Properties

Label 240.2.y.d.163.1
Level $240$
Weight $2$
Character 240.163
Analytic conductor $1.916$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,2,Mod(163,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.y (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.1
Root \(-0.671462 - 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 240.163
Dual form 240.2.y.d.187.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24464 - 0.671462i) q^{2} +1.00000 q^{3} +(1.09828 + 1.67146i) q^{4} +(1.00000 - 2.00000i) q^{5} +(-1.24464 - 0.671462i) q^{6} +(0.146365 - 0.146365i) q^{7} +(-0.244644 - 2.81783i) q^{8} +1.00000 q^{9} +(-2.58757 + 1.81783i) q^{10} +(0.146365 + 0.146365i) q^{11} +(1.09828 + 1.67146i) q^{12} +(-0.280452 + 0.0838942i) q^{14} +(1.00000 - 2.00000i) q^{15} +(-1.58757 + 3.67146i) q^{16} +(3.68585 - 3.68585i) q^{17} +(-1.24464 - 0.671462i) q^{18} +(2.83221 + 2.83221i) q^{19} +(4.44120 - 0.525096i) q^{20} +(0.146365 - 0.146365i) q^{21} +(-0.0838942 - 0.280452i) q^{22} +(-2.83221 - 2.83221i) q^{23} +(-0.244644 - 2.81783i) q^{24} +(-3.00000 - 4.00000i) q^{25} +1.00000 q^{27} +(0.405394 + 0.0838942i) q^{28} +(-1.00000 + 1.00000i) q^{29} +(-2.58757 + 1.81783i) q^{30} -0.292731i q^{31} +(4.44120 - 3.50367i) q^{32} +(0.146365 + 0.146365i) q^{33} +(-7.06247 + 2.11266i) q^{34} +(-0.146365 - 0.439096i) q^{35} +(1.09828 + 1.67146i) q^{36} -9.37169i q^{37} +(-1.62337 - 5.42682i) q^{38} +(-5.88030 - 2.32854i) q^{40} +4.00000i q^{41} +(-0.280452 + 0.0838942i) q^{42} +9.66442i q^{43} +(-0.0838942 + 0.405394i) q^{44} +(1.00000 - 2.00000i) q^{45} +(1.62337 + 5.42682i) q^{46} +(7.12494 + 7.12494i) q^{47} +(-1.58757 + 3.67146i) q^{48} +6.95715i q^{49} +(1.04809 + 6.99296i) q^{50} +(3.68585 - 3.68585i) q^{51} -11.9572 q^{53} +(-1.24464 - 0.671462i) q^{54} +(0.439096 - 0.146365i) q^{55} +(-0.448240 - 0.376625i) q^{56} +(2.83221 + 2.83221i) q^{57} +(1.91611 - 0.573183i) q^{58} +(-9.51806 + 9.51806i) q^{59} +(4.44120 - 0.525096i) q^{60} +(1.68585 + 1.68585i) q^{61} +(-0.196558 + 0.364346i) q^{62} +(0.146365 - 0.146365i) q^{63} +(-7.88030 + 1.37873i) q^{64} +(-0.0838942 - 0.280452i) q^{66} +13.0790i q^{67} +(10.2088 + 2.11266i) q^{68} +(-2.83221 - 2.83221i) q^{69} +(-0.112663 + 0.644798i) q^{70} -4.58546 q^{71} +(-0.244644 - 2.81783i) q^{72} +(6.37169 - 6.37169i) q^{73} +(-6.29273 + 11.6644i) q^{74} +(-3.00000 - 4.00000i) q^{75} +(-1.62337 + 7.84449i) q^{76} +0.0428457 q^{77} +4.58546 q^{79} +(5.75536 + 6.84660i) q^{80} +1.00000 q^{81} +(2.68585 - 4.97858i) q^{82} -8.58546 q^{83} +(0.405394 + 0.0838942i) q^{84} +(-3.68585 - 11.0575i) q^{85} +(6.48929 - 12.0288i) q^{86} +(-1.00000 + 1.00000i) q^{87} +(0.376625 - 0.448240i) q^{88} +3.37169 q^{89} +(-2.58757 + 1.81783i) q^{90} +(1.62337 - 7.84449i) q^{92} -0.292731i q^{93} +(-4.08389 - 13.6521i) q^{94} +(8.49663 - 2.83221i) q^{95} +(4.44120 - 3.50367i) q^{96} +(-3.58546 + 3.58546i) q^{97} +(4.67146 - 8.65918i) q^{98} +(0.146365 + 0.146365i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 2 q^{4} + 6 q^{5} - 2 q^{7} + 6 q^{8} + 6 q^{9} + 4 q^{10} - 2 q^{11} + 2 q^{12} - 6 q^{14} + 6 q^{15} + 10 q^{16} - 2 q^{17} - 10 q^{19} + 10 q^{20} - 2 q^{21} - 14 q^{22} + 10 q^{23} + 6 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24464 0.671462i −0.880096 0.474795i
\(3\) 1.00000 0.577350
\(4\) 1.09828 + 1.67146i 0.549139 + 0.835731i
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) −1.24464 0.671462i −0.508124 0.274123i
\(7\) 0.146365 0.146365i 0.0553210 0.0553210i −0.678905 0.734226i \(-0.737545\pi\)
0.734226 + 0.678905i \(0.237545\pi\)
\(8\) −0.244644 2.81783i −0.0864948 0.996252i
\(9\) 1.00000 0.333333
\(10\) −2.58757 + 1.81783i −0.818261 + 0.574847i
\(11\) 0.146365 + 0.146365i 0.0441309 + 0.0441309i 0.728828 0.684697i \(-0.240065\pi\)
−0.684697 + 0.728828i \(0.740065\pi\)
\(12\) 1.09828 + 1.67146i 0.317046 + 0.482509i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −0.280452 + 0.0838942i −0.0749539 + 0.0224217i
\(15\) 1.00000 2.00000i 0.258199 0.516398i
\(16\) −1.58757 + 3.67146i −0.396892 + 0.917865i
\(17\) 3.68585 3.68585i 0.893949 0.893949i −0.100943 0.994892i \(-0.532186\pi\)
0.994892 + 0.100943i \(0.0321860\pi\)
\(18\) −1.24464 0.671462i −0.293365 0.158265i
\(19\) 2.83221 + 2.83221i 0.649754 + 0.649754i 0.952933 0.303180i \(-0.0980482\pi\)
−0.303180 + 0.952933i \(0.598048\pi\)
\(20\) 4.44120 0.525096i 0.993083 0.117415i
\(21\) 0.146365 0.146365i 0.0319396 0.0319396i
\(22\) −0.0838942 0.280452i −0.0178863 0.0597925i
\(23\) −2.83221 2.83221i −0.590557 0.590557i 0.347225 0.937782i \(-0.387124\pi\)
−0.937782 + 0.347225i \(0.887124\pi\)
\(24\) −0.244644 2.81783i −0.0499378 0.575187i
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0.405394 + 0.0838942i 0.0766123 + 0.0158545i
\(29\) −1.00000 + 1.00000i −0.185695 + 0.185695i −0.793832 0.608137i \(-0.791917\pi\)
0.608137 + 0.793832i \(0.291917\pi\)
\(30\) −2.58757 + 1.81783i −0.472423 + 0.331888i
\(31\) 0.292731i 0.0525760i −0.999654 0.0262880i \(-0.991631\pi\)
0.999654 0.0262880i \(-0.00836870\pi\)
\(32\) 4.44120 3.50367i 0.785101 0.619368i
\(33\) 0.146365 + 0.146365i 0.0254790 + 0.0254790i
\(34\) −7.06247 + 2.11266i −1.21120 + 0.362319i
\(35\) −0.146365 0.439096i −0.0247403 0.0742208i
\(36\) 1.09828 + 1.67146i 0.183046 + 0.278577i
\(37\) 9.37169i 1.54070i −0.637623 0.770348i \(-0.720082\pi\)
0.637623 0.770348i \(-0.279918\pi\)
\(38\) −1.62337 5.42682i −0.263346 0.880346i
\(39\) 0 0
\(40\) −5.88030 2.32854i −0.929757 0.368174i
\(41\) 4.00000i 0.624695i 0.949968 + 0.312348i \(0.101115\pi\)
−0.949968 + 0.312348i \(0.898885\pi\)
\(42\) −0.280452 + 0.0838942i −0.0432746 + 0.0129452i
\(43\) 9.66442i 1.47381i 0.675996 + 0.736905i \(0.263714\pi\)
−0.675996 + 0.736905i \(0.736286\pi\)
\(44\) −0.0838942 + 0.405394i −0.0126475 + 0.0611155i
\(45\) 1.00000 2.00000i 0.149071 0.298142i
\(46\) 1.62337 + 5.42682i 0.239354 + 0.800141i
\(47\) 7.12494 + 7.12494i 1.03928 + 1.03928i 0.999196 + 0.0400834i \(0.0127623\pi\)
0.0400834 + 0.999196i \(0.487238\pi\)
\(48\) −1.58757 + 3.67146i −0.229146 + 0.529930i
\(49\) 6.95715i 0.993879i
\(50\) 1.04809 + 6.99296i 0.148222 + 0.988954i
\(51\) 3.68585 3.68585i 0.516122 0.516122i
\(52\) 0 0
\(53\) −11.9572 −1.64244 −0.821221 0.570611i \(-0.806707\pi\)
−0.821221 + 0.570611i \(0.806707\pi\)
\(54\) −1.24464 0.671462i −0.169375 0.0913743i
\(55\) 0.439096 0.146365i 0.0592078 0.0197359i
\(56\) −0.448240 0.376625i −0.0598986 0.0503287i
\(57\) 2.83221 + 2.83221i 0.375136 + 0.375136i
\(58\) 1.91611 0.573183i 0.251597 0.0752626i
\(59\) −9.51806 + 9.51806i −1.23915 + 1.23915i −0.278795 + 0.960351i \(0.589935\pi\)
−0.960351 + 0.278795i \(0.910065\pi\)
\(60\) 4.44120 0.525096i 0.573357 0.0677896i
\(61\) 1.68585 + 1.68585i 0.215850 + 0.215850i 0.806747 0.590897i \(-0.201226\pi\)
−0.590897 + 0.806747i \(0.701226\pi\)
\(62\) −0.196558 + 0.364346i −0.0249628 + 0.0462720i
\(63\) 0.146365 0.146365i 0.0184403 0.0184403i
\(64\) −7.88030 + 1.37873i −0.985037 + 0.172341i
\(65\) 0 0
\(66\) −0.0838942 0.280452i −0.0103267 0.0345212i
\(67\) 13.0790i 1.59785i 0.601431 + 0.798925i \(0.294597\pi\)
−0.601431 + 0.798925i \(0.705403\pi\)
\(68\) 10.2088 + 2.11266i 1.23800 + 0.256198i
\(69\) −2.83221 2.83221i −0.340958 0.340958i
\(70\) −0.112663 + 0.644798i −0.0134659 + 0.0770681i
