Properties

Label 5292.2.bm.a.2285.3
Level $5292$
Weight $2$
Character 5292.2285
Analytic conductor $42.257$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(2285,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.2285");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2285.3
Root \(-0.268067 + 1.71118i\) of defining polynomial
Character \(\chi\) \(=\) 5292.2285
Dual form 5292.2.bm.a.4625.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.68574 q^{5} +3.90538i q^{11} +(-5.24391 - 3.02757i) q^{13} +(0.201244 - 0.348565i) q^{17} +(0.145617 - 0.0840718i) q^{19} -8.88395i q^{23} -2.15829 q^{25} +(6.15380 - 3.55290i) q^{29} +(-5.44527 + 3.14383i) q^{31} +(3.13257 + 5.42578i) q^{37} +(-1.64707 + 2.85281i) q^{41} +(1.80474 + 3.12590i) q^{43} +(4.38482 - 7.59474i) q^{47} +(4.94628 + 2.85574i) q^{53} -6.58345i q^{55} +(2.25163 + 3.89994i) q^{59} +(-4.43678 - 2.56157i) q^{61} +(8.83986 + 5.10369i) q^{65} +(2.95521 + 5.11857i) q^{67} -11.4308i q^{71} +(6.05559 + 3.49620i) q^{73} +(-0.603968 + 1.04610i) q^{79} +(-0.181350 - 0.314108i) q^{83} +(-0.339244 + 0.587588i) q^{85} +(1.38526 + 2.39934i) q^{89} +(-0.245471 + 0.141723i) q^{95} +(-0.508914 + 0.293821i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{13} - 9 q^{17} + 16 q^{25} - 6 q^{29} - 6 q^{31} + q^{37} + 6 q^{41} - 2 q^{43} - 18 q^{47} - 15 q^{59} - 3 q^{61} + 39 q^{65} - 7 q^{67} - q^{79} + 6 q^{85} - 21 q^{89} - 6 q^{95} - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.68574 −0.753885 −0.376942 0.926237i \(-0.623025\pi\)
−0.376942 + 0.926237i \(0.623025\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.90538i 1.17752i 0.808309 + 0.588758i \(0.200383\pi\)
−0.808309 + 0.588758i \(0.799617\pi\)
\(12\) 0 0
\(13\) −5.24391 3.02757i −1.45440 0.839698i −0.455673 0.890147i \(-0.650601\pi\)
−0.998727 + 0.0504496i \(0.983935\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.201244 0.348565i 0.0488088 0.0845393i −0.840589 0.541674i \(-0.817791\pi\)
0.889398 + 0.457134i \(0.151124\pi\)
\(18\) 0 0
\(19\) 0.145617 0.0840718i 0.0334067 0.0192874i −0.483204 0.875508i \(-0.660527\pi\)
0.516610 + 0.856221i \(0.327194\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.88395i 1.85243i −0.376993 0.926216i \(-0.623042\pi\)
0.376993 0.926216i \(-0.376958\pi\)
\(24\) 0 0
\(25\) −2.15829 −0.431658
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.15380 3.55290i 1.14273 0.659757i 0.195627 0.980678i \(-0.437326\pi\)
0.947106 + 0.320921i \(0.103993\pi\)
\(30\) 0 0
\(31\) −5.44527 + 3.14383i −0.978000 + 0.564649i −0.901666 0.432434i \(-0.857655\pi\)
−0.0763342 + 0.997082i \(0.524322\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.13257 + 5.42578i 0.514992 + 0.891992i 0.999849 + 0.0173987i \(0.00553846\pi\)
−0.484857 + 0.874594i \(0.661128\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.64707 + 2.85281i −0.257229 + 0.445534i −0.965499 0.260408i \(-0.916143\pi\)
0.708269 + 0.705942i \(0.249476\pi\)
\(42\) 0 0
\(43\) 1.80474 + 3.12590i 0.275220 + 0.476695i 0.970191 0.242343i \(-0.0779161\pi\)
−0.694971 + 0.719038i \(0.744583\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.38482 7.59474i 0.639592 1.10781i −0.345930 0.938260i \(-0.612437\pi\)
0.985522 0.169546i \(-0.0542301\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.94628 + 2.85574i 0.679424 + 0.392266i 0.799638 0.600482i \(-0.205025\pi\)
−0.120214 + 0.992748i \(0.538358\pi\)
\(54\) 0 0
\(55\) 6.58345i 0.887712i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.25163 + 3.89994i 0.293138 + 0.507729i 0.974550 0.224171i \(-0.0719673\pi\)
−0.681412 + 0.731900i \(0.738634\pi\)
\(60\) 0 0
\(61\) −4.43678 2.56157i −0.568071 0.327976i 0.188308 0.982110i \(-0.439700\pi\)
−0.756379 + 0.654134i \(0.773033\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.83986 + 5.10369i 1.09645 + 0.633035i
\(66\) 0 0
\(67\) 2.95521 + 5.11857i 0.361036 + 0.625332i 0.988132 0.153610i \(-0.0490899\pi\)
−0.627096 + 0.778942i \(0.715757\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4308i 1.35658i −0.734792 0.678292i \(-0.762720\pi\)
0.734792 0.678292i \(-0.237280\pi\)
\(72\) 0 0
\(73\) 6.05559 + 3.49620i 0.708753 + 0.409199i 0.810599 0.585601i \(-0.199142\pi\)
−0.101846 + 0.994800i \(0.532475\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.603968 + 1.04610i −0.0679517 + 0.117696i −0.898000 0.439996i \(-0.854980\pi\)
0.830048 + 0.557692i \(0.188313\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.181350 0.314108i −0.0199058 0.0344779i 0.855901 0.517140i \(-0.173003\pi\)
−0.875807 + 0.482662i \(0.839670\pi\)
\(84\) 0 0
\(85\) −0.339244 + 0.587588i −0.0367962 + 0.0637329i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.38526 + 2.39934i 0.146837 + 0.254329i 0.930057 0.367416i \(-0.119757\pi\)
−0.783220 + 0.621745i \(0.786424\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.245471 + 0.141723i −0.0251848 + 0.0145405i
\(96\) 0 0
\(97\) −0.508914 + 0.293821i −0.0516723 + 0.0298330i −0.525614 0.850723i \(-0.676164\pi\)
0.473941 + 0.880556i \(0.342831\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.8466 1.37779 0.688893 0.724863i \(-0.258097\pi\)
0.688893 + 0.724863i \(0.258097\pi\)
\(102\) 0 0
\(103\) 12.0793i 1.19021i 0.803647 + 0.595106i \(0.202890\pi\)
−0.803647 + 0.595106i \(0.797110\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.9299 + 9.19711i −1.54000 + 0.889118i −0.541159 + 0.840920i \(0.682014\pi\)
−0.998838 + 0.0481978i \(0.984652\pi\)
\(108\) 0 0
\(109\) −5.51036 + 9.54422i −0.527796 + 0.914170i 0.471679 + 0.881771i \(0.343648\pi\)
−0.999475 + 0.0323997i \(0.989685\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.36811 + 4.25398i 0.693133 + 0.400181i 0.804785 0.593567i \(-0.202281\pi\)
−0.111652 + 0.993747i \(0.535614\pi\)
\(114\) 0 0
\(115\) 14.9760i 1.39652i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.25200 −0.386545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0670 1.07930
\(126\) 0 0
\(127\) −10.6312 −0.943365 −0.471682 0.881769i \(-0.656353\pi\)
−0.471682 + 0.881769i \(0.656353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.33480 0.553474 0.276737 0.960946i \(-0.410747\pi\)
0.276737 + 0.960946i \(0.410747\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.6459i 1.42216i 0.703113 + 0.711078i \(0.251793\pi\)
−0.703113 + 0.711078i \(0.748207\pi\)
\(138\) 0 0
\(139\) 4.24007 + 2.44800i 0.359638 + 0.207637i 0.668922 0.743333i \(-0.266756\pi\)
−0.309284 + 0.950970i \(0.600089\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.8238 20.4795i 0.988758 1.71258i
\(144\) 0 0
\(145\) −10.3737 + 5.98926i −0.861489 + 0.497381i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.28696i 0.433125i 0.976269 + 0.216562i \(0.0694845\pi\)
−0.976269 + 0.216562i \(0.930516\pi\)
\(150\) 0 0
\(151\) −14.5833 −1.18677 −0.593385 0.804919i \(-0.702209\pi\)
−0.593385 + 0.804919i \(0.702209\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.17930 5.29967i 0.737299 0.425680i
\(156\) 0 0
\(157\) 15.4160 8.90044i 1.23033 0.710332i 0.263232 0.964732i \(-0.415211\pi\)
0.967099 + 0.254400i \(0.0818781\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.0482228 + 0.0835243i 0.00377710 + 0.00654213i 0.867908 0.496725i \(-0.165464\pi\)
−0.864131 + 0.503267i \(0.832131\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.47872 + 4.29327i −0.191809 + 0.332224i −0.945850 0.324604i \(-0.894769\pi\)
0.754041 + 0.656828i \(0.228102\pi\)
\(168\) 0 0
\(169\) 11.8324 + 20.4943i 0.910185 + 1.57649i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.40033 + 12.8177i −0.562637 + 0.974515i 0.434629 + 0.900610i \(0.356880\pi\)
−0.997265 + 0.0739055i \(0.976454\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.592751 0.342225i −0.0443043 0.0255791i 0.477684 0.878532i \(-0.341476\pi\)
−0.521989 + 0.852952i \(0.674810\pi\)
\(180\) 0 0
\(181\) 7.84745i 0.583297i 0.956526 + 0.291648i \(0.0942037\pi\)
−0.956526 + 0.291648i \(0.905796\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.28070 9.14644i −0.388245 0.672459i
\(186\) 0 0
\(187\) 1.36128 + 0.785934i 0.0995464 + 0.0574732i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.9694 + 9.79729i 1.22786 + 0.708907i 0.966582 0.256356i \(-0.0825219\pi\)
0.261281 + 0.965263i \(0.415855\pi\)
\(192\) 0 0
\(193\) −9.18116 15.9022i −0.660875 1.14467i −0.980386 0.197086i \(-0.936852\pi\)
0.319512 0.947582i \(-0.396481\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.92313i 0.422006i −0.977485 0.211003i \(-0.932327\pi\)
0.977485 0.211003i \(-0.0676730\pi\)
\(198\) 0 0
\(199\) 13.6268 + 7.86741i 0.965975 + 0.557706i 0.898007 0.439982i \(-0.145015\pi\)
0.0679681 + 0.997687i \(0.478348\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.77653 4.80909i 0.193921 0.335881i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.328332 + 0.568688i 0.0227112 + 0.0393370i
\(210\) 0 0
\(211\) 5.06619 8.77489i 0.348771 0.604088i −0.637261 0.770648i \(-0.719933\pi\)
0.986031 + 0.166560i \(0.0532659\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.04231 5.26944i −0.207484 0.359373i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.11061 + 1.21856i −0.141975 + 0.0819693i
