Properties

Label 720.2.bd.e.307.1
Level $720$
Weight $2$
Character 720.307
Analytic conductor $5.749$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(307,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Root \(-0.671462 - 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 720.307
Dual form 720.2.bd.e.523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.671462 + 1.24464i) q^{2} +(-1.09828 - 1.67146i) q^{4} +(-2.00000 + 1.00000i) q^{5} +(0.146365 + 0.146365i) q^{7} +(2.81783 - 0.244644i) q^{8} +(0.0982788 - 3.16075i) q^{10} +(-0.146365 - 0.146365i) q^{11} +(-0.280452 + 0.0838942i) q^{14} +(-1.58757 + 3.67146i) q^{16} +(-3.68585 - 3.68585i) q^{17} +(-2.83221 - 2.83221i) q^{19} +(3.86802 + 2.24464i) q^{20} +(0.280452 - 0.0838942i) q^{22} +(2.83221 - 2.83221i) q^{23} +(3.00000 - 4.00000i) q^{25} +(0.0838942 - 0.405394i) q^{28} +(-1.00000 + 1.00000i) q^{29} -0.292731i q^{31} +(-3.50367 - 4.44120i) q^{32} +(7.06247 - 2.11266i) q^{34} +(-0.439096 - 0.146365i) q^{35} +9.37169 q^{37} +(5.42682 - 1.62337i) q^{38} +(-5.39101 + 3.30712i) q^{40} -4.00000i q^{41} +9.66442 q^{43} +(-0.0838942 + 0.405394i) q^{44} +(1.62337 + 5.42682i) q^{46} +(7.12494 - 7.12494i) q^{47} -6.95715i q^{49} +(2.96419 + 6.41978i) q^{50} -11.9572i q^{53} +(0.439096 + 0.146365i) q^{55} +(0.448240 + 0.376625i) q^{56} +(-0.573183 - 1.91611i) q^{58} +(-9.51806 + 9.51806i) q^{59} +(1.68585 + 1.68585i) q^{61} +(0.364346 + 0.196558i) q^{62} +(7.88030 - 1.37873i) q^{64} -13.0790 q^{67} +(-2.11266 + 10.2088i) q^{68} +(0.477009 - 0.448240i) q^{70} +4.58546 q^{71} +(-6.37169 - 6.37169i) q^{73} +(-6.29273 + 11.6644i) q^{74} +(-1.62337 + 7.84449i) q^{76} -0.0428457i q^{77} -4.58546 q^{79} +(-0.496327 - 8.93049i) q^{80} +(4.97858 + 2.68585i) q^{82} -8.58546i q^{83} +(11.0575 + 3.68585i) q^{85} +(-6.48929 + 12.0288i) q^{86} +(-0.448240 - 0.376625i) q^{88} +3.37169 q^{89} +(-7.84449 - 1.62337i) q^{92} +(4.08389 + 13.6521i) q^{94} +(8.49663 + 2.83221i) q^{95} +(-3.58546 - 3.58546i) q^{97} +(8.65918 + 4.67146i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} - 12 q^{5} - 2 q^{7} + 8 q^{8} - 4 q^{10} + 2 q^{11} - 6 q^{14} + 10 q^{16} + 2 q^{17} + 10 q^{19} + 8 q^{20} + 6 q^{22} - 10 q^{23} + 18 q^{25} + 14 q^{28} - 6 q^{29} + 12 q^{32}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.671462 + 1.24464i −0.474795 + 0.880096i
\(3\) 0 0
\(4\) −1.09828 1.67146i −0.549139 0.835731i
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) 0.146365 + 0.146365i 0.0553210 + 0.0553210i 0.734226 0.678905i \(-0.237545\pi\)
−0.678905 + 0.734226i \(0.737545\pi\)
\(8\) 2.81783 0.244644i 0.996252 0.0864948i
\(9\) 0 0
\(10\) 0.0982788 3.16075i 0.0310785 0.999517i
\(11\) −0.146365 0.146365i −0.0441309 0.0441309i 0.684697 0.728828i \(-0.259935\pi\)
−0.728828 + 0.684697i \(0.759935\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −0.280452 + 0.0838942i −0.0749539 + 0.0224217i
\(15\) 0 0
\(16\) −1.58757 + 3.67146i −0.396892 + 0.917865i
\(17\) −3.68585 3.68585i −0.893949 0.893949i 0.100943 0.994892i \(-0.467814\pi\)
−0.994892 + 0.100943i \(0.967814\pi\)
\(18\) 0 0
\(19\) −2.83221 2.83221i −0.649754 0.649754i 0.303180 0.952933i \(-0.401952\pi\)
−0.952933 + 0.303180i \(0.901952\pi\)
\(20\) 3.86802 + 2.24464i 0.864915 + 0.501918i
\(21\) 0 0
\(22\) 0.280452 0.0838942i 0.0597925 0.0178863i
\(23\) 2.83221 2.83221i 0.590557 0.590557i −0.347225 0.937782i \(-0.612876\pi\)
0.937782 + 0.347225i \(0.112876\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0.0838942 0.405394i 0.0158545 0.0766123i
\(29\) −1.00000 + 1.00000i −0.185695 + 0.185695i −0.793832 0.608137i \(-0.791917\pi\)
0.608137 + 0.793832i \(0.291917\pi\)
\(30\) 0 0
\(31\) 0.292731i 0.0525760i −0.999654 0.0262880i \(-0.991631\pi\)
0.999654 0.0262880i \(-0.00836870\pi\)
\(32\) −3.50367 4.44120i −0.619368 0.785101i
\(33\) 0 0
\(34\) 7.06247 2.11266i 1.21120 0.362319i
\(35\) −0.439096 0.146365i −0.0742208 0.0247403i
\(36\) 0 0
\(37\) 9.37169 1.54070 0.770348 0.637623i \(-0.220082\pi\)
0.770348 + 0.637623i \(0.220082\pi\)
\(38\) 5.42682 1.62337i 0.880346 0.263346i
\(39\) 0 0
\(40\) −5.39101 + 3.30712i −0.852393 + 0.522901i
\(41\) 4.00000i 0.624695i −0.949968 0.312348i \(-0.898885\pi\)
0.949968 0.312348i \(-0.101115\pi\)
\(42\) 0 0
\(43\) 9.66442 1.47381 0.736905 0.675996i \(-0.236286\pi\)
0.736905 + 0.675996i \(0.236286\pi\)
\(44\) −0.0838942 + 0.405394i −0.0126475 + 0.0611155i
\(45\) 0 0
\(46\) 1.62337 + 5.42682i 0.239354 + 0.800141i
\(47\) 7.12494 7.12494i 1.03928 1.03928i 0.0400834 0.999196i \(-0.487238\pi\)
0.999196 0.0400834i \(-0.0127623\pi\)
\(48\) 0 0
\(49\) 6.95715i 0.993879i
\(50\) 2.96419 + 6.41978i 0.419200 + 0.907894i
\(51\) 0 0
\(52\) 0 0
\(53\) 11.9572i 1.64244i −0.570611 0.821221i \(-0.693293\pi\)
0.570611 0.821221i \(-0.306707\pi\)
\(54\) 0 0
\(55\) 0.439096 + 0.146365i 0.0592078 + 0.0197359i
\(56\) 0.448240 + 0.376625i 0.0598986 + 0.0503287i
\(57\) 0 0
\(58\) −0.573183 1.91611i −0.0752626 0.251597i
\(59\) −9.51806 + 9.51806i −1.23915 + 1.23915i −0.278795 + 0.960351i \(0.589935\pi\)
−0.960351 + 0.278795i \(0.910065\pi\)
\(60\) 0 0
\(61\) 1.68585 + 1.68585i 0.215850 + 0.215850i 0.806747 0.590897i \(-0.201226\pi\)
−0.590897 + 0.806747i \(0.701226\pi\)
\(62\) 0.364346 + 0.196558i 0.0462720 + 0.0249628i
\(63\) 0 0
\(64\) 7.88030 1.37873i 0.985037 0.172341i
\(65\) 0 0
\(66\) 0 0
\(67\) −13.0790 −1.59785 −0.798925 0.601431i \(-0.794597\pi\)
−0.798925 + 0.601431i \(0.794597\pi\)
\(68\) −2.11266 + 10.2088i −0.256198 + 1.23800i
\(69\) 0 0
\(70\) 0.477009 0.448240i 0.0570135 0.0535749i
\(71\) 4.58546 0.544194 0.272097 0.962270i \(-0.412283\pi\)
0.272097 + 0.962270i \(0.412283\pi\)
\(72\) 0 0
\(73\) −6.37169 6.37169i −0.745750 0.745750i 0.227928 0.973678i \(-0.426805\pi\)
−0.973678 + 0.227928i \(0.926805\pi\)
\(74\) −6.29273 + 11.6644i −0.731515 + 1.35596i
\(75\) 0 0
\(76\) −1.62337 + 7.84449i −0.186214 + 0.899825i
\(77\) 0.0428457i 0.00488272i
\(78\) 0 0
\(79\) −4.58546 −0.515905 −0.257952 0.966158i \(-0.583048\pi\)
−0.257952 + 0.966158i \(0.583048\pi\)
\(80\) −0.496327 8.93049i −0.0554910 0.998459i
\(81\) 0 0
\(82\) 4.97858 + 2.68585i 0.549792 + 0.296602i
\(83\) 8.58546i 0.942377i −0.882033 0.471188i \(-0.843825\pi\)
0.882033 0.471188i \(-0.156175\pi\)
\(84\) 0 0
\(85\) 11.0575 + 3.68585i 1.19936 + 0.399786i
\(86\) −6.48929 + 12.0288i −0.699758 + 1.29710i
\(87\) 0 0
\(88\) −0.448240 0.376625i −0.0477826 0.0401484i
\(89\) 3.37169 0.357399 0.178699 0.983904i \(-0.442811\pi\)
0.178699 + 0.983904i \(0.442811\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.84449 1.62337i −0.817845 0.169249i
\(93\) 0 0
\(94\) 4.08389 + 13.6521i 0.421222 + 1.40811i
\(95\) 8.49663 + 2.83221i 0.871736 + 0.290579i
\(96\) 0 0
\(97\) −3.58546 3.58546i −0.364049 0.364049i 0.501253 0.865301i \(-0.332873\pi\)
−0.865301 + 0.501253i \(0.832873\pi\)
\(98\) 8.65918 + 4.67146i 0.874710 + 0.471889i
\(99\) 0 0
\(100\) −9.98068 0.621269i −0.998068 0.0621269i
\(101\) 10.3717 10.3717i 1.03202 1.03202i 0.0325519 0.999470i \(-0.489637\pi\)
0.999470 0.0325519i \(-0.0103634\pi\)
\(102\) 0 0
\(103\) −5.51806 + 5.51806i −0.543710 + 0.543710i −0.924615 0.380904i \(-0.875613\pi\)
0.380904 + 0.924615i \(0.375613\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 14.8824 + 8.02877i 1.44551 + 0.779823i
\(107\) 11.3288i 1.09520i 0.836740 + 0.547600i \(0.184459\pi\)
−0.836740 + 0.547600i \(0.815541\pi\)
\(108\) 0 0
\(109\) −10.2713 + 10.2713i −0.983813 + 0.983813i −0.999871 0.0160582i \(-0.994888\pi\)
0.0160582 + 0.999871i \(0.494888\pi\)
\(110\) −0.477009 + 0.448240i −0.0454811 + 0.0427380i
\(111\) 0 0
\(112\) −0.769740 + 0.305010i −0.0727336 + 0.0288208i
\(113\) 1.68585 1.68585i 0.158591 0.158591i −0.623351 0.781942i \(-0.714229\pi\)
0.781942 + 0.623351i \(0.214229\pi\)
\(114\) 0 0
\(115\) −2.83221 + 8.49663i −0.264105 + 0.792315i
\(116\) 2.76974 + 0.573183i 0.257164 + 0.0532187i
\(117\) 0 0
\(118\) −5.45559 18.2376i −0.502227 1.67891i
\(119\) 1.07896i 0.0989082i
\(120\) 0 0
\(121\) 10.9572i 0.996105i
\(122\) −3.23026 + 0.966298i −0.292454 + 0.0874845i
\(123\) 0 0
\(124\) −0.489289 + 0.321500i −0.0439394 + 0.0288716i
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 0 0
\(127\) −3.85363 + 3.85363i −0.341955 + 0.341955i −0.857102 0.515147i \(-0.827737\pi\)
0.515147 + 0.857102i \(0.327737\pi\)
\(128\) −3.57529 + 10.7339i −0.316014 + 0.948755i
\(129\) 0 0
\(130\) 0 0
\(131\) −13.2253 + 13.2253i −1.15550 + 1.15550i −0.170070 + 0.985432i \(0.554399\pi\)
−0.985432 + 0.170070i \(0.945601\pi\)
\(132\) 0 0
\(133\) 0.829076i 0.0718900i
\(134\) 8.78202 16.2787i 0.758651 1.40626i
\(135\) 0 0
\(136\) −11.2878 9.48436i −0.967921 0.813277i
\(137\) 12.2713 12.2713i 1.04841 1.04841i 0.0496415 0.998767i \(-0.484192\pi\)
0.998767 0.0496415i \(-0.0158079\pi\)
\(138\) 0 0
\(139\) −6.53948 + 6.53948i −0.554672 + 0.554672i −0.927786 0.373114i \(-0.878290\pi\)
0.373114 + 0.927786i \(0.378290\pi\)
\(140\) 0.237606 + 0.894683i 0.0200814 + 0.0756145i
\(141\) 0 0
\(142\) −3.07896 + 5.70727i −0.258381 + 0.478943i
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000 3.00000i 0.0830455 0.249136i
\(146\) 12.2088 3.65214i 1.01041 0.302254i
\(147\) 0 0
\(148\) −10.2927 15.6644i −0.846057 1.28761i
\(149\) 8.37169 + 8.37169i 0.685836 + 0.685836i 0.961309 0.275473i \(-0.0888345\pi\)
−0.275473 + 0.961309i \(0.588834\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −8.67357 7.28780i −0.703519 0.591118i
\(153\) 0 0
\(154\) 0.0533277 + 0.0287692i 0.00429727 + 0.00231829i
\(155\) 0.292731 + 0.585462i 0.0235127 + 0.0470254i
\(156\) 0 0
\(157\) 24.7434i 1.97474i −0.158440 0.987369i \(-0.550647\pi\)
0.158440 0.987369i \(-0.449353\pi\)
\(158\) 3.07896 5.70727i 0.244949 0.454046i
\(159\) 0 0
\(160\) 11.4485 + 5.37873i 0.905087 + 0.425226i
\(161\) 0.829076 0.0653403
\(162\) 0 0
\(163\) 7.41454i 0.580751i 0.956913 + 0.290376i \(0.0937803\pi\)
−0.956913 + 0.290376i \(0.906220\pi\)
\(164\) −6.68585 + 4.39312i −0.522077 + 0.343045i
\(165\) 0 0
\(166\) 10.6858 + 5.76481i 0.829383 + 0.447436i
\(167\) −12.2039 12.2039i −0.944366 0.944366i 0.0541655 0.998532i \(-0.482750\pi\)
−0.998532 + 0.0541655i \(0.982750\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) −12.0123 + 11.2878i −0.921300 + 0.865735i
\(171\) 0 0
\(172\) −10.6142 16.1537i −0.809328 1.23171i
\(173\) −14.7434 −1.12092 −0.560459 0.828182i \(-0.689375\pi\)
−0.560459 + 0.828182i \(0.689375\pi\)
\(174\) 0 0
\(175\) 1.02456 0.146365i 0.0774493 0.0110642i
\(176\) 0.769740 0.305010i 0.0580214 0.0229910i
\(177\) 0 0
\(178\) −2.26396 + 4.19656i −0.169691 + 0.314545i
\(179\) −9.22533 9.22533i −0.689533 0.689533i 0.272595 0.962129i \(-0.412118\pi\)
−0.962129 + 0.272595i \(0.912118\pi\)
\(180\) 0 0
\(181\) −3.68585 + 3.68585i −0.273967 + 0.273967i −0.830695 0.556728i \(-0.812057\pi\)
0.556728 + 0.830695i \(0.312057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7.28780 8.67357i 0.537264 0.639424i
\(185\) −18.7434 + 9.37169i −1.37804 + 0.689021i
\(186\) 0 0
\(187\) 1.07896i 0.0789015i
\(188\) −19.7342 4.08389i −1.43927 0.297849i
\(189\) 0 0
\(190\) −9.23026 + 8.67357i −0.669633 + 0.629247i
\(191\) 6.33558i 0.458426i 0.973376 + 0.229213i \(0.0736153\pi\)
−0.973376 + 0.229213i \(0.926385\pi\)
\(192\) 0 0
\(193\) 0.414538 0.414538i 0.0298391 0.0298391i −0.692030 0.721869i \(-0.743283\pi\)
0.721869 + 0.692030i \(0.243283\pi\)
\(194\) 6.87012 2.05512i 0.493246 0.147549i
\(195\) 0 0
\(196\) −11.6286 + 7.64090i −0.830615 + 0.545778i
\(197\) 8.78623 0.625993 0.312996 0.949754i \(-0.398667\pi\)
0.312996 + 0.949754i \(0.398667\pi\)
\(198\) 0 0
\(199\) 11.7073i 0.829906i 0.909843 + 0.414953i \(0.136202\pi\)
−0.909843 + 0.414953i \(0.863798\pi\)
\(200\) 7.47490 12.0052i 0.528556 0.848899i
\(201\) 0 0
\(202\) 5.94488 + 19.8733i 0.418280 + 1.39828i
\(203\) −0.292731 −0.0205457
\(204\) 0 0
\(205\) 4.00000 + 8.00000i 0.279372 + 0.558744i
\(206\) −3.16286 10.5732i −0.220367 0.736669i
\(207\) 0 0
\(208\) 0 0