\(71\) −4.58546 −0.544194 −0.272097 0.962270i \(-0.587717\pi\)
−0.272097 + 0.962270i \(0.587717\pi\)
\(72\) −0.244644 2.81783i −0.0288316 0.332084i
\(73\) 6.37169 6.37169i 0.745750 0.745750i −0.227928 0.973678i \(-0.573195\pi\)
0.973678 + 0.227928i \(0.0731950\pi\)
\(74\) −6.29273 + 11.6644i −0.731515 + 1.35596i
\(75\) −3.00000 4.00000i −0.346410 0.461880i
\(76\) −1.62337 + 7.84449i −0.186214 + 0.899825i
\(77\) 0.0428457 0.00488272
\(78\) 0 0
\(79\) 4.58546 0.515905 0.257952 0.966158i \(-0.416952\pi\)
0.257952 + 0.966158i \(0.416952\pi\)
\(80\) 5.75536 + 6.84660i 0.643468 + 0.765473i
\(81\) 1.00000 0.111111
\(82\) 2.68585 4.97858i 0.296602 0.549792i
\(83\) −8.58546 −0.942377 −0.471188 0.882033i \(-0.656175\pi\)
−0.471188 + 0.882033i \(0.656175\pi\)
\(84\) 0.405394 + 0.0838942i 0.0442322 + 0.00915360i
\(85\) −3.68585 11.0575i −0.399786 1.19936i
\(86\) 6.48929 12.0288i 0.699758 1.29710i
\(87\) −1.00000 + 1.00000i −0.107211 + 0.107211i
\(88\) 0.376625 0.448240i 0.0401484 0.0477826i
\(89\) 3.37169 0.357399 0.178699 0.983904i \(-0.442811\pi\)
0.178699 + 0.983904i \(0.442811\pi\)
\(90\) −2.58757 + 1.81783i −0.272754 + 0.191616i
\(91\) 0 0
\(92\) 1.62337 7.84449i 0.169249 0.817845i
\(93\) 0.292731i 0.0303548i
\(94\) −4.08389 13.6521i −0.421222 1.40811i
\(95\) 8.49663 2.83221i 0.871736 0.290579i
\(96\) 4.44120 3.50367i 0.453278 0.357592i
\(97\) −3.58546 + 3.58546i −0.364049 + 0.364049i −0.865301 0.501253i \(-0.832873\pi\)
0.501253 + 0.865301i \(0.332873\pi\)
\(98\) 4.67146 8.65918i 0.471889 0.874710i
\(99\) 0.146365 + 0.146365i 0.0147103 + 0.0147103i
\(100\) 3.39101 9.40750i 0.339101 0.940750i
\(101\) −10.3717 + 10.3717i −1.03202 + 1.03202i −0.0325519 + 0.999470i \(0.510363\pi\)
−0.999470 + 0.0325519i \(0.989637\pi\)
\(102\) −7.06247 + 2.11266i −0.699289 + 0.209185i
\(103\) −5.51806 5.51806i −0.543710 0.543710i 0.380904 0.924615i \(-0.375613\pi\)
−0.924615 + 0.380904i \(0.875613\pi\)
\(104\) 0 0
\(105\) −0.146365 0.439096i −0.0142838 0.0428514i
\(106\) 14.8824 + 8.02877i 1.44551 + 0.779823i
\(107\) −11.3288 −1.09520 −0.547600 0.836740i \(-0.684459\pi\)
−0.547600 + 0.836740i \(0.684459\pi\)
\(108\) 1.09828 + 1.67146i 0.105682 + 0.160836i
\(109\) 10.2713 10.2713i 0.983813 0.983813i −0.0160582 0.999871i \(-0.505112\pi\)
0.999871 + 0.0160582i \(0.00511169\pi\)
\(110\) −0.644798 0.112663i −0.0614790 0.0107420i
\(111\) 9.37169i 0.889522i
\(112\) 0.305010 + 0.769740i 0.0288208 + 0.0727336i
\(113\) −1.68585 1.68585i −0.158591 0.158591i 0.623351 0.781942i \(-0.285771\pi\)
−0.781942 + 0.623351i \(0.785771\pi\)
\(114\) −1.62337 5.42682i −0.152043 0.508268i
\(115\) −8.49663 + 2.83221i −0.792315 + 0.264105i
\(116\) −2.76974 0.573183i −0.257164 0.0532187i
\(117\) 0 0
\(118\) 18.2376 5.45559i 1.67891 0.502227i
\(119\) 1.07896i 0.0989082i
\(120\) −5.88030 2.32854i −0.536795 0.212566i
\(121\) 10.9572i 0.996105i
\(122\) −0.966298 3.23026i −0.0874845 0.292454i
\(123\) 4.00000i 0.360668i
\(124\) 0.489289 0.321500i 0.0439394 0.0288716i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) −0.280452 + 0.0838942i −0.0249846 + 0.00747389i
\(127\) 3.85363 + 3.85363i 0.341955 + 0.341955i 0.857102 0.515147i \(-0.172263\pi\)
−0.515147 + 0.857102i \(0.672263\pi\)
\(128\) 10.7339 + 3.57529i 0.948755 + 0.316014i
\(129\) 9.66442i 0.850905i
\(130\) 0 0
\(131\) 13.2253 13.2253i 1.15550 1.15550i 0.170070 0.985432i \(-0.445601\pi\)
0.985432 0.170070i \(-0.0543995\pi\)
\(132\) −0.0838942 + 0.405394i −0.00730205 + 0.0352851i
\(133\) 0.829076 0.0718900
\(134\) 8.78202 16.2787i 0.758651 1.40626i
\(135\) 1.00000 2.00000i 0.0860663 0.172133i
\(136\) −11.2878 9.48436i −0.967921 0.813277i
\(137\) 12.2713 + 12.2713i 1.04841 + 1.04841i 0.998767 + 0.0496415i \(0.0158079\pi\)
0.0496415 + 0.998767i \(0.484192\pi\)
\(138\) 1.62337 + 5.42682i 0.138191 + 0.461961i
\(139\) 6.53948 6.53948i 0.554672 0.554672i −0.373114 0.927786i \(-0.621710\pi\)
0.927786 + 0.373114i \(0.121710\pi\)
\(140\) 0.573183 0.726895i 0.0484428 0.0614338i
\(141\) 7.12494 + 7.12494i 0.600028 + 0.600028i
\(142\) 5.70727 + 3.07896i 0.478943 + 0.258381i
\(143\) 0 0
\(144\) −1.58757 + 3.67146i −0.132297 + 0.305955i
\(145\) 1.00000 + 3.00000i 0.0830455 + 0.249136i
\(146\) −12.2088 + 3.65214i −1.01041 + 0.302254i
\(147\) 6.95715i 0.573816i
\(148\) 15.6644 10.2927i 1.28761 0.846057i
\(149\) 8.37169 + 8.37169i 0.685836 + 0.685836i 0.961309 0.275473i \(-0.0888345\pi\)
−0.275473 + 0.961309i \(0.588834\pi\)
\(150\) 1.04809 + 6.99296i 0.0855759 + 0.570973i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 7.28780 8.67357i 0.591118 0.703519i
\(153\) 3.68585 3.68585i 0.297983 0.297983i
\(154\) −0.0533277 0.0287692i −0.00429727 0.00231829i
\(155\) −0.585462 0.292731i −0.0470254 0.0235127i
\(156\) 0 0
\(157\) −24.7434 −1.97474 −0.987369 0.158440i \(-0.949353\pi\)
−0.987369 + 0.158440i \(0.949353\pi\)
\(158\) −5.70727 3.07896i −0.454046 0.244949i
\(159\) −11.9572 −0.948264
\(160\) −2.56614 12.3861i −0.202872 0.979205i
\(161\) −0.829076 −0.0653403
\(162\) −1.24464 0.671462i −0.0977885 0.0527550i
\(163\) −7.41454 −0.580751 −0.290376 0.956913i \(-0.593780\pi\)
−0.290376 + 0.956913i \(0.593780\pi\)
\(164\) −6.68585 + 4.39312i −0.522077 + 0.343045i
\(165\) 0.439096 0.146365i 0.0341836 0.0113945i
\(166\) 10.6858 + 5.76481i 0.829383 + 0.447436i
\(167\) 12.2039 12.2039i 0.944366 0.944366i −0.0541655 0.998532i \(-0.517250\pi\)
0.998532 + 0.0541655i \(0.0172499\pi\)
\(168\) −0.448240 0.376625i −0.0345825 0.0290573i
\(169\) 13.0000 1.00000
\(170\) −2.83714 + 16.2376i −0.217599 + 1.24537i
\(171\) 2.83221 + 2.83221i 0.216585 + 0.216585i
\(172\) −16.1537 + 10.6142i −1.23171 + 0.809328i
\(173\) 14.7434i 1.12092i 0.828182 + 0.560459i \(0.189375\pi\)
−0.828182 + 0.560459i \(0.810625\pi\)
\(174\) 1.91611 0.573183i 0.145260 0.0434529i
\(175\) −1.02456 0.146365i −0.0774493 0.0110642i
\(176\) −0.769740 + 0.305010i −0.0580214 + 0.0229910i
\(177\) −9.51806 + 9.51806i −0.715421 + 0.715421i
\(178\) −4.19656 2.26396i −0.314545 0.169691i
\(179\) −9.22533 9.22533i −0.689533 0.689533i 0.272595 0.962129i \(-0.412118\pi\)
−0.962129 + 0.272595i \(0.912118\pi\)
\(180\) 4.44120 0.525096i 0.331028 0.0391383i
\(181\) −3.68585 + 3.68585i −0.273967 + 0.273967i −0.830695 0.556728i \(-0.812057\pi\)
0.556728 + 0.830695i \(0.312057\pi\)
\(182\) 0 0
\(183\) 1.68585 + 1.68585i 0.124621 + 0.124621i
\(184\) −7.28780 + 8.67357i −0.537264 + 0.639424i
\(185\) −18.7434 9.37169i −1.37804 0.689021i
\(186\) −0.196558 + 0.364346i −0.0144123 + 0.0267151i
\(187\) 1.07896 0.0789015
\(188\) −4.08389 + 19.7342i −0.297849 + 1.43927i
\(189\) 0.146365 0.146365i 0.0106465 0.0106465i
\(190\) −12.4770 2.18007i −0.905177 0.158159i
\(191\) 6.33558i 0.458426i −0.973376 0.229213i \(-0.926385\pi\)
0.973376 0.229213i \(-0.0736153\pi\)
\(192\) −7.88030 + 1.37873i −0.568712 + 0.0995013i
\(193\) 0.414538 + 0.414538i 0.0298391 + 0.0298391i 0.721869 0.692030i \(-0.243283\pi\)
−0.692030 + 0.721869i \(0.743283\pi\)
\(194\) 6.87012 2.05512i 0.493246 0.147549i
\(195\) 0 0
\(196\) −11.6286 + 7.64090i −0.830615 + 0.545778i
\(197\) 8.78623i 0.625993i 0.949754 + 0.312996i \(0.101333\pi\)
−0.949754 + 0.312996i \(0.898667\pi\)
\(198\) −0.0838942 0.280452i −0.00596210 0.0199308i
\(199\) 11.7073i 0.829906i −0.909843 0.414953i \(-0.863798\pi\)
0.909843 0.414953i \(-0.136202\pi\)
