Properties

Label 2268.2.t.a.1781.6
Level $2268$
Weight $2$
Character 2268.1781
Analytic conductor $18.110$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(1781,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.1781");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1781.6
Root \(-0.268067 - 1.71118i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1781
Dual form 2268.2.t.a.2105.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.842869 + 1.45989i) q^{5} +(2.30301 + 1.30235i) q^{7} +(3.38216 + 1.95269i) q^{11} -6.05515i q^{13} +(0.201244 - 0.348565i) q^{17} +(-0.145617 + 0.0840718i) q^{19} +(7.69373 - 4.44198i) q^{23} +(1.07914 - 1.86913i) q^{25} -7.10580i q^{29} +(-5.44527 - 3.14383i) q^{31} +(0.0398441 + 4.45986i) q^{35} +(3.13257 + 5.42578i) q^{37} +3.29414 q^{41} -3.60947 q^{43} +(4.38482 + 7.59474i) q^{47} +(3.60775 + 5.99868i) q^{49} +(-4.94628 - 2.85574i) q^{53} +6.58345i q^{55} +(2.25163 - 3.89994i) q^{59} +(-4.43678 + 2.56157i) q^{61} +(8.83986 - 5.10369i) q^{65} +(2.95521 - 5.11857i) q^{67} +11.4308i q^{71} +(-6.05559 - 3.49620i) q^{73} +(5.24607 + 8.90184i) q^{77} +(-0.603968 - 1.04610i) q^{79} +0.362701 q^{83} +0.678488 q^{85} +(1.38526 + 2.39934i) q^{89} +(7.88594 - 13.9451i) q^{91} +(-0.245471 - 0.141723i) q^{95} +0.587643i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{7} - 6 q^{11} - 9 q^{17} + 21 q^{23} - 8 q^{25} - 6 q^{31} + 15 q^{35} + q^{37} - 12 q^{41} + 4 q^{43} - 18 q^{47} - 8 q^{49} - 15 q^{59} - 3 q^{61} + 39 q^{65} - 7 q^{67} + 48 q^{77} - q^{79}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.842869 + 1.45989i 0.376942 + 0.652883i 0.990616 0.136677i \(-0.0436422\pi\)
−0.613673 + 0.789560i \(0.710309\pi\)
\(6\) 0 0
\(7\) 2.30301 + 1.30235i 0.870458 + 0.492243i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.38216 + 1.95269i 1.01976 + 0.588758i 0.914034 0.405637i \(-0.132950\pi\)
0.105725 + 0.994395i \(0.466284\pi\)
\(12\) 0 0
\(13\) 6.05515i 1.67940i −0.543054 0.839698i \(-0.682732\pi\)
0.543054 0.839698i \(-0.317268\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.201244 0.348565i 0.0488088 0.0845393i −0.840589 0.541674i \(-0.817791\pi\)
0.889398 + 0.457134i \(0.151124\pi\)
\(18\) 0 0
\(19\) −0.145617 + 0.0840718i −0.0334067 + 0.0192874i −0.516610 0.856221i \(-0.672806\pi\)
0.483204 + 0.875508i \(0.339473\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.69373 4.44198i 1.60425 0.926216i 0.613630 0.789593i \(-0.289709\pi\)
0.990623 0.136623i \(-0.0436248\pi\)
\(24\) 0 0
\(25\) 1.07914 1.86913i 0.215829 0.373827i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.10580i 1.31951i −0.751479 0.659757i \(-0.770659\pi\)
0.751479 0.659757i \(-0.229341\pi\)
\(30\) 0 0
\(31\) −5.44527 3.14383i −0.978000 0.564649i −0.0763342 0.997082i \(-0.524322\pi\)
−0.901666 + 0.432434i \(0.857655\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.0398441 + 4.45986i 0.00673488 + 0.753855i
\(36\) 0 0
\(37\) 3.13257 + 5.42578i 0.514992 + 0.891992i 0.999849 + 0.0173987i \(0.00553846\pi\)
−0.484857 + 0.874594i \(0.661128\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.29414 0.514458 0.257229 0.966350i \(-0.417190\pi\)
0.257229 + 0.966350i \(0.417190\pi\)
\(42\) 0 0
\(43\) −3.60947 −0.550439 −0.275220 0.961381i \(-0.588751\pi\)
−0.275220 + 0.961381i \(0.588751\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.38482 + 7.59474i 0.639592 + 1.10781i 0.985522 + 0.169546i \(0.0542301\pi\)
−0.345930 + 0.938260i \(0.612437\pi\)
\(48\) 0 0
\(49\) 3.60775 + 5.99868i 0.515393 + 0.856954i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.94628 2.85574i −0.679424 0.392266i 0.120214 0.992748i \(-0.461642\pi\)
−0.799638 + 0.600482i \(0.794975\pi\)
\(54\) 0 0
\(55\) 6.58345i 0.887712i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.25163 3.89994i 0.293138 0.507729i −0.681412 0.731900i \(-0.738634\pi\)
0.974550 + 0.224171i \(0.0719673\pi\)
\(60\) 0 0
\(61\) −4.43678 + 2.56157i −0.568071 + 0.327976i −0.756379 0.654134i \(-0.773033\pi\)
0.188308 + 0.982110i \(0.439700\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.83986 5.10369i 1.09645 0.633035i
\(66\) 0 0
\(67\) 2.95521 5.11857i 0.361036 0.625332i −0.627096 0.778942i \(-0.715757\pi\)
0.988132 + 0.153610i \(0.0490899\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4308i 1.35658i 0.734792 + 0.678292i \(0.237280\pi\)
−0.734792 + 0.678292i \(0.762720\pi\)
\(72\) 0 0
\(73\) −6.05559 3.49620i −0.708753 0.409199i 0.101846 0.994800i \(-0.467525\pi\)
−0.810599 + 0.585601i \(0.800858\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.24607 + 8.90184i 0.597845 + 1.01446i
\(78\) 0 0
\(79\) −0.603968 1.04610i −0.0679517 0.117696i 0.830048 0.557692i \(-0.188313\pi\)
−0.898000 + 0.439996i \(0.854980\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.362701 0.0398116 0.0199058 0.999802i \(-0.493663\pi\)
0.0199058 + 0.999802i \(0.493663\pi\)
\(84\) 0 0