\(209\) 0.829076i 0.0573484i
\(210\) 0 0
\(211\) 12.4966 12.4966i 0.860304 0.860304i −0.131069 0.991373i \(-0.541841\pi\)
0.991373 + 0.131069i \(0.0418411\pi\)
\(212\) −19.9859 + 13.1323i −1.37264 + 0.901929i
\(213\) 0 0
\(214\) −14.1004 7.60688i −0.963882 0.519996i
\(215\) −19.3288 + 9.66442i −1.31822 + 0.659108i
\(216\) 0 0
\(217\) 0.0428457 0.0428457i 0.00290856 0.00290856i
\(218\) −5.88734 19.6809i −0.398741 1.33296i
\(219\) 0 0
\(220\) −0.237606 0.894683i −0.0160194 0.0603195i
\(221\) 0 0
\(222\) 0 0
\(223\) 17.2253 + 17.2253i 1.15349 + 1.15349i 0.985847 + 0.167646i \(0.0536165\pi\)
0.167646 + 0.985847i \(0.446383\pi\)
\(224\) 0.137222 1.16286i 0.00916852 0.0776966i
\(225\) 0 0
\(226\) 0.966298 + 3.23026i 0.0642772 + 0.214874i
\(227\) −8.29273 −0.550408 −0.275204 0.961386i \(-0.588745\pi\)
−0.275204 + 0.961386i \(0.588745\pi\)
\(228\) 0 0
\(229\) −10.2713 10.2713i −0.678747 0.678747i 0.280970 0.959717i \(-0.409344\pi\)
−0.959717 + 0.280970i \(0.909344\pi\)
\(230\) −8.67357 9.23026i −0.571918 0.608625i
\(231\) 0 0
\(232\) −2.57318 + 3.06247i −0.168938 + 0.201061i
\(233\) 8.27131 + 8.27131i 0.541871 + 0.541871i 0.924077 0.382206i \(-0.124835\pi\)
−0.382206 + 0.924077i \(0.624835\pi\)
\(234\) 0 0
\(235\) −7.12494 + 21.3748i −0.464780 + 1.39434i
\(236\) 26.3625 + 5.45559i 1.71606 + 0.355128i
\(237\) 0 0
\(238\) 1.34292 + 0.724481i 0.0870488 + 0.0469611i
\(239\) −3.41454 −0.220868 −0.110434 0.993883i \(-0.535224\pi\)
−0.110434 + 0.993883i \(0.535224\pi\)
\(240\) 0 0
\(241\) 3.17092 0.204257 0.102129 0.994771i \(-0.467435\pi\)
0.102129 + 0.994771i \(0.467435\pi\)
\(242\) 13.6378 + 7.35731i 0.876668 + 0.472946i
\(243\) 0 0
\(244\) 0.966298 4.66936i 0.0618609 0.298925i
\(245\) 6.95715 + 13.9143i 0.444476 + 0.888953i
\(246\) 0 0
\(247\) 0 0
\(248\) −0.0716150 0.824865i −0.00454755 0.0523790i
\(249\) 0 0
\(250\) −12.3482 9.87537i −0.780966 0.624573i
\(251\) 3.85363 + 3.85363i 0.243239 + 0.243239i 0.818189 0.574950i \(-0.194978\pi\)
−0.574950 + 0.818189i \(0.694978\pi\)
\(252\) 0 0
\(253\) −0.829076 −0.0521236
\(254\) −2.20884 7.38397i −0.138595 0.463312i
\(255\) 0 0
\(256\) −10.9593 11.6574i −0.684954 0.728587i
\(257\) −21.6430 21.6430i −1.35005 1.35005i −0.885595 0.464458i \(-0.846249\pi\)
−0.464458 0.885595i \(-0.653751\pi\)
\(258\) 0 0
\(259\) 1.37169 + 1.37169i 0.0852328 + 0.0852328i
\(260\) 0 0
\(261\) 0 0
\(262\) −7.58053 25.3411i −0.468327 1.56558i
\(263\) 14.2467 14.2467i 0.878492 0.878492i −0.114886 0.993379i \(-0.536650\pi\)
0.993379 + 0.114886i \(0.0366504\pi\)
\(264\) 0 0
\(265\) 11.9572 + 23.9143i 0.734522 + 1.46904i
\(266\) 1.03190 + 0.556693i 0.0632701 + 0.0341330i
\(267\) 0 0
\(268\) 14.3643 + 21.8610i 0.877442 + 1.33537i
\(269\) 11.7862 11.7862i 0.718619 0.718619i −0.249703 0.968322i \(-0.580333\pi\)
0.968322 + 0.249703i \(0.0803331\pi\)
\(270\) 0 0
\(271\) 11.7073i 0.711166i −0.934645 0.355583i \(-0.884282\pi\)
0.934645 0.355583i \(-0.115718\pi\)
\(272\) 19.3840 7.68091i 1.17533 0.465724i
\(273\) 0 0
\(274\) 7.03370 + 23.5131i 0.424921 + 1.42048i
\(275\) −1.02456 + 0.146365i −0.0617832 + 0.00882617i
\(276\) 0 0
\(277\) 18.5426 1.11412 0.557059 0.830473i \(-0.311930\pi\)
0.557059 + 0.830473i \(0.311930\pi\)
\(278\) −3.74832 12.5303i −0.224809 0.751520i
\(279\) 0 0
\(280\) −1.27311 0.305010i −0.0760826 0.0182278i
\(281\) 2.62831i 0.156792i 0.996922 + 0.0783958i \(0.0249798\pi\)
−0.996922 + 0.0783958i \(0.975020\pi\)
\(282\) 0 0
\(283\) 22.2499 1.32262 0.661309 0.750113i \(-0.270001\pi\)
0.661309 + 0.750113i \(0.270001\pi\)
\(284\) −5.03612 7.66442i −0.298838 0.454800i
\(285\) 0 0
\(286\) 0 0
\(287\) 0.585462 0.585462i 0.0345587 0.0345587i
\(288\) 0 0
\(289\) 10.1709i 0.598290i
\(290\) 3.06247 + 3.25903i 0.179835 + 0.191377i
\(291\) 0 0
\(292\) −3.65214 + 17.6479i −0.213726 + 1.03277i
\(293\) 21.9143i 1.28025i 0.768272 + 0.640124i \(0.221117\pi\)
−0.768272 + 0.640124i \(0.778883\pi\)
\(294\) 0 0
\(295\) 9.51806 28.5542i 0.554163 1.66249i
\(296\) 26.4078 2.29273i 1.53492 0.133262i
\(297\) 0 0
\(298\) −16.0410 + 4.79851i −0.929233 + 0.277970i
\(299\) 0 0
\(300\) 0 0
\(301\) 1.41454 + 1.41454i 0.0815326 + 0.0815326i
\(302\) 0 0
\(303\) 0 0
\(304\) 14.8947 5.90203i 0.854269 0.338505i
\(305\) −5.05754 1.68585i −0.289594 0.0965313i
\(306\) 0 0
\(307\) 6.33558 0.361590 0.180795 0.983521i \(-0.442133\pi\)
0.180795 + 0.983521i \(0.442133\pi\)
\(308\) −0.0716150 + 0.0470565i −0.00408064 + 0.00268130i
\(309\) 0 0
\(310\) −0.925249 0.0287692i −0.0525506 0.00163398i
\(311\) 7.32885 0.415581 0.207790 0.978173i \(-0.433373\pi\)
0.207790 + 0.978173i \(0.433373\pi\)
\(312\) 0 0
\(313\) 3.00000 + 3.00000i 0.169570 + 0.169570i 0.786790 0.617220i \(-0.211741\pi\)
−0.617220 + 0.786790i \(0.711741\pi\)
\(314\) 30.7967 + 16.6142i 1.73796 + 0.937595i
\(315\) 0 0
\(316\) 5.03612 + 7.66442i 0.283304 + 0.431157i
\(317\) 19.9572i 1.12091i 0.828186 + 0.560453i \(0.189373\pi\)
−0.828186 + 0.560453i \(0.810627\pi\)
\(318\) 0 0
\(319\) 0.292731 0.0163898
\(320\) −14.3819 + 10.6378i −0.803971 + 0.594669i
\(321\) 0 0
\(322\) −0.556693 + 1.03190i −0.0310233 + 0.0575058i
\(323\) 20.8782i 1.16169i
\(324\) 0 0
\(325\) 0 0
\(326\) −9.22846 4.97858i −0.511117 0.275738i
\(327\) 0 0
\(328\) −0.978577 11.2713i −0.0540329 0.622354i
\(329\) 2.08569 0.114988
\(330\) 0 0
\(331\) −12.4966 12.4966i −0.686877 0.686877i 0.274663 0.961540i \(-0.411434\pi\)
−0.961540 + 0.274663i \(0.911434\pi\)
\(332\) −14.3503 + 9.42923i −0.787573 + 0.517496i
\(333\) 0 0
\(334\) 23.3840 6.99507i 1.27951 0.382753i
\(335\) 26.1579 13.0790i 1.42916 0.714580i
\(336\) 0 0
\(337\) −15.5855 15.5855i −0.848994 0.848994i 0.141013 0.990008i \(-0.454964\pi\)
−0.990008 + 0.141013i \(0.954964\pi\)
\(338\) 8.72900 16.1804i 0.474795 0.880096i
\(339\) 0 0
\(340\) −5.98351 22.5303i −0.324501 1.22188i
\(341\) −0.0428457 + 0.0428457i −0.00232023 + 0.00232023i
\(342\) 0 0
\(343\) 2.04285 2.04285i 0.110303 0.110303i
\(344\) 27.2327 2.36435i 1.46829 0.127477i
\(345\) 0 0
\(346\) 9.89962 18.3503i 0.532207 0.986517i
\(347\) 14.7434i 0.791466i 0.918366 + 0.395733i \(0.129509\pi\)
−0.918366 + 0.395733i \(0.870491\pi\)
\(348\) 0 0
\(349\) −3.64300 + 3.64300i −0.195005 + 0.195005i −0.797855 0.602850i \(-0.794032\pi\)
0.602850 + 0.797855i \(0.294032\pi\)
\(350\) −0.505779 + 1.37349i −0.0270350 + 0.0734161i
\(351\) 0 0
\(352\) −0.137222 + 1.16286i −0.00731395 + 0.0619804i
\(353\) −3.68585 + 3.68585i −0.196178 + 0.196178i −0.798359 0.602181i \(-0.794298\pi\)
0.602181 + 0.798359i \(0.294298\pi\)
\(354\) 0 0
\(355\) −9.17092 + 4.58546i −0.486742 + 0.243371i
\(356\) −3.70306 5.63565i −0.196262 0.298689i
\(357\) 0 0
\(358\) 17.6767 5.28780i 0.934243 0.279469i
\(359\) 32.9933i 1.74132i 0.491887 + 0.870659i \(0.336307\pi\)
−0.491887 + 0.870659i \(0.663693\pi\)
\(360\) 0 0
\(361\) 2.95715i 0.155640i
\(362\) −2.11266 7.06247i −0.111039 0.371195i
\(363\) 0 0
\(364\) 0 0
\(365\) 19.1151 + 6.37169i 1.00053 + 0.333510i
\(366\) 0 0
\(367\) 18.1035 18.1035i 0.944996 0.944996i −0.0535682 0.998564i \(-0.517059\pi\)
0.998564 + 0.0535682i \(0.0170594\pi\)
\(368\) 5.90203 + 14.8947i 0.307665 + 0.776439i
\(369\) 0 0
\(370\) 0.921039 29.6216i 0.0478825 1.53995i
\(371\) 1.75011 1.75011i 0.0908614 0.0908614i
\(372\) 0 0
\(373\) 13.9143i 0.720456i −0.932864 0.360228i \(-0.882699\pi\)
0.932864 0.360228i \(-0.117301\pi\)
\(374\) −1.34292 0.724481i −0.0694409 0.0374620i
\(375\) 0 0
\(376\) 18.3338 21.8199i 0.945492 1.12528i
\(377\) 0 0
\(378\) 0 0
\(379\) −7.71040 + 7.71040i −0.396057 + 0.396057i −0.876840 0.480783i \(-0.840353\pi\)
0.480783 + 0.876840i \(0.340353\pi\)
\(380\) −4.59774 17.3124i −0.235859 0.888105i
\(381\) 0 0
\(382\) −7.88554 4.25410i −0.403459 0.217658i
\(383\) 14.8322 + 14.8322i 0.757891 + 0.757891i 0.975938 0.218048i \(-0.0699688\pi\)
−0.218048 + 0.975938i \(0.569969\pi\)
\(384\) 0 0
\(385\) 0.0428457 + 0.0856914i 0.00218362 + 0.00436724i
\(386\) 0.237606 + 0.794299i 0.0120938 + 0.0404287i
\(387\) 0 0
\(388\) −2.05512 + 9.93080i −0.104333 + 0.504160i
\(389\) 16.3717 + 16.3717i 0.830078 + 0.830078i 0.987527 0.157449i \(-0.0503271\pi\)
−0.157449 + 0.987527i \(0.550327\pi\)
\(390\) 0 0
\(391\) −20.8782 −1.05586
\(392\) −1.70203 19.6041i −0.0859654 0.990154i
\(393\) 0 0
\(394\) −5.89962 + 10.9357i −0.297218 + 0.550934i
\(395\) 9.17092 4.58546i 0.461439 0.230720i
\(396\) 0 0
\(397\) 0.628308i 0.0315339i 0.999876 + 0.0157669i \(0.00501898\pi\)
−0.999876 + 0.0157669i \(0.994981\pi\)
\(398\) −14.5714 7.86098i −0.730398 0.394035i
\(399\) 0 0
\(400\) 9.92314 + 17.3647i 0.496157 + 0.868233i
\(401\) 8.54262 0.426598 0.213299 0.976987i \(-0.431579\pi\)
0.213299 + 0.976987i \(0.431579\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −28.7269 5.94488i −1.42922 0.295769i
\(405\) 0 0
\(406\) 0.196558 0.364346i 0.00975499 0.0180822i
\(407\) −1.37169 1.37169i −0.0679923 0.0679923i
\(408\) 0 0
\(409\) 38.7005 1.91362 0.956809 0.290716i \(-0.0938936\pi\)
0.956809 + 0.290716i \(0.0938936\pi\)
\(410\) −12.6430 0.393115i −0.624393 0.0194146i
\(411\) 0 0
\(412\) 15.2836 + 3.16286i 0.752968 + 0.155823i
\(413\) −2.78623 −0.137101
\(414\) 0 0
\(415\) 8.58546 + 17.1709i 0.421444 + 0.842888i
\(416\) 0 0
\(417\) 0 0
\(418\) −1.03190 0.556693i −0.0504721 0.0272287i
\(419\) −9.81079 9.81079i −0.479288 0.479288i 0.425616 0.904904i \(-0.360058\pi\)
−0.904904 + 0.425616i \(0.860058\pi\)
\(420\) 0 0
\(421\) −20.2713 + 20.2713i −0.987963 + 0.987963i −0.999928 0.0119653i \(-0.996191\pi\)
0.0119653 + 0.999928i \(0.496191\pi\)
\(422\) 7.16286 + 23.9449i 0.348682 + 1.16562i
\(423\) 0 0
\(424\) −2.92525 33.6932i −0.142063 1.63629i
\(425\) −25.8009 + 3.68585i −1.25153 + 0.178790i
\(426\) 0 0
\(427\) 0.493499i 0.0238821i
\(428\) 18.9357 12.4422i 0.915293 0.601418i
\(429\) 0 0
\(430\) 0.949808 30.5468i 0.0458038 1.47310i
\(431\) 29.0790i 1.40068i −0.713807 0.700342i \(-0.753031\pi\)
0.713807 0.700342i \(-0.246969\pi\)
\(432\) 0 0
\(433\) −8.95715 + 8.95715i −0.430453 + 0.430453i −0.888783 0.458329i \(-0.848448\pi\)
0.458329 + 0.888783i \(0.348448\pi\)
\(434\) 0.0245584 + 0.0820969i 0.00117884 + 0.00394078i
\(435\) 0 0
\(436\) 28.4489 + 5.88734i 1.36245 + 0.281952i
\(437\) −16.0428 −0.767433
\(438\) 0 0
\(439\) 7.03612i 0.335815i −0.985803 0.167908i \(-0.946299\pi\)
0.985803 0.167908i \(-0.0537011\pi\)
\(440\) 1.27311 + 0.305010i 0.0606929 + 0.0145408i
\(441\) 0 0
\(442\) 0 0
\(443\) 33.8652 1.60898 0.804492 0.593964i \(-0.202438\pi\)
0.804492 + 0.593964i \(0.202438\pi\)
\(444\) 0 0
\(445\) −6.74338 + 3.37169i −0.319667 + 0.159834i
\(446\) −33.0055 + 9.87326i −1.56286 + 0.467512i
\(447\) 0 0
\(448\) 1.35520 + 0.951605i 0.0640273 + 0.0449591i
\(449\) 32.1151i 1.51560i −0.652484 0.757802i \(-0.726273\pi\)
0.652484 0.757802i \(-0.273727\pi\)
\(450\) 0 0
\(451\) −0.585462 + 0.585462i −0.0275683 + 0.0275683i
\(452\) −4.66936 0.966298i −0.219628 0.0454508i
\(453\) 0 0
\(454\) 5.56825 10.3215i 0.261331 0.484412i
\(455\) 0 0
\(456\) 0 0
\(457\) −4.41454 + 4.41454i −0.206503 + 0.206503i −0.802779 0.596276i \(-0.796646\pi\)
0.596276 + 0.802779i \(0.296646\pi\)
\(458\) 19.6809 5.88734i 0.919629 0.275097i
\(459\) 0 0
\(460\) 17.3124 4.59774i 0.807193 0.214371i
\(461\) −4.95715 4.95715i −0.230878 0.230878i 0.582181 0.813059i \(-0.302199\pi\)
−0.813059 + 0.582181i \(0.802199\pi\)
\(462\) 0 0
\(463\) −2.77467 2.77467i −0.128950 0.128950i 0.639686 0.768636i \(-0.279064\pi\)
−0.768636 + 0.639686i \(0.779064\pi\)
\(464\) −2.08389 5.25903i −0.0967424 0.244144i
\(465\) 0 0
\(466\) −15.8487 + 4.74097i −0.734177 + 0.219621i
\(467\) 23.0361 1.06598 0.532992 0.846120i \(-0.321068\pi\)
0.532992 + 0.846120i \(0.321068\pi\)
\(468\) 0 0
\(469\) −1.91431 1.91431i −0.0883946 0.0883946i
\(470\) −21.8199 23.2204i −1.00648 1.07108i
\(471\) 0 0
\(472\) −24.4917 + 29.1488i −1.12732 + 1.34168i
\(473\) −1.41454 1.41454i −0.0650405 0.0650405i
\(474\) 0 0
\(475\) −19.8255 + 2.83221i −0.909655 + 0.129951i
\(476\) −1.80344 + 1.18500i −0.0826606 + 0.0543144i
