Properties

Label 240.2.y.d.187.1
Level $240$
Weight $2$
Character 240.187
Analytic conductor $1.916$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,2,Mod(163,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.y (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.1
Root \(-0.671462 + 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 240.187
Dual form 240.2.y.d.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24464 + 0.671462i) q^{2} +1.00000 q^{3} +(1.09828 - 1.67146i) q^{4} +(1.00000 + 2.00000i) q^{5} +(-1.24464 + 0.671462i) q^{6} +(0.146365 + 0.146365i) q^{7} +(-0.244644 + 2.81783i) q^{8} +1.00000 q^{9} +(-2.58757 - 1.81783i) q^{10} +(0.146365 - 0.146365i) q^{11} +(1.09828 - 1.67146i) q^{12} +(-0.280452 - 0.0838942i) q^{14} +(1.00000 + 2.00000i) q^{15} +(-1.58757 - 3.67146i) q^{16} +(3.68585 + 3.68585i) q^{17} +(-1.24464 + 0.671462i) q^{18} +(2.83221 - 2.83221i) q^{19} +(4.44120 + 0.525096i) q^{20} +(0.146365 + 0.146365i) q^{21} +(-0.0838942 + 0.280452i) q^{22} +(-2.83221 + 2.83221i) q^{23} +(-0.244644 + 2.81783i) q^{24} +(-3.00000 + 4.00000i) q^{25} +1.00000 q^{27} +(0.405394 - 0.0838942i) q^{28} +(-1.00000 - 1.00000i) q^{29} +(-2.58757 - 1.81783i) q^{30} +0.292731i q^{31} +(4.44120 + 3.50367i) q^{32} +(0.146365 - 0.146365i) q^{33} +(-7.06247 - 2.11266i) q^{34} +(-0.146365 + 0.439096i) q^{35} +(1.09828 - 1.67146i) q^{36} +9.37169i q^{37} +(-1.62337 + 5.42682i) q^{38} +(-5.88030 + 2.32854i) q^{40} -4.00000i q^{41} +(-0.280452 - 0.0838942i) q^{42} -9.66442i q^{43} +(-0.0838942 - 0.405394i) q^{44} +(1.00000 + 2.00000i) q^{45} +(1.62337 - 5.42682i) q^{46} +(7.12494 - 7.12494i) q^{47} +(-1.58757 - 3.67146i) q^{48} -6.95715i q^{49} +(1.04809 - 6.99296i) q^{50} +(3.68585 + 3.68585i) q^{51} -11.9572 q^{53} +(-1.24464 + 0.671462i) q^{54} +(0.439096 + 0.146365i) q^{55} +(-0.448240 + 0.376625i) q^{56} +(2.83221 - 2.83221i) q^{57} +(1.91611 + 0.573183i) q^{58} +(-9.51806 - 9.51806i) q^{59} +(4.44120 + 0.525096i) q^{60} +(1.68585 - 1.68585i) q^{61} +(-0.196558 - 0.364346i) q^{62} +(0.146365 + 0.146365i) q^{63} +(-7.88030 - 1.37873i) q^{64} +(-0.0838942 + 0.280452i) q^{66} -13.0790i q^{67} +(10.2088 - 2.11266i) q^{68} +(-2.83221 + 2.83221i) q^{69} +(-0.112663 - 0.644798i) q^{70} -4.58546 q^{71} +(-0.244644 + 2.81783i) q^{72} +(6.37169 + 6.37169i) q^{73} +(-6.29273 - 11.6644i) q^{74} +(-3.00000 + 4.00000i) q^{75} +(-1.62337 - 7.84449i) q^{76} +0.0428457 q^{77} +4.58546 q^{79} +(5.75536 - 6.84660i) q^{80} +1.00000 q^{81} +(2.68585 + 4.97858i) q^{82} -8.58546 q^{83} +(0.405394 - 0.0838942i) q^{84} +(-3.68585 + 11.0575i) q^{85} +(6.48929 + 12.0288i) q^{86} +(-1.00000 - 1.00000i) q^{87} +(0.376625 + 0.448240i) q^{88} +3.37169 q^{89} +(-2.58757 - 1.81783i) q^{90} +(1.62337 + 7.84449i) q^{92} +0.292731i q^{93} +(-4.08389 + 13.6521i) q^{94} +(8.49663 + 2.83221i) q^{95} +(4.44120 + 3.50367i) q^{96} +(-3.58546 - 3.58546i) q^{97} +(4.67146 + 8.65918i) q^{98} +(0.146365 - 0.146365i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 2 q^{4} + 6 q^{5} - 2 q^{7} + 6 q^{8} + 6 q^{9} + 4 q^{10} - 2 q^{11} + 2 q^{12} - 6 q^{14} + 6 q^{15} + 10 q^{16} - 2 q^{17} - 10 q^{19} + 10 q^{20} - 2 q^{21} - 14 q^{22} + 10 q^{23} + 6 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24464 + 0.671462i −0.880096 + 0.474795i
\(3\) 1.00000 0.577350
\(4\) 1.09828 1.67146i 0.549139 0.835731i
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) −1.24464 + 0.671462i −0.508124 + 0.274123i
\(7\) 0.146365 + 0.146365i 0.0553210 + 0.0553210i 0.734226 0.678905i \(-0.237545\pi\)
−0.678905 + 0.734226i \(0.737545\pi\)
\(8\) −0.244644 + 2.81783i −0.0864948 + 0.996252i
\(9\) 1.00000 0.333333
\(10\) −2.58757 1.81783i −0.818261 0.574847i
\(11\) 0.146365 0.146365i 0.0441309 0.0441309i −0.684697 0.728828i \(-0.740065\pi\)
0.728828 + 0.684697i \(0.240065\pi\)
\(12\) 1.09828 1.67146i 0.317046 0.482509i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −0.280452 0.0838942i −0.0749539 0.0224217i
\(15\) 1.00000 + 2.00000i 0.258199 + 0.516398i
\(16\) −1.58757 3.67146i −0.396892 0.917865i
\(17\) 3.68585 + 3.68585i 0.893949 + 0.893949i 0.994892 0.100943i \(-0.0321860\pi\)
−0.100943 + 0.994892i \(0.532186\pi\)
\(18\) −1.24464 + 0.671462i −0.293365 + 0.158265i
\(19\) 2.83221 2.83221i 0.649754 0.649754i −0.303180 0.952933i \(-0.598048\pi\)
0.952933 + 0.303180i \(0.0980482\pi\)
\(20\) 4.44120 + 0.525096i 0.993083 + 0.117415i
\(21\) 0.146365 + 0.146365i 0.0319396 + 0.0319396i
\(22\) −0.0838942 + 0.280452i −0.0178863 + 0.0597925i
\(23\) −2.83221 + 2.83221i −0.590557 + 0.590557i −0.937782 0.347225i \(-0.887124\pi\)
0.347225 + 0.937782i \(0.387124\pi\)
\(24\) −0.244644 + 2.81783i −0.0499378 + 0.575187i
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0.405394 0.0838942i 0.0766123 0.0158545i
\(29\) −1.00000 1.00000i −0.185695 0.185695i 0.608137 0.793832i \(-0.291917\pi\)
−0.793832 + 0.608137i \(0.791917\pi\)
\(30\) −2.58757 1.81783i −0.472423 0.331888i
\(31\) 0.292731i 0.0525760i 0.999654 + 0.0262880i \(0.00836870\pi\)
−0.999654 + 0.0262880i \(0.991631\pi\)
\(32\) 4.44120 + 3.50367i 0.785101 + 0.619368i
\(33\) 0.146365 0.146365i 0.0254790 0.0254790i
\(34\) −7.06247 2.11266i −1.21120 0.362319i
\(35\) −0.146365 + 0.439096i −0.0247403 + 0.0742208i
\(36\) 1.09828 1.67146i 0.183046 0.278577i
\(37\) 9.37169i 1.54070i 0.637623 + 0.770348i \(0.279918\pi\)
−0.637623 + 0.770348i \(0.720082\pi\)
\(38\) −1.62337 + 5.42682i −0.263346 + 0.880346i
\(39\) 0 0
\(40\) −5.88030 + 2.32854i −0.929757 + 0.368174i
\(41\) 4.00000i 0.624695i −0.949968 0.312348i \(-0.898885\pi\)
0.949968 0.312348i \(-0.101115\pi\)
\(42\) −0.280452 0.0838942i −0.0432746 0.0129452i
\(43\) 9.66442i 1.47381i −0.675996 0.736905i \(-0.736286\pi\)
0.675996 0.736905i \(-0.263714\pi\)
\(44\) −0.0838942 0.405394i −0.0126475 0.0611155i
\(45\) 1.00000 + 2.00000i 0.149071 + 0.298142i
\(46\) 1.62337 5.42682i 0.239354 0.800141i
\(47\) 7.12494 7.12494i 1.03928 1.03928i 0.0400834 0.999196i \(-0.487238\pi\)
0.999196 0.0400834i \(-0.0127623\pi\)
\(48\) −1.58757 3.67146i −0.229146 0.529930i
\(49\) 6.95715i 0.993879i
\(50\) 1.04809 6.99296i 0.148222 0.988954i
\(51\) 3.68585 + 3.68585i 0.516122 + 0.516122i
\(52\) 0 0
\(53\) −11.9572 −1.64244 −0.821221 0.570611i \(-0.806707\pi\)
−0.821221 + 0.570611i \(0.806707\pi\)
\(54\) −1.24464 + 0.671462i −0.169375 + 0.0913743i
\(55\) 0.439096 + 0.146365i 0.0592078 + 0.0197359i
\(56\) −0.448240 + 0.376625i −0.0598986 + 0.0503287i
\(57\) 2.83221 2.83221i 0.375136 0.375136i
\(58\) 1.91611 + 0.573183i 0.251597 + 0.0752626i
\(59\) −9.51806 9.51806i −1.23915 1.23915i −0.960351 0.278795i \(-0.910065\pi\)
−0.278795 0.960351i \(-0.589935\pi\)
\(60\) 4.44120 + 0.525096i 0.573357 + 0.0677896i
\(61\) 1.68585 1.68585i 0.215850 0.215850i −0.590897 0.806747i \(-0.701226\pi\)
0.806747 + 0.590897i \(0.201226\pi\)
\(62\) −0.196558 0.364346i −0.0249628 0.0462720i
\(63\) 0.146365 + 0.146365i 0.0184403 + 0.0184403i
\(64\) −7.88030 1.37873i −0.985037 0.172341i
\(65\) 0 0
\(66\) −0.0838942 + 0.280452i −0.0103267 + 0.0345212i
\(67\) 13.0790i 1.59785i −0.601431 0.798925i \(-0.705403\pi\)
0.601431 0.798925i \(-0.294597\pi\)
\(68\) 10.2088 2.11266i 1.23800 0.256198i
\(69\) −2.83221 + 2.83221i −0.340958 + 0.340958i
\(70\) −0.112663 0.644798i −0.0134659 0.0770681i
\(71\) −4.58546 −0.544194 −0.272097 0.962270i \(-0.587717\pi\)
−0.272097 + 0.962270i \(0.587717\pi\)
\(72\) −0.244644 + 2.81783i −0.0288316 + 0.332084i
\(73\) 6.37169 + 6.37169i 0.745750 + 0.745750i 0.973678 0.227928i \(-0.0731950\pi\)
−0.227928 + 0.973678i \(0.573195\pi\)
\(74\) −6.29273 11.6644i −0.731515 1.35596i
\(75\) −3.00000 + 4.00000i −0.346410 + 0.461880i
\(76\) −1.62337 7.84449i −0.186214 0.899825i
\(77\) 0.0428457 0.00488272
\(78\) 0 0
\(79\) 4.58546 0.515905 0.257952 0.966158i \(-0.416952\pi\)
0.257952 + 0.966158i \(0.416952\pi\)
\(80\) 5.75536 6.84660i 0.643468 0.765473i
\(81\) 1.00000 0.111111
\(82\) 2.68585 + 4.97858i 0.296602 + 0.549792i
\(83\) −8.58546 −0.942377 −0.471188 0.882033i \(-0.656175\pi\)
−0.471188 + 0.882033i \(0.656175\pi\)
\(84\) 0.405394 0.0838942i 0.0442322 0.00915360i
\(85\) −3.68585 + 11.0575i −0.399786 + 1.19936i
\(86\) 6.48929 + 12.0288i 0.699758 + 1.29710i
\(87\) −1.00000 1.00000i −0.107211 0.107211i
\(88\) 0.376625 + 0.448240i 0.0401484 + 0.0477826i
\(89\) 3.37169 0.357399 0.178699 0.983904i \(-0.442811\pi\)
0.178699 + 0.983904i \(0.442811\pi\)
\(90\) −2.58757 1.81783i −0.272754 0.191616i
\(91\) 0 0
\(92\) 1.62337 + 7.84449i 0.169249 + 0.817845i
\(93\) 0.292731i 0.0303548i
\(94\) −4.08389 + 13.6521i −0.421222 + 1.40811i
\(95\) 8.49663 + 2.83221i 0.871736 + 0.290579i
\(96\) 4.44120 + 3.50367i 0.453278 + 0.357592i
\(97\) −3.58546 3.58546i −0.364049 0.364049i 0.501253 0.865301i \(-0.332873\pi\)
−0.865301 + 0.501253i \(0.832873\pi\)
\(98\) 4.67146 + 8.65918i 0.471889 + 0.874710i
\(99\) 0.146365 0.146365i 0.0147103 0.0147103i
\(100\) 3.39101 + 9.40750i 0.339101 + 0.940750i
\(101\) −10.3717 10.3717i −1.03202 1.03202i −0.999470 0.0325519i \(-0.989637\pi\)
−0.0325519 0.999470i \(-0.510363\pi\)
\(102\) −7.06247 2.11266i −0.699289 0.209185i
\(103\) −5.51806 + 5.51806i −0.543710 + 0.543710i −0.924615 0.380904i \(-0.875613\pi\)
0.380904 + 0.924615i \(0.375613\pi\)
\(104\) 0 0
\(105\) −0.146365 + 0.439096i −0.0142838 + 0.0428514i
\(106\) 14.8824 8.02877i 1.44551 0.779823i
\(107\) −11.3288 −1.09520 −0.547600 0.836740i \(-0.684459\pi\)
−0.547600 + 0.836740i \(0.684459\pi\)
\(108\) 1.09828 1.67146i 0.105682 0.160836i
\(109\) 10.2713 + 10.2713i 0.983813 + 0.983813i 0.999871 0.0160582i \(-0.00511169\pi\)
−0.0160582 + 0.999871i \(0.505112\pi\)
\(110\) −0.644798 + 0.112663i −0.0614790 + 0.0107420i
\(111\) 9.37169i 0.889522i
\(112\) 0.305010 0.769740i 0.0288208 0.0727336i
\(113\) −1.68585 + 1.68585i −0.158591 + 0.158591i −0.781942 0.623351i \(-0.785771\pi\)
0.623351 + 0.781942i \(0.285771\pi\)
\(114\) −1.62337 + 5.42682i −0.152043 + 0.508268i
\(115\) −8.49663 2.83221i −0.792315 0.264105i
\(116\) −2.76974 + 0.573183i −0.257164 + 0.0532187i
\(117\) 0 0
\(118\) 18.2376 + 5.45559i 1.67891 + 0.502227i
\(119\) 1.07896i 0.0989082i
\(120\) −5.88030 + 2.32854i −0.536795 + 0.212566i
\(121\) 10.9572i 0.996105i
\(122\) −0.966298 + 3.23026i −0.0874845 + 0.292454i
\(123\) 4.00000i 0.360668i
\(124\) 0.489289 + 0.321500i 0.0439394 + 0.0288716i
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) −0.280452 0.0838942i −0.0249846 0.00747389i
\(127\) 3.85363 3.85363i 0.341955 0.341955i −0.515147 0.857102i \(-0.672263\pi\)
0.857102 + 0.515147i \(0.172263\pi\)
\(128\) 10.7339 3.57529i 0.948755 0.316014i
\(129\) 9.66442i 0.850905i
\(130\) 0 0
\(131\) 13.2253 + 13.2253i 1.15550 + 1.15550i 0.985432 + 0.170070i \(0.0543995\pi\)
0.170070 + 0.985432i \(0.445601\pi\)
\(132\) −0.0838942 0.405394i −0.00730205 0.0352851i
\(133\) 0.829076 0.0718900
\(134\) 8.78202 + 16.2787i 0.758651 + 1.40626i
\(135\) 1.00000 + 2.00000i 0.0860663 + 0.172133i
\(136\) −11.2878 + 9.48436i −0.967921 + 0.813277i
\(137\) 12.2713 12.2713i 1.04841 1.04841i 0.0496415 0.998767i \(-0.484192\pi\)
0.998767 0.0496415i \(-0.0158079\pi\)
\(138\) 1.62337 5.42682i 0.138191 0.461961i
\(139\) 6.53948 + 6.53948i 0.554672 + 0.554672i 0.927786 0.373114i \(-0.121710\pi\)
−0.373114 + 0.927786i \(0.621710\pi\)
\(140\) 0.573183 + 0.726895i 0.0484428 + 0.0614338i
\(141\) 7.12494 7.12494i 0.600028 0.600028i
\(142\) 5.70727 3.07896i 0.478943 0.258381i
\(143\) 0 0
\(144\) −1.58757 3.67146i −0.132297 0.305955i
\(145\) 1.00000 3.00000i 0.0830455 0.249136i
\(146\) −12.2088 3.65214i −1.01041 0.302254i
\(147\) 6.95715i 0.573816i
\(148\) 15.6644 + 10.2927i 1.28761 + 0.846057i
\(149\) 8.37169 8.37169i 0.685836 0.685836i −0.275473 0.961309i \(-0.588834\pi\)
0.961309 + 0.275473i \(0.0888345\pi\)
\(150\) 1.04809 6.99296i 0.0855759 0.570973i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 7.28780 + 8.67357i 0.591118 + 0.703519i
\(153\) 3.68585 + 3.68585i 0.297983 + 0.297983i
\(154\) −0.0533277 + 0.0287692i −0.00429727 + 0.00231829i
\(155\) −0.585462 + 0.292731i −0.0470254 + 0.0235127i
\(156\) 0 0
\(157\) −24.7434 −1.97474 −0.987369 0.158440i \(-0.949353\pi\)
−0.987369 + 0.158440i \(0.949353\pi\)
\(158\) −5.70727 + 3.07896i −0.454046 + 0.244949i
\(159\) −11.9572 −0.948264
\(160\) −2.56614 + 12.3861i −0.202872 + 0.979205i
\(161\) −0.829076 −0.0653403
\(162\) −1.24464 + 0.671462i −0.0977885 + 0.0527550i
\(163\) −7.41454 −0.580751 −0.290376 0.956913i \(-0.593780\pi\)
−0.290376 + 0.956913i \(0.593780\pi\)
\(164\) −6.68585 4.39312i −0.522077 0.343045i
\(165\) 0.439096 + 0.146365i 0.0341836 + 0.0113945i
\(166\) 10.6858 5.76481i 0.829383 0.447436i
\(167\) 12.2039 + 12.2039i 0.944366 + 0.944366i 0.998532 0.0541655i \(-0.0172499\pi\)
−0.0541655 + 0.998532i \(0.517250\pi\)
\(168\) −0.448240 + 0.376625i −0.0345825 + 0.0290573i
\(169\) 13.0000 1.00000
\(170\) −2.83714 16.2376i −0.217599 1.24537i
\(171\) 2.83221 2.83221i 0.216585 0.216585i
\(172\) −16.1537 10.6142i −1.23171 0.809328i
\(173\) 14.7434i 1.12092i −0.828182 0.560459i \(-0.810625\pi\)
0.828182 0.560459i \(-0.189375\pi\)
\(174\) 1.91611 + 0.573183i 0.145260 + 0.0434529i
\(175\) −1.02456 + 0.146365i −0.0774493 + 0.0110642i
\(176\) −0.769740 0.305010i −0.0580214 0.0229910i
\(177\) −9.51806 9.51806i −0.715421 0.715421i
\(178\) −4.19656 + 2.26396i −0.314545 + 0.169691i
\(179\) −9.22533 + 9.22533i −0.689533 + 0.689533i −0.962129 0.272595i \(-0.912118\pi\)
0.272595 + 0.962129i \(0.412118\pi\)
\(180\) 4.44120 + 0.525096i 0.331028 + 0.0391383i
\(181\) −3.68585 3.68585i −0.273967 0.273967i 0.556728 0.830695i \(-0.312057\pi\)
−0.830695 + 0.556728i \(0.812057\pi\)
\(182\) 0 0
\(183\) 1.68585 1.68585i 0.124621 0.124621i
\(184\) −7.28780 8.67357i −0.537264 0.639424i
\(185\) −18.7434 + 9.37169i −1.37804 + 0.689021i
\(186\) −0.196558 0.364346i −0.0144123 0.0267151i
\(187\) 1.07896 0.0789015
\(188\) −4.08389 19.7342i −0.297849 1.43927i
\(189\) 0.146365 + 0.146365i 0.0106465 + 0.0106465i
\(190\) −12.4770 + 2.18007i −0.905177 + 0.158159i
\(191\) 6.33558i 0.458426i 0.973376 + 0.229213i \(0.0736153\pi\)
−0.973376 + 0.229213i \(0.926385\pi\)
\(192\) −7.88030 1.37873i −0.568712 0.0995013i
\(193\) 0.414538 0.414538i 0.0298391 0.0298391i −0.692030 0.721869i \(-0.743283\pi\)
0.721869 + 0.692030i \(0.243283\pi\)
\(194\) 6.87012 + 2.05512i 0.493246 + 0.147549i
\(195\) 0 0
\(196\) −11.6286 7.64090i −0.830615 0.545778i
\(197\) 8.78623i 0.625993i −0.949754 0.312996i \(-0.898667\pi\)
0.949754 0.312996i \(-0.101333\pi\)
\(198\) −0.0838942 + 0.280452i −0.00596210 + 0.0199308i
\(199\) 11.7073i 0.829906i 0.909843 + 0.414953i \(0.136202\pi\)
−0.909843 + 0.414953i \(0.863798\pi\)
\(200\) −10.5374 9.43206i −0.745105 0.666947i
\(201\) 13.0790i 0.922519i
\(202\) 19.8733 + 5.94488i 1.39828 + 0.418280i
\(203\) 0.292731i 0.0205457i
\(204\) 10.2088 2.11266i 0.714762 0.147916i
\(205\) 8.00000 4.00000i 0.558744 0.279372i
\(206\) 3.16286 10.5732i 0.220367 0.736669i
\(207\) −2.83221 + 2.83221i −0.196852 + 0.196852i
\(208\) 0 0
\(209\) 0.829076i 0.0573484i
\(210\) −0.112663 0.644798i −0.00777451 0.0444953i
\(211\) 12.4966 + 12.4966i 0.860304 + 0.860304i 0.991373 0.131069i \(-0.0418411\pi\)
−0.131069 + 0.991373i \(0.541841\pi\)
\(212\) −13.1323 + 19.9859i −0.901929 + 1.37264i
\(213\) −4.58546 −0.314191
\(214\) 14.1004 7.60688i 0.963882 0.519996i
\(215\) 19.3288 9.66442i 1.31822 0.659108i
\(216\) −0.244644 + 2.81783i −0.0166459 + 0.191729i
\(217\) −0.0428457 + 0.0428457i −0.00290856 + 0.00290856i
\(218\) −19.6809 5.88734i −1.33296 0.398741i
\(219\) 6.37169 + 6.37169i 0.430559 + 0.430559i
\(220\) 0.726895 0.573183i 0.0490072 0.0386440i
\(221\) 0 0
\(222\) −6.29273 11.6644i −0.422340 0.782865i
\(223\) −17.2253 17.2253i −1.15349 1.15349i −0.985847 0.167646i \(-0.946383\pi\)
−0.167646 0.985847i \(-0.553617\pi\)
\(224\) 0.137222 + 1.16286i 0.00916852 + 0.0776966i
\(225\) −3.00000 + 4.00000i −0.200000 + 0.266667i
\(226\) 0.966298 3.23026i 0.0642772 0.214874i
\(227\) 8.29273i 0.550408i 0.961386 + 0.275204i \(0.0887454\pi\)
−0.961386 + 0.275204i \(0.911255\pi\)
\(228\) −1.62337 7.84449i −0.107511 0.519514i
\(229\) 10.2713 10.2713i 0.678747 0.678747i −0.280970 0.959717i \(-0.590656\pi\)
0.959717 + 0.280970i \(0.0906560\pi\)
\(230\) 12.4770 2.18007i 0.822710 0.143749i
\(231\) 0.0428457 0.00281904
\(232\) 3.06247 2.57318i 0.201061 0.168938i
\(233\) 8.27131 + 8.27131i 0.541871 + 0.541871i 0.924077 0.382206i \(-0.124835\pi\)
−0.382206 + 0.924077i \(0.624835\pi\)
\(234\) 0 0
\(235\) 21.3748 + 7.12494i 1.39434 + 0.464780i
\(236\) −26.3625 + 5.45559i −1.71606 + 0.355128i
\(237\) 4.58546 0.297858
\(238\) −0.724481 1.34292i −0.0469611 0.0870488i
\(239\) −3.41454 −0.220868 −0.110434 0.993883i \(-0.535224\pi\)
−0.110434 + 0.993883i \(0.535224\pi\)
\(240\) 5.75536 6.84660i 0.371507 0.441946i
\(241\) 3.17092 0.204257 0.102129 0.994771i \(-0.467435\pi\)
0.102129 + 0.994771i \(0.467435\pi\)
\(242\) −7.35731 13.6378i −0.472946 0.876668i
\(243\) 1.00000 0.0641500
\(244\) −0.966298 4.66936i −0.0618609 0.298925i