\(200\) −10.5374 + 9.43206i −0.745105 + 0.666947i
\(201\) 13.0790i 0.922519i
\(202\) 19.8733 5.94488i 1.39828 0.418280i
\(203\) 0.292731i 0.0205457i
\(204\) 10.2088 + 2.11266i 0.714762 + 0.147916i
\(205\) 8.00000 + 4.00000i 0.558744 + 0.279372i
\(206\) 3.16286 + 10.5732i 0.220367 + 0.736669i
\(207\) −2.83221 2.83221i −0.196852 0.196852i
\(208\) 0 0
\(209\) 0.829076i 0.0573484i
\(210\) −0.112663 + 0.644798i −0.00777451 + 0.0444953i
\(211\) 12.4966 12.4966i 0.860304 0.860304i −0.131069 0.991373i \(-0.541841\pi\)
0.991373 + 0.131069i \(0.0418411\pi\)
\(212\) −13.1323 19.9859i −0.901929 1.37264i
\(213\) −4.58546 −0.314191
\(214\) 14.1004 + 7.60688i 0.963882 + 0.519996i
\(215\) 19.3288 + 9.66442i 1.31822 + 0.659108i
\(216\) −0.244644 2.81783i −0.0166459 0.191729i
\(217\) −0.0428457 0.0428457i −0.00290856 0.00290856i
\(218\) −19.6809 + 5.88734i −1.33296 + 0.398741i
\(219\) 6.37169 6.37169i 0.430559 0.430559i
\(220\) 0.726895 + 0.573183i 0.0490072 + 0.0386440i
\(221\) 0 0
\(222\) −6.29273 + 11.6644i −0.422340 + 0.782865i
\(223\) −17.2253 + 17.2253i −1.15349 + 1.15349i −0.167646 + 0.985847i \(0.553617\pi\)
−0.985847 + 0.167646i \(0.946383\pi\)
\(224\) 0.137222 1.16286i 0.00916852 0.0776966i
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 0.966298 + 3.23026i 0.0642772 + 0.214874i
\(227\) 8.29273i 0.550408i −0.961386 0.275204i \(-0.911255\pi\)
0.961386 0.275204i \(-0.0887454\pi\)
\(228\) −1.62337 + 7.84449i −0.107511 + 0.519514i
\(229\) 10.2713 + 10.2713i 0.678747 + 0.678747i 0.959717 0.280970i \(-0.0906560\pi\)
−0.280970 + 0.959717i \(0.590656\pi\)
\(230\) 12.4770 + 2.18007i 0.822710 + 0.143749i
\(231\) 0.0428457 0.00281904
\(232\) 3.06247 + 2.57318i 0.201061 + 0.168938i
\(233\) 8.27131 8.27131i 0.541871 0.541871i −0.382206 0.924077i \(-0.624835\pi\)
0.924077 + 0.382206i \(0.124835\pi\)
\(234\) 0 0
\(235\) 21.3748 7.12494i 1.39434 0.464780i
\(236\) −26.3625 5.45559i −1.71606 0.355128i
\(237\) 4.58546 0.297858
\(238\) −0.724481 + 1.34292i −0.0469611 + 0.0870488i
\(239\) −3.41454 −0.220868 −0.110434 0.993883i \(-0.535224\pi\)
−0.110434 + 0.993883i \(0.535224\pi\)
\(240\) 5.75536 + 6.84660i 0.371507 + 0.441946i
\(241\) 3.17092 0.204257 0.102129 0.994771i \(-0.467435\pi\)
0.102129 + 0.994771i \(0.467435\pi\)
\(242\) −7.35731 + 13.6378i −0.472946 + 0.876668i
\(243\) 1.00000 0.0641500
\(244\) −0.966298 + 4.66936i −0.0618609 + 0.298925i
\(245\) 13.9143 + 6.95715i 0.888953 + 0.444476i
\(246\) 2.68585 4.97858i 0.171243 0.317422i
\(247\) 0 0
\(248\) −0.824865 + 0.0716150i −0.0523790 + 0.00454755i
\(249\) −8.58546 −0.544082
\(250\) 15.0340 + 4.89679i 0.950834 + 0.309700i
\(251\) −3.85363 3.85363i −0.243239 0.243239i 0.574950 0.818189i \(-0.305022\pi\)
−0.818189 + 0.574950i \(0.805022\pi\)
\(252\) 0.405394 + 0.0838942i 0.0255374 + 0.00528484i
\(253\) 0.829076i 0.0521236i
\(254\) −2.20884 7.38397i −0.138595 0.463312i
\(255\) −3.68585 11.0575i −0.230817 0.692450i
\(256\) −10.9593 11.6574i −0.684954 0.728587i
\(257\) 21.6430 21.6430i 1.35005 1.35005i 0.464458 0.885595i \(-0.346249\pi\)
0.885595 0.464458i \(-0.153751\pi\)
\(258\) 6.48929 12.0288i 0.404005 0.748878i
\(259\) −1.37169 1.37169i −0.0852328 0.0852328i
\(260\) 0 0
\(261\) −1.00000 + 1.00000i −0.0618984 + 0.0618984i
\(262\) −25.3411 + 7.58053i −1.56558 + 0.468327i
\(263\) −14.2467 14.2467i −0.878492 0.878492i 0.114886 0.993379i \(-0.463350\pi\)
−0.993379 + 0.114886i \(0.963350\pi\)
\(264\) 0.376625 0.448240i 0.0231797 0.0275873i
\(265\) −11.9572 + 23.9143i −0.734522 + 1.46904i
\(266\) −1.03190 0.556693i −0.0632701 0.0341330i
\(267\) 3.37169 0.206344
\(268\) −21.8610 + 14.3643i −1.33537 + 0.877442i
\(269\) 11.7862 11.7862i 0.718619 0.718619i −0.249703 0.968322i \(-0.580333\pi\)
0.968322 + 0.249703i \(0.0803331\pi\)
\(270\) −2.58757 + 1.81783i −0.157474 + 0.110629i
\(271\) 11.7073i 0.711166i −0.934645 0.355583i \(-0.884282\pi\)
0.934645 0.355583i \(-0.115718\pi\)
\(272\) 7.68091 + 19.3840i 0.465724 + 1.17533i
\(273\) 0 0
\(274\) −7.03370 23.5131i −0.424921 1.42048i
\(275\) 0.146365 1.02456i 0.00882617 0.0617832i
\(276\) 1.62337 7.84449i 0.0977157 0.472183i
\(277\) 18.5426i 1.11412i −0.830473 0.557059i \(-0.811930\pi\)
0.830473 0.557059i \(-0.188070\pi\)
\(278\) −12.5303 + 3.74832i −0.751520 + 0.224809i
\(279\) 0.292731i 0.0175253i
\(280\) −1.20149 + 0.519855i −0.0718028 + 0.0310673i
\(281\) 2.62831i 0.156792i −0.996922 0.0783958i \(-0.975020\pi\)
0.996922 0.0783958i \(-0.0249798\pi\)
\(282\) −4.08389 13.6521i −0.243192 0.812973i
\(283\) 22.2499i 1.32262i 0.750113 + 0.661309i \(0.229999\pi\)
−0.750113 + 0.661309i \(0.770001\pi\)
\(284\) −5.03612 7.66442i −0.298838 0.454800i
\(285\) 8.49663 2.83221i 0.503297 0.167766i
\(286\) 0 0
\(287\) 0.585462 + 0.585462i 0.0345587 + 0.0345587i
\(288\) 4.44120 3.50367i 0.261700 0.206456i
\(289\) 10.1709i 0.598290i
\(290\) 0.769740 4.40539i 0.0452007 0.258694i
\(291\) −3.58546 + 3.58546i −0.210184 + 0.210184i
\(292\) 17.6479 + 3.65214i 1.03277 + 0.213726i
\(293\) 21.9143 1.28025 0.640124 0.768272i \(-0.278883\pi\)
0.640124 + 0.768272i \(0.278883\pi\)
\(294\) 4.67146 8.65918i 0.272445 0.505014i
\(295\) 9.51806 + 28.5542i 0.554163 + 1.66249i
\(296\) −26.4078 + 2.29273i −1.53492 + 0.133262i
\(297\) 0.146365 + 0.146365i 0.00849299 + 0.00849299i
\(298\) −4.79851 16.0410i −0.277970 0.929233i
\(299\) 0 0
\(300\) 3.39101 9.40750i 0.195780 0.543142i
\(301\) 1.41454 + 1.41454i 0.0815326 + 0.0815326i
\(302\) 0 0
\(303\) −10.3717 + 10.3717i −0.595838 + 0.595838i
\(304\) −14.8947 + 5.90203i −0.854269 + 0.338505i
\(305\) 5.05754 1.68585i 0.289594 0.0965313i
\(306\) −7.06247 + 2.11266i −0.403735 + 0.120773i
\(307\) 6.33558i 0.361590i −0.983521 0.180795i \(-0.942133\pi\)
0.983521 0.180795i \(-0.0578671\pi\)
\(308\) 0.0470565 + 0.0716150i 0.00268130 + 0.00408064i
\(309\) −5.51806 5.51806i −0.313911 0.313911i
\(310\) 0.532134 + 0.757461i 0.0302232 + 0.0430209i
\(311\) −7.32885 −0.415581 −0.207790 0.978173i \(-0.566627\pi\)
−0.207790 + 0.978173i \(0.566627\pi\)
\(312\) 0 0
\(313\) −3.00000 + 3.00000i −0.169570 + 0.169570i −0.786790 0.617220i \(-0.788259\pi\)
0.617220 + 0.786790i \(0.288259\pi\)
\(314\) 30.7967 + 16.6142i 1.73796 + 0.937595i
\(315\) −0.146365 0.439096i −0.00824676 0.0247403i
\(316\) 5.03612 + 7.66442i 0.283304 + 0.431157i
\(317\) −19.9572 −1.12091 −0.560453 0.828186i \(-0.689373\pi\)
−0.560453 + 0.828186i \(0.689373\pi\)
\(318\) 14.8824 + 8.02877i 0.834564 + 0.450231i
\(319\) −0.292731 −0.0163898
\(320\) −5.12284 + 17.1393i −0.286375 + 0.958118i
\(321\) −11.3288 −0.632315
\(322\) 1.03190 + 0.556693i 0.0575058 + 0.0310233i
\(323\) 20.8782 1.16169
\(324\) 1.09828 + 1.67146i 0.0610155 + 0.0928590i
\(325\) 0 0
\(326\) 9.22846 + 4.97858i 0.511117 + 0.275738i
\(327\) 10.2713 10.2713i 0.568005 0.568005i
\(328\) 11.2713 0.978577i 0.622354 0.0540329i
\(329\) 2.08569 0.114988
\(330\) −0.644798 0.112663i −0.0354949 0.00620192i
\(331\) −12.4966 12.4966i −0.686877 0.686877i 0.274663 0.961540i \(-0.411434\pi\)
−0.961540 + 0.274663i \(0.911434\pi\)
\(332\) −9.42923 14.3503i −0.517496 0.787573i
\(333\) 9.37169i 0.513566i
\(334\) −23.3840 + 6.99507i −1.27951 + 0.382753i
\(335\) 26.1579 + 13.0790i 1.42916 + 0.714580i
\(336\) 0.305010 + 0.769740i 0.0166397 + 0.0419928i
\(337\) −15.5855 + 15.5855i −0.848994 + 0.848994i −0.990008 0.141013i \(-0.954964\pi\)
0.141013 + 0.990008i \(0.454964\pi\)
\(338\) −16.1804 8.72900i −0.880096 0.474795i
\(339\) −1.68585 1.68585i −0.0915626 0.0915626i
\(340\) 14.4342 18.3050i 0.782802 0.992729i
\(341\) 0.0428457 0.0428457i 0.00232023 0.00232023i
\(342\) −1.62337 5.42682i −0.0877821 0.293449i
\(343\) 2.04285 + 2.04285i 0.110303 + 0.110303i
\(344\) 27.2327 2.36435i 1.46829 0.127477i
\(345\) −8.49663 + 2.83221i −0.457443 + 0.152481i
\(346\) 9.89962 18.3503i 0.532207 0.986517i
\(347\) −14.7434 −0.791466 −0.395733 0.918366i \(-0.629509\pi\)
−0.395733 + 0.918366i \(0.629509\pi\)
\(348\) −2.76974 0.573183i −0.148474 0.0307258i
\(349\) 3.64300 3.64300i 0.195005 0.195005i −0.602850 0.797855i \(-0.705968\pi\)
0.797855 + 0.602850i \(0.205968\pi\)
\(350\) 1.17693 + 0.870125i 0.0629097 + 0.0465101i
\(351\) 0 0
\(352\) 1.16286 + 0.137222i 0.0619804 + 0.00731395i
\(353\) 3.68585 + 3.68585i 0.196178 + 0.196178i 0.798359 0.602181i \(-0.205702\pi\)
−0.602181 + 0.798359i \(0.705702\pi\)
\(354\) 18.2376 5.45559i 0.969318 0.289961i
\(355\) −4.58546 + 9.17092i −0.243371 + 0.486742i
\(356\) 3.70306 + 5.63565i 0.196262 + 0.298689i
\(357\) 1.07896i 0.0571047i
\(358\) 5.28780 + 17.6767i 0.279469 + 0.934243i
\(359\) 32.9933i 1.74132i 0.491887 + 0.870659i \(0.336307\pi\)
−0.491887 + 0.870659i \(0.663693\pi\)
\(360\) −5.88030 2.32854i −0.309919 0.122725i
\(361\) 2.95715i 0.155640i
\(362\) 7.06247 2.11266i 0.371195 0.111039i
\(363\) 10.9572i 0.575101i
\(364\) 0 0
\(365\) −6.37169 19.1151i −0.333510 1.00053i
\(366\) −0.966298 3.23026i −0.0505092 0.168848i
\(367\) −18.1035 18.1035i −0.944996 0.944996i 0.0535682 0.998564i \(-0.482941\pi\)
−0.998564 + 0.0535682i \(0.982941\pi\)
\(368\) 14.8947 5.90203i 0.776439 0.307665i
\(369\) 4.00000i 0.208232i
\(370\) 17.0361 + 24.2499i 0.885665 + 1.26069i
\(371\) −1.75011 + 1.75011i −0.0908614 + 0.0908614i
\(372\) 0.489289 0.321500i 0.0253684 0.0166690i
\(373\) 13.9143 0.720456 0.360228 0.932864i \(-0.382699\pi\)
0.360228 + 0.932864i \(0.382699\pi\)
\(374\) −1.34292 0.724481i −0.0694409 0.0374620i
\(375\) −11.0000 + 2.00000i −0.568038 + 0.103280i
\(376\) 18.3338 21.8199i 0.945492 1.12528i
\(377\) 0 0
\(378\) −0.280452 + 0.0838942i −0.0144249 + 0.00431505i
\(379\) 7.71040 7.71040i 0.396057 0.396057i −0.480783 0.876840i \(-0.659647\pi\)
0.876840 + 0.480783i \(0.159647\pi\)
\(380\) 14.0656 + 11.0912i 0.721550 + 0.568969i
\(381\) 3.85363 + 3.85363i 0.197428 + 0.197428i
\(382\) −4.25410 + 7.88554i −0.217658 + 0.403459i
\(383\) 14.8322 14.8322i 0.757891 0.757891i −0.218048 0.975938i \(-0.569969\pi\)
0.975938 + 0.218048i \(0.0699688\pi\)
\(384\) 10.7339 + 3.57529i 0.547764 + 0.182451i
\(385\) 0.0428457 0.0856914i 0.00218362 0.00436724i
\(386\) −0.237606 0.794299i −0.0120938 0.0404287i
\(387\) 9.66442i 0.491270i
\(388\) −9.93080 2.05512i −0.504160 0.104333i
\(389\) 16.3717 + 16.3717i 0.830078 + 0.830078i 0.987527 0.157449i \(-0.0503271\pi\)
−0.157449 + 0.987527i \(0.550327\pi\)
\(390\) 0 0
\(391\) −20.8782 −1.05586
\(392\) 19.6041 1.70203i 0.990154 0.0859654i
\(393\) 13.2253 13.2253i 0.667129 0.667129i
\(394\) 5.89962 10.9357i 0.297218 0.550934i
\(395\) 4.58546 9.17092i 0.230720 0.461439i
\(396\) −0.0838942 + 0.405394i −0.00421584 + 0.0203718i
\(397\) 0.628308 0.0315339 0.0157669 0.999876i \(-0.494981\pi\)
0.0157669 + 0.999876i \(0.494981\pi\)
\(398\) −7.86098 + 14.5714i −0.394035 + 0.730398i
\(399\) 0.829076 0.0415057
\(400\) 19.4485 4.66412i 0.972427 0.233206i
\(401\) −8.54262 −0.426598 −0.213299 0.976987i \(-0.568421\pi\)
−0.213299 + 0.976987i \(0.568421\pi\)
\(402\) 8.78202 16.2787i 0.438007 0.811905i
\(403\) 0 0
\(404\) −28.7269 5.94488i −1.42922 0.295769i
\(405\) 1.00000 2.00000i 0.0496904 0.0993808i
\(406\) 0.196558 0.364346i 0.00975499 0.0180822i
\(407\) 1.37169 1.37169i 0.0679923 0.0679923i
\(408\) −11.2878 9.48436i −0.558829 0.469546i
\(409\) −38.7005 −1.91362 −0.956809 0.290716i \(-0.906106\pi\)
−0.956809 + 0.290716i \(0.906106\pi\)
\(410\) −7.27131 10.3503i −0.359104 0.511163i
\(411\) 12.2713 + 12.2713i 0.605299 + 0.605299i
\(412\) 3.16286 15.2836i 0.155823 0.752968i
\(413\) 2.78623i 0.137101i
\(414\) 1.62337 + 5.42682i 0.0797845 + 0.266714i
\(415\) −8.58546 + 17.1709i −0.421444 + 0.842888i
\(416\) 0 0
\(417\) 6.53948 6.53948i 0.320240 0.320240i
\(418\) 0.556693 1.03190i 0.0272287 0.0504721i
\(419\) −9.81079 9.81079i −0.479288 0.479288i 0.425616 0.904904i \(-0.360058\pi\)
−0.904904 + 0.425616i \(0.860058\pi\)
\(420\) 0.573183 0.726895i 0.0279685 0.0354688i
\(421\) −20.2713 + 20.2713i −0.987963 + 0.987963i −0.999928 0.0119653i \(-0.996191\pi\)
0.0119653 + 0.999928i \(0.496191\pi\)
\(422\) −23.9449 + 7.16286i −1.16562 + 0.348682i
\(423\) 7.12494 + 7.12494i 0.346427 + 0.346427i
\(424\) 2.92525 + 33.6932i 0.142063 + 1.63629i
\(425\) −25.8009 3.68585i −1.25153 0.178790i
\(426\) 5.70727 + 3.07896i 0.276518 + 0.149176i
\(427\) 0.493499 0.0238821
\(428\) −12.4422 18.9357i −0.601418 0.915293i
\(429\) 0 0
\(430\) −17.5682 25.0073i −0.847216 1.20596i
\(431\) 29.0790i 1.40068i 0.713807 + 0.700342i \(0.246969\pi\)
−0.713807 + 0.700342i \(0.753031\pi\)
\(432\) −1.58757 + 3.67146i −0.0763819 + 0.176643i
\(433\) −8.95715 8.95715i −0.430453 0.430453i 0.458329 0.888783i \(-0.348448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(434\) 0.0245584 + 0.0820969i 0.00117884 + 0.00394078i
\(435\) 1.00000 + 3.00000i 0.0479463 + 0.143839i
\(436\) 28.4489 + 5.88734i 1.36245 + 0.281952i
\(437\) 16.0428i 0.767433i
\(438\) −12.2088 + 3.65214i −0.583361 + 0.174506i
\(439\) 7.03612i 0.335815i 0.985803 + 0.167908i \(0.0537011\pi\)
−0.985803 + 0.167908i \(0.946299\pi\)
\(440\) −0.519855 1.20149i −0.0247831 0.0572788i
\(441\) 6.95715i 0.331293i
\(442\) 0 0
\(443\) 33.8652i 1.60898i −0.593964 0.804492i \(-0.702438\pi\)
0.593964 0.804492i \(-0.297562\pi\)
\(444\) 15.6644 10.2927i 0.743401 0.488471i
\(445\) 3.37169 6.74338i 0.159834 0.319667i
\(446\) 33.0055 9.87326i 1.56286 0.467512i
\(447\) 8.37169 + 8.37169i 0.395967 + 0.395967i
\(448\) −0.951605 + 1.35520i −0.0449591 + 0.0640273i
\(449\) 32.1151i 1.51560i −0.652484 0.757802i \(-0.726273\pi\)
0.652484 0.757802i \(-0.273727\pi\)
\(450\) 1.04809 + 6.99296i 0.0494073 + 0.329651i
\(451\) −0.585462 + 0.585462i −0.0275683 + 0.0275683i
\(452\) 0.966298 4.66936i 0.0454508 0.219628i
\(453\) 0 0
\(454\) −5.56825 + 10.3215i −0.261331 + 0.484412i
\(455\) 0 0
\(456\) 7.28780 8.67357i 0.341282 0.406177i
\(457\) 4.41454 + 4.41454i 0.206503 + 0.206503i 0.802779 0.596276i \(-0.203354\pi\)
−0.596276 + 0.802779i \(0.703354\pi\)
\(458\) −5.88734 19.6809i −0.275097 0.919629i
\(459\) 3.68585 3.68585i 0.172041 0.172041i
\(460\) −14.0656 11.0912i −0.655812 0.517132i
\(461\) 4.95715 + 4.95715i 0.230878 + 0.230878i 0.813059 0.582181i \(-0.197801\pi\)
−0.582181 + 0.813059i \(0.697801\pi\)
\(462\) −0.0533277 0.0287692i −0.00248103 0.00133847i
\(463\) 2.77467 2.77467i 0.128950 0.128950i −0.639686 0.768636i \(-0.720936\pi\)
0.768636 + 0.639686i \(0.220936\pi\)
\(464\) −2.08389 5.25903i −0.0967424 0.244144i
\(465\) −0.585462 0.292731i −0.0271501 0.0135751i
\(466\) −15.8487 + 4.74097i −0.734177 + 0.219621i
\(467\) 23.0361i 1.06598i 0.846120 + 0.532992i \(0.178932\pi\)
−0.846120 + 0.532992i \(0.821068\pi\)
\(468\) 0 0
\(469\) 1.91431 + 1.91431i 0.0883946 + 0.0883946i
\(470\) −31.3882 5.48436i −1.44783 0.252974i