\(85\) 0.678488 0.0735924
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.38526 + 2.39934i 0.146837 + 0.254329i 0.930057 0.367416i \(-0.119757\pi\)
−0.783220 + 0.621745i \(0.786424\pi\)
\(90\) 0 0
\(91\) 7.88594 13.9451i 0.826671 1.46184i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.245471 0.141723i −0.0251848 0.0145405i
\(96\) 0 0
\(97\) 0.587643i 0.0596661i 0.999555 + 0.0298330i \(0.00949756\pi\)
−0.999555 + 0.0298330i \(0.990502\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.92329 + 11.9915i −0.688893 + 1.19320i 0.283303 + 0.959030i \(0.408570\pi\)
−0.972196 + 0.234167i \(0.924764\pi\)
\(102\) 0 0
\(103\) −10.4610 + 6.03967i −1.03075 + 0.595106i −0.917201 0.398425i \(-0.869557\pi\)
−0.113554 + 0.993532i \(0.536223\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.9299 9.19711i 1.54000 0.889118i 0.541159 0.840920i \(-0.317986\pi\)
0.998838 0.0481978i \(-0.0153478\pi\)
\(108\) 0 0
\(109\) −5.51036 + 9.54422i −0.527796 + 0.914170i 0.471679 + 0.881771i \(0.343648\pi\)
−0.999475 + 0.0323997i \(0.989685\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.50796i 0.800361i 0.916436 + 0.400181i \(0.131053\pi\)
−0.916436 + 0.400181i \(0.868947\pi\)
\(114\) 0 0
\(115\) 12.9696 + 7.48801i 1.20942 + 0.698260i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.917422 0.540659i 0.0840999 0.0495621i
\(120\) 0 0
\(121\) 2.12600 + 3.68234i 0.193273 + 0.334758i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0670 1.07930
\(126\) 0 0
\(127\) −10.6312 −0.943365 −0.471682 0.881769i \(-0.656353\pi\)
−0.471682 + 0.881769i \(0.656353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.16740 5.48610i −0.276737 0.479322i 0.693835 0.720134i \(-0.255920\pi\)
−0.970572 + 0.240812i \(0.922586\pi\)
\(132\) 0 0
\(133\) −0.444848 + 0.00397424i −0.0385732 + 0.000344611i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.4158 + 8.32296i 1.23162 + 0.711078i 0.967368 0.253375i \(-0.0815406\pi\)
0.264255 + 0.964453i \(0.414874\pi\)
\(138\) 0 0
\(139\) 4.89601i 0.415274i 0.978206 + 0.207637i \(0.0665773\pi\)
−0.978206 + 0.207637i \(0.933423\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.8238 20.4795i 0.988758 1.71258i
\(144\) 0 0
\(145\) 10.3737 5.98926i 0.861489 0.497381i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.57864 + 2.64348i −0.375097 + 0.216562i −0.675683 0.737192i \(-0.736151\pi\)
0.300586 + 0.953755i \(0.402818\pi\)
\(150\) 0 0
\(151\) 7.29163 12.6295i 0.593385 1.02777i −0.400388 0.916346i \(-0.631125\pi\)
0.993773 0.111427i \(-0.0355421\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.5993i 0.851360i
\(156\) 0 0
\(157\) 15.4160 + 8.90044i 1.23033 + 0.710332i 0.967099 0.254400i \(-0.0818781\pi\)
0.263232 + 0.964732i \(0.415211\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.5038 0.209981i 1.85236 0.0165488i
\(162\) 0 0
\(163\) 0.0482228 + 0.0835243i 0.00377710 + 0.00654213i 0.867908 0.496725i \(-0.165464\pi\)
−0.864131 + 0.503267i \(0.832131\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.95745 0.383619 0.191809 0.981432i \(-0.438564\pi\)
0.191809 + 0.981432i \(0.438564\pi\)
\(168\) 0 0
\(169\) −23.6648 −1.82037
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.40033 12.8177i −0.562637 0.974515i −0.997265 0.0739055i \(-0.976454\pi\)
0.434629 0.900610i \(-0.356880\pi\)
\(174\) 0 0
\(175\) 4.91956 2.89921i 0.371884 0.219160i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.592751 + 0.342225i 0.0443043 + 0.0255791i 0.521989 0.852952i \(-0.325190\pi\)
−0.477684 + 0.878532i \(0.658524\pi\)
\(180\) 0 0
\(181\) 7.84745i 0.583297i −0.956526 0.291648i \(-0.905796\pi\)
0.956526 0.291648i \(-0.0942037\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.28070 + 9.14644i −0.388245 + 0.672459i
\(186\) 0 0
\(187\) 1.36128 0.785934i 0.0995464 0.0574732i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.9694 9.79729i 1.22786 0.708907i 0.261281 0.965263i \(-0.415855\pi\)
0.966582 + 0.256356i \(0.0825219\pi\)
\(192\) 0 0
\(193\) −9.18116 + 15.9022i −0.660875 + 1.14467i 0.319512 + 0.947582i \(0.396481\pi\)
−0.980386 + 0.197086i \(0.936852\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.92313i 0.422006i 0.977485 + 0.211003i \(0.0676730\pi\)
−0.977485 + 0.211003i \(0.932327\pi\)
\(198\) 0 0
\(199\) −13.6268 7.86741i −0.965975 0.557706i −0.0679681 0.997687i \(-0.521652\pi\)
−0.898007 + 0.439982i \(0.854985\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.25426 16.3648i 0.649522 1.14858i
\(204\) 0 0
\(205\) 2.77653 + 4.80909i 0.193921 + 0.335881i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.656665 −0.0454225
\(210\) 0 0
\(211\) −10.1324 −0.697541 −0.348771 0.937208i \(-0.613401\pi\)
−0.348771 + 0.937208i \(0.613401\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.04231 5.26944i −0.207484 0.359373i
\(216\) 0 0
\(217\) −8.44616 14.3320i −0.573363 0.972917i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.11061 1.21856i −0.141975 0.0819693i
