 0 0
\(726\) −3454.33 −0.176587
\(727\) 6272.72i 0.320003i 0.987117 + 0.160002i \(0.0511500\pi\)
−0.987117 + 0.160002i \(0.948850\pi\)
\(728\) 29296.1i 1.49146i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −39693.6 −2.00837
\(732\) − 6096.02i − 0.307808i
\(733\) 24980.5i 1.25877i 0.777095 + 0.629383i \(0.216692\pi\)
−0.777095 + 0.629383i \(0.783308\pi\)
\(734\) −28167.5 −1.41646
\(735\) 0 0
\(736\) −1919.90 −0.0961530
\(737\) − 8075.49i − 0.403615i
\(738\) − 926.938i − 0.0462345i
\(739\) 30660.7 1.52621 0.763107 0.646272i \(-0.223673\pi\)
0.763107 + 0.646272i \(0.223673\pi\)
\(740\) 0 0
\(741\) 2630.56 0.130413
\(742\) 30868.5i 1.52725i
\(743\) − 17205.7i − 0.849551i −0.905299 0.424776i \(-0.860353\pi\)
0.905299 0.424776i \(-0.139647\pi\)
\(744\) 8702.12 0.428811
\(745\) 0 0
\(746\) 9164.09 0.449760
\(747\) − 8234.18i − 0.403310i
\(748\) − 12502.9i − 0.611165i
\(749\) 43077.8 2.10151
\(750\) 0 0
\(751\) 18397.1 0.893901 0.446950 0.894559i \(-0.352510\pi\)
0.446950 + 0.894559i \(0.352510\pi\)
\(752\) − 35727.2i − 1.73250i
\(753\) − 1837.98i − 0.0889506i
\(754\) −15516.1 −0.749422
\(755\) 0 0
\(756\) 2697.19 0.129756
\(757\) − 22305.1i − 1.07093i −0.844557 0.535465i \(-0.820136\pi\)
0.844557 0.535465i \(-0.179864\pi\)
\(758\) 11248.9i 0.539023i
\(759\) −1291.36 −0.0617569
\(760\) 0 0
\(761\) 14458.5 0.688727 0.344364 0.938836i \(-0.388095\pi\)
0.344364 + 0.938836i \(0.388095\pi\)
\(762\) − 2838.04i − 0.134923i
\(763\) 27647.3i 1.31179i
\(764\) 14175.0 0.671249
\(765\) 0 0
\(766\) 35034.3 1.65253
\(767\) 20711.3i 0.975022i
\(768\) 12926.7i 0.607361i
\(769\) 39897.6 1.87093 0.935463 0.353424i \(-0.114983\pi\)
0.935463 + 0.353424i \(0.114983\pi\)
\(770\) 0 0
\(771\) −918.337 −0.0428964
\(772\) − 9.76938i 0 0.000455450i
\(773\) 20070.2i 0.933863i 0.884294 + 0.466931i \(0.154641\pi\)
−0.884294 + 0.466931i \(0.845359\pi\)
\(774\) −9902.30 −0.459859
\(775\) 0 0
\(776\) −8256.08 −0.381928
\(777\) 3413.63i 0.157611i
\(778\) 33008.7i 1.52110i
\(779\) −442.635 −0.0203582
\(780\) 0 0
\(781\) 15692.0 0.718953
\(782\) 5573.47i 0.254868i
\(783\) − 2053.33i − 0.0937164i
\(784\) 46365.5 2.11213
\(785\) 0 0
\(786\) 2449.20 0.111145
\(787\) − 10733.0i − 0.486137i −0.970009 0.243069i \(-0.921846\pi\)
0.970009 0.243069i \(-0.0781540\pi\)
\(788\) 1869.89i 0.0845329i
\(789\) −851.516 −0.0384218
\(790\) 0 0
\(791\) −62391.1 −2.80452
\(792\) 4483.33i 0.201147i
\(793\) − 37605.5i − 1.68400i
\(794\) 1465.76 0.0655139
\(795\) 0 0
\(796\) −10013.1 −0.445861
\(797\) 14335.8i 0.637140i 0.947899 + 0.318570i \(0.103203\pi\)
−0.947899 + 0.318570i \(0.896797\pi\)
\(798\) − 4427.26i − 0.196395i