\(245\) 13.9143 6.95715i 0.888953 0.444476i
\(246\) 2.68585 + 4.97858i 0.171243 + 0.317422i
\(247\) 0 0
\(248\) −0.824865 0.0716150i −0.0523790 0.00454755i
\(249\) −8.58546 −0.544082
\(250\) 15.0340 4.89679i 0.950834 0.309700i
\(251\) −3.85363 + 3.85363i −0.243239 + 0.243239i −0.818189 0.574950i \(-0.805022\pi\)
0.574950 + 0.818189i \(0.305022\pi\)
\(252\) 0.405394 0.0838942i 0.0255374 0.00528484i
\(253\) 0.829076i 0.0521236i
\(254\) −2.20884 + 7.38397i −0.138595 + 0.463312i
\(255\) −3.68585 + 11.0575i −0.230817 + 0.692450i
\(256\) −10.9593 + 11.6574i −0.684954 + 0.728587i
\(257\) 21.6430 + 21.6430i 1.35005 + 1.35005i 0.885595 + 0.464458i \(0.153751\pi\)
0.464458 + 0.885595i \(0.346249\pi\)
\(258\) 6.48929 + 12.0288i 0.404005 + 0.748878i
\(259\) −1.37169 + 1.37169i −0.0852328 + 0.0852328i
\(260\) 0 0
\(261\) −1.00000 1.00000i −0.0618984 0.0618984i
\(262\) −25.3411 7.58053i −1.56558 0.468327i
\(263\) −14.2467 + 14.2467i −0.878492 + 0.878492i −0.993379 0.114886i \(-0.963350\pi\)
0.114886 + 0.993379i \(0.463350\pi\)
\(264\) 0.376625 + 0.448240i 0.0231797 + 0.0275873i
\(265\) −11.9572 23.9143i −0.734522 1.46904i
\(266\) −1.03190 + 0.556693i −0.0632701 + 0.0341330i
\(267\) 3.37169 0.206344
\(268\) −21.8610 14.3643i −1.33537 0.877442i
\(269\) 11.7862 + 11.7862i 0.718619 + 0.718619i 0.968322 0.249703i \(-0.0803331\pi\)
−0.249703 + 0.968322i \(0.580333\pi\)
\(270\) −2.58757 1.81783i −0.157474 0.110629i
\(271\) 11.7073i 0.711166i 0.934645 + 0.355583i \(0.115718\pi\)
−0.934645 + 0.355583i \(0.884282\pi\)
\(272\) 7.68091 19.3840i 0.465724 1.17533i
\(273\) 0 0
\(274\) −7.03370 + 23.5131i −0.424921 + 1.42048i
\(275\) 0.146365 + 1.02456i 0.00882617 + 0.0617832i
\(276\) 1.62337 + 7.84449i 0.0977157 + 0.472183i
\(277\) 18.5426i 1.11412i 0.830473 + 0.557059i \(0.188070\pi\)
−0.830473 + 0.557059i \(0.811930\pi\)
\(278\) −12.5303 3.74832i −0.751520 0.224809i
\(279\) 0.292731i 0.0175253i
\(280\) −1.20149 0.519855i −0.0718028 0.0310673i
\(281\) 2.62831i 0.156792i 0.996922 + 0.0783958i \(0.0249798\pi\)
−0.996922 + 0.0783958i \(0.975020\pi\)
\(282\) −4.08389 + 13.6521i −0.243192 + 0.812973i
\(283\) 22.2499i 1.32262i −0.750113 0.661309i \(-0.770001\pi\)
0.750113 0.661309i \(-0.229999\pi\)
\(284\) −5.03612 + 7.66442i −0.298838 + 0.454800i
\(285\) 8.49663 + 2.83221i 0.503297 + 0.167766i
\(286\) 0 0
\(287\) 0.585462 0.585462i 0.0345587 0.0345587i
\(288\) 4.44120 + 3.50367i 0.261700 + 0.206456i
\(289\) 10.1709i 0.598290i
\(290\) 0.769740 + 4.40539i 0.0452007 + 0.258694i
\(291\) −3.58546 3.58546i −0.210184 0.210184i
\(292\) 17.6479 3.65214i 1.03277 0.213726i
\(293\) 21.9143 1.28025 0.640124 0.768272i \(-0.278883\pi\)
0.640124 + 0.768272i \(0.278883\pi\)
\(294\) 4.67146 + 8.65918i 0.272445 + 0.505014i
\(295\) 9.51806 28.5542i 0.554163 1.66249i
\(296\) −26.4078 2.29273i −1.53492 0.133262i
\(297\) 0.146365 0.146365i 0.00849299 0.00849299i
\(298\) −4.79851 + 16.0410i −0.277970 + 0.929233i
\(299\) 0 0
\(300\) 3.39101 + 9.40750i 0.195780 + 0.543142i
\(301\) 1.41454 1.41454i 0.0815326 0.0815326i
\(302\) 0 0
\(303\) −10.3717 10.3717i −0.595838 0.595838i
\(304\) −14.8947 5.90203i −0.854269 0.338505i
\(305\) 5.05754 + 1.68585i 0.289594 + 0.0965313i
\(306\) −7.06247 2.11266i −0.403735 0.120773i
\(307\) 6.33558i 0.361590i 0.983521 + 0.180795i \(0.0578671\pi\)
−0.983521 + 0.180795i \(0.942133\pi\)
\(308\) 0.0470565 0.0716150i 0.00268130 0.00408064i
\(309\) −5.51806 + 5.51806i −0.313911 + 0.313911i
\(310\) 0.532134 0.757461i 0.0302232 0.0430209i
\(311\) −7.32885 −0.415581 −0.207790 0.978173i \(-0.566627\pi\)
−0.207790 + 0.978173i \(0.566627\pi\)
\(312\) 0 0
\(313\) −3.00000 3.00000i −0.169570 0.169570i 0.617220 0.786790i \(-0.288259\pi\)
−0.786790 + 0.617220i \(0.788259\pi\)
\(314\) 30.7967 16.6142i 1.73796 0.937595i
\(315\) −0.146365 + 0.439096i −0.00824676 + 0.0247403i
\(316\) 5.03612 7.66442i 0.283304 0.431157i
\(317\) −19.9572 −1.12091 −0.560453 0.828186i \(-0.689373\pi\)
−0.560453 + 0.828186i \(0.689373\pi\)
\(318\) 14.8824 8.02877i 0.834564 0.450231i
\(319\) −0.292731 −0.0163898
\(320\) −5.12284 17.1393i −0.286375 0.958118i
\(321\) −11.3288 −0.632315
\(322\) 1.03190 0.556693i 0.0575058 0.0310233i
\(323\) 20.8782 1.16169
\(324\) 1.09828 1.67146i 0.0610155 0.0928590i
\(325\) 0 0
\(326\) 9.22846 4.97858i 0.511117 0.275738i
\(327\) 10.2713 + 10.2713i 0.568005 + 0.568005i
\(328\) 11.2713 + 0.978577i 0.622354 + 0.0540329i
\(329\) 2.08569 0.114988
\(330\) −0.644798 + 0.112663i −0.0354949 + 0.00620192i
\(331\) −12.4966 + 12.4966i −0.686877 + 0.686877i −0.961540 0.274663i \(-0.911434\pi\)
0.274663 + 0.961540i \(0.411434\pi\)
\(332\) −9.42923 + 14.3503i −0.517496 + 0.787573i
\(333\) 9.37169i 0.513566i
\(334\) −23.3840 6.99507i −1.27951 0.382753i
\(335\) 26.1579 13.0790i 1.42916 0.714580i
\(336\) 0.305010 0.769740i 0.0166397 0.0419928i
\(337\) −15.5855 15.5855i −0.848994 0.848994i 0.141013 0.990008i \(-0.454964\pi\)
−0.990008 + 0.141013i \(0.954964\pi\)
\(338\) −16.1804 + 8.72900i −0.880096 + 0.474795i
\(339\) −1.68585 + 1.68585i −0.0915626 + 0.0915626i
\(340\) 14.4342 + 18.3050i 0.782802 + 0.992729i
\(341\) 0.0428457 + 0.0428457i 0.00232023 + 0.00232023i
\(342\) −1.62337 + 5.42682i −0.0877821 + 0.293449i
\(343\) 2.04285 2.04285i 0.110303 0.110303i
\(344\) 27.2327 + 2.36435i 1.46829 + 0.127477i
\(345\) −8.49663 2.83221i −0.457443 0.152481i
\(346\) 9.89962 + 18.3503i 0.532207 + 0.986517i
\(347\) −14.7434 −0.791466 −0.395733 0.918366i \(-0.629509\pi\)
−0.395733 + 0.918366i \(0.629509\pi\)
\(348\) −2.76974 + 0.573183i −0.148474 + 0.0307258i
\(349\) 3.64300 + 3.64300i 0.195005 + 0.195005i 0.797855 0.602850i \(-0.205968\pi\)
−0.602850 + 0.797855i \(0.705968\pi\)
\(350\) 1.17693 0.870125i 0.0629097 0.0465101i
\(351\) 0 0
\(352\) 1.16286 0.137222i 0.0619804 0.00731395i
\(353\) 3.68585 3.68585i 0.196178 0.196178i −0.602181 0.798359i \(-0.705702\pi\)
0.798359 + 0.602181i \(0.205702\pi\)
\(354\) 18.2376 + 5.45559i 0.969318 + 0.289961i
\(355\) −4.58546 9.17092i −0.243371 0.486742i
\(356\) 3.70306 5.63565i 0.196262 0.298689i
\(357\) 1.07896i 0.0571047i
\(358\) 5.28780 17.6767i 0.279469 0.934243i
\(359\) 32.9933i 1.74132i −0.491887 0.870659i \(-0.663693\pi\)
0.491887 0.870659i \(-0.336307\pi\)
\(360\) −5.88030 + 2.32854i −0.309919 + 0.122725i
\(361\) 2.95715i 0.155640i
\(362\) 7.06247 + 2.11266i 0.371195 + 0.111039i
\(363\) 10.9572i 0.575101i
\(364\) 0 0
\(365\) −6.37169 + 19.1151i −0.333510 + 1.00053i
\(366\) −0.966298 + 3.23026i −0.0505092 + 0.168848i
\(367\) −18.1035 + 18.1035i −0.944996 + 0.944996i −0.998564 0.0535682i \(-0.982941\pi\)
0.0535682 + 0.998564i \(0.482941\pi\)
\(368\) 14.8947 + 5.90203i 0.776439 + 0.307665i
\(369\) 4.00000i 0.208232i
\(370\) 17.0361 24.2499i 0.885665 1.26069i
\(371\) −1.75011 1.75011i −0.0908614 0.0908614i
\(372\) 0.489289 + 0.321500i 0.0253684 + 0.0166690i
\(373\) 13.9143 0.720456 0.360228 0.932864i \(-0.382699\pi\)
0.360228 + 0.932864i \(0.382699\pi\)
\(374\) −1.34292 + 0.724481i −0.0694409 + 0.0374620i
\(375\) −11.0000 2.00000i −0.568038 0.103280i
\(376\) 18.3338 + 21.8199i 0.945492 + 1.12528i
\(377\) 0 0
\(378\) −0.280452 0.0838942i −0.0144249 0.00431505i
\(379\) 7.71040 + 7.71040i 0.396057 + 0.396057i 0.876840 0.480783i \(-0.159647\pi\)
−0.480783 + 0.876840i \(0.659647\pi\)
\(380\) 14.0656 11.0912i 0.721550 0.568969i
\(381\) 3.85363 3.85363i 0.197428 0.197428i
\(382\) −4.25410 7.88554i −0.217658 0.403459i
\(383\) 14.8322 + 14.8322i 0.757891 + 0.757891i 0.975938 0.218048i \(-0.0699688\pi\)
−0.218048 + 0.975938i \(0.569969\pi\)
\(384\) 10.7339 3.57529i 0.547764 0.182451i
\(385\) 0.0428457 + 0.0856914i 0.00218362 + 0.00436724i
\(386\) −0.237606 + 0.794299i −0.0120938 + 0.0404287i
\(387\) 9.66442i 0.491270i
\(388\) −9.93080 + 2.05512i −0.504160 + 0.104333i
\(389\) 16.3717 16.3717i 0.830078 0.830078i −0.157449 0.987527i \(-0.550327\pi\)
0.987527 + 0.157449i \(0.0503271\pi\)
\(390\) 0 0
\(391\) −20.8782 −1.05586
\(392\) 19.6041 + 1.70203i 0.990154 + 0.0859654i
\(393\) 13.2253 + 13.2253i 0.667129 + 0.667129i
\(394\) 5.89962 + 10.9357i 0.297218 + 0.550934i
\(395\) 4.58546 + 9.17092i 0.230720 + 0.461439i
\(396\) −0.0838942 0.405394i −0.00421584 0.0203718i
\(397\) 0.628308 0.0315339 0.0157669 0.999876i \(-0.494981\pi\)
0.0157669 + 0.999876i \(0.494981\pi\)
\(398\) −7.86098 14.5714i −0.394035 0.730398i
\(399\) 0.829076 0.0415057
\(400\) 19.4485 + 4.66412i 0.972427 + 0.233206i
\(401\) −8.54262 −0.426598 −0.213299 0.976987i \(-0.568421\pi\)
−0.213299 + 0.976987i \(0.568421\pi\)
\(402\) 8.78202 + 16.2787i 0.438007 + 0.811905i
\(403\) 0 0
\(404\) −28.7269 + 5.94488i −1.42922 + 0.295769i
\(405\) 1.00000 + 2.00000i 0.0496904 + 0.0993808i
\(406\) 0.196558 + 0.364346i 0.00975499 + 0.0180822i
\(407\) 1.37169 + 1.37169i 0.0679923 + 0.0679923i
\(408\) −11.2878 + 9.48436i −0.558829 + 0.469546i
\(409\) −38.7005 −1.91362 −0.956809 0.290716i \(-0.906106\pi\)
−0.956809 + 0.290716i \(0.906106\pi\)
\(410\) −7.27131 + 10.3503i −0.359104 + 0.511163i
\(411\) 12.2713 12.2713i 0.605299 0.605299i
\(412\) 3.16286 + 15.2836i 0.155823 + 0.752968i
\(413\) 2.78623i 0.137101i
\(414\) 1.62337 5.42682i 0.0797845 0.266714i
\(415\) −8.58546 17.1709i −0.421444 0.842888i
\(416\) 0 0
\(417\) 6.53948 + 6.53948i 0.320240 + 0.320240i
\(418\) 0.556693 + 1.03190i 0.0272287 + 0.0504721i
\(419\) −9.81079 + 9.81079i −0.479288 + 0.479288i −0.904904 0.425616i \(-0.860058\pi\)
0.425616 + 0.904904i \(0.360058\pi\)
\(420\) 0.573183 + 0.726895i 0.0279685 + 0.0354688i
\(421\) −20.2713 20.2713i −0.987963 0.987963i 0.0119653 0.999928i \(-0.496191\pi\)
−0.999928 + 0.0119653i \(0.996191\pi\)
\(422\) −23.9449 7.16286i −1.16562 0.348682i
\(423\) 7.12494 7.12494i 0.346427 0.346427i
\(424\) 2.92525 33.6932i 0.142063 1.63629i
\(425\) −25.8009 + 3.68585i −1.25153 + 0.178790i
\(426\) 5.70727 3.07896i 0.276518 0.149176i
\(427\) 0.493499 0.0238821
\(428\) −12.4422 + 18.9357i −0.601418 + 0.915293i
\(429\) 0 0
\(430\) −17.5682 + 25.0073i −0.847216 + 1.20596i
\(431\) 29.0790i 1.40068i −0.713807 0.700342i \(-0.753031\pi\)
0.713807 0.700342i \(-0.246969\pi\)
\(432\) −1.58757 3.67146i −0.0763819 0.176643i
\(433\) −8.95715 + 8.95715i −0.430453 + 0.430453i −0.888783 0.458329i \(-0.848448\pi\)
0.458329 + 0.888783i \(0.348448\pi\)
\(434\) 0.0245584 0.0820969i 0.00117884 0.00394078i
\(435\) 1.00000 3.00000i 0.0479463 0.143839i
\(436\) 28.4489 5.88734i 1.36245 0.281952i
\(437\) 16.0428i 0.767433i
\(438\) −12.2088 3.65214i −0.583361 0.174506i
\(439\) 7.03612i 0.335815i −0.985803 0.167908i \(-0.946299\pi\)
0.985803 0.167908i \(-0.0537011\pi\)
\(440\) −0.519855 + 1.20149i −0.0247831 + 0.0572788i
\(441\) 6.95715i 0.331293i
\(442\) 0 0
\(443\) 33.8652i 1.60898i 0.593964 + 0.804492i \(0.297562\pi\)
−0.593964 + 0.804492i \(0.702438\pi\)
\(444\) 15.6644 + 10.2927i 0.743401 + 0.488471i
\(445\) 3.37169 + 6.74338i 0.159834 + 0.319667i
\(446\) 33.0055 + 9.87326i 1.56286 + 0.467512i
\(447\) 8.37169 8.37169i 0.395967 0.395967i
\(448\) −0.951605 1.35520i −0.0449591 0.0640273i
\(449\) 32.1151i 1.51560i 0.652484 + 0.757802i \(0.273727\pi\)
−0.652484 + 0.757802i \(0.726273\pi\)
\(450\) 1.04809 6.99296i 0.0494073 0.329651i
\(451\) −0.585462 0.585462i −0.0275683 0.0275683i
\(452\) 0.966298 + 4.66936i 0.0454508 + 0.219628i
\(453\) 0 0
\(454\) −5.56825 10.3215i −0.261331 0.484412i
\(455\) 0 0
\(456\) 7.28780 + 8.67357i 0.341282 + 0.406177i