\(477\) 0 0
\(478\) 2.29273 4.24989i 0.104867 0.194385i
\(479\) −20.5855 −0.940574 −0.470287 0.882514i \(-0.655850\pi\)
−0.470287 + 0.882514i \(0.655850\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −2.12915 + 3.94667i −0.0969803 + 0.179766i
\(483\) 0 0
\(484\) −18.3145 + 12.0340i −0.832476 + 0.547000i
\(485\) 10.7564 + 3.58546i 0.488422 + 0.162807i
\(486\) 0 0
\(487\) 5.31729 + 5.31729i 0.240949 + 0.240949i 0.817243 0.576293i \(-0.195501\pi\)
−0.576293 + 0.817243i \(0.695501\pi\)
\(488\) 5.16286 + 4.33799i 0.233711 + 0.196372i
\(489\) 0 0
\(490\) −21.9898 0.683741i −0.993399 0.0308883i
\(491\) −21.5181 21.5181i −0.971096 0.971096i 0.0284975 0.999594i \(-0.490928\pi\)
−0.999594 + 0.0284975i \(0.990928\pi\)
\(492\) 0 0
\(493\) 7.37169 0.332004
\(494\) 0 0
\(495\) 0 0
\(496\) 1.07475 + 0.464730i 0.0482577 + 0.0208670i
\(497\) 0.671153 + 0.671153i 0.0301053 + 0.0301053i
\(498\) 0 0
\(499\) −2.83221 2.83221i −0.126787 0.126787i 0.640866 0.767653i \(-0.278576\pi\)
−0.767653 + 0.640866i \(0.778576\pi\)
\(500\) 20.5826 8.73814i 0.920483 0.390782i
\(501\) 0 0
\(502\) −7.38397 + 2.20884i −0.329563 + 0.0985852i
\(503\) −7.32571 + 7.32571i −0.326637 + 0.326637i −0.851306 0.524669i \(-0.824189\pi\)
0.524669 + 0.851306i \(0.324189\pi\)
\(504\) 0 0
\(505\) −10.3717 + 31.1151i −0.461534 + 1.38460i
\(506\) 0.556693 1.03190i 0.0247480 0.0458738i
\(507\) 0 0
\(508\) 10.6736 + 2.20884i 0.473563 + 0.0980013i
\(509\) −10.1709 + 10.1709i −0.450818 + 0.450818i −0.895626 0.444808i \(-0.853272\pi\)
0.444808 + 0.895626i \(0.353272\pi\)
\(510\) 0 0
\(511\) 1.86519i 0.0825112i
\(512\) 21.8680 5.81289i 0.966439 0.256896i
\(513\) 0 0
\(514\) 41.4703 12.4054i 1.82918 0.547178i
\(515\) 5.51806 16.5542i 0.243155 0.729464i
\(516\) 0 0
\(517\) −2.08569 −0.0917286
\(518\) −2.62831 + 0.786230i −0.115481 + 0.0345450i
\(519\) 0 0
\(520\) 0 0
\(521\) 8.11508i 0.355528i 0.984073 + 0.177764i \(0.0568864\pi\)
−0.984073 + 0.177764i \(0.943114\pi\)
\(522\) 0 0
\(523\) 5.07896 0.222087 0.111044 0.993816i \(-0.464581\pi\)
0.111044 + 0.993816i \(0.464581\pi\)
\(524\) 36.6307 + 7.58053i 1.60022 + 0.331157i
\(525\) 0 0
\(526\) 8.16599 + 27.2983i 0.356054 + 1.19026i
\(527\) −1.07896 + 1.07896i −0.0470003 + 0.0470003i
\(528\) 0 0
\(529\) 6.95715i 0.302485i
\(530\) −37.7936 1.17513i −1.64165 0.0510446i
\(531\) 0 0
\(532\) −1.38577 + 0.910557i −0.0600807 + 0.0394776i
\(533\) 0 0
\(534\) 0 0
\(535\) −11.3288 22.6577i −0.489789 0.979578i
\(536\) −36.8543 + 3.19969i −1.59186 + 0.138206i
\(537\) 0 0
\(538\) 6.75566 + 22.5837i 0.291257 + 0.973651i
\(539\) −1.01829 + 1.01829i −0.0438607 + 0.0438607i
\(540\) 0 0
\(541\) 26.3864 + 26.3864i 1.13444 + 1.13444i 0.989430 + 0.145009i \(0.0463211\pi\)
0.145009 + 0.989430i \(0.453679\pi\)
\(542\) 14.5714 + 7.86098i 0.625895 + 0.337658i
\(543\) 0 0
\(544\) −3.45559 + 29.2836i −0.148157 + 1.25552i
\(545\) 10.2713 30.8139i 0.439974 1.31992i
\(546\) 0 0
\(547\) −33.6644 −1.43939 −0.719693 0.694292i \(-0.755718\pi\)
−0.719693 + 0.694292i \(0.755718\pi\)
\(548\) −33.9883 7.03370i −1.45191 0.300465i
\(549\) 0 0
\(550\) 0.505779 1.37349i 0.0215665 0.0585658i
\(551\) 5.66442 0.241313
\(552\) 0 0
\(553\) −0.671153 0.671153i −0.0285403 0.0285403i
\(554\) −12.4507 + 23.0790i −0.528978 + 0.980531i
\(555\) 0 0
\(556\) 18.1127 + 3.74832i 0.768148 + 0.158964i
\(557\) 8.82908i 0.374100i −0.982350 0.187050i \(-0.940107\pi\)
0.982350 0.187050i \(-0.0598926\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.23447 1.37976i 0.0521659 0.0583055i
\(561\) 0 0
\(562\) −3.27131 1.76481i −0.137992 0.0744439i
\(563\) 6.74338i 0.284200i 0.989852 + 0.142100i \(0.0453854\pi\)
−0.989852 + 0.142100i \(0.954615\pi\)
\(564\) 0 0
\(565\) −1.68585 + 5.05754i −0.0709241 + 0.212772i
\(566\) −14.9399 + 27.6932i −0.627973 + 1.16403i
\(567\) 0 0
\(568\) 12.9210 1.12181i 0.542155 0.0470700i
\(569\) −23.3717 −0.979792 −0.489896 0.871781i \(-0.662965\pi\)
−0.489896 + 0.871781i \(0.662965\pi\)
\(570\) 0 0
\(571\) −22.5395 22.5395i −0.943248 0.943248i 0.0552260 0.998474i \(-0.482412\pi\)
−0.998474 + 0.0552260i \(0.982412\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.335577 + 1.12181i 0.0140067 + 0.0468233i
\(575\) −2.83221 19.8255i −0.118111 0.826780i
\(576\) 0 0
\(577\) 21.5855 + 21.5855i 0.898615 + 0.898615i 0.995314 0.0966991i \(-0.0308285\pi\)
−0.0966991 + 0.995314i \(0.530828\pi\)
\(578\) −12.6592 6.82938i −0.526553 0.284065i
\(579\) 0 0
\(580\) −6.11266 + 1.62337i −0.253815 + 0.0674070i
\(581\) 1.25662 1.25662i 0.0521332 0.0521332i
\(582\) 0 0
\(583\) −1.75011 + 1.75011i −0.0724823 + 0.0724823i
\(584\) −19.5131 16.3955i −0.807459 0.678452i
\(585\) 0 0
\(586\) −27.2755 14.7146i −1.12674 0.607855i
\(587\) 16.5855i 0.684555i 0.939599 + 0.342278i \(0.111198\pi\)
−0.939599 + 0.342278i \(0.888802\pi\)
\(588\) 0 0
\(589\) −0.829076 + 0.829076i −0.0341615 + 0.0341615i
\(590\) 29.1488 + 31.0196i 1.20004 + 1.27706i
\(591\) 0 0
\(592\) −14.8782 + 34.4078i −0.611490 + 1.41415i
\(593\) −8.85677 + 8.85677i −0.363704 + 0.363704i −0.865175 0.501471i \(-0.832793\pi\)
0.501471 + 0.865175i \(0.332793\pi\)
\(594\) 0 0
\(595\) 1.07896 + 2.15792i 0.0442331 + 0.0884662i
\(596\) 4.79851 23.1874i 0.196555 0.949793i
\(597\) 0 0
\(598\) 0 0
\(599\) 24.9933i 1.02120i 0.859819 + 0.510599i \(0.170576\pi\)
−0.859819 + 0.510599i \(0.829424\pi\)
\(600\) 0 0
\(601\) 39.8286i 1.62464i −0.583210 0.812322i \(-0.698203\pi\)
0.583210 0.812322i \(-0.301797\pi\)
\(602\) −2.71040 + 0.810789i −0.110468 + 0.0330453i
\(603\) 0 0
\(604\) 0 0
\(605\) 10.9572 + 21.9143i 0.445472 + 0.890943i
\(606\) 0 0
\(607\) 16.8469 16.8469i 0.683795 0.683795i −0.277058 0.960853i \(-0.589360\pi\)
0.960853 + 0.277058i \(0.0893595\pi\)
\(608\) −2.65528 + 22.5016i −0.107686 + 0.912559i
\(609\) 0 0
\(610\) 5.49422 5.16286i 0.222455 0.209038i
\(611\) 0 0
\(612\) 0 0
\(613\) 8.62831i 0.348494i −0.984702 0.174247i \(-0.944251\pi\)
0.984702 0.174247i \(-0.0557491\pi\)