\(799\) −54467.7 −2.41167
\(800\) 0 0
\(801\) −9537.13 −0.420697
\(802\) 48709.0i 2.14461i
\(803\) − 601.325i − 0.0264263i
\(804\) −2529.49 −0.110956
\(805\) 0 0
\(806\) −37347.1 −1.63213
\(807\) − 7278.63i − 0.317497i
\(808\) − 5500.03i − 0.239468i
\(809\) −20920.7 −0.909187 −0.454593 0.890699i \(-0.650215\pi\)
−0.454593 + 0.890699i \(0.650215\pi\)
\(810\) 0 0
\(811\) 12816.5 0.554931 0.277465 0.960736i \(-0.410506\pi\)
0.277465 + 0.960736i \(0.410506\pi\)
\(812\) 7596.99i 0.328328i
\(813\) − 524.838i − 0.0226407i
\(814\) 3947.59 0.169979
\(815\) 0 0
\(816\) 28895.4 1.23963
\(817\) 4728.59i 0.202488i
\(818\) − 40502.9i − 1.73124i
\(819\) 16638.6 0.709889
\(820\) 0 0
\(821\) 7253.55 0.308344 0.154172 0.988044i \(-0.450729\pi\)
0.154172 + 0.988044i \(0.450729\pi\)
\(822\) − 9163.61i − 0.388829i
\(823\) 35288.1i 1.49461i 0.664479 + 0.747307i \(0.268654\pi\)
−0.664479 + 0.747307i \(0.731346\pi\)
\(824\) −12213.8 −0.516367
\(825\) 0 0
\(826\) 34857.3 1.46833
\(827\) 32205.9i 1.35418i 0.735899 + 0.677092i \(0.236760\pi\)
−0.735899 + 0.677092i \(0.763240\pi\)
\(828\) 404.495i 0.0169773i
\(829\) −29993.3 −1.25659 −0.628294 0.777976i \(-0.716246\pi\)
−0.628294 + 0.777976i \(0.716246\pi\)
\(830\) 0 0
\(831\) −23421.2 −0.977706
\(832\) 10018.4i 0.417457i
\(833\) − 70686.2i − 2.94013i
\(834\) 20652.4 0.857476
\(835\) 0 0
\(836\) −1489.44 −0.0616187
\(837\) − 4942.33i − 0.204100i
\(838\) 20297.7i 0.836720i
\(839\) 35608.7 1.46526 0.732628 0.680629i \(-0.238294\pi\)
0.732628 + 0.680629i \(0.238294\pi\)
\(840\) 0 0
\(841\) −18605.5 −0.762865
\(842\) 33571.1i 1.37403i
\(843\) 1752.51i 0.0716011i
\(844\) 165.785 0.00676134
\(845\) 0 0
\(846\) −13588.0 −0.552203
\(847\) 10433.4i 0.423255i
\(848\) 24000.5i 0.971911i
\(849\) 17691.9 0.715177
\(850\) 0 0
\(851\) −511.940 −0.0206217
\(852\) − 4915.21i − 0.197644i
\(853\) − 11229.3i − 0.450744i −0.974273 0.225372i \(-0.927640\pi\)
0.974273 0.225372i \(-0.0723598\pi\)
\(854\) −63290.5 −2.53601
\(855\) 0 0
\(856\) 22428.9 0.895565
\(857\) − 22136.1i − 0.882327i −0.897427 0.441164i \(-0.854566\pi\)
0.897427 0.441164i \(-0.145434\pi\)
\(858\) − 19241.2i − 0.765598i
\(859\) 820.727 0.0325994 0.0162997 0.999867i \(-0.494811\pi\)
0.0162997 + 0.999867i \(0.494811\pi\)
\(860\) 0 0
\(861\) −2799.72 −0.110818
\(862\) − 31329.5i − 1.23792i
\(863\) − 245.223i − 0.00967264i −0.999988 0.00483632i \(-0.998461\pi\)
0.999988 0.00483632i \(-0.00153945\pi\)
\(864\) 3785.63 0.149062
\(865\) 0 0
\(866\) −26405.0 −1.03612
\(867\) − 29313.3i − 1.14825i
\(868\) 18285.8i 0.715048i
\(869\) −8092.27 −0.315894
\(870\) 0 0
\(871\) −15604.1 −0.607032
