Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [23,29,Mod(22,23)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(23, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 29, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("23.22");
S:= CuspForms(chi, 29);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 23.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 3.3.621.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 |
|
−32762.2 | −8.17511e6 | 8.04929e8 | 0 | 2.67835e11 | 0 | −1.75767e13 | 4.39556e13 | 0 | |||||||||||||||||||||||||||
22.2 | 15849.1 | −214311. | −1.72417e7 | 0 | −3.39664e9 | 0 | −4.52772e12 | −2.28309e13 | 0 | ||||||||||||||||||||||||||||
22.3 | 16913.1 | 8.38942e6 | 1.76191e7 | 0 | 1.41892e11 | 0 | −4.24209e12 | 4.75056e13 | 0 | ||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.b | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 23.29.b.a | ✓ | 3 |
23.b | odd | 2 | 1 | CM | 23.29.b.a | ✓ | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
23.29.b.a | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
23.29.b.a | ✓ | 3 | 23.b | odd | 2 | 1 | CM |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .