Properties

Label 23.29.b.a
Level 2323
Weight 2929
Character orbit 23.b
Self dual yes
Analytic conductor 114.237114.237
Analytic rank 00
Dimension 33
CM discriminant -23
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [23,29,Mod(22,23)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(23, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 29, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("23.22");
 
S:= CuspForms(chi, 29);
 
N := Newforms(S);
 
Level: N N == 23 23
Weight: k k == 29 29
Character orbit: [χ][\chi] == 23.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 114.237490771114.237490771
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x36x3 x^{3} - 6x - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3026β211759β1)q2+(584543β23162522β1)q3+(57951937β2+191126197β1+268435456)q4+(36260772881β2++135443271649)q6++(13 ⁣ ⁣26β254 ⁣ ⁣59β1)q98+O(q100) q + ( - 3026 \beta_{2} - 11759 \beta_1) q^{2} + (584543 \beta_{2} - 3162522 \beta_1) q^{3} + (57951937 \beta_{2} + 191126197 \beta_1 + 268435456) q^{4} + (36260772881 \beta_{2} + \cdots + 135443271649) q^{6}+ \cdots + ( - 13\!\cdots\!26 \beta_{2} - 54\!\cdots\!59 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+805306368q4+406329814947q626346547412877q8+68630377364883q964 ⁣ ⁣41q12+21 ⁣ ⁣08q1699 ⁣ ⁣77q18+34 ⁣ ⁣27q23+10 ⁣ ⁣32q24++56 ⁣ ⁣19q96+O(q100) 3 q + 805306368 q^{4} + 406329814947 q^{6} - 26346547412877 q^{8} + 68630377364883 q^{9} - 64\!\cdots\!41 q^{12} + 21\!\cdots\!08 q^{16} - 99\!\cdots\!77 q^{18} + 34\!\cdots\!27 q^{23} + 10\!\cdots\!32 q^{24}+ \cdots + 56\!\cdots\!19 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x36x3 x^{3} - 6x - 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν4 \nu^{2} - \nu - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+4 \beta_{2} + \beta _1 + 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/23Z)×\left(\mathbb{Z}/23\mathbb{Z}\right)^\times.

nn 55
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
22.1
2.66908
−0.523976
−2.14510
−32762.2 −8.17511e6 8.04929e8 0 2.67835e11 0 −1.75767e13 4.39556e13 0
22.2 15849.1 −214311. −1.72417e7 0 −3.39664e9 0 −4.52772e12 −2.28309e13 0
22.3 16913.1 8.38942e6 1.76191e7 0 1.41892e11 0 −4.24209e12 4.75056e13 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by Q(23)\Q(\sqrt{-23})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 23.29.b.a 3
23.b odd 2 1 CM 23.29.b.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.29.b.a 3 1.a even 1 1 trivial
23.29.b.a 3 23.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T23805306368T2+8782182470959 T_{2}^{3} - 805306368T_{2} + 8782182470959 acting on S29new(23,[χ])S_{29}^{\mathrm{new}}(23, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3++8782182470959 T^{3} + \cdots + 8782182470959 Copy content Toggle raw display
33 T3+14 ⁣ ⁣46 T^{3} + \cdots - 14\!\cdots\!46 Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3 T^{3} Copy content Toggle raw display
1111 T3 T^{3} Copy content Toggle raw display
1313 T3+11 ⁣ ⁣86 T^{3} + \cdots - 11\!\cdots\!86 Copy content Toggle raw display
1717 T3 T^{3} Copy content Toggle raw display
1919 T3 T^{3} Copy content Toggle raw display
2323 (T11 ⁣ ⁣09)3 (T - 11\!\cdots\!09)^{3} Copy content Toggle raw display
2929 T3+52 ⁣ ⁣74 T^{3} + \cdots - 52\!\cdots\!74 Copy content Toggle raw display
3131 T3++60 ⁣ ⁣66 T^{3} + \cdots + 60\!\cdots\!66 Copy content Toggle raw display
3737 T3 T^{3} Copy content Toggle raw display
4141 T3+22 ⁣ ⁣74 T^{3} + \cdots - 22\!\cdots\!74 Copy content Toggle raw display
4343 T3 T^{3} Copy content Toggle raw display
4747 T3++16 ⁣ ⁣14 T^{3} + \cdots + 16\!\cdots\!14 Copy content Toggle raw display
5353 T3 T^{3} Copy content Toggle raw display
5959 (T12 ⁣ ⁣54)3 (T - 12\!\cdots\!54)^{3} Copy content Toggle raw display
6161 T3 T^{3} Copy content Toggle raw display
6767 T3 T^{3} Copy content Toggle raw display
7171 T3+52 ⁣ ⁣74 T^{3} + \cdots - 52\!\cdots\!74 Copy content Toggle raw display
7373 T3+16 ⁣ ⁣46 T^{3} + \cdots - 16\!\cdots\!46 Copy content Toggle raw display
7979 T3 T^{3} Copy content Toggle raw display
8383 T3 T^{3} Copy content Toggle raw display
8989 T3 T^{3} Copy content Toggle raw display
9797 T3 T^{3} Copy content Toggle raw display
show more
show less