\(222\) 0 0
\(223\) 13.3944 7.73325i 0.896955 0.517857i 0.0207437 0.999785i \(-0.493397\pi\)
0.876211 + 0.481928i \(0.160063\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 28.0719 1.86320 0.931600 0.363486i \(-0.118414\pi\)
0.931600 + 0.363486i \(0.118414\pi\)
\(228\) 0 0
\(229\) 17.0264i 1.12514i −0.826751 0.562568i \(-0.809814\pi\)
0.826751 0.562568i \(-0.190186\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.0015 9.23847i 1.04829 0.605233i 0.126122 0.992015i \(-0.459747\pi\)
0.922171 + 0.386782i \(0.126413\pi\)
\(234\) 0 0
\(235\) −7.39166 + 12.8027i −0.482179 + 0.835158i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.06656 + 3.50253i 0.392413 + 0.226560i 0.683205 0.730226i \(-0.260585\pi\)
−0.290792 + 0.956786i \(0.593919\pi\)
\(240\) 0 0
\(241\) 6.21759i 0.400510i −0.979744 0.200255i \(-0.935823\pi\)
0.979744 0.200255i \(-0.0641771\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.01813 −0.0647823
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.81844 −0.619734 −0.309867 0.950780i \(-0.600285\pi\)
−0.309867 + 0.950780i \(0.600285\pi\)
\(252\) 0 0
\(253\) 34.6952 2.18127
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.33581 −0.0833254 −0.0416627 0.999132i \(-0.513265\pi\)
−0.0416627 + 0.999132i \(0.513265\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.3502i 1.25485i 0.778678 + 0.627424i \(0.215891\pi\)
−0.778678 + 0.627424i \(0.784109\pi\)
\(264\) 0 0
\(265\) −8.33814 4.81402i −0.512208 0.295723i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.3614 + 23.1426i −0.814659 + 1.41103i 0.0949131 + 0.995486i \(0.469743\pi\)
−0.909572 + 0.415546i \(0.863591\pi\)
\(270\) 0 0
\(271\) −3.76517 + 2.17382i −0.228718 + 0.132050i −0.609980 0.792417i \(-0.708823\pi\)
0.381263 + 0.924467i \(0.375489\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.42894i 0.508284i
\(276\) 0 0
\(277\) −4.39803 −0.264252 −0.132126 0.991233i \(-0.542180\pi\)
−0.132126 + 0.991233i \(0.542180\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.62273 + 2.66893i −0.275769 + 0.159215i −0.631506 0.775371i \(-0.717563\pi\)
0.355738 + 0.934586i \(0.384230\pi\)
\(282\) 0 0
\(283\) 15.5431 8.97381i 0.923941 0.533437i 0.0390505 0.999237i \(-0.487567\pi\)
0.884890 + 0.465800i \(0.154233\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.41900 + 14.5821i 0.495235 + 0.857773i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.1126 22.7117i 0.766048 1.32683i −0.173642 0.984809i \(-0.555554\pi\)
0.939691 0.342026i \(-0.111113\pi\)
\(294\) 0 0
\(295\) −3.79566 6.57428i −0.220992 0.382769i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26.8968 + 46.5867i −1.55548 + 2.69418i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.47924 + 4.31814i 0.428260 + 0.247256i
\(306\) 0 0
\(307\) 7.19520i 0.410652i 0.978694 + 0.205326i \(0.0658254\pi\)
−0.978694 + 0.205326i \(0.934175\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.08721 + 1.88311i 0.0616503 + 0.106781i 0.895203 0.445658i \(-0.147030\pi\)
−0.833553 + 0.552440i \(0.813697\pi\)
\(312\) 0 0
\(313\) 10.2870 + 5.93922i 0.581457 + 0.335704i 0.761712 0.647916i \(-0.224359\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.09969 4.09901i −0.398758 0.230223i 0.287190 0.957874i \(-0.407279\pi\)
−0.685948 + 0.727651i \(0.740612\pi\)
\(318\) 0 0
\(319\) 13.8754 + 24.0329i 0.776875 + 1.34559i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0676757i 0.00376558i
\(324\) 0 0
\(325\) 11.3179 + 6.53438i 0.627803 + 0.362462i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.58540 + 14.8704i −0.471897 + 0.817349i −0.999483 0.0321526i \(-0.989764\pi\)
0.527586 + 0.849501i \(0.323097\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.98170 8.62856i −0.272179 0.471428i
\(336\) 0 0
\(337\) 3.95399 6.84850i 0.215387 0.373062i −0.738005 0.674795i \(-0.764232\pi\)
0.953392 + 0.301733i \(0.0975653\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.2779 21.2659i −0.664883 1.15161i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.443850 0.256257i 0.0238271 0.0137566i −0.488039 0.872822i \(-0.662288\pi\)
0.511866 + 0.859065i \(0.328954\pi\)
\(348\) 0 0
\(349\) 5.74612 3.31752i 0.307583 0.177583i −0.338262 0.941052i \(-0.609839\pi\)
0.645844 + 0.763469i \(0.276506\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0687 0.961702 0.480851 0.876802i \(-0.340328\pi\)
0.480851 + 0.876802i \(0.340328\pi\)
\(354\) 0 0
