Properties

Label 5292.2.w.b.521.3
Level $5292$
Weight $2$
Character 5292.521
Analytic conductor $42.257$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(521,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.3
Root \(-0.268067 - 1.71118i\) of defining polynomial
Character \(\chi\) \(=\) 5292.521
Dual form 5292.2.w.b.1097.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.842869 + 1.45989i) q^{5} +(-3.38216 + 1.95269i) q^{11} +(5.24391 - 3.02757i) q^{13} +(-0.201244 + 0.348565i) q^{17} +(0.145617 - 0.0840718i) q^{19} +(-7.69373 - 4.44198i) q^{23} +(1.07914 + 1.86913i) q^{25} +(6.15380 + 3.55290i) q^{29} -6.28766i q^{31} +(3.13257 + 5.42578i) q^{37} +(1.64707 + 2.85281i) q^{41} +(1.80474 - 3.12590i) q^{43} +8.76965 q^{47} +(-4.94628 - 2.85574i) q^{53} -6.58345i q^{55} +4.50326 q^{59} +5.12315i q^{61} +10.2074i q^{65} -5.91041 q^{67} +11.4308i q^{71} +(6.05559 + 3.49620i) q^{73} +1.20794 q^{79} +(0.181350 - 0.314108i) q^{83} +(-0.339244 - 0.587588i) q^{85} +(-1.38526 - 2.39934i) q^{89} +0.283446i q^{95} +(0.508914 + 0.293821i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{11} + 3 q^{13} + 9 q^{17} - 21 q^{23} - 8 q^{25} - 6 q^{29} + q^{37} - 6 q^{41} - 2 q^{43} - 36 q^{47} - 30 q^{59} + 14 q^{67} + 2 q^{79} + 6 q^{85} + 21 q^{89} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.842869 + 1.45989i −0.376942 + 0.652883i −0.990616 0.136677i \(-0.956358\pi\)
0.613673 + 0.789560i \(0.289691\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.38216 + 1.95269i −1.01976 + 0.588758i −0.914034 0.405637i \(-0.867050\pi\)
−0.105725 + 0.994395i \(0.533716\pi\)
\(12\) 0 0
\(13\) 5.24391 3.02757i 1.45440 0.839698i 0.455673 0.890147i \(-0.349399\pi\)
0.998727 + 0.0504496i \(0.0160654\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.201244 + 0.348565i −0.0488088 + 0.0845393i −0.889398 0.457134i \(-0.848876\pi\)
0.840589 + 0.541674i \(0.182209\pi\)
\(18\) 0 0
\(19\) 0.145617 0.0840718i 0.0334067 0.0192874i −0.483204 0.875508i \(-0.660527\pi\)
0.516610 + 0.856221i \(0.327194\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.69373 4.44198i −1.60425 0.926216i −0.990623 0.136623i \(-0.956375\pi\)
−0.613630 0.789593i \(-0.710291\pi\)
\(24\) 0 0
\(25\) 1.07914 + 1.86913i 0.215829 + 0.373827i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.15380 + 3.55290i 1.14273 + 0.659757i 0.947106 0.320921i \(-0.103993\pi\)
0.195627 + 0.980678i \(0.437326\pi\)
\(30\) 0 0
\(31\) 6.28766i 1.12930i −0.825331 0.564649i \(-0.809012\pi\)
0.825331 0.564649i \(-0.190988\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.13257 + 5.42578i 0.514992 + 0.891992i 0.999849 + 0.0173987i \(0.00553846\pi\)
−0.484857 + 0.874594i \(0.661128\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.64707 + 2.85281i 0.257229 + 0.445534i 0.965499 0.260408i \(-0.0838571\pi\)
−0.708269 + 0.705942i \(0.750524\pi\)
\(42\) 0 0
\(43\) 1.80474 3.12590i 0.275220 0.476695i −0.694971 0.719038i \(-0.744583\pi\)
0.970191 + 0.242343i \(0.0779161\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.76965 1.27918 0.639592 0.768714i \(-0.279103\pi\)
0.639592 + 0.768714i \(0.279103\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.94628 2.85574i −0.679424 0.392266i 0.120214 0.992748i \(-0.461642\pi\)
−0.799638 + 0.600482i \(0.794975\pi\)
\(54\) 0 0
\(55\) 6.58345i 0.887712i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.50326 0.586275 0.293138 0.956070i \(-0.405301\pi\)
0.293138 + 0.956070i \(0.405301\pi\)
\(60\) 0 0
\(61\) 5.12315i 0.655952i 0.944686 + 0.327976i \(0.106366\pi\)
−0.944686 + 0.327976i \(0.893634\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.2074i 1.26607i
\(66\) 0 0
\(67\) −5.91041 −0.722072 −0.361036 0.932552i \(-0.617577\pi\)
−0.361036 + 0.932552i \(0.617577\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4308i 1.35658i 0.734792 + 0.678292i \(0.237280\pi\)
−0.734792 + 0.678292i \(0.762720\pi\)
\(72\) 0 0
\(73\) 6.05559 + 3.49620i 0.708753 + 0.409199i 0.810599 0.585601i \(-0.199142\pi\)
−0.101846 + 0.994800i \(0.532475\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.20794 0.135903 0.0679517 0.997689i \(-0.478354\pi\)
0.0679517 + 0.997689i \(0.478354\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.181350 0.314108i 0.0199058 0.0344779i −0.855901 0.517140i \(-0.826997\pi\)
0.875807 + 0.482662i \(0.160330\pi\)
\(84\) 0 0
\(85\) −0.339244 0.587588i −0.0367962 0.0637329i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.38526 2.39934i −0.146837 0.254329i 0.783220 0.621745i \(-0.213576\pi\)