\(471\) −24.7434 −1.14011
\(472\) 29.1488 + 24.4917i 1.34168 + 1.12732i
\(473\) −1.41454 + 1.41454i −0.0650405 + 0.0650405i
\(474\) −5.70727 3.07896i −0.262144 0.141421i
\(475\) 2.83221 19.8255i 0.129951 0.909655i
\(476\) 1.80344 1.18500i 0.0826606 0.0543144i
\(477\) −11.9572 −0.547480
\(478\) 4.24989 + 2.29273i 0.194385 + 0.104867i
\(479\) −20.5855 −0.940574 −0.470287 0.882514i \(-0.655850\pi\)
−0.470287 + 0.882514i \(0.655850\pi\)
\(480\) −2.56614 12.3861i −0.117128 0.565344i
\(481\) 0 0
\(482\) −3.94667 2.12915i −0.179766 0.0969803i
\(483\) −0.829076 −0.0377243
\(484\) 18.3145 12.0340i 0.832476 0.547000i
\(485\) 3.58546 + 10.7564i 0.162807 + 0.488422i
\(486\) −1.24464 0.671462i −0.0564582 0.0304581i
\(487\) 5.31729 5.31729i 0.240949 0.240949i −0.576293 0.817243i \(-0.695501\pi\)
0.817243 + 0.576293i \(0.195501\pi\)
\(488\) 4.33799 5.16286i 0.196372 0.233711i
\(489\) −7.41454 −0.335297
\(490\) −12.6469 18.0021i −0.571329 0.813252i
\(491\) 21.5181 + 21.5181i 0.971096 + 0.971096i 0.999594 0.0284975i \(-0.00907227\pi\)
−0.0284975 + 0.999594i \(0.509072\pi\)
\(492\) −6.68585 + 4.39312i −0.301421 + 0.198057i
\(493\) 7.37169i 0.332004i
\(494\) 0 0
\(495\) 0.439096 0.146365i 0.0197359 0.00657864i
\(496\) 1.07475 + 0.464730i 0.0482577 + 0.0208670i
\(497\) −0.671153 + 0.671153i −0.0301053 + 0.0301053i
\(498\) 10.6858 + 5.76481i 0.478844 + 0.258327i
\(499\) 2.83221 + 2.83221i 0.126787 + 0.126787i 0.767653 0.640866i \(-0.221424\pi\)
−0.640866 + 0.767653i \(0.721424\pi\)
\(500\) −15.4240 16.1895i −0.689782 0.724017i
\(501\) 12.2039 12.2039i 0.545230 0.545230i
\(502\) 2.20884 + 7.38397i 0.0985852 + 0.329563i
\(503\) 7.32571 + 7.32571i 0.326637 + 0.326637i 0.851306 0.524669i \(-0.175811\pi\)
−0.524669 + 0.851306i \(0.675811\pi\)
\(504\) −0.448240 0.376625i −0.0199662 0.0167762i
\(505\) 10.3717 + 31.1151i 0.461534 + 1.38460i
\(506\) −0.556693 + 1.03190i −0.0247480 + 0.0458738i
\(507\) 13.0000 0.577350
\(508\) −2.20884 + 10.6736i −0.0980013 + 0.473563i
\(509\) −10.1709 + 10.1709i −0.450818 + 0.450818i −0.895626 0.444808i \(-0.853272\pi\)
0.444808 + 0.895626i \(0.353272\pi\)
\(510\) −2.83714 + 16.2376i −0.125631 + 0.719013i
\(511\) 1.86519i 0.0825112i
\(512\) 5.81289 + 21.8680i 0.256896 + 0.966439i
\(513\) 2.83221 + 2.83221i 0.125045 + 0.125045i
\(514\) −41.4703 + 12.4054i −1.82918 + 0.547178i
\(515\) −16.5542 + 5.51806i −0.729464 + 0.243155i
\(516\) −16.1537 + 10.6142i −0.711128 + 0.467265i
\(517\) 2.08569i 0.0917286i
\(518\) 0.786230 + 2.62831i 0.0345450 + 0.115481i
\(519\) 14.7434i 0.647163i
\(520\) 0 0
\(521\) 8.11508i 0.355528i −0.984073 0.177764i \(-0.943114\pi\)
0.984073 0.177764i \(-0.0568864\pi\)
\(522\) 1.91611 0.573183i 0.0838657 0.0250875i
\(523\) 5.07896i 0.222087i 0.993816 + 0.111044i \(0.0354194\pi\)
−0.993816 + 0.111044i \(0.964581\pi\)
\(524\) 36.6307 + 7.58053i 1.60022 + 0.331157i
\(525\) −1.02456 0.146365i −0.0447154 0.00638791i
\(526\) 8.16599 + 27.2983i 0.356054 + 1.19026i
\(527\) −1.07896 1.07896i −0.0470003 0.0470003i
\(528\) −0.769740 + 0.305010i −0.0334986 + 0.0132739i
\(529\) 6.95715i 0.302485i
\(530\) 30.9399 21.7360i 1.34395 0.944153i
\(531\) −9.51806 + 9.51806i −0.413049 + 0.413049i
\(532\) 0.910557 + 1.38577i 0.0394776 + 0.0600807i
\(533\) 0 0
\(534\) −4.19656 2.26396i −0.181603 0.0979712i
\(535\) −11.3288 + 22.6577i −0.489789 + 0.979578i
\(536\) 36.8543 3.19969i 1.59186 0.138206i
\(537\) −9.22533 9.22533i −0.398102 0.398102i
\(538\) −22.5837 + 6.75566i −0.973651 + 0.291257i
\(539\) −1.01829 + 1.01829i −0.0438607 + 0.0438607i
\(540\) 4.44120 0.525096i 0.191119 0.0225965i
\(541\) 26.3864 + 26.3864i 1.13444 + 1.13444i 0.989430 + 0.145009i \(0.0463211\pi\)
0.145009 + 0.989430i \(0.453679\pi\)
\(542\) −7.86098 + 14.5714i −0.337658 + 0.625895i
\(543\) −3.68585 + 3.68585i −0.158175 + 0.158175i
\(544\) 3.45559 29.2836i 0.148157 1.25552i
\(545\) −10.2713 30.8139i −0.439974 1.31992i
\(546\) 0 0
\(547\) 33.6644i 1.43939i 0.694292 + 0.719693i \(0.255718\pi\)
−0.694292 + 0.719693i \(0.744282\pi\)
\(548\) −7.03370 + 33.9883i −0.300465 + 1.45191i
\(549\) 1.68585 + 1.68585i 0.0719502 + 0.0719502i
\(550\) −0.870125 + 1.17693i −0.0371022 + 0.0501845i
\(551\) −5.66442 −0.241313
\(552\) −7.28780 + 8.67357i −0.310189 + 0.369172i
\(553\) 0.671153 0.671153i 0.0285403 0.0285403i
\(554\) −12.4507 + 23.0790i −0.528978 + 0.980531i
\(555\) −18.7434 9.37169i −0.795612 0.397806i
\(556\) 18.1127 + 3.74832i 0.768148 + 0.158964i
\(557\) 8.82908 0.374100 0.187050 0.982350i \(-0.440107\pi\)
0.187050 + 0.982350i \(0.440107\pi\)
\(558\) −0.196558 + 0.364346i −0.00832095 + 0.0154240i
\(559\) 0 0
\(560\) 1.84449 + 0.159720i 0.0779440 + 0.00674940i
\(561\) 1.07896 0.0455538
\(562\) −1.76481 + 3.27131i −0.0744439 + 0.137992i
\(563\) 6.74338 0.284200 0.142100 0.989852i \(-0.454615\pi\)
0.142100 + 0.989852i \(0.454615\pi\)
\(564\) −4.08389 + 19.7342i −0.171963 + 0.830961i
\(565\) −5.05754 + 1.68585i −0.212772 + 0.0709241i
\(566\) 14.9399 27.6932i 0.627973 1.16403i
\(567\) 0.146365 0.146365i 0.00614677 0.00614677i
\(568\) 1.12181 + 12.9210i 0.0470700 + 0.542155i
\(569\) −23.3717 −0.979792 −0.489896 0.871781i \(-0.662965\pi\)
−0.489896 + 0.871781i \(0.662965\pi\)
\(570\) −12.4770 2.18007i −0.522604 0.0913130i
\(571\) −22.5395 22.5395i −0.943248 0.943248i 0.0552260 0.998474i \(-0.482412\pi\)
−0.998474 + 0.0552260i \(0.982412\pi\)
\(572\) 0 0
\(573\) 6.33558i 0.264673i
\(574\) −0.335577 1.12181i −0.0140067 0.0468233i
\(575\) −2.83221 + 19.8255i −0.118111 + 0.826780i
\(576\) −7.88030 + 1.37873i −0.328346 + 0.0574471i
\(577\) 21.5855 21.5855i 0.898615 0.898615i −0.0966991 0.995314i \(-0.530828\pi\)
0.995314 + 0.0966991i \(0.0308285\pi\)
\(578\) −6.82938 + 12.6592i −0.284065 + 0.526553i
\(579\) 0.414538 + 0.414538i 0.0172276 + 0.0172276i
\(580\) −3.91611 + 4.96630i −0.162607 + 0.206214i
\(581\) −1.25662 + 1.25662i −0.0521332 + 0.0521332i
\(582\) 6.87012 2.05512i 0.284776 0.0851877i
\(583\) −1.75011 1.75011i −0.0724823 0.0724823i
\(584\) −19.5131 16.3955i −0.807459 0.678452i
\(585\) 0 0
\(586\) −27.2755 14.7146i −1.12674 0.607855i
\(587\) −16.5855 −0.684555 −0.342278 0.939599i \(-0.611198\pi\)
−0.342278 + 0.939599i \(0.611198\pi\)
\(588\) −11.6286 + 7.64090i −0.479556 + 0.315105i
\(589\) 0.829076 0.829076i 0.0341615 0.0341615i
\(590\) 7.32643 41.9308i 0.301624 1.72626i
\(591\) 8.78623i 0.361417i
\(592\) 34.4078 + 14.8782i 1.41415 + 0.611490i
\(593\) 8.85677 + 8.85677i 0.363704 + 0.363704i 0.865175 0.501471i \(-0.167207\pi\)
−0.501471 + 0.865175i \(0.667207\pi\)
\(594\) −0.0838942 0.280452i −0.00344222 0.0115071i
\(595\) −2.15792 1.07896i −0.0884662 0.0442331i
\(596\) −4.79851 + 23.1874i −0.196555 + 0.949793i
\(597\) 11.7073i 0.479147i
\(598\) 0 0
\(599\) 24.9933i 1.02120i 0.859819 + 0.510599i \(0.170576\pi\)
−0.859819 + 0.510599i \(0.829424\pi\)
\(600\) −10.5374 + 9.43206i −0.430187 + 0.385062i
\(601\) 39.8286i 1.62464i −0.583210 0.812322i \(-0.698203\pi\)
0.583210 0.812322i \(-0.301797\pi\)
\(602\) −0.810789 2.71040i −0.0330453 0.110468i
\(603\) 13.0790i 0.532616i
\(604\) 0 0
\(605\) −21.9143 10.9572i −0.890943 0.445472i
\(606\) 19.8733 5.94488i 0.807296 0.241494i
\(607\) −16.8469 16.8469i −0.683795 0.683795i 0.277058 0.960853i \(-0.410640\pi\)
−0.960853 + 0.277058i \(0.910640\pi\)
\(608\) 22.5016 + 2.65528i 0.912559 + 0.107686i