\(457\) 4.41454 4.41454i 0.206503 0.206503i −0.596276 0.802779i \(-0.703354\pi\)
0.802779 + 0.596276i \(0.203354\pi\)
\(458\) −5.88734 + 19.6809i −0.275097 + 0.919629i
\(459\) 3.68585 + 3.68585i 0.172041 + 0.172041i
\(460\) −14.0656 + 11.0912i −0.655812 + 0.517132i
\(461\) 4.95715 4.95715i 0.230878 0.230878i −0.582181 0.813059i \(-0.697801\pi\)
0.813059 + 0.582181i \(0.197801\pi\)
\(462\) −0.0533277 + 0.0287692i −0.00248103 + 0.00133847i
\(463\) 2.77467 + 2.77467i 0.128950 + 0.128950i 0.768636 0.639686i \(-0.220936\pi\)
−0.639686 + 0.768636i \(0.720936\pi\)
\(464\) −2.08389 + 5.25903i −0.0967424 + 0.244144i
\(465\) −0.585462 + 0.292731i −0.0271501 + 0.0135751i
\(466\) −15.8487 4.74097i −0.734177 0.219621i
\(467\) 23.0361i 1.06598i −0.846120 0.532992i \(-0.821068\pi\)
0.846120 0.532992i \(-0.178932\pi\)
\(468\) 0 0
\(469\) 1.91431 1.91431i 0.0883946 0.0883946i
\(470\) −31.3882 + 5.48436i −1.44783 + 0.252974i
\(471\) −24.7434 −1.14011
\(472\) 29.1488 24.4917i 1.34168 1.12732i
\(473\) −1.41454 1.41454i −0.0650405 0.0650405i
\(474\) −5.70727 + 3.07896i −0.262144 + 0.141421i
\(475\) 2.83221 + 19.8255i 0.129951 + 0.909655i
\(476\) 1.80344 + 1.18500i 0.0826606 + 0.0543144i
\(477\) −11.9572 −0.547480
\(478\) 4.24989 2.29273i 0.194385 0.104867i
\(479\) −20.5855 −0.940574 −0.470287 0.882514i \(-0.655850\pi\)
−0.470287 + 0.882514i \(0.655850\pi\)
\(480\) −2.56614 + 12.3861i −0.117128 + 0.565344i
\(481\) 0 0
\(482\) −3.94667 + 2.12915i −0.179766 + 0.0969803i
\(483\) −0.829076 −0.0377243
\(484\) 18.3145 + 12.0340i 0.832476 + 0.547000i
\(485\) 3.58546 10.7564i 0.162807 0.488422i
\(486\) −1.24464 + 0.671462i −0.0564582 + 0.0304581i
\(487\) 5.31729 + 5.31729i 0.240949 + 0.240949i 0.817243 0.576293i \(-0.195501\pi\)
−0.576293 + 0.817243i \(0.695501\pi\)
\(488\) 4.33799 + 5.16286i 0.196372 + 0.233711i
\(489\) −7.41454 −0.335297
\(490\) −12.6469 + 18.0021i −0.571329 + 0.813252i
\(491\) 21.5181 21.5181i 0.971096 0.971096i −0.0284975 0.999594i \(-0.509072\pi\)
0.999594 + 0.0284975i \(0.00907227\pi\)
\(492\) −6.68585 4.39312i −0.301421 0.198057i
\(493\) 7.37169i 0.332004i
\(494\) 0 0
\(495\) 0.439096 + 0.146365i 0.0197359 + 0.00657864i
\(496\) 1.07475 0.464730i 0.0482577 0.0208670i
\(497\) −0.671153 0.671153i −0.0301053 0.0301053i
\(498\) 10.6858 5.76481i 0.478844 0.258327i
\(499\) 2.83221 2.83221i 0.126787 0.126787i −0.640866 0.767653i \(-0.721424\pi\)
0.767653 + 0.640866i \(0.221424\pi\)
\(500\) −15.4240 + 16.1895i −0.689782 + 0.724017i
\(501\) 12.2039 + 12.2039i 0.545230 + 0.545230i
\(502\) 2.20884 7.38397i 0.0985852 0.329563i
\(503\) 7.32571 7.32571i 0.326637 0.326637i −0.524669 0.851306i \(-0.675811\pi\)
0.851306 + 0.524669i \(0.175811\pi\)
\(504\) −0.448240 + 0.376625i −0.0199662 + 0.0167762i
\(505\) 10.3717 31.1151i 0.461534 1.38460i
\(506\) −0.556693 1.03190i −0.0247480 0.0458738i
\(507\) 13.0000 0.577350
\(508\) −2.20884 10.6736i −0.0980013 0.473563i
\(509\) −10.1709 10.1709i −0.450818 0.450818i 0.444808 0.895626i \(-0.353272\pi\)
−0.895626 + 0.444808i \(0.853272\pi\)
\(510\) −2.83714 16.2376i −0.125631 0.719013i
\(511\) 1.86519i 0.0825112i
\(512\) 5.81289 21.8680i 0.256896 0.966439i
\(513\) 2.83221 2.83221i 0.125045 0.125045i
\(514\) −41.4703 12.4054i −1.82918 0.547178i
\(515\) −16.5542 5.51806i −0.729464 0.243155i
\(516\) −16.1537 10.6142i −0.711128 0.467265i
\(517\) 2.08569i 0.0917286i
\(518\) 0.786230 2.62831i 0.0345450 0.115481i
\(519\) 14.7434i 0.647163i
\(520\) 0 0
\(521\) 8.11508i 0.355528i 0.984073 + 0.177764i \(0.0568864\pi\)
−0.984073 + 0.177764i \(0.943114\pi\)
\(522\) 1.91611 + 0.573183i 0.0838657 + 0.0250875i
\(523\) 5.07896i 0.222087i −0.993816 0.111044i \(-0.964581\pi\)
0.993816 0.111044i \(-0.0354194\pi\)
\(524\) 36.6307 7.58053i 1.60022 0.331157i
\(525\) −1.02456 + 0.146365i −0.0447154 + 0.00638791i
\(526\) 8.16599 27.2983i 0.356054 1.19026i
\(527\) −1.07896 + 1.07896i −0.0470003 + 0.0470003i
\(528\) −0.769740 0.305010i −0.0334986 0.0132739i
\(529\) 6.95715i 0.302485i
\(530\) 30.9399 + 21.7360i 1.34395 + 0.944153i
\(531\) −9.51806 9.51806i −0.413049 0.413049i
\(532\) 0.910557 1.38577i 0.0394776 0.0600807i
\(533\) 0 0
\(534\) −4.19656 + 2.26396i −0.181603 + 0.0979712i
\(535\) −11.3288 22.6577i −0.489789 0.979578i
\(536\) 36.8543 + 3.19969i 1.59186 + 0.138206i
\(537\) −9.22533 + 9.22533i −0.398102 + 0.398102i
\(538\) −22.5837 6.75566i −0.973651 0.291257i
\(539\) −1.01829 1.01829i −0.0438607 0.0438607i
\(540\) 4.44120 + 0.525096i 0.191119 + 0.0225965i
\(541\) 26.3864 26.3864i 1.13444 1.13444i 0.145009 0.989430i \(-0.453679\pi\)
0.989430 0.145009i \(-0.0463211\pi\)
\(542\) −7.86098 14.5714i −0.337658 0.625895i
\(543\) −3.68585 3.68585i −0.158175 0.158175i
\(544\) 3.45559 + 29.2836i 0.148157 + 1.25552i
\(545\) −10.2713 + 30.8139i −0.439974 + 1.31992i
\(546\) 0 0
\(547\) 33.6644i 1.43939i −0.694292 0.719693i \(-0.744282\pi\)
0.694292 0.719693i \(-0.255718\pi\)
\(548\) −7.03370 33.9883i −0.300465 1.45191i
\(549\) 1.68585 1.68585i 0.0719502 0.0719502i
\(550\) −0.870125 1.17693i −0.0371022 0.0501845i
\(551\) −5.66442 −0.241313
\(552\) −7.28780 8.67357i −0.310189 0.369172i
\(553\) 0.671153 + 0.671153i 0.0285403 + 0.0285403i
\(554\) −12.4507 23.0790i −0.528978 0.980531i
\(555\) −18.7434 + 9.37169i −0.795612 + 0.397806i
\(556\) 18.1127 3.74832i 0.768148 0.158964i
\(557\) 8.82908 0.374100 0.187050 0.982350i \(-0.440107\pi\)
0.187050 + 0.982350i \(0.440107\pi\)
\(558\) −0.196558 0.364346i −0.00832095 0.0154240i
\(559\) 0 0
\(560\) 1.84449 0.159720i 0.0779440 0.00674940i
\(561\) 1.07896 0.0455538
\(562\) −1.76481 3.27131i −0.0744439 0.137992i
\(563\) 6.74338 0.284200 0.142100 0.989852i \(-0.454615\pi\)