−0.930057 + 0.367416i \(0.880243\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.283446i 0.0290809i
\(96\) 0 0
\(97\) 0.508914 + 0.293821i 0.0516723 + 0.0298330i 0.525614 0.850723i \(-0.323836\pi\)
−0.473941 + 0.880556i \(0.657169\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.92329 + 11.9915i 0.688893 + 1.19320i 0.972196 + 0.234167i \(0.0752364\pi\)
−0.283303 + 0.959030i \(0.591430\pi\)
\(102\) 0 0
\(103\) −10.4610 6.03967i −1.03075 0.595106i −0.113554 0.993532i \(-0.536223\pi\)
−0.917201 + 0.398425i \(0.869557\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.9299 9.19711i 1.54000 0.889118i 0.541159 0.840920i \(-0.317986\pi\)
0.998838 0.0481978i \(-0.0153478\pi\)
\(108\) 0 0
\(109\) −5.51036 + 9.54422i −0.527796 + 0.914170i 0.471679 + 0.881771i \(0.343648\pi\)
−0.999475 + 0.0323997i \(0.989685\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.36811 4.25398i 0.693133 0.400181i −0.111652 0.993747i \(-0.535614\pi\)
0.804785 + 0.593567i \(0.202281\pi\)
\(114\) 0 0
\(115\) 12.9696 7.48801i 1.20942 0.698260i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.12600 3.68234i 0.193273 0.334758i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0670 −1.07930
\(126\) 0 0
\(127\) −10.6312 −0.943365 −0.471682 0.881769i \(-0.656353\pi\)
−0.471682 + 0.881769i \(0.656353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.16740 5.48610i 0.276737 0.479322i −0.693835 0.720134i \(-0.744080\pi\)
0.970572 + 0.240812i \(0.0774136\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.4158 + 8.32296i −1.23162 + 0.711078i −0.967368 0.253375i \(-0.918459\pi\)
−0.264255 + 0.964453i \(0.585126\pi\)
\(138\) 0 0
\(139\) −4.24007 + 2.44800i −0.359638 + 0.207637i −0.668922 0.743333i \(-0.733244\pi\)
0.309284 + 0.950970i \(0.399911\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.8238 + 20.4795i −0.988758 + 1.71258i
\(144\) 0 0
\(145\) −10.3737 + 5.98926i −0.861489 + 0.497381i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.57864 + 2.64348i 0.375097 + 0.216562i 0.675683 0.737192i \(-0.263849\pi\)
−0.300586 + 0.953755i \(0.597182\pi\)
\(150\) 0 0
\(151\) 7.29163 + 12.6295i 0.593385 + 1.02777i 0.993773 + 0.111427i \(0.0355421\pi\)
−0.400388 + 0.916346i \(0.631125\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.17930 + 5.29967i 0.737299 + 0.425680i
\(156\) 0 0
\(157\) 17.8009i 1.42066i 0.703867 + 0.710332i \(0.251455\pi\)
−0.703867 + 0.710332i \(0.748545\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.0482228 + 0.0835243i 0.00377710 + 0.00654213i 0.867908 0.496725i \(-0.165464\pi\)
−0.864131 + 0.503267i \(0.832131\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.47872 + 4.29327i 0.191809 + 0.332224i 0.945850 0.324604i \(-0.105231\pi\)
−0.754041 + 0.656828i \(0.771898\pi\)
\(168\) 0 0
\(169\) 11.8324 20.4943i 0.910185 1.57649i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.8007 −1.12527 −0.562637 0.826704i \(-0.690213\pi\)
−0.562637 + 0.826704i \(0.690213\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.592751 + 0.342225i 0.0443043 + 0.0255791i 0.521989 0.852952i \(-0.325190\pi\)
−0.477684 + 0.878532i \(0.658524\pi\)
\(180\) 0 0
\(181\) 7.84745i 0.583297i 0.956526 + 0.291648i \(0.0942037\pi\)
−0.956526 + 0.291648i \(0.905796\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.5614 −0.776489
\(186\) 0 0
\(187\) 1.57187i 0.114946i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.5946i 1.41781i 0.705302 + 0.708907i \(0.250811\pi\)
−0.705302 + 0.708907i \(0.749189\pi\)
\(192\) 0 0
\(193\) 18.3623 1.32175 0.660875 0.750496i \(-0.270186\pi\)
0.660875 + 0.750496i \(0.270186\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.92313i 0.422006i 0.977485 + 0.211003i \(0.0676730\pi\)
−0.977485 + 0.211003i \(0.932327\pi\)
\(198\) 0 0
\(199\) 13.6268 + 7.86741i 0.965975 + 0.557706i 0.898007 0.439982i \(-0.145015\pi\)
0.0679681 + 0.997687i \(0.478348\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.55306 −0.387842
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.328332 + 0.568688i −0.0227112 + 0.0393370i
\(210\) 0 0
\(211\) 5.06619 + 8.77489i 0.348771 + 0.604088i 0.986031 0.166560i \(-0.0532659\pi\)
−0.637261 + 0.770648i \(0.719933\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.04231 + 5.26944i 0.207484 + 0.359373i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.43712i 0.163939i
\(222\) 0 0
\(223\) −13.3944 7.73325i −0.896955 0.517857i −0.0207437 0.999785i \(-0.506603\pi\)