\(222\) 0 0
\(223\) 15.4665i 1.03571i −0.855467 0.517857i \(-0.826730\pi\)
0.855467 0.517857i \(-0.173270\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.0360 + 24.3110i −0.931600 + 1.61358i −0.151011 + 0.988532i \(0.548253\pi\)
−0.780588 + 0.625046i \(0.785080\pi\)
\(228\) 0 0
\(229\) 14.7453 8.51319i 0.974396 0.562568i 0.0738222 0.997271i \(-0.476480\pi\)
0.900573 + 0.434704i \(0.143147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.0015 + 9.23847i −1.04829 + 0.605233i −0.922171 0.386782i \(-0.873587\pi\)
−0.126122 + 0.992015i \(0.540253\pi\)
\(234\) 0 0
\(235\) −7.39166 + 12.8027i −0.482179 + 0.835158i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.00506i 0.453120i 0.973997 + 0.226560i \(0.0727479\pi\)
−0.973997 + 0.226560i \(0.927252\pi\)
\(240\) 0 0
\(241\) −5.38459 3.10879i −0.346852 0.200255i 0.316446 0.948611i \(-0.397510\pi\)
−0.663298 + 0.748355i \(0.730844\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.71656 + 10.3230i −0.365217 + 0.659514i
\(246\) 0 0
\(247\) 0.509067 + 0.881730i 0.0323912 + 0.0561031i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.81844 −0.619734 −0.309867 0.950780i \(-0.600285\pi\)
−0.309867 + 0.950780i \(0.600285\pi\)
\(252\) 0 0
\(253\) 34.6952 2.18127
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.667904 + 1.15684i 0.0416627 + 0.0721619i 0.886105 0.463485i \(-0.153401\pi\)
−0.844442 + 0.535647i \(0.820068\pi\)
\(258\) 0 0
\(259\) 0.148083 + 16.5754i 0.00920144 + 1.02994i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.6238 + 10.1751i 1.08673 + 0.627424i 0.932704 0.360643i \(-0.117443\pi\)
0.154026 + 0.988067i \(0.450776\pi\)
\(264\) 0 0
\(265\) 9.62805i 0.591446i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.3614 + 23.1426i −0.814659 + 1.41103i 0.0949131 + 0.995486i \(0.469743\pi\)
−0.909572 + 0.415546i \(0.863591\pi\)
\(270\) 0 0
\(271\) 3.76517 2.17382i 0.228718 0.132050i −0.381263 0.924467i \(-0.624511\pi\)
0.609980 + 0.792417i \(0.291177\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.29968 4.21447i 0.440187 0.254142i
\(276\) 0 0
\(277\) 2.19901 3.80880i 0.132126 0.228849i −0.792370 0.610041i \(-0.791153\pi\)
0.924496 + 0.381192i \(0.124486\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.33787i 0.318430i 0.987244 + 0.159215i \(0.0508964\pi\)
−0.987244 + 0.159215i \(0.949104\pi\)
\(282\) 0 0
\(283\) 15.5431 + 8.97381i 0.923941 + 0.533437i 0.884890 0.465800i \(-0.154233\pi\)
0.0390505 + 0.999237i \(0.487567\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.58645 + 4.29014i 0.447814 + 0.253239i
\(288\) 0 0
\(289\) 8.41900 + 14.5821i 0.495235 + 0.857773i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −26.2253 −1.53210 −0.766048 0.642783i \(-0.777780\pi\)
−0.766048 + 0.642783i \(0.777780\pi\)
\(294\) 0 0
\(295\) 7.59132 0.441984
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26.8968 46.5867i −1.55548 2.69418i
\(300\) 0 0
\(301\) −8.31267 4.70081i −0.479134 0.270950i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.47924 4.31814i −0.428260 0.247256i
\(306\) 0 0
\(307\) 7.19520i 0.410652i −0.978694 0.205326i \(-0.934175\pi\)
0.978694 0.205326i \(-0.0658254\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.08721 1.88311i 0.0616503 0.106781i −0.833553 0.552440i \(-0.813697\pi\)
0.895203 + 0.445658i \(0.147030\pi\)
\(312\) 0 0
\(313\) 10.2870 5.93922i 0.581457 0.335704i −0.180255 0.983620i \(-0.557692\pi\)
0.761712 + 0.647916i \(0.224359\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.09969 + 4.09901i −0.398758 + 0.230223i −0.685948 0.727651i \(-0.740612\pi\)
0.287190 + 0.957874i \(0.407279\pi\)
\(318\) 0 0
\(319\) 13.8754 24.0329i 0.776875 1.34559i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0676757i 0.00376558i
\(324\) 0 0
\(325\) −11.3179 6.53438i −0.627803 0.362462i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.207279 + 23.2014i 0.0114277 + 1.27913i
\(330\) 0 0
\(331\) −8.58540 14.8704i −0.471897 0.817349i 0.527586 0.849501i \(-0.323097\pi\)
−0.999483 + 0.0321526i \(0.989764\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.96340 0.544359
\(336\) 0 0
\(337\) −7.90797 −0.430775 −0.215387 0.976529i \(-0.569101\pi\)
−0.215387 + 0.976529i \(0.569101\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.2779 21.2659i −0.664883 1.15161i
\(342\) 0 0
\(343\) 0.496303 + 18.5136i 0.0267979 + 0.999641i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.443850 + 0.256257i 0.0238271 + 0.0137566i 0.511866 0.859065i \(-0.328954\pi\)
−0.488039 + 0.872822i \(0.662288\pi\)
\(348\) 0 0
\(349\) 6.63505i 0.355166i −0.984106 0.177583i \(-0.943172\pi\)
0.984106 0.177583i \(-0.0568278\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.03437 + 15.6480i −0.480851 + 0.832858i −0.999759 0.0219721i \(-0.993006\pi\)
0.518908 + 0.854830i \(0.326339\pi\)
\(354\) 0 0