\(614\) −4.25410 + 7.88554i −0.171681 + 0.318234i
\(615\) 0 0
\(616\) −0.0104820 0.120732i −0.000422330 0.00486442i
\(617\) 11.0147 11.0147i 0.443435 0.443435i −0.449730 0.893165i \(-0.648480\pi\)
0.893165 + 0.449730i \(0.148480\pi\)
\(618\) 0 0
\(619\) −6.53948 + 6.53948i −0.262844 + 0.262844i −0.826208 0.563365i \(-0.809507\pi\)
0.563365 + 0.826208i \(0.309507\pi\)
\(620\) 0.657077 1.13229i 0.0263888 0.0454738i
\(621\) 0 0
\(622\) −4.92104 + 9.12181i −0.197316 + 0.365751i
\(623\) 0.493499 + 0.493499i 0.0197716 + 0.0197716i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −5.74832 + 1.71955i −0.229749 + 0.0687270i
\(627\) 0 0
\(628\) −41.3576 + 27.1751i −1.65035 + 1.08441i
\(629\) −34.5426 34.5426i −1.37730 1.37730i
\(630\) 0 0
\(631\) 42.0722 1.67487 0.837435 0.546538i \(-0.184054\pi\)
0.837435 + 0.546538i \(0.184054\pi\)
\(632\) −12.9210 + 1.12181i −0.513971 + 0.0446231i
\(633\) 0 0
\(634\) −24.8396 13.4005i −0.986505 0.532200i
\(635\) 3.85363 11.5609i 0.152927 0.458780i
\(636\) 0 0
\(637\) 0 0
\(638\) −0.196558 + 0.364346i −0.00778179 + 0.0144246i
\(639\) 0 0
\(640\) −3.58336 25.0432i −0.141645 0.989918i
\(641\) −16.8291 −0.664709 −0.332354 0.943155i \(-0.607843\pi\)
−0.332354 + 0.943155i \(0.607843\pi\)
\(642\) 0 0
\(643\) 38.0722i 1.50142i −0.660631 0.750711i \(-0.729711\pi\)
0.660631 0.750711i \(-0.270289\pi\)
\(644\) −0.910557 1.38577i −0.0358810 0.0546069i
\(645\) 0 0
\(646\) −25.9859 14.0189i −1.02240 0.551566i
\(647\) 1.36856 + 1.36856i 0.0538035 + 0.0538035i 0.733497 0.679693i \(-0.237887\pi\)
−0.679693 + 0.733497i \(0.737887\pi\)
\(648\) 0 0
\(649\) 2.78623 0.109369
\(650\) 0 0
\(651\) 0 0
\(652\) 12.3931 8.14323i 0.485352 0.318913i
\(653\) −17.9572 −0.702718 −0.351359 0.936241i \(-0.614280\pi\)
−0.351359 + 0.936241i \(0.614280\pi\)
\(654\) 0 0
\(655\) 13.2253 39.6760i 0.516756 1.55027i
\(656\) 14.6858 + 6.35027i 0.573386 + 0.247936i
\(657\) 0 0
\(658\) −1.40046 + 2.59594i −0.0545957 + 0.101200i
\(659\) −11.1825 11.1825i −0.435608 0.435608i 0.454923 0.890531i \(-0.349667\pi\)
−0.890531 + 0.454923i \(0.849667\pi\)
\(660\) 0 0
\(661\) −3.01469 + 3.01469i −0.117258 + 0.117258i −0.763301 0.646043i \(-0.776423\pi\)
0.646043 + 0.763301i \(0.276423\pi\)
\(662\) 23.9449 7.16286i 0.930644 0.278392i
\(663\) 0 0
\(664\) −2.10038 24.1923i −0.0815107 0.938845i
\(665\) 0.829076 + 1.65815i 0.0321502 + 0.0643004i
\(666\) 0 0
\(667\) 5.66442i 0.219327i
\(668\) −6.99507 + 33.8016i −0.270647 + 1.30782i
\(669\) 0 0
\(670\) −1.28538 + 41.3393i −0.0496587 + 1.59708i
\(671\) 0.493499i 0.0190513i
\(672\) 0 0
\(673\) −12.5725 + 12.5725i −0.484633 + 0.484633i −0.906608 0.421975i \(-0.861337\pi\)
0.421975 + 0.906608i \(0.361337\pi\)
\(674\) 29.8634 8.93332i 1.15029 0.344099i
\(675\) 0 0
\(676\) 14.2776 + 21.7290i 0.549139 + 0.835731i
\(677\) 16.7862 0.645147 0.322574 0.946544i \(-0.395452\pi\)
0.322574 + 0.946544i \(0.395452\pi\)
\(678\) 0 0
\(679\) 1.04958i 0.0402790i
\(680\) 32.0600 + 7.68091i 1.22944 + 0.294550i
\(681\) 0 0
\(682\) −0.0245584 0.0820969i −0.000940391 0.00314365i
\(683\) −0.378422 −0.0144799 −0.00723997 0.999974i \(-0.502305\pi\)
−0.00723997 + 0.999974i \(0.502305\pi\)
\(684\) 0 0
\(685\) −12.2713 + 36.8139i −0.468863 + 1.40659i
\(686\) 1.17092 + 3.91431i 0.0447061 + 0.149449i
\(687\) 0 0
\(688\) −15.3429 + 35.4826i −0.584943 + 1.35276i
\(689\) 0 0
\(690\) 0 0
\(691\) 7.79610 7.79610i 0.296577 0.296577i −0.543094 0.839672i \(-0.682747\pi\)
0.839672 + 0.543094i \(0.182747\pi\)
\(692\) 16.1923 + 24.6430i 0.615541 + 0.936786i
\(693\) 0 0
\(694\) −18.3503 9.89962i −0.696567 0.375784i
\(695\) 6.53948 19.6184i 0.248057 0.744170i
\(696\) 0 0
\(697\) −14.7434 + 14.7434i −0.558446 + 0.558446i
\(698\) −2.08810 6.98037i −0.0790359 0.264211i
\(699\) 0 0
\(700\) −1.36990 1.55176i −0.0517772 0.0586510i
\(701\) 1.78623 + 1.78623i 0.0674650 + 0.0674650i 0.740034 0.672569i \(-0.234809\pi\)
−0.672569 + 0.740034i \(0.734809\pi\)
\(702\) 0 0
\(703\) −26.5426 26.5426i −1.00107 1.00107i
\(704\) −1.35520 0.951605i −0.0510761 0.0358650i
\(705\) 0 0
\(706\) −2.11266 7.06247i −0.0795111 0.265800i
\(707\) 3.03612 0.114185
\(708\) 0 0
\(709\) −21.6858 21.6858i −0.814429 0.814429i 0.170865 0.985294i \(-0.445344\pi\)
−0.985294 + 0.170865i \(0.945344\pi\)
\(710\) 0.450654 14.4935i 0.0169127 0.543931i
\(711\) 0 0
\(712\) 9.50085 0.824865i 0.356059 0.0309131i
\(713\) −0.829076 0.829076i −0.0310491 0.0310491i
\(714\) 0 0
\(715\) 0 0
\(716\) −5.28780 + 25.5518i −0.197614 + 0.954914i
\(717\) 0 0
\(718\) −41.0649 22.1537i −1.53253 0.826769i
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −1.61531 −0.0601572
\(722\) 3.68061 + 1.98562i 0.136978 + 0.0738970i
\(723\) 0 0
\(724\) 10.2088 + 2.11266i 0.379408 + 0.0785165i
\(725\) 1.00000 + 7.00000i 0.0371391 + 0.259973i
\(726\) 0 0
\(727\) 33.6331 + 33.6331i 1.24738 + 1.24738i 0.956871 + 0.290513i \(0.0938259\pi\)
0.290513 + 0.956871i \(0.406174\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −20.7655 + 19.5131i −0.768567 + 0.722213i
\(731\) −35.6216 35.6216i −1.31751 1.31751i
\(732\) 0 0
\(733\) −20.1151 −0.742967 −0.371484 0.928439i \(-0.621151\pi\)
−0.371484 + 0.928439i \(0.621151\pi\)
\(734\) 10.3766 + 34.6883i 0.383008 + 1.28037i
\(735\) 0 0
\(736\) −22.5016 2.65528i −0.829419 0.0978749i
\(737\) 1.91431 + 1.91431i 0.0705145 + 0.0705145i
\(738\) 0 0
\(739\) 17.7533 + 17.7533i 0.653064 + 0.653064i 0.953730 0.300666i \(-0.0972088\pi\)
−0.300666 + 0.953730i \(0.597209\pi\)
\(740\) 36.2499 + 21.0361i 1.33257 + 0.773303i
\(741\) 0 0
\(742\) 1.00314 + 3.35341i 0.0368263 + 0.123107i
\(743\) 0.203904 0.203904i 0.00748051 0.00748051i −0.703357 0.710837i \(-0.748316\pi\)
0.710837 + 0.703357i \(0.248316\pi\)
\(744\) 0 0
\(745\) −25.1151 8.37169i −0.920145 0.306715i
\(746\) 17.3184 + 9.34292i 0.634070 + 0.342069i
\(747\) 0 0
\(748\) 1.80344 1.18500i 0.0659404 0.0433279i
\(749\) −1.65815 + 1.65815i −0.0605876 + 0.0605876i
\(750\) 0 0
\(751\) 2.45065i 0.0894256i 0.999000 + 0.0447128i \(0.0142373\pi\)