−0.876211 + 0.481928i \(0.839937\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 14.0360 + 24.3110i 0.931600 + 1.61358i 0.780588 + 0.625046i \(0.214920\pi\)
0.151011 + 0.988532i \(0.451747\pi\)
\(228\) 0 0
\(229\) 14.7453 + 8.51319i 0.974396 + 0.562568i 0.900573 0.434704i \(-0.143147\pi\)
0.0738222 + 0.997271i \(0.476480\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.0015 + 9.23847i −1.04829 + 0.605233i −0.922171 0.386782i \(-0.873587\pi\)
−0.126122 + 0.992015i \(0.540253\pi\)
\(234\) 0 0
\(235\) −7.39166 + 12.8027i −0.482179 + 0.835158i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.06656 3.50253i 0.392413 0.226560i −0.290792 0.956786i \(-0.593919\pi\)
0.683205 + 0.730226i \(0.260585\pi\)
\(240\) 0 0
\(241\) −5.38459 + 3.10879i −0.346852 + 0.200255i −0.663298 0.748355i \(-0.730844\pi\)
0.316446 + 0.948611i \(0.397510\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.509067 0.881730i 0.0323912 0.0561031i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.81844 0.619734 0.309867 0.950780i \(-0.399715\pi\)
0.309867 + 0.950780i \(0.399715\pi\)
\(252\) 0 0
\(253\) 34.6952 2.18127
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.667904 + 1.15684i −0.0416627 + 0.0721619i −0.886105 0.463485i \(-0.846599\pi\)
0.844442 + 0.535647i \(0.179932\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.6238 + 10.1751i −1.08673 + 0.627424i −0.932704 0.360643i \(-0.882557\pi\)
−0.154026 + 0.988067i \(0.549224\pi\)
\(264\) 0 0
\(265\) 8.33814 4.81402i 0.512208 0.295723i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.3614 23.1426i 0.814659 1.41103i −0.0949131 0.995486i \(-0.530257\pi\)
0.909572 0.415546i \(-0.136409\pi\)
\(270\) 0 0
\(271\) −3.76517 + 2.17382i −0.228718 + 0.132050i −0.609980 0.792417i \(-0.708823\pi\)
0.381263 + 0.924467i \(0.375489\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.29968 4.21447i −0.440187 0.254142i
\(276\) 0 0
\(277\) 2.19901 + 3.80880i 0.132126 + 0.228849i 0.924496 0.381192i \(-0.124486\pi\)
−0.792370 + 0.610041i \(0.791153\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.62273 2.66893i −0.275769 0.159215i 0.355738 0.934586i \(-0.384230\pi\)
−0.631506 + 0.775371i \(0.717563\pi\)
\(282\) 0 0
\(283\) 17.9476i 1.06687i 0.845840 + 0.533437i \(0.179100\pi\)
−0.845840 + 0.533437i \(0.820900\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.41900 + 14.5821i 0.495235 + 0.857773i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.1126 22.7117i −0.766048 1.32683i −0.939691 0.342026i \(-0.888887\pi\)
0.173642 0.984809i \(-0.444446\pi\)
\(294\) 0 0
\(295\) −3.79566 + 6.57428i −0.220992 + 0.382769i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −53.7936 −3.11097
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.47924 4.31814i −0.428260 0.247256i
\(306\) 0 0
\(307\) 7.19520i 0.410652i 0.978694 + 0.205326i \(0.0658254\pi\)
−0.978694 + 0.205326i \(0.934175\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.17443 0.123301 0.0616503 0.998098i \(-0.480364\pi\)
0.0616503 + 0.998098i \(0.480364\pi\)
\(312\) 0 0
\(313\) 11.8784i 0.671409i −0.941967 0.335704i \(-0.891026\pi\)
0.941967 0.335704i \(-0.108974\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.19801i 0.460446i −0.973138 0.230223i \(-0.926054\pi\)
0.973138 0.230223i \(-0.0739456\pi\)
\(318\) 0 0
\(319\) −27.7509 −1.55375
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0676757i 0.00376558i
\(324\) 0 0
\(325\) 11.3179 + 6.53438i 0.627803 + 0.362462i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 17.1708 0.943793 0.471897 0.881654i \(-0.343570\pi\)
0.471897 + 0.881654i \(0.343570\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.98170 8.62856i 0.272179 0.471428i
\(336\) 0 0
\(337\) 3.95399 + 6.84850i 0.215387 + 0.373062i 0.953392 0.301733i \(-0.0975653\pi\)
−0.738005 + 0.674795i \(0.764232\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.2779 + 21.2659i 0.664883 + 1.15161i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.512514i 0.0275132i −0.999905 0.0137566i \(-0.995621\pi\)
0.999905 0.0137566i \(-0.00437900\pi\)
\(348\) 0 0
\(349\) −5.74612 3.31752i −0.307583 0.177583i 0.338262 0.941052i \(-0.390161\pi\)
−0.645844 + 0.763469i \(0.723494\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.03437 + 15.6480i 0.480851 + 0.832858i 0.999759 0.0219721i \(-0.00699449\pi\)
−0.518908 + 0.854830i \(0.673661\pi\)
\(354\) 0 0
\(355\) −16.6877 9.63465i −0.885691 0.511354i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.52677 + 0.881479i −0.0805796 + 0.0465227i −0.539748 0.841826i \(-0.681481\pi\)
