Properties

Label 2312.1.e.a.1155.1
Level $2312$
Weight $1$
Character 2312.1155
Analytic conductor $1.154$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,1,Mod(1155,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.1155");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2312.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.15383830921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.314432.1
Artin image: $\SD_{16}$
Artin field: Galois closure of 8.2.210093400576.2

Embedding invariants

Embedding label 1155.1
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 2312.1155
Dual form 2312.1.e.a.1155.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.41421i q^{3} +1.00000 q^{4} +1.41421i q^{6} -1.00000 q^{8} -1.00000 q^{9} -1.41421i q^{11} -1.41421i q^{12} +1.00000 q^{16} +1.00000 q^{18} +2.00000 q^{19} +1.41421i q^{22} +1.41421i q^{24} -1.00000 q^{25} -1.00000 q^{32} -2.00000 q^{33} -1.00000 q^{36} -2.00000 q^{38} -1.41421i q^{41} -1.41421i q^{44} -1.41421i q^{48} -1.00000 q^{49} +1.00000 q^{50} -2.82843i q^{57} +1.00000 q^{64} +2.00000 q^{66} +1.00000 q^{72} +1.41421i q^{73} +1.41421i q^{75} +2.00000 q^{76} -1.00000 q^{81} +1.41421i q^{82} +1.41421i q^{88} +1.41421i q^{96} -1.41421i q^{97} +1.00000 q^{98} +1.41421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 2 q^{9} + 2 q^{16} + 2 q^{18} + 4 q^{19} - 2 q^{25} - 2 q^{32} - 4 q^{33} - 2 q^{36} - 4 q^{38} - 2 q^{49} + 2 q^{50} + 2 q^{64} + 4 q^{66} + 2 q^{72} + 4 q^{76} - 2 q^{81}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(4\) 1.00000 1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 1.41421i 1.41421i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −1.00000
\(9\) −1.00000 −1.00000
\(10\) 0 0
\(11\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(12\) − 1.41421i − 1.41421i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 0 0
\(18\) 1.00000 1.00000
\(19\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.41421i 1.41421i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 1.41421i 1.41421i
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −1.00000
\(33\) −2.00000 −2.00000
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 −1.00000
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −2.00000 −2.00000
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) − 1.41421i − 1.41421i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) − 1.41421i − 1.41421i
\(49\) −1.00000 −1.00000
\(50\) 1.00000 1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.82843i − 2.82843i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 2.00000 2.00000
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000 1.00000
\(73\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 1.41421i 1.41421i
\(76\) 2.00000 2.00000
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −1.00000 −1.00000
\(82\) 1.41421i 1.41421i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 1.41421i 1.41421i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 1.41421i 1.41421i
\(97\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(98\) 1.00000 1.00000
\(99\) 1.41421i 1.41421i
\(100\) −1.00000 −1.00000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 2.82843i 2.82843i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) −2.00000 −2.00000
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) −2.00000 −2.00000
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) − 1.41421i − 1.41421i
\(147\) 1.41421i 1.41421i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) − 1.41421i − 1.41421i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −2.00000 −2.00000
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 1.00000
\(163\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) − 1.41421i − 1.41421i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) −2.00000 −2.00000
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 1.41421i − 1.41421i
\(177\) 0 0
\(178\) 0 0
\(179\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) − 1.41421i − 1.41421i
\(193\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 1.41421i 1.41421i
\(195\) 0 0
\(196\) −1.00000 −1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) − 1.41421i − 1.41421i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 1.00000 1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 2.82843i − 2.82843i
\(210\) 0 0
\(211\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.41421i 1.41421i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 2.00000
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) − 1.41421i − 1.41421i
\(227\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) − 2.82843i − 2.82843i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(242\) 1.00000 1.00000
\(243\) 1.41421i 1.41421i
\(244\) 0 0
\(245\) 0 0
\(246\) 2.00000 2.00000
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) − 1.41421i − 1.41421i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 2.00000 2.00000
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 2.00000 2.00000
\(275\) 1.41421i 1.41421i
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 1.41421i 1.41421i
\(279\) 0 0
\(280\) 0 0
\(281\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(282\) 0 0
\(283\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 1.00000
\(289\) 0 0
\(290\) 0 0
\(291\) −2.00000 −2.00000
\(292\) 1.41421i 1.41421i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) − 1.41421i − 1.41421i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 1.41421i 1.41421i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 2.00000 2.00000
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.00000 −2.00000
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) − 1.41421i − 1.41421i
\(327\) 0 0
\(328\) 1.41421i 1.41421i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(338\) −1.00000 −1.00000
\(339\) 2.00000 2.00000
\(340\) 0 0
\(341\) 0 0
\(342\) 2.00000 2.00000
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.41421i 1.41421i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −2.00000 −2.00000
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 3.00000 3.00000
\(362\) 0 0
\(363\) 1.41421i 1.41421i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 1.41421i 1.41421i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 1.41421i 1.41421i
\(385\) 0 0
\(386\) − 1.41421i − 1.41421i
\(387\) 0 0
\(388\) − 1.41421i − 1.41421i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 1.00000
\(393\) 2.00000 2.00000
\(394\) 0 0
\(395\) 0 0
\(396\) 1.41421i 1.41421i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 2.82843i 2.82843i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2.00000 −2.00000
\(418\) 2.82843i 2.82843i
\(419\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 1.41421i 1.41421i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 1.41421i − 1.41421i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −2.00000 −2.00000
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(450\) −1.00000 −1.00000
\(451\) −2.00000 −2.00000
\(452\) 1.41421i 1.41421i
\(453\) 0 0
\(454\) − 1.41421i − 1.41421i
\(455\) 0 0
\(456\) 2.82843i 2.82843i
\(457\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.41421i 1.41421i
\(467\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −2.00000 −2.00000
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) − 1.41421i − 1.41421i
\(483\) 0 0
\(484\) −1.00000 −1.00000
\(485\) 0 0
\(486\) − 1.41421i − 1.41421i
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 2.00000 2.00000
\(490\) 0 0
\(491\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(492\) −2.00000 −2.00000
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1.41421i − 1.41421i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 1.41421i 1.41421i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −2.00000 −2.00000
\(529\) −1.00000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 2.82843i − 2.82843i
\(538\) 0 0
\(539\) 1.41421i 1.41421i
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(548\) −2.00000 −2.00000
\(549\) 0 0
\(550\) − 1.41421i − 1.41421i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) − 1.41421i − 1.41421i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −2.00000 −2.00000
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.41421i 1.41421i
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(578\) 0 0
\(579\) 2.00000 2.00000
\(580\) 0 0
\(581\) 0 0
\(582\) 2.00000 2.00000
\(583\) 0 0
\(584\) − 1.41421i − 1.41421i
\(585\) 0 0
\(586\) 0 0
\(587\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(588\) 1.41421i 1.41421i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) − 1.41421i − 1.41421i
\(601\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −2.00000 −2.00000
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −2.00000 −2.00000
\(615\) 0 0
\(616\) 0 0
\(617\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) − 1.41421i − 1.41421i
\(627\) −4.00000 −4.00000
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −2.00000 −2.00000
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(642\) 2.00000 2.00000
\(643\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.00000 1.00000
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.41421i 1.41421i
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 1.41421i − 1.41421i
\(657\) − 1.41421i − 1.41421i
\(658\) 0 0
\(659\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(674\) 1.41421i 1.41421i
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) −2.00000 −2.00000
\(679\) 0 0
\(680\) 0 0
\(681\) 2.00000 2.00000
\(682\) 0 0
\(683\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) −2.00000 −2.00000
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.41421i 1.41421i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −2.00000 −2.00000
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) − 1.41421i − 1.41421i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 2.00000 2.00000
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.00000 −3.00000
\(723\) 2.00000 2.00000
\(724\) 0 0
\(725\) 0 0
\(726\) − 1.41421i − 1.41421i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) − 1.41421i − 1.41421i
\(739\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) − 1.41421i − 1.41421i
\(759\) 0 0
\(760\) 0 0
\(761\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) − 1.41421i − 1.41421i
\(769\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.41421i 1.41421i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.41421i 1.41421i
\(777\) 0 0
\(778\) 0 0
\(779\) − 2.82843i − 2.82843i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 −1.00000
\(785\) 0 0
\(786\) −2.00000 −2.00000
\(787\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) − 1.41421i − 1.41421i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 1.00000
\(801\) 0 0
\(802\) − 1.41421i − 1.41421i
\(803\) 2.00000 2.00000
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(810\) 0 0
\(811\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) − 2.82843i − 2.82843i
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 2.00000 2.00000
\(826\) 0 0
\(827\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 2.00000 2.00000
\(835\) 0 0
\(836\) − 2.82843i − 2.82843i
\(837\) 0 0
\(838\) − 1.41421i − 1.41421i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −1.00000 −1.00000
\(842\) 0 0
\(843\) − 2.82843i − 2.82843i
\(844\) − 1.41421i − 1.41421i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.00000 −2.00000
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.41421i 1.41421i
\(857\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.00000 −2.00000
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.41421i 1.41421i
\(874\) 0 0
\(875\) 0 0
\(876\) 2.00000 2.00000
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(882\) −1.00000 −1.00000
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.41421i 1.41421i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) − 1.41421i − 1.41421i
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 2.00000 2.00000
\(903\) 0 0
\(904\) − 1.41421i − 1.41421i
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(908\) 1.41421i 1.41421i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) − 2.82843i − 2.82843i
\(913\) 0 0
\(914\) −2.00000 −2.00000
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) − 2.82843i − 2.82843i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(930\) 0 0
\(931\) −2.00000 −2.00000
\(932\) − 1.41421i − 1.41421i
\(933\) 0 0
\(934\) −2.00000 −2.00000