\(355\) 19.2693i 1.02271i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.52677 0.881479i 0.0805796 0.0465227i −0.459169 0.888349i \(-0.651853\pi\)
0.539748 + 0.841826i \(0.318519\pi\)
\(360\) 0 0
\(361\) −9.48586 + 16.4300i −0.499256 + 0.864737i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.2081 5.89367i −0.534318 0.308489i
\(366\) 0 0
\(367\) 33.4417i 1.74564i 0.488038 + 0.872822i \(0.337713\pi\)
−0.488038 + 0.872822i \(0.662287\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 25.5688 1.32390 0.661952 0.749546i \(-0.269728\pi\)
0.661952 + 0.749546i \(0.269728\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −43.0267 −2.21599
\(378\) 0 0
\(379\) 25.7920 1.32485 0.662423 0.749130i \(-0.269528\pi\)
0.662423 + 0.749130i \(0.269528\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.8316 1.67762 0.838808 0.544427i \(-0.183253\pi\)
0.838808 + 0.544427i \(0.183253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.1544i 1.02187i −0.859619 0.510935i \(-0.829299\pi\)
0.859619 0.510935i \(-0.170701\pi\)
\(390\) 0 0
\(391\) −3.09663 1.78784i −0.156603 0.0904150i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.01813 1.76346i 0.0512278 0.0887291i
\(396\) 0 0
\(397\) 30.2125 17.4432i 1.51632 0.875449i 0.516506 0.856284i \(-0.327232\pi\)
0.999816 0.0191652i \(-0.00610086\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.66245i 0.482520i −0.970461 0.241260i \(-0.922439\pi\)
0.970461 0.241260i \(-0.0775606\pi\)
\(402\) 0 0
\(403\) 38.0727 1.89654
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21.1897 + 12.2339i −1.05034 + 0.606412i
\(408\) 0 0
\(409\) −32.1202 + 18.5446i −1.58824 + 0.916973i −0.594647 + 0.803987i \(0.702708\pi\)
−0.993597 + 0.112986i \(0.963958\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.305709 + 0.529504i 0.0150067 + 0.0259923i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.84193 + 3.19031i −0.0899841 + 0.155857i −0.907504 0.420043i \(-0.862015\pi\)
0.817520 + 0.575900i \(0.195348\pi\)
\(420\) 0 0
\(421\) −8.55139 14.8114i −0.416769 0.721866i 0.578843 0.815439i \(-0.303504\pi\)
−0.995612 + 0.0935732i \(0.970171\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.434342 + 0.752303i −0.0210687 + 0.0364921i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 27.3242 + 15.7756i 1.31616 + 0.759885i 0.983108 0.183024i \(-0.0585887\pi\)
0.333051 + 0.942909i \(0.391922\pi\)
\(432\) 0 0
\(433\) 10.0692i 0.483893i 0.970290 + 0.241947i \(0.0777859\pi\)
−0.970290 + 0.241947i \(0.922214\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.746890 1.29365i −0.0357286 0.0618837i
\(438\) 0 0
\(439\) −24.1966 13.9699i −1.15484 0.666748i −0.204779 0.978808i \(-0.565648\pi\)
−0.950062 + 0.312060i \(0.898981\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.1930 + 17.4319i 1.43451 + 0.828215i 0.997460 0.0712223i \(-0.0226900\pi\)
0.437050 + 0.899437i \(0.356023\pi\)
\(444\) 0 0
\(445\) −2.33518 4.04466i −0.110698 0.191735i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.2411i 1.09682i −0.836211 0.548408i \(-0.815234\pi\)
0.836211 0.548408i \(-0.184766\pi\)
\(450\) 0 0
\(451\) −11.1413 6.43244i −0.524624 0.302892i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.10938 5.38560i 0.145451 0.251928i −0.784090 0.620647i \(-0.786870\pi\)
0.929541 + 0.368719i \(0.120203\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.17165 + 3.76140i 0.101144 + 0.175186i 0.912156 0.409843i \(-0.134416\pi\)
−0.811012 + 0.585029i \(0.801083\pi\)
\(462\) 0 0
\(463\) 3.57451 6.19124i 0.166122 0.287731i −0.770931 0.636918i \(-0.780209\pi\)
0.937053 + 0.349187i \(0.113542\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.944451 1.63584i −0.0437040 0.0756975i 0.843346 0.537371i \(-0.180583\pi\)
−0.887050 + 0.461673i \(0.847249\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −12.2078 + 7.04818i −0.561316 + 0.324076i
\(474\) 0 0
\(475\) −0.314283 + 0.181451i −0.0144203 + 0.00832555i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.4498 −0.477465 −0.238732 0.971085i \(-0.576732\pi\)
−0.238732 + 0.971085i \(0.576732\pi\)
\(480\) 0 0
\(481\) 37.9364i 1.72975i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.857895 0.495306i 0.0389550 0.0224907i
\(486\) 0 0
\(487\) −11.8298 + 20.4898i −0.536060 + 0.928483i 0.463052 + 0.886331i \(0.346754\pi\)
−0.999111 + 0.0421513i \(0.986579\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.6767 + 6.74152i 0.526960 + 0.304241i 0.739778 0.672851i \(-0.234931\pi\)
−0.212817 + 0.977092i \(0.568264\pi\)
\(492\) 0 0