\(872\) 14394.8i 0.559026i
\(873\) 4689.00i 0.181785i
\(874\) 663.952 0.0256963
\(875\) 0 0
\(876\) −188.354 −0.00726471
\(877\) − 37727.8i − 1.45265i −0.687350 0.726326i \(-0.741226\pi\)
0.687350 0.726326i \(-0.258774\pi\)
\(878\) 24896.4i 0.956961i
\(879\) −4829.19 −0.185306
\(880\) 0 0
\(881\) 21738.8 0.831326 0.415663 0.909519i \(-0.363550\pi\)
0.415663 + 0.909519i \(0.363550\pi\)
\(882\) − 17634.0i − 0.673205i
\(883\) − 44340.4i − 1.68989i −0.534852 0.844946i \(-0.679632\pi\)
0.534852 0.844946i \(-0.320368\pi\)
\(884\) −24159.1 −0.919184
\(885\) 0 0
\(886\) −10223.3 −0.387652
\(887\) 681.008i 0.0257790i 0.999917 + 0.0128895i \(0.00410298\pi\)
−0.999917 + 0.0128895i \(0.995897\pi\)
\(888\) 1777.34i 0.0671664i
\(889\) −8572.00 −0.323392
\(890\) 0 0
\(891\) 2546.28 0.0957393
\(892\) − 17899.7i − 0.671889i
\(893\) 6488.58i 0.243149i
\(894\) −36287.6 −1.35754
\(895\) 0 0
\(896\) 50999.6 1.90154
\(897\) 2495.28i 0.0928816i
\(898\) − 32070.3i − 1.19176i
\(899\) 13920.7 0.516443
\(900\) 0 0
\(901\) 36589.8 1.35292
\(902\) 3237.65i 0.119514i
\(903\) 29908.9i 1.10222i
\(904\) −32484.6 −1.19516
\(905\) 0 0
\(906\) 13939.9 0.511173
\(907\) − 5348.01i − 0.195786i −0.995197 0.0978929i \(-0.968790\pi\)
0.995197 0.0978929i \(-0.0312103\pi\)
\(908\) − 15679.5i − 0.573066i
\(909\) −3123.72 −0.113979
\(910\) 0 0
\(911\) 14488.7 0.526930 0.263465 0.964669i \(-0.415135\pi\)
0.263465 + 0.964669i \(0.415135\pi\)
\(912\) − 3442.23i − 0.124982i
\(913\) 28760.7i 1.04254i
\(914\) −45015.6 −1.62908
\(915\) 0 0
\(916\) −6845.05 −0.246907
\(917\) − 7397.56i − 0.266400i
\(918\) − 10989.7i − 0.395112i
\(919\) 22546.9 0.809308 0.404654 0.914470i \(-0.367392\pi\)
0.404654 + 0.914470i \(0.367392\pi\)
\(920\) 0 0
\(921\) 703.419 0.0251666
\(922\) 13895.9i 0.496351i
\(923\) − 30321.3i − 1.08130i
\(924\) −9420.85 −0.335415
\(925\) 0 0
\(926\) −46944.9 −1.66599
\(927\) 6936.74i 0.245774i
\(928\) 10662.7i 0.377178i
\(929\) 13980.7 0.493747 0.246874 0.969048i \(-0.420597\pi\)
0.246874 + 0.969048i \(0.420597\pi\)
\(930\) 0 0
\(931\) −8420.65 −0.296429
\(932\) − 21283.5i − 0.748032i
\(933\) − 5385.75i − 0.188984i
\(934\) 36264.5 1.27046
\(935\) 0 0
\(936\) 8663.05 0.302522
\(937\) − 26362.6i − 0.919133i −0.888143 0.459567i \(-0.848005\pi\)
0.888143 0.459567i \(-0.151995\pi\)
\(938\) 26261.9i 0.914159i
\(939\) 25321.8 0.880029
\(940\) 0 0
\(941\) −14715.6 −0.509792 −0.254896 0.966968i \(-0.582041\pi\)
−0.254896 + 0.966968i \(0.582041\pi\)
\(942\) 1327.60i 0.0459188i
\(943\) − 419.871i − 0.0144994i
\(944\) 27101.9 0.934419
\(945\) 0 0
\(946\) 34587.2 1.18872
\(947\) 11818.2i 0.405532i 0.979227 + 0.202766i \(0.0649931\pi\)