\(355\) −16.6877 + 9.63465i −0.885691 + 0.511354i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.52677 + 0.881479i −0.0805796 + 0.0465227i −0.539748 0.841826i \(-0.681481\pi\)
0.459169 + 0.888349i \(0.348147\pi\)
\(360\) 0 0
\(361\) −9.48586 + 16.4300i −0.499256 + 0.864737i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.7873i 0.616977i
\(366\) 0 0
\(367\) 28.9614 + 16.7209i 1.51177 + 0.872822i 0.999905 + 0.0137576i \(0.00437931\pi\)
0.511867 + 0.859065i \(0.328954\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.67218 13.0186i −0.398320 0.675893i
\(372\) 0 0
\(373\) −12.7844 22.1433i −0.661952 1.14653i −0.980102 0.198494i \(-0.936395\pi\)
0.318150 0.948040i \(-0.396938\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −43.0267 −2.21599
\(378\) 0 0
\(379\) 25.7920 1.32485 0.662423 0.749130i \(-0.269528\pi\)
0.662423 + 0.749130i \(0.269528\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.4158 28.4330i −0.838808 1.45286i −0.890892 0.454215i \(-0.849920\pi\)
0.0520838 0.998643i \(-0.483414\pi\)
\(384\) 0 0
\(385\) −8.57397 + 15.1618i −0.436970 + 0.772715i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.4542 10.0772i −0.884965 0.510935i −0.0126730 0.999920i \(-0.504034\pi\)
−0.872292 + 0.488985i \(0.837367\pi\)
\(390\) 0 0
\(391\) 3.57568i 0.180830i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.01813 1.76346i 0.0512278 0.0887291i
\(396\) 0 0
\(397\) −30.2125 + 17.4432i −1.51632 + 0.875449i −0.516506 + 0.856284i \(0.672768\pi\)
−0.999816 + 0.0191652i \(0.993899\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.36793 4.83122i 0.417874 0.241260i −0.276293 0.961073i \(-0.589106\pi\)
0.694167 + 0.719814i \(0.255773\pi\)
\(402\) 0 0
\(403\) −19.0364 + 32.9719i −0.948268 + 1.64245i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.4678i 1.21282i
\(408\) 0 0
\(409\) −32.1202 18.5446i −1.58824 0.916973i −0.993597 0.112986i \(-0.963958\pi\)
−0.594647 0.803987i \(-0.702708\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.2646 6.04920i 0.505090 0.297662i
\(414\) 0 0
\(415\) 0.305709 + 0.529504i 0.0150067 + 0.0259923i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.68386 0.179968 0.0899841 0.995943i \(-0.471318\pi\)
0.0899841 + 0.995943i \(0.471318\pi\)
\(420\) 0 0
\(421\) 17.1028 0.833539 0.416769 0.909012i \(-0.363162\pi\)
0.416769 + 0.909012i \(0.363162\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.434342 0.752303i −0.0210687 0.0364921i
\(426\) 0 0
\(427\) −13.5540 + 0.121091i −0.655926 + 0.00585999i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −27.3242 15.7756i −1.31616 0.759885i −0.333051 0.942909i \(-0.608078\pi\)
−0.983108 + 0.183024i \(0.941411\pi\)
\(432\) 0 0
\(433\) 10.0692i 0.483893i −0.970290 0.241947i \(-0.922214\pi\)
0.970290 0.241947i \(-0.0777859\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.746890 + 1.29365i −0.0357286 + 0.0618837i
\(438\) 0 0
\(439\) −24.1966 + 13.9699i −1.15484 + 0.666748i −0.950062 0.312060i \(-0.898981\pi\)
−0.204779 + 0.978808i \(0.565648\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.1930 17.4319i 1.43451 0.828215i 0.437050 0.899437i \(-0.356023\pi\)
0.997460 + 0.0712223i \(0.0226900\pi\)
\(444\) 0 0
\(445\) −2.33518 + 4.04466i −0.110698 + 0.191735i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.2411i 1.09682i 0.836211 + 0.548408i \(0.184766\pi\)
−0.836211 + 0.548408i \(0.815234\pi\)
\(450\) 0 0
\(451\) 11.1413 + 6.43244i 0.524624 + 0.302892i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 27.0051 0.241262i 1.26602 0.0113105i
\(456\) 0 0
\(457\) 3.10938 + 5.38560i 0.145451 + 0.251928i 0.929541 0.368719i \(-0.120203\pi\)
−0.784090 + 0.620647i \(0.786870\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.34329 −0.202287 −0.101144 0.994872i \(-0.532250\pi\)
−0.101144 + 0.994872i \(0.532250\pi\)
\(462\) 0 0
\(463\) −7.14903 −0.332243 −0.166122 0.986105i \(-0.553124\pi\)
−0.166122 + 0.986105i \(0.553124\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.944451 1.63584i −0.0437040 0.0756975i 0.843346 0.537371i \(-0.180583\pi\)
−0.887050 + 0.461673i \(0.847249\pi\)
\(468\) 0 0
\(469\) 13.4721 7.93941i 0.622082 0.366608i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −12.2078 7.04818i −0.561316 0.324076i
\(474\) 0 0
\(475\) 0.362903i 0.0166511i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.22491 9.04981i 0.238732 0.413497i −0.721618 0.692291i \(-0.756601\pi\)
0.960351 + 0.278794i \(0.0899348\pi\)
\(480\) 0 0
\(481\) 32.8539 18.9682i 1.49801 0.864875i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.857895 + 0.495306i −0.0389550 + 0.0224907i
\(486\) 0 0
\(487\) −11.8298 + 20.4898i −0.536060 + 0.928483i 0.463052 + 0.886331i \(0.346754\pi\)
−0.999111 + 0.0421513i \(0.986579\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.4830i 0.608481i 0.952595 + 0.304241i \(0.0984027\pi\)
−0.952595 + 0.304241i \(0.901597\pi\)
\(492\) 0 0