0.459169 + 0.888349i \(0.348147\pi\)
\(360\) 0 0
\(361\) −9.48586 + 16.4300i −0.499256 + 0.864737i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.2081 + 5.89367i −0.534318 + 0.308489i
\(366\) 0 0
\(367\) 28.9614 16.7209i 1.51177 0.872822i 0.511867 0.859065i \(-0.328954\pi\)
0.999905 0.0137576i \(-0.00437931\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −12.7844 + 22.1433i −0.661952 + 1.14653i 0.318150 + 0.948040i \(0.396938\pi\)
−0.980102 + 0.198494i \(0.936395\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 43.0267 2.21599
\(378\) 0 0
\(379\) 25.7920 1.32485 0.662423 0.749130i \(-0.269528\pi\)
0.662423 + 0.749130i \(0.269528\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.4158 28.4330i 0.838808 1.45286i −0.0520838 0.998643i \(-0.516586\pi\)
0.890892 0.454215i \(-0.150080\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 17.4542 10.0772i 0.884965 0.510935i 0.0126730 0.999920i \(-0.495966\pi\)
0.872292 + 0.488985i \(0.162633\pi\)
\(390\) 0 0
\(391\) 3.09663 1.78784i 0.156603 0.0904150i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.01813 + 1.76346i −0.0512278 + 0.0887291i
\(396\) 0 0
\(397\) 30.2125 17.4432i 1.51632 0.875449i 0.516506 0.856284i \(-0.327232\pi\)
0.999816 0.0191652i \(-0.00610086\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.36793 4.83122i −0.417874 0.241260i 0.276293 0.961073i \(-0.410894\pi\)
−0.694167 + 0.719814i \(0.744227\pi\)
\(402\) 0 0
\(403\) −19.0364 32.9719i −0.948268 1.64245i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21.1897 12.2339i −1.05034 0.606412i
\(408\) 0 0
\(409\) 37.0893i 1.83395i −0.398949 0.916973i \(-0.630625\pi\)
0.398949 0.916973i \(-0.369375\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.305709 + 0.529504i 0.0150067 + 0.0259923i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.84193 + 3.19031i 0.0899841 + 0.155857i 0.907504 0.420043i \(-0.137985\pi\)
−0.817520 + 0.575900i \(0.804652\pi\)
\(420\) 0 0
\(421\) −8.55139 + 14.8114i −0.416769 + 0.721866i −0.995612 0.0935732i \(-0.970171\pi\)
0.578843 + 0.815439i \(0.303504\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.868685 −0.0421374
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −27.3242 15.7756i −1.31616 0.759885i −0.333051 0.942909i \(-0.608078\pi\)
−0.983108 + 0.183024i \(0.941411\pi\)
\(432\) 0 0
\(433\) 10.0692i 0.483893i 0.970290 + 0.241947i \(0.0777859\pi\)
−0.970290 + 0.241947i \(0.922214\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.49378 −0.0714572
\(438\) 0 0
\(439\) 27.9398i 1.33350i 0.745283 + 0.666748i \(0.232314\pi\)
−0.745283 + 0.666748i \(0.767686\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.8638i 1.65643i 0.560411 + 0.828215i \(0.310643\pi\)
−0.560411 + 0.828215i \(0.689357\pi\)
\(444\) 0 0
\(445\) 4.67037 0.221397
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.2411i 1.09682i 0.836211 + 0.548408i \(0.184766\pi\)
−0.836211 + 0.548408i \(0.815234\pi\)
\(450\) 0 0
\(451\) −11.1413 6.43244i −0.524624 0.302892i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.21876 −0.290901 −0.145451 0.989366i \(-0.546463\pi\)
−0.145451 + 0.989366i \(0.546463\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.17165 + 3.76140i −0.101144 + 0.175186i −0.912156 0.409843i \(-0.865584\pi\)
0.811012 + 0.585029i \(0.198917\pi\)
\(462\) 0 0
\(463\) 3.57451 + 6.19124i 0.166122 + 0.287731i 0.937053 0.349187i \(-0.113542\pi\)
−0.770931 + 0.636918i \(0.780209\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.944451 + 1.63584i 0.0437040 + 0.0756975i 0.887050 0.461673i \(-0.152751\pi\)
−0.843346 + 0.537371i \(0.819417\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.0964i 0.648152i
\(474\) 0 0
\(475\) 0.314283 + 0.181451i 0.0144203 + 0.00832555i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.22491 9.04981i −0.238732 0.413497i 0.721618 0.692291i \(-0.243399\pi\)
−0.960351 + 0.278794i \(0.910065\pi\)
\(480\) 0 0
\(481\) 32.8539 + 18.9682i 1.49801 + 0.864875i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.857895 + 0.495306i −0.0389550 + 0.0224907i
\(486\) 0 0
\(487\) −11.8298 + 20.4898i −0.536060 + 0.928483i 0.463052 + 0.886331i \(0.346754\pi\)
−0.999111 + 0.0421513i \(0.986579\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.6767 6.74152i 0.526960 0.304241i −0.212817 0.977092i \(-0.568264\pi\)
0.739778 + 0.672851i \(0.234931\pi\)
\(492\) 0 0
\(493\) −2.47683 + 1.43000i −0.111551 + 0.0644039i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.04035 10.4622i 0.270403 0.468352i −0.698562 0.715550i \(-0.746176\pi\)