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 2.00000 2.00000
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 2.00000 2.00000
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 1.41421i 1.41421i
\(964\) 1.41421i 1.41421i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000 1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 1.41421i 1.41421i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) −2.00000 −2.00000
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −2.00000 −2.00000
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 2.00000 2.00000
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 1.41421i 1.41421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.1.e.a.1155.1 2
8.3 odd 2 CM 2312.1.e.a.1155.1 2
17.2 even 8 136.1.j.a.115.1 2
17.3 odd 16 2312.1.p.e.1555.2 8
17.4 even 4 2312.1.f.b.579.1 2
17.5 odd 16 2312.1.p.e.179.2 8
17.6 odd 16 2312.1.p.e.1579.1 8
17.7 odd 16 2312.1.p.e.155.1 8
17.8 even 8 136.1.j.a.123.1 yes 2
17.9 even 8 2312.1.j.b.1483.1 2
17.10 odd 16 2312.1.p.e.155.2 8
17.11 odd 16 2312.1.p.e.1579.2 8
17.12 odd 16 2312.1.p.e.179.1 8
17.13 even 4 2312.1.f.b.579.2 2
17.14 odd 16 2312.1.p.e.1555.1 8
17.15 even 8 2312.1.j.b.251.1 2
17.16 even 2 inner 2312.1.e.a.1155.2 2
51.2 odd 8 1224.1.s.a.523.1 2
51.8 odd 8 1224.1.s.a.667.1 2
68.19 odd 8 544.1.n.a.47.1 2
68.59 odd 8 544.1.n.a.463.1 2
85.2 odd 8 3400.1.bc.b.2699.1 2
85.8 odd 8 3400.1.bc.b.2299.1 2
85.19 even 8 3400.1.y.a.251.1 2
85.42 odd 8 3400.1.bc.a.2299.1 2
85.53 odd 8 3400.1.bc.a.2699.1 2
85.59 even 8 3400.1.y.a.3251.1 2
136.3 even 16 2312.1.p.e.1555.2 8
136.11 even 16 2312.1.p.e.1579.2 8
136.19 odd 8 136.1.j.a.115.1 2
136.27 even 16 2312.1.p.e.155.2 8
136.43 odd 8 2312.1.j.b.1483.1 2
136.53 even 8 544.1.n.a.47.1 2
136.59 odd 8 136.1.j.a.123.1 yes 2
136.67 odd 2 inner 2312.1.e.a.1155.2 2
136.75 even 16 2312.1.p.e.155.1 8
136.83 odd 8 2312.1.j.b.251.1 2
136.91 even 16 2312.1.p.e.1579.1 8
136.93 even 8 544.1.n.a.463.1 2
136.99 even 16 2312.1.p.e.1555.1 8
136.107 even 16 2312.1.p.e.179.2 8
136.115 odd 4 2312.1.f.b.579.2 2
136.123 odd 4 2312.1.f.b.579.1 2
136.131 even 16 2312.1.p.e.179.1 8
408.59 even 8 1224.1.s.a.667.1 2
408.155 even 8 1224.1.s.a.523.1 2
680.19 odd 8 3400.1.y.a.251.1 2
680.59 odd 8 3400.1.y.a.3251.1 2
680.427 even 8 3400.1.bc.b.2699.1 2
680.467 even 8 3400.1.bc.a.2299.1 2
680.563 even 8 3400.1.bc.a.2699.1 2
680.603 even 8 3400.1.bc.b.2299.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.1.j.a.115.1 2 17.2 even 8
136.1.j.a.115.1 2 136.19 odd 8
136.1.j.a.123.1 yes 2 17.8 even 8
136.1.j.a.123.1 yes 2 136.59 odd 8
544.1.n.a.47.1 2 68.19 odd 8
544.1.n.a.47.1 2 136.53 even 8
544.1.n.a.463.1 2 68.59 odd 8
544.1.n.a.463.1 2 136.93 even 8
1224.1.s.a.523.1 2 51.2 odd 8
1224.1.s.a.523.1 2 408.155 even 8
1224.1.s.a.667.1 2 51.8 odd 8
1224.1.s.a.667.1 2 408.59 even 8
2312.1.e.a.1155.1 2 1.1 even 1 trivial
2312.1.e.a.1155.1 2 8.3 odd 2 CM
2312.1.e.a.1155.2 2 17.16 even 2 inner
2312.1.e.a.1155.2 2 136.67 odd 2 inner
2312.1.f.b.579.1 2 17.4 even 4
2312.1.f.b.579.1 2 136.123 odd 4
2312.1.f.b.579.2 2 17.13 even 4
2312.1.f.b.579.2 2 136.115 odd 4
2312.1.j.b.251.1 2 17.15 even 8
2312.1.j.b.251.1 2 136.83 odd 8
2312.1.j.b.1483.1 2 17.9 even 8
2312.1.j.b.1483.1 2 136.43 odd 8
2312.1.p.e.155.1 8 17.7 odd 16
2312.1.p.e.155.1 8 136.75 even 16
2312.1.p.e.155.2 8 17.10 odd 16
2312.1.p.e.155.2 8 136.27 even 16
2312.1.p.e.179.1 8 17.12 odd 16
2312.1.p.e.179.1 8 136.131 even 16
2312.1.p.e.179.2 8 17.5 odd 16
2312.1.p.e.179.2 8 136.107 even 16
2312.1.p.e.1555.1 8 17.14 odd 16
2312.1.p.e.1555.1 8 136.99 even 16
2312.1.p.e.1555.2 8 17.3 odd 16
2312.1.p.e.1555.2 8 136.3 even 16
2312.1.p.e.1579.1 8 17.6 odd 16
2312.1.p.e.1579.1 8 136.91 even 16
2312.1.p.e.1579.2 8 17.11 odd 16
2312.1.p.e.1579.2 8 136.11 even 16
3400.1.y.a.251.1 2 85.19 even 8
3400.1.y.a.251.1 2 680.19 odd 8
3400.1.y.a.3251.1 2 85.59 even 8
3400.1.y.a.3251.1 2 680.59 odd 8
3400.1.bc.a.2299.1 2 85.42 odd 8
3400.1.bc.a.2299.1 2 680.467 even 8
3400.1.bc.a.2699.1 2 85.53 odd 8
3400.1.bc.a.2699.1 2 680.563 even 8
3400.1.bc.b.2299.1 2 85.8 odd 8
3400.1.bc.b.2299.1 2 680.603 even 8
3400.1.bc.b.2699.1 2 85.2 odd 8
3400.1.bc.b.2699.1 2 680.427 even 8