−0.979227 + 0.202766i \(0.935007\pi\)
\(948\) 2534.75i 0.0868406i
\(949\) −1161.93 −0.0397448
\(950\) 0 0
\(951\) 31655.1 1.07937
\(952\) − 58444.2i − 1.98969i
\(953\) − 43832.3i − 1.48989i −0.667125 0.744945i \(-0.732476\pi\)
0.667125 0.744945i \(-0.267524\pi\)
\(954\) 9128.00 0.309780
\(955\) 0 0
\(956\) 7334.46 0.248131
\(957\) 7171.95i 0.242253i
\(958\) 48933.8i 1.65029i
\(959\) −27677.7 −0.931971
\(960\) 0 0
\(961\) 3716.00 0.124736
\(962\) − 7627.86i − 0.255647i
\(963\) − 12738.4i − 0.426260i
\(964\) 7854.36 0.262419
\(965\) 0 0
\(966\) 4199.58 0.139875
\(967\) − 10696.2i − 0.355706i −0.984057 0.177853i \(-0.943085\pi\)
0.984057 0.177853i \(-0.0569152\pi\)
\(968\) 5432.27i 0.180372i
\(969\) −5247.83 −0.173978
\(970\) 0 0
\(971\) 27933.0 0.923187 0.461593 0.887092i \(-0.347278\pi\)
0.461593 + 0.887092i \(0.347278\pi\)
\(972\) − 797.575i − 0.0263192i
\(973\) − 62378.4i − 2.05525i
\(974\) 38481.4 1.26594
\(975\) 0 0
\(976\) −49208.9 −1.61387
\(977\) − 24341.7i − 0.797094i −0.917148 0.398547i \(-0.869515\pi\)
0.917148 0.398547i \(-0.130485\pi\)
\(978\) 29199.6i 0.954704i
\(979\) 33311.7 1.08748
\(980\) 0 0
\(981\) 8175.48 0.266078
\(982\) 66057.7i 2.14662i
\(983\) 12553.0i 0.407301i 0.979044 + 0.203651i \(0.0652807\pi\)
−0.979044 + 0.203651i \(0.934719\pi\)
\(984\) −1457.70 −0.0472254
\(985\) 0 0
\(986\) 30953.9 0.999769
\(987\) 41041.0i 1.32356i
\(988\) 2878.01i 0.0926737i
\(989\) −4485.41 −0.144214
\(990\) 0 0
\(991\) −45631.8 −1.46271 −0.731353 0.681999i \(-0.761111\pi\)
−0.731353 + 0.681999i \(0.761111\pi\)
\(992\) 25665.0i 0.821437i
\(993\) 20229.5i 0.646490i
\(994\) −51031.0 −1.62838
\(995\) 0 0
\(996\) 9008.74 0.286599
\(997\) 34499.0i 1.09588i 0.836517 + 0.547941i \(0.184588\pi\)
−0.836517 + 0.547941i \(0.815412\pi\)
\(998\) 28145.3i 0.892708i
\(999\) 1009.43 0.0319690
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.4.b.c.49.2 4
3.2 odd 2 225.4.b.h.199.3 4
4.3 odd 2 1200.4.f.v.49.2 4
5.2 odd 4 75.4.a.d.1.2 2
5.3 odd 4 75.4.a.e.1.1 yes 2
5.4 even 2 inner 75.4.b.c.49.3 4
15.2 even 4 225.4.a.n.1.1 2
15.8 even 4 225.4.a.j.1.2 2
15.14 odd 2 225.4.b.h.199.2 4
20.3 even 4 1200.4.a.bu.1.2 2
20.7 even 4 1200.4.a.bl.1.1 2
20.19 odd 2 1200.4.f.v.49.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.4.a.d.1.2 2 5.2 odd 4
75.4.a.e.1.1 yes 2 5.3 odd 4
75.4.b.c.49.2 4 1.1 even 1 trivial
75.4.b.c.49.3 4 5.4 even 2 inner
225.4.a.j.1.2 2 15.8 even 4
225.4.a.n.1.1 2 15.2 even 4
225.4.b.h.199.2 4 15.14 odd 2
225.4.b.h.199.3 4 3.2 odd 2
1200.4.a.bl.1.1 2 20.7 even 4
1200.4.a.bu.1.2 2 20.3 even 4
1200.4.f.v.49.2 4 4.3 odd 2
1200.4.f.v.49.3 4 20.19 odd 2