\(493\) −2.47683 1.43000i −0.111551 0.0644039i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.8869 + 26.3253i −0.667770 + 1.18085i
\(498\) 0 0
\(499\) 6.04035 + 10.4622i 0.270403 + 0.468352i 0.968965 0.247197i \(-0.0795096\pi\)
−0.698562 + 0.715550i \(0.746176\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.5283 −0.915310 −0.457655 0.889130i \(-0.651310\pi\)
−0.457655 + 0.889130i \(0.651310\pi\)
\(504\) 0 0
\(505\) −23.3417 −1.03869
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.09043 7.08483i −0.181305 0.314029i 0.761020 0.648728i \(-0.224699\pi\)
−0.942325 + 0.334699i \(0.891365\pi\)
\(510\) 0 0
\(511\) −9.39282 15.9383i −0.415514 0.705069i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −17.6345 10.1813i −0.777070 0.448642i
\(516\) 0 0
\(517\) 34.2488i 1.50626i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.8746 + 24.0314i −0.607856 + 1.05284i 0.383738 + 0.923442i \(0.374637\pi\)
−0.991593 + 0.129395i \(0.958697\pi\)
\(522\) 0 0
\(523\) 19.8843 11.4802i 0.869478 0.501993i 0.00230311 0.999997i \(-0.499267\pi\)
0.867175 + 0.498004i \(0.165934\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.19166 + 1.26535i −0.0954700 + 0.0551196i
\(528\) 0 0
\(529\) 27.9623 48.4322i 1.21575 2.10575i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.9465i 0.863979i
\(534\) 0 0
\(535\) 26.8536 + 15.5039i 1.16098 + 0.670292i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.488426 + 27.3333i 0.0210380 + 1.17733i
\(540\) 0 0
\(541\) −2.60405 4.51035i −0.111957 0.193915i 0.804602 0.593814i \(-0.202379\pi\)
−0.916559 + 0.399899i \(0.869045\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −18.5780 −0.795795
\(546\) 0 0
\(547\) −21.2448 −0.908361 −0.454181 0.890910i \(-0.650068\pi\)
−0.454181 + 0.890910i \(0.650068\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.597397 + 1.03472i 0.0254500 + 0.0440807i
\(552\) 0 0
\(553\) −0.0285508 3.19577i −0.00121410 0.135898i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.0945 6.40543i −0.470090 0.271407i 0.246187 0.969222i \(-0.420822\pi\)
−0.716277 + 0.697816i \(0.754156\pi\)
\(558\) 0 0
\(559\) 21.8559i 0.924406i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.7396 + 32.4580i −0.789781 + 1.36794i 0.136319 + 0.990665i \(0.456473\pi\)
−0.926101 + 0.377277i \(0.876861\pi\)
\(564\) 0 0
\(565\) −12.4207 + 7.17109i −0.522542 + 0.301690i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.94906 + 3.43469i −0.249397 + 0.143990i −0.619488 0.785006i \(-0.712660\pi\)
0.370091 + 0.928996i \(0.379327\pi\)
\(570\) 0 0
\(571\) −0.0847909 + 0.146862i −0.00354839 + 0.00614599i −0.867794 0.496924i \(-0.834463\pi\)
0.864246 + 0.503070i \(0.167796\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.1741i 0.799617i
\(576\) 0 0
\(577\) −5.41193 3.12458i −0.225302 0.130078i 0.383101 0.923706i \(-0.374856\pi\)
−0.608403 + 0.793628i \(0.708189\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.835305 + 0.472365i 0.0346543 + 0.0195970i
\(582\) 0 0
\(583\) −11.1527 19.3171i −0.461900 0.800033i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.5762 −0.890545 −0.445273 0.895395i \(-0.646893\pi\)
−0.445273 + 0.895395i \(0.646893\pi\)
\(588\) 0 0
\(589\) 1.05723 0.0435624
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.13036 + 7.15399i 0.169613 + 0.293779i 0.938284 0.345866i \(-0.112415\pi\)
−0.768671 + 0.639645i \(0.779081\pi\)
\(594\) 0 0
\(595\) 1.56257 + 0.883632i 0.0640591 + 0.0362254i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −30.7618 17.7603i −1.25689 0.725667i −0.284422 0.958699i \(-0.591802\pi\)
−0.972469 + 0.233033i \(0.925135\pi\)
\(600\) 0 0
\(601\) 41.4516i 1.69085i 0.534098 + 0.845423i \(0.320651\pi\)
−0.534098 + 0.845423i \(0.679349\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.58388 + 6.20746i −0.145705 + 0.252369i
\(606\) 0 0
\(607\) 2.09569 1.20995i 0.0850616 0.0491103i −0.456866 0.889536i \(-0.651028\pi\)
0.541927 + 0.840425i \(0.317695\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 45.9873 26.5508i 1.86045 1.07413i
\(612\) 0 0
\(613\) 21.3228 36.9321i 0.861219 1.49168i −0.00953416 0.999955i \(-0.503035\pi\)
0.870753 0.491720i \(-0.163632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.3039i 0.616110i −0.951369 0.308055i \(-0.900322\pi\)
0.951369 0.308055i \(-0.0996781\pi\)
\(618\) 0 0
\(619\) −23.9177 13.8089i −0.961334 0.555026i −0.0647505 0.997901i \(-0.520625\pi\)
−0.896583 + 0.442875i \(0.853958\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.0654840 + 7.32981i 0.00262356 + 0.293663i
\(624\) 0 0
\(625\) 4.77517 + 8.27084i 0.191007 + 0.330834i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.52164 0.100545
\(630\) 0 0
\(631\) 8.28775 0.329930 0.164965 0.986299i \(-0.447249\pi\)
0.164965 + 0.986299i \(0.447249\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.96069 15.5204i −0.355594 0.615907i
\(636\) 0 0
\(637\) 36.3229 21.8455i 1.43916 0.865549i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.58307 4.95544i −0.339011 0.195728i 0.320824 0.947139i \(-0.396040\pi\)