\(609\) 0.292731i 0.0118621i
\(610\) −7.42682 1.29766i −0.300703 0.0525409i
\(611\) 0 0
\(612\) 10.2088 + 2.11266i 0.412668 + 0.0853994i
\(613\) 8.62831 0.348494 0.174247 0.984702i \(-0.444251\pi\)
0.174247 + 0.984702i \(0.444251\pi\)
\(614\) −4.25410 + 7.88554i −0.171681 + 0.318234i
\(615\) 8.00000 + 4.00000i 0.322591 + 0.161296i
\(616\) −0.0104820 0.120732i −0.000422330 0.00486442i
\(617\) 11.0147 + 11.0147i 0.443435 + 0.443435i 0.893165 0.449730i \(-0.148480\pi\)
−0.449730 + 0.893165i \(0.648480\pi\)
\(618\) 3.16286 + 10.5732i 0.127229 + 0.425316i
\(619\) 6.53948 6.53948i 0.262844 0.262844i −0.563365 0.826208i \(-0.690493\pi\)
0.826208 + 0.563365i \(0.190493\pi\)
\(620\) −0.153712 1.30008i −0.00617322 0.0522124i
\(621\) −2.83221 2.83221i −0.113653 0.113653i
\(622\) 9.12181 + 4.92104i 0.365751 + 0.197316i
\(623\) 0.493499 0.493499i 0.0197716 0.0197716i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 5.74832 1.71955i 0.229749 0.0687270i
\(627\) 0.829076i 0.0331101i
\(628\) −27.1751 41.3576i −1.08441 1.65035i
\(629\) −34.5426 34.5426i −1.37730 1.37730i
\(630\) −0.112663 + 0.644798i −0.00448862 + 0.0256894i
\(631\) 42.0722 1.67487 0.837435 0.546538i \(-0.184054\pi\)
0.837435 + 0.546538i \(0.184054\pi\)
\(632\) −1.12181 12.9210i −0.0446231 0.513971i
\(633\) 12.4966 12.4966i 0.496697 0.496697i
\(634\) 24.8396 + 13.4005i 0.986505 + 0.532200i
\(635\) 11.5609 3.85363i 0.458780 0.152927i
\(636\) −13.1323 19.9859i −0.520729 0.792493i
\(637\) 0 0
\(638\) 0.364346 + 0.196558i 0.0144246 + 0.00778179i
\(639\) −4.58546 −0.181398
\(640\) 17.8845 17.8926i 0.706947 0.707266i
\(641\) 16.8291 0.664709 0.332354 0.943155i \(-0.392157\pi\)
0.332354 + 0.943155i \(0.392157\pi\)
\(642\) 14.1004 + 7.60688i 0.556498 + 0.300220i
\(643\) 38.0722 1.50142 0.750711 0.660631i \(-0.229711\pi\)
0.750711 + 0.660631i \(0.229711\pi\)
\(644\) −0.910557 1.38577i −0.0358810 0.0546069i
\(645\) 19.3288 + 9.66442i 0.761073 + 0.380536i
\(646\) −25.9859 14.0189i −1.02240 0.551566i
\(647\) −1.36856 + 1.36856i −0.0538035 + 0.0538035i −0.733497 0.679693i \(-0.762113\pi\)
0.679693 + 0.733497i \(0.262113\pi\)
\(648\) −0.244644 2.81783i −0.00961054 0.110695i
\(649\) −2.78623 −0.109369
\(650\) 0 0
\(651\) −0.0428457 0.0428457i −0.00167926 0.00167926i
\(652\) −8.14323 12.3931i −0.318913 0.485352i
\(653\) 17.9572i 0.702718i 0.936241 + 0.351359i \(0.114280\pi\)
−0.936241 + 0.351359i \(0.885720\pi\)
\(654\) −19.6809 + 5.88734i −0.769585 + 0.230213i
\(655\) −13.2253 39.6760i −0.516756 1.55027i
\(656\) −14.6858 6.35027i −0.573386 0.247936i
\(657\) 6.37169 6.37169i 0.248583 0.248583i
\(658\) −2.59594 1.40046i −0.101200 0.0545957i
\(659\) −11.1825 11.1825i −0.435608 0.435608i 0.454923 0.890531i \(-0.349667\pi\)
−0.890531 + 0.454923i \(0.849667\pi\)
\(660\) 0.726895 + 0.573183i 0.0282943 + 0.0223111i
\(661\) −3.01469 + 3.01469i −0.117258 + 0.117258i −0.763301 0.646043i \(-0.776423\pi\)
0.646043 + 0.763301i \(0.276423\pi\)
\(662\) 7.16286 + 23.9449i 0.278392 + 0.930644i
\(663\) 0 0
\(664\) 2.10038 + 24.1923i 0.0815107 + 0.938845i
\(665\) 0.829076 1.65815i 0.0321502 0.0643004i
\(666\) −6.29273 + 11.6644i −0.243838 + 0.451987i
\(667\) 5.66442 0.219327
\(668\) 33.8016 + 6.99507i 1.30782 + 0.270647i
\(669\) −17.2253 + 17.2253i −0.665970 + 0.665970i
\(670\) −23.7753 33.8427i −0.918520 1.30746i
\(671\) 0.493499i 0.0190513i
\(672\) 0.137222 1.16286i 0.00529345 0.0448581i
\(673\) −12.5725 12.5725i −0.484633 0.484633i 0.421975 0.906608i \(-0.361337\pi\)
−0.906608 + 0.421975i \(0.861337\pi\)
\(674\) 29.8634 8.93332i 1.15029 0.344099i
\(675\) −3.00000 4.00000i −0.115470 0.153960i
\(676\) 14.2776 + 21.7290i 0.549139 + 0.835731i
\(677\) 16.7862i 0.645147i 0.946544 + 0.322574i \(0.104548\pi\)
−0.946544 + 0.322574i \(0.895452\pi\)
\(678\) 0.966298 + 3.23026i 0.0371104 + 0.124057i
\(679\) 1.04958i 0.0402790i
\(680\) −30.2565 + 13.0912i −1.16028 + 0.502026i
\(681\) 8.29273i 0.317778i
\(682\) −0.0820969 + 0.0245584i −0.00314365 + 0.000940391i
\(683\) 0.378422i 0.0144799i 0.999974 + 0.00723997i \(0.00230457\pi\)
−0.999974 + 0.00723997i \(0.997695\pi\)
\(684\) −1.62337 + 7.84449i −0.0620713 + 0.299942i
\(685\) 36.8139 12.2713i 1.40659 0.468863i
\(686\) −1.17092 3.91431i −0.0447061 0.149449i
\(687\) 10.2713 + 10.2713i 0.391875 + 0.391875i
\(688\) −35.4826 15.3429i −1.35276 0.584943i
\(689\) 0 0
\(690\) 12.4770 + 2.18007i 0.474992 + 0.0829938i
\(691\) 7.79610 7.79610i 0.296577 0.296577i −0.543094 0.839672i \(-0.682747\pi\)
0.839672 + 0.543094i \(0.182747\pi\)
\(692\) −24.6430 + 16.1923i −0.936786 + 0.615541i
\(693\) 0.0428457 0.00162757
\(694\) 18.3503 + 9.89962i 0.696567 + 0.375784i
\(695\) −6.53948 19.6184i −0.248057 0.744170i
\(696\) 3.06247 + 2.57318i 0.116083 + 0.0975362i
\(697\) 14.7434 + 14.7434i 0.558446 + 0.558446i
\(698\) −6.98037 + 2.08810i −0.264211 + 0.0790359i
\(699\) 8.27131 8.27131i 0.312850 0.312850i
\(700\) −0.880607 1.87326i −0.0332838 0.0708026i
\(701\) −1.78623 1.78623i −0.0674650 0.0674650i 0.672569 0.740034i \(-0.265191\pi\)
−0.740034 + 0.672569i \(0.765191\pi\)
\(702\) 0 0
\(703\) 26.5426 26.5426i 1.00107 1.00107i
\(704\) −1.35520 0.951605i −0.0510761 0.0358650i
\(705\) 21.3748 7.12494i 0.805023 0.268341i
\(706\) −2.11266 7.06247i −0.0795111 0.265800i
\(707\) 3.03612i 0.114185i
\(708\) −26.3625 5.45559i −0.990765 0.205033i
\(709\) 21.6858 + 21.6858i 0.814429 + 0.814429i 0.985294 0.170865i \(-0.0546563\pi\)
−0.170865 + 0.985294i \(0.554656\pi\)
\(710\) 11.8652 8.33558i 0.445293 0.312829i
\(711\) 4.58546 0.171968
\(712\) −0.824865 9.50085i −0.0309131 0.356059i
\(713\) −0.829076 + 0.829076i −0.0310491 + 0.0310491i
\(714\) −0.724481 + 1.34292i −0.0271130 + 0.0502576i
\(715\) 0 0
\(716\) 5.28780 25.5518i 0.197614 0.954914i
\(717\) −3.41454 −0.127518
\(718\) 22.1537 41.0649i 0.826769 1.53253i
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 5.75536 + 6.84660i 0.214489 + 0.255158i
\(721\) −1.61531 −0.0601572
\(722\) −1.98562 + 3.68061i −0.0738970 + 0.136978i
\(723\) 3.17092 0.117928
\(724\) −10.2088 2.11266i −0.379408 0.0785165i
\(725\) 7.00000 + 1.00000i 0.259973 + 0.0371391i
\(726\) −7.35731 + 13.6378i −0.273055 + 0.506145i
\(727\) 33.6331 33.6331i 1.24738 1.24738i 0.290513 0.956871i \(-0.406174\pi\)
0.956871 0.290513i \(-0.0938259\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −4.90455 + 28.0698i −0.181525 + 1.03891i
\(731\) 35.6216 + 35.6216i 1.31751 + 1.31751i
\(732\) −0.966298 + 4.66936i −0.0357154 + 0.172584i
\(733\) 20.1151i 0.742967i −0.928439 0.371484i \(-0.878849\pi\)
0.928439 0.371484i \(-0.121151\pi\)
\(734\) 10.3766 + 34.6883i 0.383008 + 1.28037i
\(735\) 13.9143 + 6.95715i 0.513237 + 0.256619i
\(736\) −22.5016 2.65528i −0.829419 0.0978749i
\(737\) −1.91431 + 1.91431i −0.0705145 + 0.0705145i
\(738\) 2.68585 4.97858i 0.0988674 0.183264i
\(739\) −17.7533 17.7533i −0.653064 0.653064i 0.300666 0.953730i \(-0.402791\pi\)
−0.953730 + 0.300666i \(0.902791\pi\)
\(740\) −4.92104 41.6216i −0.180901 1.53004i
\(741\) 0 0
\(742\) 3.35341 1.00314i 0.123107 0.0368263i
\(743\) −0.203904 0.203904i −0.00748051 0.00748051i 0.703357 0.710837i \(-0.251684\pi\)
−0.710837 + 0.703357i \(0.751684\pi\)
\(744\) −0.824865 + 0.0716150i −0.0302410 + 0.00262553i
\(745\) 25.1151 8.37169i 0.920145 0.306715i
\(746\) −17.3184 9.34292i −0.634070 0.342069i