0.968965 + 0.247197i \(0.0795096\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.5283 0.915310 0.457655 0.889130i \(-0.348690\pi\)
0.457655 + 0.889130i \(0.348690\pi\)
\(504\) 0 0
\(505\) −23.3417 −1.03869
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.09043 7.08483i 0.181305 0.314029i −0.761020 0.648728i \(-0.775301\pi\)
0.942325 + 0.334699i \(0.108635\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.6345 10.1813i 0.777070 0.448642i
\(516\) 0 0
\(517\) −29.6603 + 17.1244i −1.30446 + 0.753131i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.8746 24.0314i 0.607856 1.05284i −0.383738 0.923442i \(-0.625363\pi\)
0.991593 0.129395i \(-0.0413034\pi\)
\(522\) 0 0
\(523\) −19.8843 + 11.4802i −0.869478 + 0.501993i −0.867175 0.498004i \(-0.834066\pi\)
−0.00230311 + 0.999997i \(0.500733\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.19166 + 1.26535i 0.0954700 + 0.0551196i
\(528\) 0 0
\(529\) 27.9623 + 48.4322i 1.21575 + 2.10575i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.2742 + 9.97325i 0.748228 + 0.431990i
\(534\) 0 0
\(535\) 31.0078i 1.34058i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.60405 4.51035i −0.111957 0.193915i 0.804602 0.593814i \(-0.202379\pi\)
−0.916559 + 0.399899i \(0.869045\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.28902 16.0890i −0.397898 0.689179i
\(546\) 0 0
\(547\) 10.6224 18.3985i 0.454181 0.786664i −0.544460 0.838787i \(-0.683265\pi\)
0.998641 + 0.0521229i \(0.0165988\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.19479 0.0509000
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.0945 6.40543i −0.470090 0.271407i 0.246187 0.969222i \(-0.420822\pi\)
−0.716277 + 0.697816i \(0.754156\pi\)
\(558\) 0 0
\(559\) 21.8559i 0.924406i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −37.4793 −1.57956 −0.789781 0.613388i \(-0.789806\pi\)
−0.789781 + 0.613388i \(0.789806\pi\)
\(564\) 0 0
\(565\) 14.3422i 0.603380i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.86938i 0.287979i −0.989579 0.143990i \(-0.954007\pi\)
0.989579 0.143990i \(-0.0459932\pi\)
\(570\) 0 0
\(571\) 0.169582 0.00709678 0.00354839 0.999994i \(-0.498871\pi\)
0.00354839 + 0.999994i \(0.498871\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.1741i 0.799617i
\(576\) 0 0
\(577\) 5.41193 + 3.12458i 0.225302 + 0.130078i 0.608403 0.793628i \(-0.291811\pi\)
−0.383101 + 0.923706i \(0.625144\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 22.3055 0.923799
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.7881 + 18.6855i −0.445273 + 0.771235i −0.998071 0.0620801i \(-0.980227\pi\)
0.552799 + 0.833315i \(0.313560\pi\)
\(588\) 0 0
\(589\) −0.528615 0.915588i −0.0217812 0.0377261i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.13036 7.15399i −0.169613 0.293779i 0.768671 0.639645i \(-0.220919\pi\)
−0.938284 + 0.345866i \(0.887585\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.5206i 1.45133i 0.688047 + 0.725667i \(0.258468\pi\)
−0.688047 + 0.725667i \(0.741532\pi\)
\(600\) 0 0
\(601\) 35.8981 + 20.7258i 1.46432 + 0.845423i 0.999206 0.0398308i \(-0.0126819\pi\)
0.465109 + 0.885254i \(0.346015\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.58388 + 6.20746i 0.145705 + 0.252369i
\(606\) 0 0
\(607\) 2.09569 + 1.20995i 0.0850616 + 0.0491103i 0.541927 0.840425i \(-0.317695\pi\)
−0.456866 + 0.889536i \(0.651028\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 45.9873 26.5508i 1.86045 1.07413i
\(612\) 0 0
\(613\) 21.3228 36.9321i 0.861219 1.49168i −0.00953416 0.999955i \(-0.503035\pi\)
0.870753 0.491720i \(-0.163632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.2535 + 7.65193i −0.533567 + 0.308055i −0.742468 0.669882i \(-0.766345\pi\)
0.208901 + 0.977937i \(0.433011\pi\)
\(618\) 0 0
\(619\) −23.9177 + 13.8089i −0.961334 + 0.555026i −0.896583 0.442875i \(-0.853958\pi\)
−0.0647505 + 0.997901i \(0.520625\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 4.77517 8.27084i 0.191007 0.330834i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.52164 −0.100545
\(630\) 0 0
\(631\) 8.28775 0.329930 0.164965 0.986299i \(-0.447249\pi\)
0.164965 + 0.986299i \(0.447249\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.96069 15.5204i 0.355594 0.615907i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.58307 4.95544i 0.339011 0.195728i −0.320824 0.947139i \(-0.603960\pi\)
0.659835 + 0.751411i \(0.270626\pi\)
\(642\) 0 0
\(643\) 6.83668 3.94716i 0.269612 0.155661i −0.359099 0.933299i \(-0.616916\pi\)