−0.659835 + 0.751411i \(0.729374\pi\)
\(642\) 0 0
\(643\) 7.89432i 0.311321i −0.987811 0.155661i \(-0.950249\pi\)
0.987811 0.155661i \(-0.0497507\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.15966 3.74063i 0.0849049 0.147060i −0.820446 0.571724i \(-0.806275\pi\)
0.905351 + 0.424665i \(0.139608\pi\)
\(648\) 0 0
\(649\) 15.2308 8.79348i 0.597859 0.345174i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 37.5853 21.6999i 1.47082 0.849181i 0.471361 0.881940i \(-0.343763\pi\)
0.999463 + 0.0327591i \(0.0104294\pi\)
\(654\) 0 0
\(655\) 5.33940 9.24812i 0.208628 0.361354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.7952i 0.420522i −0.977645 0.210261i \(-0.932569\pi\)
0.977645 0.210261i \(-0.0674314\pi\)
\(660\) 0 0
\(661\) −3.39495 1.96008i −0.132048 0.0762381i 0.432521 0.901624i \(-0.357624\pi\)
−0.564569 + 0.825386i \(0.690958\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.380751 0.646081i −0.0147649 0.0250539i
\(666\) 0 0
\(667\) −31.5638 54.6701i −1.22216 2.11683i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −20.0078 −0.772394
\(672\) 0 0
\(673\) 24.6808 0.951375 0.475687 0.879614i \(-0.342199\pi\)
0.475687 + 0.879614i \(0.342199\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.36327 + 12.7536i 0.282994 + 0.490159i 0.972121 0.234481i \(-0.0753392\pi\)
−0.689127 + 0.724641i \(0.742006\pi\)
\(678\) 0 0
\(679\) −0.765319 + 1.35335i −0.0293702 + 0.0519368i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.60128 0.924499i −0.0612712 0.0353750i 0.469051 0.883171i \(-0.344596\pi\)
−0.530323 + 0.847796i \(0.677929\pi\)
\(684\) 0 0
\(685\) 28.0606i 1.07214i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.2919 + 29.9505i −0.658769 + 1.14102i
\(690\) 0 0
\(691\) 33.7613 19.4921i 1.28434 0.741514i 0.306701 0.951806i \(-0.400775\pi\)
0.977639 + 0.210292i \(0.0674415\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.14764 + 4.12669i −0.271126 + 0.156534i
\(696\) 0 0
\(697\) 0.662926 1.14822i 0.0251101 0.0434920i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.4389i 0.960813i −0.877046 0.480406i \(-0.840489\pi\)
0.877046 0.480406i \(-0.159511\pi\)
\(702\) 0 0
\(703\) −0.912310 0.526722i −0.0344084 0.0198657i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.5616 + 18.6000i −1.18700 + 0.699525i
\(708\) 0 0
\(709\) 7.14517 + 12.3758i 0.268342 + 0.464783i 0.968434 0.249270i \(-0.0801908\pi\)
−0.700092 + 0.714053i \(0.746857\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −55.8593 −2.09195
\(714\) 0 0
\(715\) 39.8637 1.49082
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.7344 28.9848i −0.624088 1.08095i −0.988716 0.149799i \(-0.952137\pi\)
0.364629 0.931153i \(-0.381196\pi\)
\(720\) 0 0
\(721\) −31.9577 + 0.285507i −1.19017 + 0.0106329i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13.2817 7.66819i −0.493269 0.284789i
\(726\) 0 0
\(727\) 14.0127i 0.519703i 0.965649 + 0.259851i \(0.0836736\pi\)
−0.965649 + 0.259851i \(0.916326\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.726384 + 1.25813i −0.0268663 + 0.0465338i
\(732\) 0 0
\(733\) −23.6491 + 13.6538i −0.873501 + 0.504316i −0.868510 0.495672i \(-0.834922\pi\)
−0.00499085 + 0.999988i \(0.501589\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.9899 11.5412i 0.736339 0.425126i
\(738\) 0 0
\(739\) 26.3157 45.5801i 0.968039 1.67669i 0.266819 0.963747i \(-0.414027\pi\)
0.701220 0.712945i \(-0.252639\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 35.7407i 1.31120i 0.755109 + 0.655599i \(0.227584\pi\)
−0.755109 + 0.655599i \(0.772416\pi\)
\(744\) 0 0
\(745\) −7.71839 4.45621i −0.282780 0.163263i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 48.6646 0.434766i 1.77816 0.0158860i
\(750\) 0 0
\(751\) 16.5641 + 28.6899i 0.604433 + 1.04691i 0.992141 + 0.125126i \(0.0399336\pi\)
−0.387708 + 0.921782i \(0.626733\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 24.5836 0.894687
\(756\) 0 0
\(757\) −13.6903 −0.497584 −0.248792 0.968557i \(-0.580034\pi\)
−0.248792 + 0.968557i \(0.580034\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.51737 + 11.2884i 0.236255 + 0.409205i 0.959637 0.281243i \(-0.0907467\pi\)
−0.723382 + 0.690448i \(0.757413\pi\)
\(762\) 0 0
\(763\) −25.1204 + 14.8040i −0.909419 + 0.535942i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.6147 13.6340i −0.852678 0.492294i
\(768\) 0 0
\(769\) 21.3464i 0.769772i 0.922964 + 0.384886i \(0.125759\pi\)
−0.922964 + 0.384886i \(0.874241\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.73940 + 9.94093i −0.206432 + 0.357550i −0.950588 0.310455i \(-0.899518\pi\)
0.744156 + 0.668006i \(0.232852\pi\)
\(774\) 0 0
\(775\) −11.7525 + 6.78529i −0.422161 + 0.243735i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.479682 + 0.276944i −0.0171864 + 0.00992256i
\(780\) 0 0