0.142100 + 0.989852i \(0.454615\pi\)
\(564\) −4.08389 19.7342i −0.171963 0.830961i
\(565\) −5.05754 1.68585i −0.212772 0.0709241i
\(566\) 14.9399 + 27.6932i 0.627973 + 1.16403i
\(567\) 0.146365 + 0.146365i 0.00614677 + 0.00614677i
\(568\) 1.12181 12.9210i 0.0470700 0.542155i
\(569\) −23.3717 −0.979792 −0.489896 0.871781i \(-0.662965\pi\)
−0.489896 + 0.871781i \(0.662965\pi\)
\(570\) −12.4770 + 2.18007i −0.522604 + 0.0913130i
\(571\) −22.5395 + 22.5395i −0.943248 + 0.943248i −0.998474 0.0552260i \(-0.982412\pi\)
0.0552260 + 0.998474i \(0.482412\pi\)
\(572\) 0 0
\(573\) 6.33558i 0.264673i
\(574\) −0.335577 + 1.12181i −0.0140067 + 0.0468233i
\(575\) −2.83221 19.8255i −0.118111 0.826780i
\(576\) −7.88030 1.37873i −0.328346 0.0574471i
\(577\) 21.5855 + 21.5855i 0.898615 + 0.898615i 0.995314 0.0966991i \(-0.0308285\pi\)
−0.0966991 + 0.995314i \(0.530828\pi\)
\(578\) −6.82938 12.6592i −0.284065 0.526553i
\(579\) 0.414538 0.414538i 0.0172276 0.0172276i
\(580\) −3.91611 4.96630i −0.162607 0.206214i
\(581\) −1.25662 1.25662i −0.0521332 0.0521332i
\(582\) 6.87012 + 2.05512i 0.284776 + 0.0851877i
\(583\) −1.75011 + 1.75011i −0.0724823 + 0.0724823i
\(584\) −19.5131 + 16.3955i −0.807459 + 0.678452i
\(585\) 0 0
\(586\) −27.2755 + 14.7146i −1.12674 + 0.607855i
\(587\) −16.5855 −0.684555 −0.342278 0.939599i \(-0.611198\pi\)
−0.342278 + 0.939599i \(0.611198\pi\)
\(588\) −11.6286 7.64090i −0.479556 0.315105i
\(589\) 0.829076 + 0.829076i 0.0341615 + 0.0341615i
\(590\) 7.32643 + 41.9308i 0.301624 + 1.72626i
\(591\) 8.78623i 0.361417i
\(592\) 34.4078 14.8782i 1.41415 0.611490i
\(593\) 8.85677 8.85677i 0.363704 0.363704i −0.501471 0.865175i \(-0.667207\pi\)
0.865175 + 0.501471i \(0.167207\pi\)
\(594\) −0.0838942 + 0.280452i −0.00344222 + 0.0115071i
\(595\) −2.15792 + 1.07896i −0.0884662 + 0.0442331i
\(596\) −4.79851 23.1874i −0.196555 0.949793i
\(597\) 11.7073i 0.479147i
\(598\) 0 0
\(599\) 24.9933i 1.02120i −0.859819 0.510599i \(-0.829424\pi\)
0.859819 0.510599i \(-0.170576\pi\)
\(600\) −10.5374 9.43206i −0.430187 0.385062i
\(601\) 39.8286i 1.62464i 0.583210 + 0.812322i \(0.301797\pi\)
−0.583210 + 0.812322i \(0.698203\pi\)
\(602\) −0.810789 + 2.71040i −0.0330453 + 0.110468i
\(603\) 13.0790i 0.532616i
\(604\) 0 0
\(605\) −21.9143 + 10.9572i −0.890943 + 0.445472i
\(606\) 19.8733 + 5.94488i 0.807296 + 0.241494i
\(607\) −16.8469 + 16.8469i −0.683795 + 0.683795i −0.960853 0.277058i \(-0.910640\pi\)
0.277058 + 0.960853i \(0.410640\pi\)
\(608\) 22.5016 2.65528i 0.912559 0.107686i
\(609\) 0.292731i 0.0118621i
\(610\) −7.42682 + 1.29766i −0.300703 + 0.0525409i
\(611\) 0 0
\(612\) 10.2088 2.11266i 0.412668 0.0853994i
\(613\) 8.62831 0.348494 0.174247 0.984702i \(-0.444251\pi\)
0.174247 + 0.984702i \(0.444251\pi\)
\(614\) −4.25410 7.88554i −0.171681 0.318234i
\(615\) 8.00000 4.00000i 0.322591 0.161296i
\(616\) −0.0104820 + 0.120732i −0.000422330 + 0.00486442i
\(617\) 11.0147 11.0147i 0.443435 0.443435i −0.449730 0.893165i \(-0.648480\pi\)
0.893165 + 0.449730i \(0.148480\pi\)
\(618\) 3.16286 10.5732i 0.127229 0.425316i
\(619\) 6.53948 + 6.53948i 0.262844 + 0.262844i 0.826208 0.563365i \(-0.190493\pi\)
−0.563365 + 0.826208i \(0.690493\pi\)
\(620\) −0.153712 + 1.30008i −0.00617322 + 0.0522124i
\(621\) −2.83221 + 2.83221i −0.113653 + 0.113653i
\(622\) 9.12181 4.92104i 0.365751 0.197316i
\(623\) 0.493499 + 0.493499i 0.0197716 + 0.0197716i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 5.74832 + 1.71955i 0.229749 + 0.0687270i
\(627\) 0.829076i 0.0331101i
\(628\) −27.1751 + 41.3576i −1.08441 + 1.65035i
\(629\) −34.5426 + 34.5426i −1.37730 + 1.37730i
\(630\) −0.112663 0.644798i −0.00448862 0.0256894i
\(631\) 42.0722 1.67487 0.837435 0.546538i \(-0.184054\pi\)
0.837435 + 0.546538i \(0.184054\pi\)
\(632\) −1.12181 + 12.9210i −0.0446231 + 0.513971i
\(633\) 12.4966 + 12.4966i 0.496697 + 0.496697i
\(634\) 24.8396 13.4005i 0.986505 0.532200i
\(635\) 11.5609 + 3.85363i 0.458780 + 0.152927i
\(636\) −13.1323 + 19.9859i −0.520729 + 0.792493i
\(637\) 0 0
\(638\) 0.364346 0.196558i 0.0144246 0.00778179i
\(639\) −4.58546 −0.181398
\(640\) 17.8845 + 17.8926i 0.706947 + 0.707266i
\(641\) 16.8291 0.664709 0.332354 0.943155i \(-0.392157\pi\)
0.332354 + 0.943155i \(0.392157\pi\)
\(642\) 14.1004 7.60688i 0.556498 0.300220i
\(643\) 38.0722 1.50142 0.750711 0.660631i \(-0.229711\pi\)
0.750711 + 0.660631i \(0.229711\pi\)
\(644\) −0.910557 + 1.38577i −0.0358810 + 0.0546069i
\(645\) 19.3288 9.66442i 0.761073 0.380536i
\(646\) −25.9859 + 14.0189i −1.02240 + 0.551566i
\(647\) −1.36856 1.36856i −0.0538035 0.0538035i 0.679693 0.733497i \(-0.262113\pi\)
−0.733497 + 0.679693i \(0.762113\pi\)
\(648\) −0.244644 + 2.81783i −0.00961054 + 0.110695i
\(649\) −2.78623 −0.109369
\(650\) 0 0
\(651\) −0.0428457 + 0.0428457i −0.00167926 + 0.00167926i
\(652\) −8.14323 + 12.3931i −0.318913 + 0.485352i
\(653\) 17.9572i 0.702718i −0.936241 0.351359i \(-0.885720\pi\)
0.936241 0.351359i \(-0.114280\pi\)
\(654\) −19.6809 5.88734i −0.769585 0.230213i
\(655\) −13.2253 + 39.6760i −0.516756 + 1.55027i
\(656\) −14.6858 + 6.35027i −0.573386 + 0.247936i
\(657\) 6.37169 + 6.37169i 0.248583 + 0.248583i
\(658\) −2.59594 + 1.40046i −0.101200 + 0.0545957i
\(659\) −11.1825 + 11.1825i −0.435608 + 0.435608i −0.890531 0.454923i \(-0.849667\pi\)
0.454923 + 0.890531i \(0.349667\pi\)
\(660\) 0.726895 0.573183i 0.0282943 0.0223111i
\(661\) −3.01469 3.01469i −0.117258 0.117258i 0.646043 0.763301i \(-0.276423\pi\)
−0.763301 + 0.646043i \(0.776423\pi\)
\(662\) 7.16286 23.9449i 0.278392 0.930644i
\(663\) 0 0
\(664\) 2.10038 24.1923i 0.0815107 0.938845i
\(665\) 0.829076 + 1.65815i 0.0321502 + 0.0643004i
