Properties

Label 2268.2.x.d
Level 22682268
Weight 22
Character orbit 2268.x
Analytic conductor 18.11018.110
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(377,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.377");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2268=22347 2268 = 2^{2} \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2268.x (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.110071178418.1100711784
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ6+2)q7+(ζ6+2)q13+(10ζ65)q19+(5ζ6+5)q25+(6ζ6+12)q31+q37+(8ζ6+8)q43+(3ζ65)q49++(11ζ6+11)q97+O(q100) q + ( - 3 \zeta_{6} + 2) q^{7} + ( - \zeta_{6} + 2) q^{13} + (10 \zeta_{6} - 5) q^{19} + ( - 5 \zeta_{6} + 5) q^{25} + ( - 6 \zeta_{6} + 12) q^{31} + q^{37} + ( - 8 \zeta_{6} + 8) q^{43} + ( - 3 \zeta_{6} - 5) q^{49}+ \cdots + (11 \zeta_{6} + 11) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q7+3q13+5q25+18q31+2q37+8q4313q4915q6111q67+13q793q91+33q97+O(q100) 2 q + q^{7} + 3 q^{13} + 5 q^{25} + 18 q^{31} + 2 q^{37} + 8 q^{43} - 13 q^{49} - 15 q^{61} - 11 q^{67} + 13 q^{79} - 3 q^{91} + 33 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2268Z)×\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times.

nn 325325 11351135 15411541
χ(n)\chi(n) 1-1 11 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
377.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 0.500000 + 2.59808i 0 0 0
1889.1 0 0 0 0 0 0.500000 2.59808i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
63.l odd 6 1 inner
63.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.x.d 2
3.b odd 2 1 CM 2268.2.x.d 2
7.b odd 2 1 2268.2.x.f 2
9.c even 3 1 756.2.f.b 2
9.c even 3 1 2268.2.x.f 2
9.d odd 6 1 756.2.f.b 2
9.d odd 6 1 2268.2.x.f 2
21.c even 2 1 2268.2.x.f 2
36.f odd 6 1 3024.2.k.c 2
36.h even 6 1 3024.2.k.c 2
63.l odd 6 1 756.2.f.b 2
63.l odd 6 1 inner 2268.2.x.d 2
63.o even 6 1 756.2.f.b 2
63.o even 6 1 inner 2268.2.x.d 2
252.s odd 6 1 3024.2.k.c 2
252.bi even 6 1 3024.2.k.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.f.b 2 9.c even 3 1
756.2.f.b 2 9.d odd 6 1
756.2.f.b 2 63.l odd 6 1
756.2.f.b 2 63.o even 6 1
2268.2.x.d 2 1.a even 1 1 trivial
2268.2.x.d 2 3.b odd 2 1 CM
2268.2.x.d 2 63.l odd 6 1 inner
2268.2.x.d 2 63.o even 6 1 inner
2268.2.x.f 2 7.b odd 2 1
2268.2.x.f 2 9.c even 3 1
2268.2.x.f 2 9.d odd 6 1
2268.2.x.f 2 21.c even 2 1
3024.2.k.c 2 36.f odd 6 1
3024.2.k.c 2 36.h even 6 1
3024.2.k.c 2 252.s odd 6 1
3024.2.k.c 2 252.bi even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2268,[χ])S_{2}^{\mathrm{new}}(2268, [\chi]):

T5 T_{5} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T1323T13+3 T_{13}^{2} - 3T_{13} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2T+7 T^{2} - T + 7 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+75 T^{2} + 75 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T218T+108 T^{2} - 18T + 108 Copy content Toggle raw display
3737 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+15T+75 T^{2} + 15T + 75 Copy content Toggle raw display
6767 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+3 T^{2} + 3 Copy content Toggle raw display
7979 T213T+169 T^{2} - 13T + 169 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T233T+363 T^{2} - 33T + 363 Copy content Toggle raw display
show more
show less