\(781\) −22.3208 + 38.6607i −0.798701 + 1.38339i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30.0076i 1.07102i
\(786\) 0 0
\(787\) −35.6808 20.6003i −1.27188 0.734322i −0.296541 0.955020i \(-0.595833\pi\)
−0.975342 + 0.220698i \(0.929166\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.0804 + 19.5939i −0.393972 + 0.696681i
\(792\) 0 0
\(793\) 15.5107 + 26.8653i 0.550801 + 0.954016i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −50.0132 −1.77156 −0.885779 0.464108i \(-0.846375\pi\)
−0.885779 + 0.464108i \(0.846375\pi\)
\(798\) 0 0
\(799\) 3.52967 0.124871
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13.6540 23.6494i −0.481838 0.834568i
\(804\) 0 0
\(805\) 20.1172 + 34.1360i 0.709037 + 1.20314i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.8995 + 25.3454i 1.54343 + 0.891097i 0.998619 + 0.0525356i \(0.0167303\pi\)
0.544807 + 0.838562i \(0.316603\pi\)
\(810\) 0 0
\(811\) 8.96566i 0.314827i −0.987533 0.157413i \(-0.949684\pi\)
0.987533 0.157413i \(-0.0503155\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.0812910 + 0.140800i −0.00284750 + 0.00493201i
\(816\) 0 0
\(817\) 0.525599 0.303455i 0.0183884 0.0106165i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.2190 16.2922i 0.984849 0.568603i 0.0811184 0.996704i \(-0.474151\pi\)
0.903731 + 0.428102i \(0.140817\pi\)
\(822\) 0 0
\(823\) 10.0877 17.4724i 0.351636 0.609051i −0.634901 0.772594i \(-0.718959\pi\)
0.986536 + 0.163543i \(0.0522923\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.253288i 0.00880770i −0.999990 0.00440385i \(-0.998598\pi\)
0.999990 0.00440385i \(-0.00140179\pi\)
\(828\) 0 0
\(829\) −6.10909 3.52708i −0.212177 0.122501i 0.390146 0.920753i \(-0.372425\pi\)
−0.602323 + 0.798253i \(0.705758\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.81696 0.0503371i 0.0976020 0.00174408i
\(834\) 0 0
\(835\) 4.17848 + 7.23733i 0.144602 + 0.250458i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 34.1871 1.18027 0.590136 0.807304i \(-0.299074\pi\)
0.590136 + 0.807304i \(0.299074\pi\)
\(840\) 0 0
\(841\) −21.4924 −0.741117
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.9463 34.5480i −0.686174 1.18849i
\(846\) 0 0
\(847\) 0.100500 + 11.2493i 0.00345323 + 0.386530i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 48.2024 + 27.8296i 1.65236 + 0.953988i
\(852\) 0 0
\(853\) 25.1247i 0.860252i −0.902769 0.430126i \(-0.858469\pi\)
0.902769 0.430126i \(-0.141531\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.0954 + 36.5383i −0.720604 + 1.24812i 0.240154 + 0.970735i \(0.422802\pi\)
−0.960758 + 0.277388i \(0.910531\pi\)
\(858\) 0 0
\(859\) −4.08139 + 2.35639i −0.139255 + 0.0803990i −0.568009 0.823022i \(-0.692286\pi\)
0.428754 + 0.903421i \(0.358953\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.8409 17.8060i 1.04984 0.606123i 0.127232 0.991873i \(-0.459391\pi\)
0.922603 + 0.385750i \(0.126057\pi\)
\(864\) 0 0
\(865\) 12.4750 21.6074i 0.424163 0.734672i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.71745i 0.160029i
\(870\) 0 0
\(871\) −30.9937 17.8942i −1.05018 0.606322i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 27.7905 + 15.7155i 0.939489 + 0.531281i
\(876\) 0 0
\(877\) −20.4532 35.4260i −0.690655 1.19625i −0.971624 0.236532i \(-0.923989\pi\)
0.280969 0.959717i \(-0.409344\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.4443 1.26153 0.630765 0.775974i \(-0.282741\pi\)
0.630765 + 0.775974i \(0.282741\pi\)
\(882\) 0 0
\(883\) −49.8357 −1.67711 −0.838553 0.544821i \(-0.816598\pi\)
−0.838553 + 0.544821i \(0.816598\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.4482 25.0251i −0.485124 0.840260i 0.514730 0.857352i \(-0.327892\pi\)
−0.999854 + 0.0170929i \(0.994559\pi\)
\(888\) 0 0
\(889\) −24.4838 13.8456i −0.821159 0.464365i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.27701 0.737280i −0.0427334 0.0246721i
\(894\) 0 0
\(895\) 1.15380i 0.0385674i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22.3394 + 38.6930i −0.745062 + 1.29048i
\(900\) 0 0
\(901\) −1.99082 + 1.14940i −0.0663238 + 0.0382920i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.4564 6.61437i 0.380825 0.219869i
\(906\) 0 0
\(907\) 7.43498 12.8778i 0.246874 0.427599i −0.715783 0.698323i \(-0.753930\pi\)
0.962657 + 0.270724i \(0.0872632\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.02533i 0.299022i 0.988760 + 0.149511i \(0.0477700\pi\)
−0.988760 + 0.149511i \(0.952230\pi\)
\(912\) 0 0
\(913\) 1.22671 + 0.708243i 0.0405982 + 0.0234394i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.149729 16.7596i −0.00494450 0.553452i
\(918\) 0 0
\(919\) 13.2083 + 22.8774i 0.435702 + 0.754657i 0.997353 0.0727170i \(-0.0231670\pi\)
−0.561651 + 0.827374i \(0.689834\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 69.2151 2.27824
\(924\) 0 0
\(925\) 13.5220 0.444601
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.1259 + 19.2706i 0.365029 + 0.632249i 0.988781 0.149373i \(-0.0477257\pi\)