0.628711 + 0.777639i \(0.283583\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.15966 + 3.74063i −0.0849049 + 0.147060i −0.905351 0.424665i \(-0.860392\pi\)
0.820446 + 0.571724i \(0.193725\pi\)
\(648\) 0 0
\(649\) −15.2308 + 8.79348i −0.597859 + 0.345174i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −37.5853 21.6999i −1.47082 0.849181i −0.471361 0.881940i \(-0.656237\pi\)
−0.999463 + 0.0327591i \(0.989571\pi\)
\(654\) 0 0
\(655\) 5.33940 + 9.24812i 0.208628 + 0.361354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.34894 + 5.39761i 0.364183 + 0.210261i 0.670914 0.741535i \(-0.265902\pi\)
−0.306731 + 0.951796i \(0.599235\pi\)
\(660\) 0 0
\(661\) 3.92015i 0.152476i −0.997090 0.0762381i \(-0.975709\pi\)
0.997090 0.0762381i \(-0.0242909\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −31.5638 54.6701i −1.22216 2.11683i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.0039 17.3273i −0.386197 0.668913i
\(672\) 0 0
\(673\) −12.3404 + 21.3742i −0.475687 + 0.823915i −0.999612 0.0278497i \(-0.991134\pi\)
0.523925 + 0.851765i \(0.324467\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.7265 0.565987 0.282994 0.959122i \(-0.408672\pi\)
0.282994 + 0.959122i \(0.408672\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.60128 0.924499i −0.0612712 0.0353750i 0.469051 0.883171i \(-0.344596\pi\)
−0.530323 + 0.847796i \(0.677929\pi\)
\(684\) 0 0
\(685\) 28.0606i 1.07214i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −34.5838 −1.31754
\(690\) 0 0
\(691\) 38.9842i 1.48303i −0.670938 0.741514i \(-0.734108\pi\)
0.670938 0.741514i \(-0.265892\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.25339i 0.313069i
\(696\) 0 0
\(697\) −1.32585 −0.0502202
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.4389i 0.960813i −0.877046 0.480406i \(-0.840489\pi\)
0.877046 0.480406i \(-0.159511\pi\)
\(702\) 0 0
\(703\) 0.912310 + 0.526722i 0.0344084 + 0.0198657i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −14.2903 −0.536685 −0.268342 0.963324i \(-0.586476\pi\)
−0.268342 + 0.963324i \(0.586476\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −27.9296 + 48.3756i −1.04597 + 1.81168i
\(714\) 0 0
\(715\) −19.9319 34.5230i −0.745410 1.29109i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.7344 + 28.9848i 0.624088 + 1.08095i 0.988716 + 0.149799i \(0.0478626\pi\)
−0.364629 + 0.931153i \(0.618804\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.3364i 0.569579i
\(726\) 0 0
\(727\) 12.1354 + 7.00636i 0.450076 + 0.259851i 0.707862 0.706350i \(-0.249660\pi\)
−0.257786 + 0.966202i \(0.582993\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.726384 + 1.25813i 0.0268663 + 0.0465338i
\(732\) 0 0
\(733\) −23.6491 13.6538i −0.873501 0.504316i −0.00499085 0.999988i \(-0.501589\pi\)
−0.868510 + 0.495672i \(0.834922\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.9899 11.5412i 0.736339 0.425126i
\(738\) 0 0
\(739\) 26.3157 45.5801i 0.968039 1.67669i 0.266819 0.963747i \(-0.414027\pi\)
0.701220 0.712945i \(-0.252639\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.9523 17.8703i 1.13553 0.655599i 0.190211 0.981743i \(-0.439083\pi\)
0.945320 + 0.326144i \(0.105750\pi\)
\(744\) 0 0
\(745\) −7.71839 + 4.45621i −0.282780 + 0.163263i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 16.5641 28.6899i 0.604433 1.04691i −0.387708 0.921782i \(-0.626733\pi\)
0.992141 0.125126i \(-0.0399336\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −24.5836 −0.894687
\(756\) 0 0
\(757\) −13.6903 −0.497584 −0.248792 0.968557i \(-0.580034\pi\)
−0.248792 + 0.968557i \(0.580034\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.51737 + 11.2884i −0.236255 + 0.409205i −0.959637 0.281243i \(-0.909253\pi\)
0.723382 + 0.690448i \(0.242587\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.6147 13.6340i 0.852678 0.492294i
\(768\) 0 0
\(769\) −18.4866 + 10.6732i −0.666642 + 0.384886i −0.794803 0.606867i \(-0.792426\pi\)
0.128161 + 0.991753i \(0.459093\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.73940 9.94093i 0.206432 0.357550i −0.744156 0.668006i \(-0.767148\pi\)
0.950588 + 0.310455i \(0.100482\pi\)
\(774\) 0 0
\(775\) 11.7525 6.78529i 0.422161 0.243735i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.479682 + 0.276944i 0.0171864 + 0.00992256i
\(780\) 0 0
\(781\) −22.3208 38.6607i −0.798701 1.38339i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −25.9873 15.0038i −0.927528 0.535509i
\(786\) 0 0
\(787\) 41.2006i 1.46864i −0.678802 0.734322i \(-0.737500\pi\)