−0.999000 + 0.0447128i \(0.985763\pi\)
\(752\) 14.8476 + 37.4703i 0.541437 + 1.36640i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37.2860 1.35518 0.677591 0.735439i \(-0.263024\pi\)
0.677591 + 0.735439i \(0.263024\pi\)
\(758\) −4.41947 14.7740i −0.160522 0.536614i
\(759\) 0 0
\(760\) 24.6349 + 5.90203i 0.893603 + 0.214089i
\(761\) 12.2008i 0.442278i 0.975242 + 0.221139i \(0.0709774\pi\)
−0.975242 + 0.221139i \(0.929023\pi\)
\(762\) 0 0
\(763\) −3.00673 −0.108851
\(764\) 10.5897 6.95823i 0.383121 0.251740i
\(765\) 0 0
\(766\) −28.4201 + 8.50157i −1.02686 + 0.307174i
\(767\) 0 0
\(768\) 0 0
\(769\) 3.21377i 0.115891i 0.998320 + 0.0579457i \(0.0184550\pi\)
−0.998320 + 0.0579457i \(0.981545\pi\)
\(770\) −0.135425 0.00421083i −0.00488036 0.000151748i
\(771\) 0 0
\(772\) −1.14816 0.237606i −0.0413233 0.00855163i
\(773\) 42.6148i 1.53275i −0.642394 0.766375i \(-0.722059\pi\)
0.642394 0.766375i \(-0.277941\pi\)
\(774\) 0 0
\(775\) −1.17092 0.878193i −0.0420608 0.0315456i
\(776\) −10.9804 9.22605i −0.394172 0.331196i
\(777\) 0 0
\(778\) −31.3699 + 9.38397i −1.12467 + 0.336432i
\(779\) −11.3288 + 11.3288i −0.405898 + 0.405898i
\(780\) 0 0
\(781\) −0.671153 0.671153i −0.0240158 0.0240158i
\(782\) 14.0189 25.9859i 0.501315 0.929255i
\(783\) 0 0
\(784\) 25.5429 + 11.0450i 0.912247 + 0.394463i
\(785\) 24.7434 + 49.4868i 0.883129 + 1.76626i
\(786\) 0 0
\(787\) 47.2369 1.68381 0.841907 0.539623i \(-0.181433\pi\)
0.841907 + 0.539623i \(0.181433\pi\)
\(788\) −9.64973 14.6858i −0.343757 0.523162i
\(789\) 0 0
\(790\) −0.450654 + 14.4935i −0.0160335 + 0.515656i
\(791\) 0.493499 0.0175468
\(792\) 0 0
\(793\) 0 0
\(794\) −0.782020 0.421884i −0.0277528 0.0149721i
\(795\) 0 0
\(796\) 19.5682 12.8578i 0.693578 0.455734i
\(797\) 19.8715i 0.703883i −0.936022 0.351942i \(-0.885522\pi\)
0.936022 0.351942i \(-0.114478\pi\)
\(798\) 0 0
\(799\) −52.5229 −1.85813
\(800\) −28.2758 + 0.691087i −0.999701 + 0.0244336i
\(801\) 0 0
\(802\) −5.73604 + 10.6325i −0.202547 + 0.375447i
\(803\) 1.86519i 0.0658212i
\(804\) 0 0
\(805\) −1.65815 + 0.829076i −0.0584422 + 0.0292211i
\(806\) 0 0
\(807\) 0 0
\(808\) 26.6883 31.7630i 0.938890 1.11742i
\(809\) 38.3158 1.34711 0.673557 0.739136i \(-0.264766\pi\)
0.673557 + 0.739136i \(0.264766\pi\)
\(810\) 0 0
\(811\) 7.50337 + 7.50337i 0.263479 + 0.263479i 0.826466 0.562987i \(-0.190348\pi\)
−0.562987 + 0.826466i \(0.690348\pi\)
\(812\) 0.321500 + 0.489289i 0.0112824 + 0.0171707i
\(813\) 0 0
\(814\) 2.62831 0.786230i 0.0921221 0.0275574i
\(815\) −7.41454 14.8291i −0.259720 0.519440i
\(816\) 0 0
\(817\) −27.3717 27.3717i −0.957614 0.957614i
\(818\) −25.9859 + 48.1684i −0.908577 + 1.68417i
\(819\) 0 0
\(820\) 8.97858 15.4721i 0.313546 0.540308i
\(821\) −35.1151 + 35.1151i −1.22552 + 1.22552i −0.259885 + 0.965640i \(0.583685\pi\)
−0.965640 + 0.259885i \(0.916315\pi\)
\(822\) 0 0
\(823\) −30.8041 + 30.8041i −1.07376 + 1.07376i −0.0767084 + 0.997054i \(0.524441\pi\)
−0.997054 + 0.0767084i \(0.975559\pi\)
\(824\) −14.1990 + 16.8989i −0.494645 + 0.588701i
\(825\) 0 0
\(826\) 1.87085 3.46787i 0.0650951 0.120662i
\(827\) 23.9143i 0.831582i 0.909460 + 0.415791i \(0.136495\pi\)
−0.909460 + 0.415791i \(0.863505\pi\)
\(828\) 0 0
\(829\) 8.47208 8.47208i 0.294247 0.294247i −0.544508 0.838756i \(-0.683284\pi\)
0.838756 + 0.544508i \(0.183284\pi\)
\(830\) −27.1365 0.843769i −0.941922 0.0292876i
\(831\) 0 0
\(832\) 0 0
\(833\) −25.6430 + 25.6430i −0.888477 + 0.888477i
\(834\) 0 0
\(835\) 36.6117 + 12.2039i 1.26700 + 0.422334i
\(836\) 1.38577 0.910557i 0.0479278 0.0314923i
\(837\) 0 0
\(838\) 18.7985 5.62337i 0.649384 0.194256i
\(839\) 49.5787i 1.71165i −0.517267 0.855824i \(-0.673051\pi\)
0.517267 0.855824i \(-0.326949\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) −11.6192 38.8420i −0.400423 1.33858i
\(843\) 0 0
\(844\) −34.6124 7.16286i −1.19141 0.246556i
\(845\) 26.0000 13.0000i 0.894427 0.447214i
\(846\) 0 0
\(847\) 1.60375 1.60375i 0.0551055 0.0551055i
\(848\) 43.9002 + 18.9828i 1.50754 + 0.651872i
\(849\) 0 0
\(850\) 12.7368 34.5879i 0.436867 1.18635i
\(851\) 26.5426 26.5426i 0.909869 0.909869i
\(852\) 0 0
\(853\) 28.6283i 0.980215i 0.871662 + 0.490107i \(0.163042\pi\)
−0.871662 + 0.490107i \(0.836958\pi\)
\(854\) −0.614231 0.331366i −0.0210186 0.0113391i
\(855\) 0 0
\(856\) 2.77154 + 31.9227i 0.0947292 + 1.09110i
\(857\) −0.899616 + 0.899616i −0.0307303 + 0.0307303i −0.722305 0.691575i \(-0.756917\pi\)
0.691575 + 0.722305i \(0.256917\pi\)
\(858\) 0 0
\(859\) 38.0754 38.0754i 1.29911 1.29911i 0.370138 0.928977i \(-0.379310\pi\)
0.928977 0.370138i \(-0.120690\pi\)
\(860\) 37.3822 + 21.6932i 1.27472 + 0.739732i
\(861\) 0 0
\(862\) 36.1930 + 19.5254i 1.23274 + 0.665038i
\(863\) −3.12494 3.12494i −0.106374 0.106374i 0.651916 0.758291i \(-0.273965\pi\)
−0.758291 + 0.651916i \(0.773965\pi\)
\(864\) 0 0
\(865\) 29.4868 14.7434i 1.00258 0.501290i
\(866\) −5.13409 17.1629i −0.174463 0.583218i
\(867\) 0 0
\(868\) −0.118671 0.0245584i −0.00402797 0.000833567i
\(869\) 0.671153 + 0.671153i 0.0227673 + 0.0227673i
\(870\) 0 0
\(871\) 0 0
\(872\) −26.4300 + 31.4556i −0.895031 + 1.06522i
\(873\) 0 0
\(874\) 10.7722 19.9676i 0.364374 0.675415i
\(875\) −1.90275 + 1.31729i −0.0643247 + 0.0445325i
\(876\) 0 0
\(877\) 0.743385i 0.0251023i −0.999921 0.0125512i \(-0.996005\pi\)
0.999921 0.0125512i \(-0.00399526\pi\)
\(878\) 8.75746 + 4.72448i 0.295550 + 0.159444i
\(879\) 0 0
\(880\) −1.23447 + 1.37976i −0.0416140 + 0.0465117i
\(881\) 35.2860 1.18882 0.594408 0.804164i \(-0.297387\pi\)
0.594408 + 0.804164i \(0.297387\pi\)
\(882\) 0 0
\(883\) 32.9870i 1.11010i −0.831817 0.555050i \(-0.812699\pi\)
0.831817 0.555050i \(-0.187301\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −22.7392 + 42.1501i −0.763937 + 1.41606i
\(887\) 5.16779 + 5.16779i 0.173517 + 0.173517i 0.788523 0.615005i \(-0.210846\pi\)
−0.615005 + 0.788523i \(0.710846\pi\)
\(888\) 0 0
\(889\) −1.12808 −0.0378345