\(747\) −8.58546 −0.314126
\(748\) 1.18500 + 1.80344i 0.0433279 + 0.0659404i
\(749\) −1.65815 + 1.65815i −0.0605876 + 0.0605876i
\(750\) 15.0340 + 4.89679i 0.548964 + 0.178805i
\(751\) 2.45065i 0.0894256i 0.999000 + 0.0447128i \(0.0142373\pi\)
−0.999000 + 0.0447128i \(0.985763\pi\)
\(752\) −37.4703 + 14.8476i −1.36640 + 0.541437i
\(753\) −3.85363 3.85363i −0.140434 0.140434i
\(754\) 0 0
\(755\) 0 0
\(756\) 0.405394 + 0.0838942i 0.0147441 + 0.00305120i
\(757\) 37.2860i 1.35518i −0.735439 0.677591i \(-0.763024\pi\)
0.735439 0.677591i \(-0.236976\pi\)
\(758\) −14.7740 + 4.41947i −0.536614 + 0.160522i
\(759\) 0.829076i 0.0300936i
\(760\) −10.0593 23.2492i −0.364890 0.843336i
\(761\) 12.2008i 0.442278i −0.975242 0.221139i \(-0.929023\pi\)
0.975242 0.221139i \(-0.0709774\pi\)
\(762\) −2.20884 7.38397i −0.0800177 0.267493i
\(763\) 3.00673i 0.108851i
\(764\) 10.5897 6.95823i 0.383121 0.251740i
\(765\) −3.68585 11.0575i −0.133262 0.399786i
\(766\) −28.4201 + 8.50157i −1.02686 + 0.307174i
\(767\) 0 0
\(768\) −10.9593 11.6574i −0.395458 0.420650i
\(769\) 3.21377i 0.115891i −0.998320 0.0579457i \(-0.981545\pi\)
0.998320 0.0579457i \(-0.0184550\pi\)
\(770\) −0.110866 + 0.0778861i −0.00399534 + 0.00280682i
\(771\) 21.6430 21.6430i 0.779454 0.779454i
\(772\) −0.237606 + 1.14816i −0.00855163 + 0.0413233i
\(773\) −42.6148 −1.53275 −0.766375 0.642394i \(-0.777941\pi\)
−0.766375 + 0.642394i \(0.777941\pi\)
\(774\) 6.48929 12.0288i 0.233253 0.432365i
\(775\) −1.17092 + 0.878193i −0.0420608 + 0.0315456i
\(776\) 10.9804 + 9.22605i 0.394172 + 0.331196i
\(777\) −1.37169 1.37169i −0.0492092 0.0492092i
\(778\) −9.38397 31.3699i −0.336432 1.12467i
\(779\) −11.3288 + 11.3288i −0.405898 + 0.405898i
\(780\) 0 0
\(781\) −0.671153 0.671153i −0.0240158 0.0240158i
\(782\) 25.9859 + 14.0189i 0.929255 + 0.501315i
\(783\) −1.00000 + 1.00000i −0.0357371 + 0.0357371i
\(784\) −25.5429 11.0450i −0.912247 0.394463i
\(785\) −24.7434 + 49.4868i −0.883129 + 1.76626i
\(786\) −25.3411 + 7.58053i −0.903888 + 0.270389i
\(787\) 47.2369i 1.68381i −0.539623 0.841907i \(-0.681433\pi\)
0.539623 0.841907i \(-0.318567\pi\)
\(788\) −14.6858 + 9.64973i −0.523162 + 0.343757i
\(789\) −14.2467 14.2467i −0.507198 0.507198i
\(790\) −11.8652 + 8.33558i −0.422145 + 0.296567i
\(791\) −0.493499 −0.0175468
\(792\) 0.376625 0.448240i 0.0133828 0.0159275i
\(793\) 0 0
\(794\) −0.782020 0.421884i −0.0277528 0.0149721i
\(795\) −11.9572 + 23.9143i −0.424077 + 0.848153i
\(796\) 19.5682 12.8578i 0.693578 0.455734i
\(797\) 19.8715 0.703883 0.351942 0.936022i \(-0.385522\pi\)
0.351942 + 0.936022i \(0.385522\pi\)
\(798\) −1.03190 0.556693i −0.0365290 0.0197067i
\(799\) 52.5229 1.85813
\(800\) −27.3383 7.25379i −0.966555 0.256460i
\(801\) 3.37169 0.119133
\(802\) 10.6325 + 5.73604i 0.375447 + 0.202547i
\(803\) 1.86519 0.0658212
\(804\) −21.8610 + 14.3643i −0.770977 + 0.506591i
\(805\) −0.829076 + 1.65815i −0.0292211 + 0.0584422i
\(806\) 0 0
\(807\) 11.7862 11.7862i 0.414895 0.414895i
\(808\) 31.7630 + 26.6883i 1.11742 + 0.938890i
\(809\) 38.3158 1.34711 0.673557 0.739136i \(-0.264766\pi\)
0.673557 + 0.739136i \(0.264766\pi\)
\(810\) −2.58757 + 1.81783i −0.0909178 + 0.0638719i
\(811\) 7.50337 + 7.50337i 0.263479 + 0.263479i 0.826466 0.562987i \(-0.190348\pi\)
−0.562987 + 0.826466i \(0.690348\pi\)
\(812\) −0.489289 + 0.321500i −0.0171707 + 0.0112824i
\(813\) 11.7073i 0.410592i
\(814\) −2.62831 + 0.786230i −0.0921221 + 0.0275574i
\(815\) −7.41454 + 14.8291i −0.259720 + 0.519440i
\(816\) 7.68091 + 19.3840i 0.268886 + 0.678575i
\(817\) −27.3717 + 27.3717i −0.957614 + 0.957614i
\(818\) 48.1684 + 25.9859i 1.68417 + 0.908577i
\(819\) 0 0
\(820\) 2.10038 + 17.7648i 0.0733486 + 0.620374i
\(821\) 35.1151 35.1151i 1.22552 1.22552i 0.259885 0.965640i \(-0.416315\pi\)
0.965640 0.259885i \(-0.0836847\pi\)
\(822\) −7.03370 23.5131i −0.245329 0.820114i
\(823\) −30.8041 30.8041i −1.07376 1.07376i −0.997054 0.0767084i \(-0.975559\pi\)
−0.0767084 0.997054i \(-0.524441\pi\)
\(824\) −14.1990 + 16.8989i −0.494645 + 0.588701i
\(825\) 0.146365 1.02456i 0.00509579 0.0356705i
\(826\) 1.87085 3.46787i 0.0650951 0.120662i
\(827\) −23.9143 −0.831582 −0.415791 0.909460i \(-0.636495\pi\)
−0.415791 + 0.909460i \(0.636495\pi\)
\(828\) 1.62337 7.84449i 0.0564162 0.272615i
\(829\) −8.47208 + 8.47208i −0.294247 + 0.294247i −0.838756 0.544508i \(-0.816716\pi\)
0.544508 + 0.838756i \(0.316716\pi\)
\(830\) 22.2155 15.6069i 0.771110 0.541723i
\(831\) 18.5426i 0.643236i
\(832\) 0 0
\(833\) 25.6430 + 25.6430i 0.888477 + 0.888477i
\(834\) −12.5303 + 3.74832i −0.433890 + 0.129794i
\(835\) −12.2039 36.6117i −0.422334 1.26700i
\(836\) −1.38577 + 0.910557i −0.0479278 + 0.0314923i
\(837\) 0.292731i 0.0101183i
\(838\) 5.62337 + 18.7985i 0.194256 + 0.649384i
\(839\) 49.5787i 1.71165i −0.517267 0.855824i \(-0.673051\pi\)
0.517267 0.855824i \(-0.326949\pi\)
\(840\) −1.20149 + 0.519855i −0.0414554 + 0.0179367i
\(841\) 27.0000i 0.931034i
\(842\) 38.8420 11.6192i 1.33858 0.400423i
\(843\) 2.62831i 0.0905237i
\(844\) 34.6124 + 7.16286i 1.19141 + 0.246556i
\(845\) 13.0000 26.0000i 0.447214 0.894427i
\(846\) −4.08389 13.6521i −0.140407 0.469370i
\(847\) −1.60375 1.60375i −0.0551055 0.0551055i
\(848\) 18.9828 43.9002i 0.651872 1.50754i
\(849\) 22.2499i 0.763614i
\(850\) 29.6381 + 21.9119i 1.01658 + 0.751572i
\(851\) −26.5426 + 26.5426i −0.909869 + 0.909869i
\(852\) −5.03612 7.66442i −0.172534 0.262579i
\(853\) −28.6283 −0.980215 −0.490107 0.871662i \(-0.663042\pi\)
−0.490107 + 0.871662i \(0.663042\pi\)
\(854\) −0.614231 0.331366i −0.0210186 0.0113391i
\(855\) 8.49663 2.83221i 0.290579 0.0968596i
\(856\) 2.77154 + 31.9227i 0.0947292 + 1.09110i
\(857\) −0.899616 0.899616i −0.0307303 0.0307303i 0.691575 0.722305i \(-0.256917\pi\)
−0.722305 + 0.691575i \(0.756917\pi\)
\(858\) 0 0
\(859\) −38.0754 + 38.0754i −1.29911 + 1.29911i −0.370138 + 0.928977i \(0.620690\pi\)
−0.928977 + 0.370138i \(0.879310\pi\)
\(860\) 5.07475 + 42.9217i 0.173048 + 1.46362i
\(861\) 0.585462 + 0.585462i 0.0199525 + 0.0199525i
\(862\) 19.5254 36.1930i 0.665038 1.23274i
\(863\) −3.12494 + 3.12494i −0.106374 + 0.106374i −0.758291 0.651916i \(-0.773965\pi\)
0.651916 + 0.758291i \(0.273965\pi\)
\(864\) 4.44120 3.50367i 0.151093 0.119197i
\(865\) 29.4868 + 14.7434i 1.00258 + 0.501290i
\(866\) 5.13409 + 17.1629i 0.174463 + 0.583218i
\(867\) 10.1709i 0.345423i
\(868\) 0.0245584 0.118671i 0.000833567 0.00402797i
\(869\) 0.671153 + 0.671153i 0.0227673 + 0.0227673i
\(870\) 0.769740 4.40539i 0.0260966 0.149357i
\(871\) 0 0
\(872\) −31.4556 26.4300i −1.06522 0.895031i
\(873\) −3.58546 + 3.58546i −0.121350 + 0.121350i
\(874\) −10.7722 + 19.9676i −0.364374 + 0.675415i
\(875\) −1.31729 + 1.90275i −0.0445325 + 0.0643247i
\(876\) 17.6479 + 3.65214i 0.596268 + 0.123395i
\(877\) −0.743385 −0.0251023 −0.0125512 0.999921i \(-0.503995\pi\)
−0.0125512 + 0.999921i \(0.503995\pi\)
\(878\) 4.72448 8.75746i 0.159444 0.295550i
\(879\) 21.9143 0.739151
\(880\) −0.159720 + 1.84449i −0.00538416 + 0.0621778i
\(881\) −35.2860 −1.18882 −0.594408 0.804164i \(-0.702613\pi\)
−0.594408 + 0.804164i \(0.702613\pi\)
\(882\) 4.67146 8.65918i 0.157296 0.291570i
\(883\) 32.9870 1.11010 0.555050 0.831817i \(-0.312699\pi\)
0.555050 + 0.831817i \(0.312699\pi\)
\(884\) 0 0