0.678802 0.734322i \(-0.262500\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 15.5107 + 26.8653i 0.550801 + 0.954016i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.0066 43.3127i −0.885779 1.53421i −0.844819 0.535053i \(-0.820292\pi\)
−0.0409600 0.999161i \(-0.513042\pi\)
\(798\) 0 0
\(799\) −1.76484 + 3.05679i −0.0624355 + 0.108141i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.3079 −0.963677
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.8995 + 25.3454i 1.54343 + 0.891097i 0.998619 + 0.0525356i \(0.0167303\pi\)
0.544807 + 0.838562i \(0.316603\pi\)
\(810\) 0 0
\(811\) 8.96566i 0.314827i 0.987533 + 0.157413i \(0.0503155\pi\)
−0.987533 + 0.157413i \(0.949684\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.162582 −0.00569500
\(816\) 0 0
\(817\) 0.606910i 0.0212331i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32.5845i 1.13721i 0.822612 + 0.568603i \(0.192516\pi\)
−0.822612 + 0.568603i \(0.807484\pi\)
\(822\) 0 0
\(823\) −20.1754 −0.703271 −0.351636 0.936137i \(-0.614374\pi\)
−0.351636 + 0.936137i \(0.614374\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.253288i 0.00880770i −0.999990 0.00440385i \(-0.998598\pi\)
0.999990 0.00440385i \(-0.00140179\pi\)
\(828\) 0 0
\(829\) 6.10909 + 3.52708i 0.212177 + 0.122501i 0.602323 0.798253i \(-0.294242\pi\)
−0.390146 + 0.920753i \(0.627575\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.35695 −0.289204
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.0936 29.6069i 0.590136 1.02215i −0.404078 0.914725i \(-0.632408\pi\)
0.994214 0.107420i \(-0.0342591\pi\)
\(840\) 0 0
\(841\) 10.7462 + 18.6130i 0.370558 + 0.641826i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 19.9463 + 34.5480i 0.686174 + 1.18849i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 55.6593i 1.90798i
\(852\) 0 0
\(853\) −21.7586 12.5623i −0.745000 0.430126i 0.0788844 0.996884i \(-0.474864\pi\)
−0.823884 + 0.566758i \(0.808198\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.0954 + 36.5383i 0.720604 + 1.24812i 0.960758 + 0.277388i \(0.0894688\pi\)
−0.240154 + 0.970735i \(0.577198\pi\)
\(858\) 0 0
\(859\) −4.08139 2.35639i −0.139255 0.0803990i 0.428754 0.903421i \(-0.358953\pi\)
−0.568009 + 0.823022i \(0.692286\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.8409 17.8060i 1.04984 0.606123i 0.127232 0.991873i \(-0.459391\pi\)
0.922603 + 0.385750i \(0.126057\pi\)
\(864\) 0 0
\(865\) 12.4750 21.6074i 0.424163 0.734672i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.08543 + 2.35873i −0.138589 + 0.0800143i
\(870\) 0 0
\(871\) −30.9937 + 17.8942i −1.05018 + 0.606322i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −20.4532 + 35.4260i −0.690655 + 1.19625i 0.280969 + 0.959717i \(0.409344\pi\)
−0.971624 + 0.236532i \(0.923989\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.4443 −1.26153 −0.630765 0.775974i \(-0.717259\pi\)
−0.630765 + 0.775974i \(0.717259\pi\)
\(882\) 0 0
\(883\) −49.8357 −1.67711 −0.838553 0.544821i \(-0.816598\pi\)
−0.838553 + 0.544821i \(0.816598\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.4482 25.0251i 0.485124 0.840260i −0.514730 0.857352i \(-0.672108\pi\)
0.999854 + 0.0170929i \(0.00544110\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.27701 0.737280i 0.0427334 0.0246721i
\(894\) 0 0
\(895\) −0.999223 + 0.576902i −0.0334003 + 0.0192837i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 22.3394 38.6930i 0.745062 1.29048i
\(900\) 0 0
\(901\) 1.99082 1.14940i 0.0663238 0.0382920i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.4564 6.61437i −0.380825 0.219869i
\(906\) 0 0
\(907\) 7.43498 + 12.8778i 0.246874 + 0.427599i 0.962657 0.270724i \(-0.0872632\pi\)
−0.715783 + 0.698323i \(0.753930\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.81616 4.51266i −0.258961 0.149511i 0.364899 0.931047i \(-0.381103\pi\)
−0.623861 + 0.781536i \(0.714437\pi\)
\(912\) 0 0
\(913\) 1.41649i 0.0468788i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 13.2083 + 22.8774i 0.435702 + 0.754657i 0.997353 0.0727170i \(-0.0231670\pi\)
−0.561651 + 0.827374i \(0.689834\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 34.6075 + 59.9420i 1.13912 + 1.97302i
\(924\) 0 0
\(925\) −6.76100 + 11.7104i −0.222300 + 0.385036i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22.2518 0.730058 0.365029 0.930996i \(-0.381059\pi\)
0.365029 + 0.930996i \(0.381059\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.29476 + 1.32488i 0.0750465 + 0.0433281i
\(936\) 0 0