\(493\) 2.86000i 0.128808i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0807 −0.540807 −0.270403 0.962747i \(-0.587157\pi\)
−0.270403 + 0.962747i \(0.587157\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.5283 −0.915310 −0.457655 0.889130i \(-0.651310\pi\)
−0.457655 + 0.889130i \(0.651310\pi\)
\(504\) 0 0
\(505\) −23.3417 −1.03869
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.18085 0.362610 0.181305 0.983427i \(-0.441968\pi\)
0.181305 + 0.983427i \(0.441968\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.3626i 0.897283i
\(516\) 0 0
\(517\) 29.6603 + 17.1244i 1.30446 + 0.753131i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.8746 + 24.0314i −0.607856 + 1.05284i 0.383738 + 0.923442i \(0.374637\pi\)
−0.991593 + 0.129395i \(0.958697\pi\)
\(522\) 0 0
\(523\) −19.8843 + 11.4802i −0.869478 + 0.501993i −0.867175 0.498004i \(-0.834066\pi\)
−0.00230311 + 0.999997i \(0.500733\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.53071i 0.110239i
\(528\) 0 0
\(529\) −55.9246 −2.43151
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.2742 9.97325i 0.748228 0.431990i
\(534\) 0 0
\(535\) 26.8536 15.5039i 1.16098 0.670292i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.60405 4.51035i −0.111957 0.193915i 0.804602 0.593814i \(-0.202379\pi\)
−0.916559 + 0.399899i \(0.869045\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.28902 16.0890i 0.397898 0.689179i
\(546\) 0 0
\(547\) 10.6224 + 18.3985i 0.454181 + 0.786664i 0.998641 0.0521229i \(-0.0165988\pi\)
−0.544460 + 0.838787i \(0.683265\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.597397 1.03472i 0.0254500 0.0440807i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0945 + 6.40543i 0.470090 + 0.271407i 0.716277 0.697816i \(-0.245844\pi\)
−0.246187 + 0.969222i \(0.579178\pi\)
\(558\) 0 0
\(559\) 21.8559i 0.924406i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.7396 32.4580i −0.789781 1.36794i −0.926101 0.377277i \(-0.876861\pi\)
0.136319 0.990665i \(-0.456473\pi\)
\(564\) 0 0
\(565\) −12.4207 7.17109i −0.522542 0.301690i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.94906 3.43469i −0.249397 0.143990i 0.370091 0.928996i \(-0.379327\pi\)
−0.619488 + 0.785006i \(0.712660\pi\)
\(570\) 0 0
\(571\) −0.0847909 0.146862i −0.00354839 0.00614599i 0.864246 0.503070i \(-0.167796\pi\)
−0.867794 + 0.496924i \(0.834463\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.1741i 0.799617i
\(576\) 0 0
\(577\) 5.41193 + 3.12458i 0.225302 + 0.130078i 0.608403 0.793628i \(-0.291811\pi\)
−0.383101 + 0.923706i \(0.625144\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −11.1527 + 19.3171i −0.461900 + 0.800033i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.7881 + 18.6855i 0.445273 + 0.771235i 0.998071 0.0620801i \(-0.0197734\pi\)
−0.552799 + 0.833315i \(0.686440\pi\)
\(588\) 0 0
\(589\) −0.528615 + 0.915588i −0.0217812 + 0.0377261i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.13036 + 7.15399i 0.169613 + 0.293779i 0.938284 0.345866i \(-0.112415\pi\)
−0.768671 + 0.639645i \(0.779081\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −30.7618 + 17.7603i −1.25689 + 0.725667i −0.972469 0.233033i \(-0.925135\pi\)
−0.284422 + 0.958699i \(0.591802\pi\)
\(600\) 0 0
\(601\) −35.8981 + 20.7258i −1.46432 + 0.845423i −0.999206 0.0398308i \(-0.987318\pi\)
−0.465109 + 0.885254i \(0.653985\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.16776 0.291411
\(606\) 0 0
\(607\) 2.41990i 0.0982206i −0.998793 0.0491103i \(-0.984361\pi\)
0.998793 0.0491103i \(-0.0156386\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −45.9873 + 26.5508i −1.86045 + 1.07413i
\(612\) 0 0
\(613\) 21.3228 36.9321i 0.861219 1.49168i −0.00953416 0.999955i \(-0.503035\pi\)
0.870753 0.491720i \(-0.163632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.2535 7.65193i −0.533567 0.308055i 0.208901 0.977937i \(-0.433011\pi\)
−0.742468 + 0.669882i \(0.766345\pi\)
\(618\) 0 0
\(619\) 27.6178i 1.11005i −0.831833 0.555026i \(-0.812708\pi\)
0.831833 0.555026i \(-0.187292\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −9.55034 −0.382014
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.52164 0.100545
\(630\) 0 0
\(631\) 8.28775 0.329930 0.164965 0.986299i \(-0.447249\pi\)
0.164965 + 0.986299i \(0.447249\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.9214 0.711188
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.91088i 0.391456i −0.980658 0.195728i \(-0.937293\pi\)
0.980658 0.195728i \(-0.0627070\pi\)
\(642\) 0 0
\(643\) −6.83668 3.94716i −0.269612 0.155661i 0.359099 0.933299i \(-0.383084\pi\)
