Properties

Label 23.29.b.a
Level $23$
Weight $29$
Character orbit 23.b
Self dual yes
Analytic conductor $114.237$
Analytic rank $0$
Dimension $3$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [23,29,Mod(22,23)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(23, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 29, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("23.22");
 
S:= CuspForms(chi, 29);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 29 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.237490771\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3026 \beta_{2} - 11759 \beta_1) q^{2} + (584543 \beta_{2} - 3162522 \beta_1) q^{3} + (57951937 \beta_{2} + 191126197 \beta_1 + 268435456) q^{4} + (36260772881 \beta_{2} + \cdots + 135443271649) q^{6}+ \cdots + ( - 13\!\cdots\!26 \beta_{2} - 54\!\cdots\!59 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 805306368 q^{4} + 406329814947 q^{6} - 26346547412877 q^{8} + 68630377364883 q^{9} - 64\!\cdots\!41 q^{12} + 21\!\cdots\!08 q^{16} - 99\!\cdots\!77 q^{18} + 34\!\cdots\!27 q^{23} + 10\!\cdots\!32 q^{24}+ \cdots + 56\!\cdots\!19 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
22.1
2.66908
−0.523976
−2.14510
−32762.2 −8.17511e6 8.04929e8 0 2.67835e11 0 −1.75767e13 4.39556e13 0
22.2 15849.1 −214311. −1.72417e7 0 −3.39664e9 0 −4.52772e12 −2.28309e13 0
22.3 16913.1 8.38942e6 1.76191e7 0 1.41892e11 0 −4.24209e12 4.75056e13 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 23.29.b.a 3
23.b odd 2 1 CM 23.29.b.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.29.b.a 3 1.a even 1 1 trivial
23.29.b.a 3 23.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 805306368T_{2} + 8782182470959 \) acting on \(S_{29}^{\mathrm{new}}(23, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + \cdots + 8782182470959 \) Copy content Toggle raw display
$3$ \( T^{3} + \cdots - 14\!\cdots\!46 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 11\!\cdots\!86 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( (T - 11\!\cdots\!09)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 52\!\cdots\!74 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 60\!\cdots\!66 \) Copy content Toggle raw display
$37$ \( T^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 22\!\cdots\!74 \) Copy content Toggle raw display
$43$ \( T^{3} \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 16\!\cdots\!14 \) Copy content Toggle raw display
$53$ \( T^{3} \) Copy content Toggle raw display
$59$ \( (T - 12\!\cdots\!54)^{3} \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( T^{3} \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 52\!\cdots\!74 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 16\!\cdots\!46 \) Copy content Toggle raw display
$79$ \( T^{3} \) Copy content Toggle raw display
$83$ \( T^{3} \) Copy content Toggle raw display
$89$ \( T^{3} \) Copy content Toggle raw display
$97$ \( T^{3} \) Copy content Toggle raw display
show more
show less