\(937\) 14.6822i 0.479647i −0.970817 0.239823i \(-0.922910\pi\)
0.970817 0.239823i \(-0.0770896\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.0792 1.50214 0.751070 0.660223i \(-0.229538\pi\)
0.751070 + 0.660223i \(0.229538\pi\)
\(942\) 0 0
\(943\) 29.2650i 0.952999i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.03805i 0.261202i −0.991435 0.130601i \(-0.958309\pi\)
0.991435 0.130601i \(-0.0416906\pi\)
\(948\) 0 0
\(949\) 42.3400 1.37441
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.9348i 1.77951i 0.456437 + 0.889756i \(0.349125\pi\)
−0.456437 + 0.889756i \(0.650875\pi\)
\(954\) 0 0
\(955\) −28.6060 16.5157i −0.925667 0.534434i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −8.53466 −0.275312
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −15.4770 + 26.8070i −0.498223 + 0.862948i
\(966\) 0 0
\(967\) −26.5917 46.0582i −0.855132 1.48113i −0.876522 0.481361i \(-0.840143\pi\)
0.0213900 0.999771i \(-0.493191\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.61403 13.1879i −0.244346 0.423219i 0.717602 0.696454i \(-0.245240\pi\)
−0.961947 + 0.273234i \(0.911907\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.72533i 0.0551983i 0.999619 + 0.0275992i \(0.00878620\pi\)
−0.999619 + 0.0275992i \(0.991214\pi\)
\(978\) 0 0
\(979\) 9.37033 + 5.40997i 0.299477 + 0.172903i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −30.1191 52.1679i −0.960651 1.66390i −0.720871 0.693070i \(-0.756258\pi\)
−0.239780 0.970827i \(-0.577075\pi\)
\(984\) 0 0
\(985\) −8.64713 4.99242i −0.275521 0.159072i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27.7703 + 16.0332i −0.883044 + 0.509826i
\(990\) 0 0
\(991\) −2.87312 + 4.97639i −0.0912676 + 0.158080i −0.908045 0.418873i \(-0.862425\pi\)
0.816777 + 0.576953i \(0.195759\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −22.9711 + 13.2624i −0.728234 + 0.420446i
\(996\) 0 0
\(997\) −0.0224508 + 0.0129620i −0.000711024 + 0.000410510i −0.500355 0.865820i \(-0.666797\pi\)
0.499644 + 0.866231i \(0.333464\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.w.b.521.3 16
3.2 odd 2 1764.2.w.b.1109.5 16
7.2 even 3 756.2.bm.a.89.6 16
7.3 odd 6 5292.2.x.a.4409.6 16
7.4 even 3 5292.2.x.b.4409.3 16
7.5 odd 6 5292.2.bm.a.4625.3 16
7.6 odd 2 756.2.w.a.521.6 16
9.4 even 3 1764.2.bm.a.1697.2 16
9.5 odd 6 5292.2.bm.a.2285.3 16
21.2 odd 6 252.2.bm.a.173.7 yes 16
21.5 even 6 1764.2.bm.a.1685.2 16
21.11 odd 6 1764.2.x.b.1469.1 16
21.17 even 6 1764.2.x.a.1469.8 16
21.20 even 2 252.2.w.a.101.4 yes 16
28.23 odd 6 3024.2.df.d.1601.6 16
28.27 even 2 3024.2.ca.d.2033.6 16
63.2 odd 6 2268.2.t.a.2105.6 16
63.4 even 3 1764.2.x.a.293.8 16
63.5 even 6 inner 5292.2.w.b.1097.3 16
63.13 odd 6 252.2.bm.a.185.7 yes 16
63.16 even 3 2268.2.t.b.2105.3 16
63.20 even 6 2268.2.t.b.1781.3 16
63.23 odd 6 756.2.w.a.341.6 16
63.31 odd 6 1764.2.x.b.293.1 16
63.32 odd 6 5292.2.x.a.881.6 16
63.34 odd 6 2268.2.t.a.1781.6 16
63.40 odd 6 1764.2.w.b.509.5 16
63.41 even 6 756.2.bm.a.17.6 16
63.58 even 3 252.2.w.a.5.4 16
63.59 even 6 5292.2.x.b.881.3 16
84.23 even 6 1008.2.df.d.929.2 16
84.83 odd 2 1008.2.ca.d.353.5 16
252.23 even 6 3024.2.ca.d.2609.6 16
252.139 even 6 1008.2.df.d.689.2 16
252.167 odd 6 3024.2.df.d.17.6 16
252.247 odd 6 1008.2.ca.d.257.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.4 16 63.58 even 3
252.2.w.a.101.4 yes 16 21.20 even 2
252.2.bm.a.173.7 yes 16 21.2 odd 6
252.2.bm.a.185.7 yes 16 63.13 odd 6
756.2.w.a.341.6 16 63.23 odd 6
756.2.w.a.521.6 16 7.6 odd 2
756.2.bm.a.17.6 16 63.41 even 6
756.2.bm.a.89.6 16 7.2 even 3
1008.2.ca.d.257.5 16 252.247 odd 6
1008.2.ca.d.353.5 16 84.83 odd 2
1008.2.df.d.689.2 16 252.139 even 6
1008.2.df.d.929.2 16 84.23 even 6
1764.2.w.b.509.5 16 63.40 odd 6
1764.2.w.b.1109.5 16 3.2 odd 2
1764.2.x.a.293.8 16 63.4 even 3
1764.2.x.a.1469.8 16 21.17 even 6
1764.2.x.b.293.1 16 63.31 odd 6
1764.2.x.b.1469.1 16 21.11 odd 6
1764.2.bm.a.1685.2 16 21.5 even 6
1764.2.bm.a.1697.2 16 9.4 even 3
2268.2.t.a.1781.6 16 63.34 odd 6
2268.2.t.a.2105.6 16 63.2 odd 6
2268.2.t.b.1781.3 16 63.20 even 6
2268.2.t.b.2105.3 16 63.16 even 3
3024.2.ca.d.2033.6 16 28.27 even 2
3024.2.ca.d.2609.6 16 252.23 even 6
3024.2.df.d.17.6 16 252.167 odd 6
3024.2.df.d.1601.6 16 28.23 odd 6
5292.2.w.b.521.3 16 1.1 even 1 trivial
5292.2.w.b.1097.3 16 63.5 even 6 inner
5292.2.x.a.881.6 16 63.32 odd 6
5292.2.x.a.4409.6 16 7.3 odd 6
5292.2.x.b.881.3 16 63.59 even 6
5292.2.x.b.4409.3 16 7.4 even 3
5292.2.bm.a.2285.3 16 9.5 odd 6
5292.2.bm.a.4625.3 16 7.5 odd 6