−0.628711 + 0.777639i \(0.716417\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.15966 3.74063i 0.0849049 0.147060i −0.820446 0.571724i \(-0.806275\pi\)
0.905351 + 0.424665i \(0.139608\pi\)
\(648\) 0 0
\(649\) −15.2308 + 8.79348i −0.597859 + 0.345174i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 43.3997i 1.69836i −0.528102 0.849181i \(-0.677096\pi\)
0.528102 0.849181i \(-0.322904\pi\)
\(654\) 0 0
\(655\) −10.6788 −0.417256
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.34894 5.39761i 0.364183 0.210261i −0.306731 0.951796i \(-0.599235\pi\)
0.670914 + 0.741535i \(0.265902\pi\)
\(660\) 0 0
\(661\) −3.39495 + 1.96008i −0.132048 + 0.0762381i −0.564569 0.825386i \(-0.690958\pi\)
0.432521 + 0.901624i \(0.357624\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −31.5638 54.6701i −1.22216 2.11683i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.0039 17.3273i 0.386197 0.668913i
\(672\) 0 0
\(673\) −12.3404 21.3742i −0.475687 0.823915i 0.523925 0.851765i \(-0.324467\pi\)
−0.999612 + 0.0278497i \(0.991134\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.36327 12.7536i 0.282994 0.490159i −0.689127 0.724641i \(-0.742006\pi\)
0.972121 + 0.234481i \(0.0753392\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.60128 + 0.924499i 0.0612712 + 0.0353750i 0.530323 0.847796i \(-0.322071\pi\)
−0.469051 + 0.883171i \(0.655404\pi\)
\(684\) 0 0
\(685\) 28.0606i 1.07214i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.2919 29.9505i −0.658769 1.14102i
\(690\) 0 0
\(691\) 33.7613 + 19.4921i 1.28434 + 0.741514i 0.977639 0.210292i \(-0.0674415\pi\)
0.306701 + 0.951806i \(0.400775\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.14764 4.12669i −0.271126 0.156534i
\(696\) 0 0
\(697\) 0.662926 + 1.14822i 0.0251101 + 0.0434920i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.4389i 0.960813i 0.877046 + 0.480406i \(0.159511\pi\)
−0.877046 + 0.480406i \(0.840489\pi\)
\(702\) 0 0
\(703\) 0.912310 + 0.526722i 0.0344084 + 0.0198657i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.14517 12.3758i 0.268342 0.464783i −0.700092 0.714053i \(-0.746857\pi\)
0.968434 + 0.249270i \(0.0801908\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 27.9296 + 48.3756i 1.04597 + 1.81168i
\(714\) 0 0
\(715\) −19.9319 + 34.5230i −0.745410 + 1.29109i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.7344 28.9848i −0.624088 1.08095i −0.988716 0.149799i \(-0.952137\pi\)
0.364629 0.931153i \(-0.381196\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13.2817 + 7.66819i −0.493269 + 0.284789i
\(726\) 0 0
\(727\) −12.1354 + 7.00636i −0.450076 + 0.259851i −0.707862 0.706350i \(-0.750340\pi\)
0.257786 + 0.966202i \(0.417007\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.45277 0.0537326
\(732\) 0 0
\(733\) 27.3077i 1.00863i 0.863519 + 0.504316i \(0.168255\pi\)
−0.863519 + 0.504316i \(0.831745\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.9899 + 11.5412i −0.736339 + 0.425126i
\(738\) 0 0
\(739\) 26.3157 45.5801i 0.968039 1.67669i 0.266819 0.963747i \(-0.414027\pi\)
0.701220 0.712945i \(-0.252639\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.9523 + 17.8703i 1.13553 + 0.655599i 0.945320 0.326144i \(-0.105750\pi\)
0.190211 + 0.981743i \(0.439083\pi\)
\(744\) 0 0
\(745\) 8.91243i 0.326526i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −33.1282 −1.20887 −0.604433 0.796656i \(-0.706600\pi\)
−0.604433 + 0.796656i \(0.706600\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 24.5836 0.894687
\(756\) 0 0
\(757\) −13.6903 −0.497584 −0.248792 0.968557i \(-0.580034\pi\)
−0.248792 + 0.968557i \(0.580034\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.0347 −0.472509 −0.236255 0.971691i \(-0.575920\pi\)
−0.236255 + 0.971691i \(0.575920\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.2679i 0.984588i
\(768\) 0 0
\(769\) 18.4866 + 10.6732i 0.666642 + 0.384886i 0.794803 0.606867i \(-0.207574\pi\)
−0.128161 + 0.991753i \(0.540907\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.73940 + 9.94093i −0.206432 + 0.357550i −0.950588 0.310455i \(-0.899518\pi\)
0.744156 + 0.668006i \(0.232852\pi\)
\(774\) 0 0
\(775\) 11.7525 6.78529i 0.422161 0.243735i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.553889i 0.0198451i
\(780\) 0 0
\(781\) 44.6416 1.59740
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −25.9873 + 15.0038i −0.927528 + 0.535509i
\(786\) 0 0
\(787\) −35.6808 + 20.6003i −1.27188 + 0.734322i −0.975342 0.220698i \(-0.929166\pi\)
−0.296541 + 0.955020i \(0.595833\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 15.5107 + 26.8653i 0.550801 + 0.954016i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25.0066 43.3127i 0.885779 1.53421i 0.0409600 0.999161i \(-0.486958\pi\)
0.844819 0.535053i \(-0.179708\pi\)
\(798\) 0 0
\(799\) −1.76484 3.05679i −0.0624355 0.108141i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13.6540 + 23.6494i −0.481838 + 0.834568i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −43.8995 25.3454i −1.54343 0.891097i −0.998619 0.0525356i \(-0.983270\pi\)
−0.544807 0.838562i \(-0.683397\pi\)
\(810\) 0 0
\(811\) 8.96566i 0.314827i 0.987533 + 0.157413i \(0.0503155\pi\)
−0.987533 + 0.157413i \(0.949684\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.0812910 0.140800i −0.00284750 0.00493201i
\(816\) 0 0
\(817\) 0.525599 + 0.303455i 0.0183884 + 0.0106165i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.2190 + 16.2922i 0.984849 + 0.568603i 0.903731 0.428102i \(-0.140817\pi\)
0.0811184 + 0.996704i \(0.474151\pi\)
\(822\) 0 0
\(823\) 10.0877 + 17.4724i 0.351636 + 0.609051i 0.986536 0.163543i \(-0.0522923\pi\)
−0.634901 + 0.772594i \(0.718959\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.253288i 0.00880770i 0.999990 + 0.00440385i \(0.00140179\pi\)
−0.999990 + 0.00440385i \(0.998598\pi\)
\(828\) 0 0
\(829\) 6.10909 + 3.52708i 0.212177 + 0.122501i 0.602323 0.798253i \(-0.294242\pi\)
−0.390146 + 0.920753i \(0.627575\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.17848 7.23733i 0.144602 0.250458i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.0936 29.6069i −0.590136 1.02215i −0.994214 0.107420i \(-0.965741\pi\)
0.404078 0.914725i \(-0.367592\pi\)
\(840\) 0 0
\(841\) 10.7462 18.6130i 0.370558 0.641826i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.9463 34.5480i −0.686174 1.18849i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 48.2024 27.8296i 1.65236 0.953988i
\(852\) 0 0
\(853\) 21.7586 12.5623i 0.745000 0.430126i −0.0788844 0.996884i \(-0.525136\pi\)
0.823884 + 0.566758i \(0.191802\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.1907 1.44121 0.720604 0.693347i \(-0.243865\pi\)
0.720604 + 0.693347i \(0.243865\pi\)
\(858\) 0 0
\(859\) 4.71278i 0.160798i 0.996763 + 0.0803990i \(0.0256195\pi\)
−0.996763 + 0.0803990i \(0.974381\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.8409 + 17.8060i −1.04984 + 0.606123i −0.922603 0.385750i \(-0.873943\pi\)
−0.127232 + 0.991873i \(0.540609\pi\)
\(864\) 0 0
\(865\) 12.4750 21.6074i 0.424163 0.734672i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.08543 2.35873i −0.138589 0.0800143i
\(870\) 0 0
\(871\) 35.7884i 1.21264i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 40.9064 1.38131 0.690655 0.723184i \(-0.257322\pi\)
0.690655 + 0.723184i \(0.257322\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.4443 1.26153 0.630765 0.775974i \(-0.282741\pi\)
0.630765 + 0.775974i \(0.282741\pi\)
\(882\) 0 0
\(883\) −49.8357 −1.67711 −0.838553 0.544821i \(-0.816598\pi\)
−0.838553 + 0.544821i \(0.816598\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.8965 0.970248 0.485124 0.874445i \(-0.338774\pi\)
0.485124 + 0.874445i \(0.338774\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.47456i 0.0493443i
\(894\) 0 0
\(895\) 0.999223 + 0.576902i 0.0334003 + 0.0192837i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22.3394 + 38.6930i −0.745062 + 1.29048i
\(900\) 0 0
\(901\) 1.99082 1.14940i 0.0663238 0.0382920i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.2287i 0.439738i
\(906\) 0 0
\(907\) −14.8700 −0.493749 −0.246874 0.969048i \(-0.579403\pi\)
−0.246874 + 0.969048i \(0.579403\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.81616 + 4.51266i −0.258961 + 0.149511i −0.623861 0.781536i \(-0.714437\pi\)
0.364899 + 0.931047i \(0.381103\pi\)
\(912\) 0 0
\(913\) 1.22671 0.708243i 0.0405982 0.0234394i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 13.2083 + 22.8774i 0.435702 + 0.754657i 0.997353 0.0727170i \(-0.0231670\pi\)
−0.561651 + 0.827374i \(0.689834\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −34.6075 + 59.9420i −1.13912 + 1.97302i
\(924\) 0 0
\(925\) −6.76100 11.7104i −0.222300 0.385036i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.1259 19.2706i 0.365029 0.632249i −0.623752 0.781623i \(-0.714392\pi\)
0.988781 + 0.149373i \(0.0477257\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.29476 1.32488i −0.0750465 0.0433281i
\(936\) 0 0
\(937\) 14.6822i 0.479647i −0.970817 0.239823i \(-0.922910\pi\)