\(890\) 0.331366 10.6571i 0.0111074 0.357226i
\(891\) 0 0
\(892\) 9.87326 47.7097i 0.330581 1.59744i
\(893\) −40.3587 −1.35055
\(894\) 0 0
\(895\) 27.6760 + 9.22533i 0.925106 + 0.308369i
\(896\) −2.09438 + 1.04778i −0.0699682 + 0.0350038i
\(897\) 0 0
\(898\) 39.9718 + 21.5640i 1.33388 + 0.719601i
\(899\) 0.292731 + 0.292731i 0.00976312 + 0.00976312i
\(900\) 0 0
\(901\) −44.0722 + 44.0722i −1.46826 + 1.46826i
\(902\) −0.335577 1.12181i −0.0111735 0.0373521i
\(903\) 0 0
\(904\) 4.33799 5.16286i 0.144279 0.171714i
\(905\) 3.68585 11.0575i 0.122522 0.367565i
\(906\) 0 0
\(907\) 6.74338i 0.223910i −0.993713 0.111955i \(-0.964289\pi\)
0.993713 0.111955i \(-0.0357113\pi\)
\(908\) 9.10773 + 13.8610i 0.302251 + 0.459993i
\(909\) 0 0
\(910\) 0 0
\(911\) 1.16465i 0.0385867i −0.999814 0.0192933i \(-0.993858\pi\)
0.999814 0.0192933i \(-0.00614164\pi\)
\(912\) 0 0
\(913\) −1.25662 + 1.25662i −0.0415879 + 0.0415879i
\(914\) −2.53034 8.45872i −0.0836961 0.279790i
\(915\) 0 0
\(916\) −5.88734 + 28.4489i −0.194523 + 0.939977i
\(917\) −3.87146 −0.127847
\(918\) 0 0
\(919\) 25.8652i 0.853214i 0.904437 + 0.426607i \(0.140291\pi\)
−0.904437 + 0.426607i \(0.859709\pi\)
\(920\) −5.90203 + 24.6349i −0.194584 + 0.812190i
\(921\) 0 0
\(922\) 9.49843 2.84136i 0.312814 0.0935751i
\(923\) 0 0
\(924\) 0 0
\(925\) 28.1151 37.4868i 0.924418 1.23256i
\(926\) 5.31657 1.59039i 0.174713 0.0522636i
\(927\) 0 0
\(928\) 7.94488 + 0.937529i 0.260803 + 0.0307759i
\(929\) 37.2003i 1.22050i 0.792208 + 0.610251i \(0.208932\pi\)
−0.792208 + 0.610251i \(0.791068\pi\)
\(930\) 0 0
\(931\) −19.7041 + 19.7041i −0.645777 + 0.645777i
\(932\) 4.74097 22.9094i 0.155296 0.750422i
\(933\) 0 0
\(934\) −15.4679 + 28.6718i −0.506124 + 0.938169i
\(935\) −1.07896 2.15792i −0.0352858 0.0705716i
\(936\) 0 0
\(937\) −20.9143 + 20.9143i −0.683241 + 0.683241i −0.960729 0.277488i \(-0.910498\pi\)
0.277488 + 0.960729i \(0.410498\pi\)
\(938\) 3.66802 1.09725i 0.119765 0.0358264i
\(939\) 0 0
\(940\) 43.5524 11.5665i 1.42052 0.377256i
\(941\) 5.58546 + 5.58546i 0.182081 + 0.182081i 0.792262 0.610181i \(-0.208903\pi\)
−0.610181 + 0.792262i \(0.708903\pi\)
\(942\) 0 0
\(943\) −11.3288 11.3288i −0.368918 0.368918i
\(944\) −19.8346 50.0557i −0.645562 1.62918i
\(945\) 0 0
\(946\) 2.71040 0.810789i 0.0881229 0.0263610i
\(947\) 20.7925 0.675666 0.337833 0.941206i \(-0.390306\pi\)
0.337833 + 0.941206i \(0.390306\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 9.78695 26.5774i 0.317531 0.862285i
\(951\) 0 0
\(952\) −0.263962 3.04033i −0.00855505 0.0985375i
\(953\) −16.3142 16.3142i −0.528467 0.528467i 0.391648 0.920115i \(-0.371905\pi\)
−0.920115 + 0.391648i \(0.871905\pi\)
\(954\) 0 0
\(955\) −6.33558 12.6712i −0.205014 0.410029i
\(956\) 3.75011 + 5.70727i 0.121287 + 0.184586i
\(957\) 0 0
\(958\) 13.8223 25.6216i 0.446580 0.827796i
\(959\) 3.59219 0.115998
\(960\) 0 0
\(961\) 30.9143 0.997236
\(962\) 0 0
\(963\) 0 0
\(964\) −3.48256 5.30008i −0.112166 0.170704i
\(965\) −0.414538 + 1.24361i −0.0133445 + 0.0400334i
\(966\) 0 0
\(967\) −19.5672 19.5672i −0.629238 0.629238i 0.318638 0.947876i \(-0.396774\pi\)
−0.947876 + 0.318638i \(0.896774\pi\)
\(968\) −2.68061 30.8754i −0.0861579 0.992372i
\(969\) 0 0
\(970\) −11.6851 + 10.9804i −0.375187 + 0.352559i
\(971\) −12.8469 12.8469i −0.412277 0.412277i 0.470254 0.882531i \(-0.344162\pi\)
−0.882531 + 0.470254i \(0.844162\pi\)
\(972\) 0 0
\(973\) −1.91431 −0.0613699
\(974\) −10.1885 + 3.04778i −0.326460 + 0.0976571i
\(975\) 0 0
\(976\) −8.86591 + 3.51313i −0.283791 + 0.112452i
\(977\) 27.6430 + 27.6430i 0.884378 + 0.884378i 0.993976 0.109598i \(-0.0349564\pi\)
−0.109598 + 0.993976i \(0.534956\pi\)
\(978\) 0 0
\(979\) −0.493499 0.493499i −0.0157723 0.0157723i
\(980\) 15.6163 26.9104i 0.498846 0.859621i
\(981\) 0 0
\(982\) 41.2309 12.3338i 1.31573 0.393587i
\(983\) 22.1611 22.1611i 0.706828 0.706828i −0.259039 0.965867i \(-0.583406\pi\)
0.965867 + 0.259039i \(0.0834058\pi\)
\(984\) 0 0
\(985\) −17.5725 + 8.78623i −0.559905 + 0.279953i
\(986\) −4.94981 + 9.17513i −0.157634 + 0.292196i
\(987\) 0 0
\(988\) 0 0
\(989\) 27.3717 27.3717i 0.870369 0.870369i
\(990\) 0 0
\(991\) 50.9504i 1.61849i 0.587469 + 0.809247i \(0.300124\pi\)
−0.587469 + 0.809247i \(0.699876\pi\)
\(992\) −1.30008 + 1.02563i −0.0412775 + 0.0325639i
\(993\) 0 0
\(994\) −1.28600 + 0.384694i −0.0407895 + 0.0122017i
\(995\) −11.7073 23.4145i −0.371145 0.742291i
\(996\) 0 0
\(997\) −19.9143 −0.630692 −0.315346 0.948977i \(-0.602121\pi\)
−0.315346 + 0.948977i \(0.602121\pi\)
\(998\) 5.42682 1.62337i 0.171783 0.0513870i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bd.e.307.1 6
3.2 odd 2 240.2.bc.d.67.3 yes 6
5.3 odd 4 720.2.z.e.163.3 6
12.11 even 2 960.2.bc.d.367.2 6
15.8 even 4 240.2.y.d.163.1 6
16.11 odd 4 720.2.z.e.667.3 6
24.5 odd 2 1920.2.bc.g.607.2 6
24.11 even 2 1920.2.bc.h.607.2 6
48.5 odd 4 960.2.y.d.847.2 6
48.11 even 4 240.2.y.d.187.1 yes 6
48.29 odd 4 1920.2.y.h.1567.2 6
48.35 even 4 1920.2.y.g.1567.2 6
60.23 odd 4 960.2.y.d.943.2 6
80.43 even 4 inner 720.2.bd.e.523.1 6
120.53 even 4 1920.2.y.g.223.2 6
120.83 odd 4 1920.2.y.h.223.2 6
240.53 even 4 960.2.bc.d.463.2 6
240.83 odd 4 1920.2.bc.g.1183.2 6
240.173 even 4 1920.2.bc.h.1183.2 6
240.203 odd 4 240.2.bc.d.43.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.1 6 15.8 even 4
240.2.y.d.187.1 yes 6 48.11 even 4
240.2.bc.d.43.3 yes 6 240.203 odd 4
240.2.bc.d.67.3 yes 6 3.2 odd 2
720.2.z.e.163.3 6 5.3 odd 4
720.2.z.e.667.3 6 16.11 odd 4
720.2.bd.e.307.1 6 1.1 even 1 trivial
720.2.bd.e.523.1 6 80.43 even 4 inner
960.2.y.d.847.2 6 48.5 odd 4
960.2.y.d.943.2 6 60.23 odd 4
960.2.bc.d.367.2 6 12.11 even 2
960.2.bc.d.463.2 6 240.53 even 4
1920.2.y.g.223.2 6 120.53 even 4
1920.2.y.g.1567.2 6 48.35 even 4
1920.2.y.h.223.2 6 120.83 odd 4
1920.2.y.h.1567.2 6 48.29 odd 4
1920.2.bc.g.607.2 6 24.5 odd 2
1920.2.bc.g.1183.2 6 240.83 odd 4
1920.2.bc.h.607.2 6 24.11 even 2
1920.2.bc.h.1183.2 6 240.173 even 4