−0.623752 + 0.781623i \(0.714392\pi\)
\(930\) 0 0
\(931\) −1.02967 0.570197i −0.0337460 0.0186875i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.29476 + 1.32488i 0.0750465 + 0.0433281i
\(936\) 0 0
\(937\) 14.6822i 0.479647i 0.970817 + 0.239823i \(0.0770896\pi\)
−0.970817 + 0.239823i \(0.922910\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.0396 39.9058i 0.751070 1.30089i −0.196235 0.980557i \(-0.562871\pi\)
0.947305 0.320334i \(-0.103795\pi\)
\(942\) 0 0
\(943\) 25.3442 14.6325i 0.825322 0.476500i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.96116 + 4.01903i −0.226207 + 0.130601i −0.608821 0.793308i \(-0.708357\pi\)
0.382614 + 0.923908i \(0.375024\pi\)
\(948\) 0 0
\(949\) −21.1700 + 36.6675i −0.687206 + 1.19028i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.9348i 1.77951i 0.456437 + 0.889756i \(0.349125\pi\)
−0.456437 + 0.889756i \(0.650875\pi\)
\(954\) 0 0
\(955\) 28.6060 + 16.5157i 0.925667 + 0.534434i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.3603 + 37.9423i 0.722053 + 1.22522i
\(960\) 0 0
\(961\) 4.26733 + 7.39124i 0.137656 + 0.238427i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −30.9541 −0.996446
\(966\) 0 0
\(967\) 53.1835 1.71026 0.855132 0.518410i \(-0.173476\pi\)
0.855132 + 0.518410i \(0.173476\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.61403 + 13.1879i 0.244346 + 0.423219i 0.961947 0.273234i \(-0.0880935\pi\)
−0.717602 + 0.696454i \(0.754760\pi\)
\(972\) 0 0
\(973\) −6.37634 + 11.2756i −0.204416 + 0.361479i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.49418 0.862667i −0.0478031 0.0275992i 0.475908 0.879495i \(-0.342120\pi\)
−0.523711 + 0.851896i \(0.675453\pi\)
\(978\) 0 0
\(979\) 10.8199i 0.345806i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 30.1191 52.1679i 0.960651 1.66390i 0.239780 0.970827i \(-0.422925\pi\)
0.720871 0.693070i \(-0.243742\pi\)
\(984\) 0 0
\(985\) −8.64713 + 4.99242i −0.275521 + 0.159072i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27.7703 + 16.0332i −0.883044 + 0.509826i
\(990\) 0 0
\(991\) −2.87312 + 4.97639i −0.0912676 + 0.158080i −0.908045 0.418873i \(-0.862425\pi\)
0.816777 + 0.576953i \(0.195759\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 26.5248i 0.840892i
\(996\) 0 0
\(997\) −0.0224508 0.0129620i −0.000711024 0.000410510i 0.499644 0.866231i \(-0.333464\pi\)
−0.500355 + 0.865820i \(0.666797\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.t.a.1781.6 16
3.2 odd 2 2268.2.t.b.1781.3 16
7.5 odd 6 2268.2.t.b.2105.3 16
9.2 odd 6 756.2.bm.a.17.6 16
9.4 even 3 756.2.w.a.521.6 16
9.5 odd 6 252.2.w.a.101.4 yes 16
9.7 even 3 252.2.bm.a.185.7 yes 16
21.5 even 6 inner 2268.2.t.a.2105.6 16
36.7 odd 6 1008.2.df.d.689.2 16
36.11 even 6 3024.2.df.d.17.6 16
36.23 even 6 1008.2.ca.d.353.5 16
36.31 odd 6 3024.2.ca.d.2033.6 16
63.2 odd 6 5292.2.w.b.1097.3 16
63.4 even 3 5292.2.x.a.4409.6 16
63.5 even 6 252.2.bm.a.173.7 yes 16
63.11 odd 6 5292.2.x.b.881.3 16
63.13 odd 6 5292.2.w.b.521.3 16
63.16 even 3 1764.2.w.b.509.5 16
63.20 even 6 5292.2.bm.a.2285.3 16
63.23 odd 6 1764.2.bm.a.1685.2 16
63.25 even 3 1764.2.x.b.293.1 16
63.31 odd 6 5292.2.x.b.4409.3 16
63.32 odd 6 1764.2.x.a.1469.8 16
63.34 odd 6 1764.2.bm.a.1697.2 16
63.38 even 6 5292.2.x.a.881.6 16
63.40 odd 6 756.2.bm.a.89.6 16
63.41 even 6 1764.2.w.b.1109.5 16
63.47 even 6 756.2.w.a.341.6 16
63.52 odd 6 1764.2.x.a.293.8 16
63.58 even 3 5292.2.bm.a.4625.3 16
63.59 even 6 1764.2.x.b.1469.1 16
63.61 odd 6 252.2.w.a.5.4 16
252.47 odd 6 3024.2.ca.d.2609.6 16
252.103 even 6 3024.2.df.d.1601.6 16
252.131 odd 6 1008.2.df.d.929.2 16
252.187 even 6 1008.2.ca.d.257.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.4 16 63.61 odd 6
252.2.w.a.101.4 yes 16 9.5 odd 6
252.2.bm.a.173.7 yes 16 63.5 even 6
252.2.bm.a.185.7 yes 16 9.7 even 3
756.2.w.a.341.6 16 63.47 even 6
756.2.w.a.521.6 16 9.4 even 3
756.2.bm.a.17.6 16 9.2 odd 6
756.2.bm.a.89.6 16 63.40 odd 6
1008.2.ca.d.257.5 16 252.187 even 6
1008.2.ca.d.353.5 16 36.23 even 6
1008.2.df.d.689.2 16 36.7 odd 6
1008.2.df.d.929.2 16 252.131 odd 6
1764.2.w.b.509.5 16 63.16 even 3
1764.2.w.b.1109.5 16 63.41 even 6
1764.2.x.a.293.8 16 63.52 odd 6
1764.2.x.a.1469.8 16 63.32 odd 6
1764.2.x.b.293.1 16 63.25 even 3
1764.2.x.b.1469.1 16 63.59 even 6
1764.2.bm.a.1685.2 16 63.23 odd 6
1764.2.bm.a.1697.2 16 63.34 odd 6
2268.2.t.a.1781.6 16 1.1 even 1 trivial
2268.2.t.a.2105.6 16 21.5 even 6 inner
2268.2.t.b.1781.3 16 3.2 odd 2
2268.2.t.b.2105.3 16 7.5 odd 6
3024.2.ca.d.2033.6 16 36.31 odd 6
3024.2.ca.d.2609.6 16 252.47 odd 6
3024.2.df.d.17.6 16 36.11 even 6
3024.2.df.d.1601.6 16 252.103 even 6
5292.2.w.b.521.3 16 63.13 odd 6
5292.2.w.b.1097.3 16 63.2 odd 6
5292.2.x.a.881.6 16 63.38 even 6
5292.2.x.a.4409.6 16 63.4 even 3
5292.2.x.b.881.3 16 63.11 odd 6
5292.2.x.b.4409.3 16 63.31 odd 6
5292.2.bm.a.2285.3 16 63.20 even 6
5292.2.bm.a.4625.3 16 63.58 even 3