Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2268,2,Mod(377,2268)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2268.377");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2268.x (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 756) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
377.1 |
|
0 | 0 | 0 | 0 | 0 | 0.500000 | + | 2.59808i | 0 | 0 | 0 | ||||||||||||||||||||||
1889.1 | 0 | 0 | 0 | 0 | 0 | 0.500000 | − | 2.59808i | 0 | 0 | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
63.l | odd | 6 | 1 | inner |
63.o | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2268.2.x.d | 2 | |
3.b | odd | 2 | 1 | CM | 2268.2.x.d | 2 | |
7.b | odd | 2 | 1 | 2268.2.x.f | 2 | ||
9.c | even | 3 | 1 | 756.2.f.b | ✓ | 2 | |
9.c | even | 3 | 1 | 2268.2.x.f | 2 | ||
9.d | odd | 6 | 1 | 756.2.f.b | ✓ | 2 | |
9.d | odd | 6 | 1 | 2268.2.x.f | 2 | ||
21.c | even | 2 | 1 | 2268.2.x.f | 2 | ||
36.f | odd | 6 | 1 | 3024.2.k.c | 2 | ||
36.h | even | 6 | 1 | 3024.2.k.c | 2 | ||
63.l | odd | 6 | 1 | 756.2.f.b | ✓ | 2 | |
63.l | odd | 6 | 1 | inner | 2268.2.x.d | 2 | |
63.o | even | 6 | 1 | 756.2.f.b | ✓ | 2 | |
63.o | even | 6 | 1 | inner | 2268.2.x.d | 2 | |
252.s | odd | 6 | 1 | 3024.2.k.c | 2 | ||
252.bi | even | 6 | 1 | 3024.2.k.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
756.2.f.b | ✓ | 2 | 9.c | even | 3 | 1 | |
756.2.f.b | ✓ | 2 | 9.d | odd | 6 | 1 | |
756.2.f.b | ✓ | 2 | 63.l | odd | 6 | 1 | |
756.2.f.b | ✓ | 2 | 63.o | even | 6 | 1 | |
2268.2.x.d | 2 | 1.a | even | 1 | 1 | trivial | |
2268.2.x.d | 2 | 3.b | odd | 2 | 1 | CM | |
2268.2.x.d | 2 | 63.l | odd | 6 | 1 | inner | |
2268.2.x.d | 2 | 63.o | even | 6 | 1 | inner | |
2268.2.x.f | 2 | 7.b | odd | 2 | 1 | ||
2268.2.x.f | 2 | 9.c | even | 3 | 1 | ||
2268.2.x.f | 2 | 9.d | odd | 6 | 1 | ||
2268.2.x.f | 2 | 21.c | even | 2 | 1 | ||
3024.2.k.c | 2 | 36.f | odd | 6 | 1 | ||
3024.2.k.c | 2 | 36.h | even | 6 | 1 | ||
3024.2.k.c | 2 | 252.s | odd | 6 | 1 | ||
3024.2.k.c | 2 | 252.bi | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|