\(885\) 9.51806 + 28.5542i 0.319946 + 0.959838i
\(886\) −22.7392 + 42.1501i −0.763937 + 1.41606i
\(887\) −5.16779 + 5.16779i −0.173517 + 0.173517i −0.788523 0.615005i \(-0.789154\pi\)
0.615005 + 0.788523i \(0.289154\pi\)
\(888\) −26.4078 + 2.29273i −0.886188 + 0.0769390i
\(889\) 1.12808 0.0378345
\(890\) −8.72448 + 6.12915i −0.292445 + 0.205450i
\(891\) 0.146365 + 0.146365i 0.00490343 + 0.00490343i
\(892\) −47.7097 9.87326i −1.59744 0.330581i
\(893\) 40.3587i 1.35055i
\(894\) −4.79851 16.0410i −0.160486 0.536493i
\(895\) −27.6760 + 9.22533i −0.925106 + 0.308369i
\(896\) 2.09438 1.04778i 0.0699682 0.0350038i
\(897\) 0 0
\(898\) −21.5640 + 39.9718i −0.719601 + 1.33388i
\(899\) 0.292731 + 0.292731i 0.00976312 + 0.00976312i
\(900\) 3.39101 9.40750i 0.113034 0.313583i
\(901\) −44.0722 + 44.0722i −1.46826 + 1.46826i
\(902\) 1.12181 0.335577i 0.0373521 0.0111735i
\(903\) 1.41454 + 1.41454i 0.0470729 + 0.0470729i
\(904\) −4.33799 + 5.16286i −0.144279 + 0.171714i
\(905\) 3.68585 + 11.0575i 0.122522 + 0.367565i
\(906\) 0 0
\(907\) −6.74338 −0.223910 −0.111955 0.993713i \(-0.535711\pi\)
−0.111955 + 0.993713i \(0.535711\pi\)
\(908\) 13.8610 9.10773i 0.459993 0.302251i
\(909\) −10.3717 + 10.3717i −0.344007 + 0.344007i
\(910\) 0 0
\(911\) 1.16465i 0.0385867i 0.999814 + 0.0192933i \(0.00614164\pi\)
−0.999814 + 0.0192933i \(0.993858\pi\)
\(912\) −14.8947 + 5.90203i −0.493212 + 0.195436i
\(913\) −1.25662 1.25662i −0.0415879 0.0415879i
\(914\) −2.53034 8.45872i −0.0836961 0.279790i
\(915\) 5.05754 1.68585i 0.167197 0.0557324i
\(916\) −5.88734 + 28.4489i −0.194523 + 0.939977i
\(917\) 3.87146i 0.127847i
\(918\) −7.06247 + 2.11266i −0.233096 + 0.0697283i
\(919\) 25.8652i 0.853214i −0.904437 0.426607i \(-0.859709\pi\)
0.904437 0.426607i \(-0.140291\pi\)
\(920\) 10.0593 + 23.2492i 0.331646 + 0.766502i
\(921\) 6.33558i 0.208764i
\(922\) −2.84136 9.49843i −0.0935751 0.312814i
\(923\) 0 0
\(924\) 0.0470565 + 0.0716150i 0.00154805 + 0.00235596i
\(925\) −37.4868 + 28.1151i −1.23256 + 0.924418i
\(926\) −5.31657 + 1.59039i −0.174713 + 0.0522636i
\(927\) −5.51806 5.51806i −0.181237 0.181237i
\(928\) −0.937529 + 7.94488i −0.0307759 + 0.260803i
\(929\) 37.2003i 1.22050i 0.792208 + 0.610251i \(0.208932\pi\)
−0.792208 + 0.610251i \(0.791068\pi\)
\(930\) 0.532134 + 0.757461i 0.0174494 + 0.0248381i
\(931\) −19.7041 + 19.7041i −0.645777 + 0.645777i
\(932\) 22.9094 + 4.74097i 0.750422 + 0.155296i
\(933\) −7.32885 −0.239936
\(934\) 15.4679 28.6718i 0.506124 0.938169i
\(935\) 1.07896 2.15792i 0.0352858 0.0705716i
\(936\) 0 0
\(937\) 20.9143 + 20.9143i 0.683241 + 0.683241i 0.960729 0.277488i \(-0.0895020\pi\)
−0.277488 + 0.960729i \(0.589502\pi\)
\(938\) −1.09725 3.66802i −0.0358264 0.119765i
\(939\) −3.00000 + 3.00000i −0.0979013 + 0.0979013i
\(940\) 35.3846 + 27.9020i 1.15412 + 0.910064i
\(941\) −5.58546 5.58546i −0.182081 0.182081i 0.610181 0.792262i \(-0.291097\pi\)
−0.792262 + 0.610181i \(0.791097\pi\)
\(942\) 30.7967 + 16.6142i 1.00341 + 0.541321i
\(943\) 11.3288 11.3288i 0.368918 0.368918i
\(944\) −19.8346 50.0557i −0.645562 1.62918i
\(945\) −0.146365 0.439096i −0.00476127 0.0142838i
\(946\) 2.71040 0.810789i 0.0881229 0.0263610i
\(947\) 20.7925i 0.675666i 0.941206 + 0.337833i \(0.109694\pi\)
−0.941206 + 0.337833i \(0.890306\pi\)
\(948\) 5.03612 + 7.66442i 0.163565 + 0.248929i
\(949\) 0 0
\(950\) −16.8371 + 22.7740i −0.546269 + 0.738885i
\(951\) −19.9572 −0.647155
\(952\) −3.04033 + 0.263962i −0.0985375 + 0.00855505i
\(953\) −16.3142 + 16.3142i −0.528467 + 0.528467i −0.920115 0.391648i \(-0.871905\pi\)
0.391648 + 0.920115i \(0.371905\pi\)
\(954\) 14.8824 + 8.02877i 0.481836 + 0.259941i
\(955\) −12.6712 6.33558i −0.410029 0.205014i
\(956\) −3.75011 5.70727i −0.121287 0.184586i
\(957\) −0.292731 −0.00946265
\(958\) 25.6216 + 13.8223i 0.827796 + 0.446580i
\(959\) 3.59219 0.115998
\(960\) −5.12284 + 17.1393i −0.165339 + 0.553169i
\(961\) 30.9143 0.997236
\(962\) 0 0
\(963\) −11.3288 −0.365067
\(964\) 3.48256 + 5.30008i 0.112166 + 0.170704i
\(965\) 1.24361 0.414538i 0.0400334 0.0133445i
\(966\) 1.03190 + 0.556693i 0.0332010 + 0.0179113i
\(967\) −19.5672 + 19.5672i −0.629238 + 0.629238i −0.947876 0.318638i \(-0.896774\pi\)
0.318638 + 0.947876i \(0.396774\pi\)
\(968\) −30.8754 + 2.68061i −0.992372 + 0.0861579i
\(969\) 20.8782 0.670704
\(970\) 2.75987 15.7954i 0.0886142 0.507159i
\(971\) 12.8469 + 12.8469i 0.412277 + 0.412277i 0.882531 0.470254i \(-0.155838\pi\)
−0.470254 + 0.882531i \(0.655838\pi\)
\(972\) 1.09828 + 1.67146i 0.0352273 + 0.0536122i
\(973\) 1.91431i 0.0613699i
\(974\) −10.1885 + 3.04778i −0.326460 + 0.0976571i
\(975\) 0 0
\(976\) −8.86591 + 3.51313i −0.283791 + 0.112452i
\(977\) −27.6430 + 27.6430i −0.884378 + 0.884378i −0.993976 0.109598i \(-0.965044\pi\)
0.109598 + 0.993976i \(0.465044\pi\)
\(978\) 9.22846 + 4.97858i 0.295094 + 0.159197i
\(979\) 0.493499 + 0.493499i 0.0157723 + 0.0157723i
\(980\) 3.65317 + 30.8981i 0.116696 + 0.987004i
\(981\) 10.2713 10.2713i 0.327938 0.327938i
\(982\) −12.3338 41.2309i −0.393587 1.31573i
\(983\) −22.1611 22.1611i −0.706828 0.706828i 0.259039 0.965867i \(-0.416594\pi\)
−0.965867 + 0.259039i \(0.916594\pi\)
\(984\) 11.2713 0.978577i 0.359316 0.0311959i
\(985\) 17.5725 + 8.78623i 0.559905 + 0.279953i
\(986\) 4.94981 9.17513i 0.157634 0.292196i
\(987\) 2.08569 0.0663883
\(988\) 0 0
\(989\) 27.3717 27.3717i 0.870369 0.870369i
\(990\) −0.644798 0.112663i −0.0204930 0.00358068i
\(991\) 50.9504i 1.61849i 0.587469 + 0.809247i \(0.300124\pi\)
−0.587469 + 0.809247i \(0.699876\pi\)
\(992\) −1.02563 1.30008i −0.0325639 0.0412775i
\(993\) −12.4966 12.4966i −0.396569 0.396569i
\(994\) 1.28600 0.384694i 0.0407895 0.0122017i
\(995\) −23.4145 11.7073i −0.742291 0.371145i
\(996\) −9.42923 14.3503i −0.298777 0.454706i
\(997\) 19.9143i 0.630692i 0.948977 + 0.315346i \(0.102121\pi\)
−0.948977 + 0.315346i \(0.897879\pi\)
\(998\) −1.62337 5.42682i −0.0513870 0.171783i
\(999\) 9.37169i 0.296507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.2.y.d.163.1 6
3.2 odd 2 720.2.z.e.163.3 6
4.3 odd 2 960.2.y.d.943.2 6
5.2 odd 4 240.2.bc.d.67.3 yes 6
8.3 odd 2 1920.2.y.h.223.2 6
8.5 even 2 1920.2.y.g.223.2 6
15.2 even 4 720.2.bd.e.307.1 6
16.3 odd 4 1920.2.bc.g.1183.2 6
16.5 even 4 960.2.bc.d.463.2 6
16.11 odd 4 240.2.bc.d.43.3 yes 6
16.13 even 4 1920.2.bc.h.1183.2 6
20.7 even 4 960.2.bc.d.367.2 6
40.27 even 4 1920.2.bc.h.607.2 6
40.37 odd 4 1920.2.bc.g.607.2 6
48.11 even 4 720.2.bd.e.523.1 6
80.27 even 4 inner 240.2.y.d.187.1 yes 6
80.37 odd 4 960.2.y.d.847.2 6
80.67 even 4 1920.2.y.g.1567.2 6
80.77 odd 4 1920.2.y.h.1567.2 6
240.107 odd 4 720.2.z.e.667.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.1 6 1.1 even 1 trivial
240.2.y.d.187.1 yes 6 80.27 even 4 inner
240.2.bc.d.43.3 yes 6 16.11 odd 4
240.2.bc.d.67.3 yes 6 5.2 odd 4
720.2.z.e.163.3 6 3.2 odd 2
720.2.z.e.667.3 6 240.107 odd 4
720.2.bd.e.307.1 6 15.2 even 4
720.2.bd.e.523.1 6 48.11 even 4
960.2.y.d.847.2 6 80.37 odd 4
960.2.y.d.943.2 6 4.3 odd 2
960.2.bc.d.367.2 6 20.7 even 4
960.2.bc.d.463.2 6 16.5 even 4
1920.2.y.g.223.2 6 8.5 even 2
1920.2.y.g.1567.2 6 80.67 even 4
1920.2.y.h.223.2 6 8.3 odd 2
1920.2.y.h.1567.2 6 80.77 odd 4
1920.2.bc.g.607.2 6 40.37 odd 4
1920.2.bc.g.1183.2 6 16.3 odd 4
1920.2.bc.h.607.2 6 40.27 even 4
1920.2.bc.h.1183.2 6 16.13 even 4