0.970817 0.239823i \(-0.0770896\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.0396 + 39.9058i 0.751070 + 1.30089i 0.947305 + 0.320334i \(0.103795\pi\)
−0.196235 + 0.980557i \(0.562871\pi\)
\(942\) 0 0
\(943\) 25.3442 + 14.6325i 0.825322 + 0.476500i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.96116 4.01903i −0.226207 0.130601i 0.382614 0.923908i \(-0.375024\pi\)
−0.608821 + 0.793308i \(0.708357\pi\)
\(948\) 0 0
\(949\) −21.1700 36.6675i −0.687206 1.19028i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.9348i 1.77951i −0.456437 0.889756i \(-0.650875\pi\)
0.456437 0.889756i \(-0.349125\pi\)
\(954\) 0 0
\(955\) −28.6060 16.5157i −0.925667 0.534434i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 4.26733 7.39124i 0.137656 0.238427i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.4770 + 26.8070i 0.498223 + 0.862948i
\(966\) 0 0
\(967\) −26.5917 + 46.0582i −0.855132 + 1.48113i 0.0213900 + 0.999771i \(0.493191\pi\)
−0.876522 + 0.481361i \(0.840143\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.61403 + 13.1879i 0.244346 + 0.423219i 0.961947 0.273234i \(-0.0880935\pi\)
−0.717602 + 0.696454i \(0.754760\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.49418 + 0.862667i −0.0478031 + 0.0275992i −0.523711 0.851896i \(-0.675453\pi\)
0.475908 + 0.879495i \(0.342120\pi\)
\(978\) 0 0
\(979\) −9.37033 + 5.40997i −0.299477 + 0.172903i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −60.2383 −1.92130 −0.960651 0.277758i \(-0.910409\pi\)
−0.960651 + 0.277758i \(0.910409\pi\)
\(984\) 0 0
\(985\) 9.98485i 0.318144i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 27.7703 16.0332i 0.883044 0.509826i
\(990\) 0 0
\(991\) −2.87312 + 4.97639i −0.0912676 + 0.158080i −0.908045 0.418873i \(-0.862425\pi\)
0.816777 + 0.576953i \(0.195759\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −22.9711 13.2624i −0.728234 0.420446i
\(996\) 0 0
\(997\) 0.0259240i 0.000821020i −1.00000 0.000410510i \(-0.999869\pi\)
1.00000 0.000410510i \(-0.000130669\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.bm.a.2285.3 16
3.2 odd 2 1764.2.bm.a.1697.2 16
7.2 even 3 756.2.w.a.341.6 16
7.3 odd 6 5292.2.x.b.881.3 16
7.4 even 3 5292.2.x.a.881.6 16
7.5 odd 6 5292.2.w.b.1097.3 16
7.6 odd 2 756.2.bm.a.17.6 16
9.2 odd 6 5292.2.w.b.521.3 16
9.7 even 3 1764.2.w.b.1109.5 16
21.2 odd 6 252.2.w.a.5.4 16
21.5 even 6 1764.2.w.b.509.5 16
21.11 odd 6 1764.2.x.a.293.8 16
21.17 even 6 1764.2.x.b.293.1 16
21.20 even 2 252.2.bm.a.185.7 yes 16
28.23 odd 6 3024.2.ca.d.2609.6 16
28.27 even 2 3024.2.df.d.17.6 16
63.2 odd 6 756.2.bm.a.89.6 16
63.11 odd 6 5292.2.x.b.4409.3 16
63.13 odd 6 2268.2.t.b.1781.3 16
63.16 even 3 252.2.bm.a.173.7 yes 16
63.20 even 6 756.2.w.a.521.6 16
63.23 odd 6 2268.2.t.b.2105.3 16
63.25 even 3 1764.2.x.b.1469.1 16
63.34 odd 6 252.2.w.a.101.4 yes 16
63.38 even 6 5292.2.x.a.4409.6 16
63.41 even 6 2268.2.t.a.1781.6 16
63.47 even 6 inner 5292.2.bm.a.4625.3 16
63.52 odd 6 1764.2.x.a.1469.8 16
63.58 even 3 2268.2.t.a.2105.6 16
63.61 odd 6 1764.2.bm.a.1685.2 16
84.23 even 6 1008.2.ca.d.257.5 16
84.83 odd 2 1008.2.df.d.689.2 16
252.79 odd 6 1008.2.df.d.929.2 16
252.83 odd 6 3024.2.ca.d.2033.6 16
252.191 even 6 3024.2.df.d.1601.6 16
252.223 even 6 1008.2.ca.d.353.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.4 16 21.2 odd 6
252.2.w.a.101.4 yes 16 63.34 odd 6
252.2.bm.a.173.7 yes 16 63.16 even 3
252.2.bm.a.185.7 yes 16 21.20 even 2
756.2.w.a.341.6 16 7.2 even 3
756.2.w.a.521.6 16 63.20 even 6
756.2.bm.a.17.6 16 7.6 odd 2
756.2.bm.a.89.6 16 63.2 odd 6
1008.2.ca.d.257.5 16 84.23 even 6
1008.2.ca.d.353.5 16 252.223 even 6
1008.2.df.d.689.2 16 84.83 odd 2
1008.2.df.d.929.2 16 252.79 odd 6
1764.2.w.b.509.5 16 21.5 even 6
1764.2.w.b.1109.5 16 9.7 even 3
1764.2.x.a.293.8 16 21.11 odd 6
1764.2.x.a.1469.8 16 63.52 odd 6
1764.2.x.b.293.1 16 21.17 even 6
1764.2.x.b.1469.1 16 63.25 even 3
1764.2.bm.a.1685.2 16 63.61 odd 6
1764.2.bm.a.1697.2 16 3.2 odd 2
2268.2.t.a.1781.6 16 63.41 even 6
2268.2.t.a.2105.6 16 63.58 even 3
2268.2.t.b.1781.3 16 63.13 odd 6
2268.2.t.b.2105.3 16 63.23 odd 6
3024.2.ca.d.2033.6 16 252.83 odd 6
3024.2.ca.d.2609.6 16 28.23 odd 6
3024.2.df.d.17.6 16 28.27 even 2
3024.2.df.d.1601.6 16 252.191 even 6
5292.2.w.b.521.3 16 9.2 odd 6
5292.2.w.b.1097.3 16 7.5 odd 6
5292.2.x.a.881.6 16 7.4 even 3
5292.2.x.a.4409.6 16 63.38 even 6
5292.2.x.b.881.3 16 7.3 odd 6
5292.2.x.b.4409.3 16 63.11 odd 6
5292.2.bm.a.2285.3 16 1.1 even 1 trivial
5292.2.bm.a.4625.3 16 63.47 even 6 inner