\(666\) −6.29273 11.6644i −0.243838 0.451987i
\(667\) 5.66442 0.219327
\(668\) 33.8016 6.99507i 1.30782 0.270647i
\(669\) −17.2253 17.2253i −0.665970 0.665970i
\(670\) −23.7753 + 33.8427i −0.918520 + 1.30746i
\(671\) 0.493499i 0.0190513i
\(672\) 0.137222 + 1.16286i 0.00529345 + 0.0448581i
\(673\) −12.5725 + 12.5725i −0.484633 + 0.484633i −0.906608 0.421975i \(-0.861337\pi\)
0.421975 + 0.906608i \(0.361337\pi\)
\(674\) 29.8634 + 8.93332i 1.15029 + 0.344099i
\(675\) −3.00000 + 4.00000i −0.115470 + 0.153960i
\(676\) 14.2776 21.7290i 0.549139 0.835731i
\(677\) 16.7862i 0.645147i −0.946544 0.322574i \(-0.895452\pi\)
0.946544 0.322574i \(-0.104548\pi\)
\(678\) 0.966298 3.23026i 0.0371104 0.124057i
\(679\) 1.04958i 0.0402790i
\(680\) −30.2565 13.0912i −1.16028 0.502026i
\(681\) 8.29273i 0.317778i
\(682\) −0.0820969 0.0245584i −0.00314365 0.000940391i
\(683\) 0.378422i 0.0144799i −0.999974 0.00723997i \(-0.997695\pi\)
0.999974 0.00723997i \(-0.00230457\pi\)
\(684\) −1.62337 7.84449i −0.0620713 0.299942i
\(685\) 36.8139 + 12.2713i 1.40659 + 0.468863i
\(686\) −1.17092 + 3.91431i −0.0447061 + 0.149449i
\(687\) 10.2713 10.2713i 0.391875 0.391875i
\(688\) −35.4826 + 15.3429i −1.35276 + 0.584943i
\(689\) 0 0
\(690\) 12.4770 2.18007i 0.474992 0.0829938i
\(691\) 7.79610 + 7.79610i 0.296577 + 0.296577i 0.839672 0.543094i \(-0.182747\pi\)
−0.543094 + 0.839672i \(0.682747\pi\)
\(692\) −24.6430 16.1923i −0.936786 0.615541i
\(693\) 0.0428457 0.00162757
\(694\) 18.3503 9.89962i 0.696567 0.375784i
\(695\) −6.53948 + 19.6184i −0.248057 + 0.744170i
\(696\) 3.06247 2.57318i 0.116083 0.0975362i
\(697\) 14.7434 14.7434i 0.558446 0.558446i
\(698\) −6.98037 2.08810i −0.264211 0.0790359i
\(699\) 8.27131 + 8.27131i 0.312850 + 0.312850i
\(700\) −0.880607 + 1.87326i −0.0332838 + 0.0708026i
\(701\) −1.78623 + 1.78623i −0.0674650 + 0.0674650i −0.740034 0.672569i \(-0.765191\pi\)
0.672569 + 0.740034i \(0.265191\pi\)
\(702\) 0 0
\(703\) 26.5426 + 26.5426i 1.00107 + 1.00107i
\(704\) −1.35520 + 0.951605i −0.0510761 + 0.0358650i
\(705\) 21.3748 + 7.12494i 0.805023 + 0.268341i
\(706\) −2.11266 + 7.06247i −0.0795111 + 0.265800i
\(707\) 3.03612i 0.114185i
\(708\) −26.3625 + 5.45559i −0.990765 + 0.205033i
\(709\) 21.6858 21.6858i 0.814429 0.814429i −0.170865 0.985294i \(-0.554656\pi\)
0.985294 + 0.170865i \(0.0546563\pi\)
\(710\) 11.8652 + 8.33558i 0.445293 + 0.312829i
\(711\) 4.58546 0.171968
\(712\) −0.824865 + 9.50085i −0.0309131 + 0.356059i
\(713\) −0.829076 0.829076i −0.0310491 0.0310491i
\(714\) −0.724481 1.34292i −0.0271130 0.0502576i
\(715\) 0 0
\(716\) 5.28780 + 25.5518i 0.197614 + 0.954914i
\(717\) −3.41454 −0.127518
\(718\) 22.1537 + 41.0649i 0.826769 + 1.53253i
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 5.75536 6.84660i 0.214489 0.255158i
\(721\) −1.61531 −0.0601572
\(722\) −1.98562 3.68061i −0.0738970 0.136978i
\(723\) 3.17092 0.117928
\(724\) −10.2088 + 2.11266i −0.379408 + 0.0785165i
\(725\) 7.00000 1.00000i 0.259973 0.0371391i
\(726\) −7.35731 13.6378i −0.273055 0.506145i
\(727\) 33.6331 + 33.6331i 1.24738 + 1.24738i 0.956871 + 0.290513i \(0.0938259\pi\)
0.290513 + 0.956871i \(0.406174\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −4.90455 28.0698i −0.181525 1.03891i
\(731\) 35.6216 35.6216i 1.31751 1.31751i
\(732\) −0.966298 4.66936i −0.0357154 0.172584i
\(733\) 20.1151i 0.742967i 0.928439 + 0.371484i \(0.121151\pi\)
−0.928439 + 0.371484i \(0.878849\pi\)
\(734\) 10.3766 34.6883i 0.383008 1.28037i
\(735\) 13.9143 6.95715i 0.513237 0.256619i
\(736\) −22.5016 + 2.65528i −0.829419 + 0.0978749i
\(737\) −1.91431 1.91431i −0.0705145 0.0705145i
\(738\) 2.68585 + 4.97858i 0.0988674 + 0.183264i
\(739\) −17.7533 + 17.7533i −0.653064 + 0.653064i −0.953730 0.300666i \(-0.902791\pi\)
0.300666 + 0.953730i \(0.402791\pi\)
\(740\) −4.92104 + 41.6216i −0.180901 + 1.53004i
\(741\) 0 0
\(742\) 3.35341 + 1.00314i 0.123107 + 0.0368263i
\(743\) −0.203904 + 0.203904i −0.00748051 + 0.00748051i −0.710837 0.703357i \(-0.751684\pi\)
0.703357 + 0.710837i \(0.251684\pi\)
\(744\) −0.824865 0.0716150i −0.0302410 0.00262553i
\(745\) 25.1151 + 8.37169i 0.920145 + 0.306715i
\(746\) −17.3184 + 9.34292i −0.634070 + 0.342069i
\(747\) −8.58546 −0.314126
\(748\) 1.18500 1.80344i 0.0433279 0.0659404i
\(749\) −1.65815 1.65815i −0.0605876 0.0605876i
\(750\) 15.0340 4.89679i 0.548964 0.178805i
\(751\) 2.45065i 0.0894256i −0.999000 0.0447128i \(-0.985763\pi\)
0.999000 0.0447128i \(-0.0142373\pi\)
\(752\) −37.4703 14.8476i −1.36640 0.541437i
\(753\) −3.85363 + 3.85363i −0.140434 + 0.140434i
\(754\) 0 0
\(755\) 0 0
\(756\) 0.405394 0.0838942i 0.0147441 0.00305120i
\(757\) 37.2860i 1.35518i 0.735439 + 0.677591i \(0.236976\pi\)
−0.735439 + 0.677591i \(0.763024\pi\)
\(758\) −14.7740 4.41947i −0.536614 0.160522i
\(759\) 0.829076i 0.0300936i
\(760\) −10.0593 + 23.2492i −0.364890 + 0.843336i
\(761\) 12.2008i 0.442278i 0.975242 + 0.221139i \(0.0709774\pi\)
−0.975242 + 0.221139i \(0.929023\pi\)
\(762\) −2.20884 + 7.38397i −0.0800177 + 0.267493i
\(763\) 3.00673i 0.108851i
\(764\) 10.5897 + 6.95823i 0.383121 + 0.251740i
\(765\) −3.68585 + 11.0575i −0.133262 + 0.399786i
\(766\) −28.4201 8.50157i −1.02686 0.307174i
\(767\) 0 0
\(768\) −10.9593 + 11.6574i −0.395458 + 0.420650i
\(769\) 3.21377i 0.115891i 0.998320 + 0.0579457i \(0.0184550\pi\)
−0.998320 + 0.0579457i \(0.981545\pi\)
\(770\) −0.110866 0.0778861i −0.00399534 0.00280682i
\(771\) 21.6430 + 21.6430i 0.779454 + 0.779454i
\(772\) −0.237606 1.14816i −0.00855163 0.0413233i
\(773\) −42.6148 −1.53275 −0.766375 0.642394i \(-0.777941\pi\)
−0.766375 + 0.642394i \(0.777941\pi\)
\(774\) 6.48929 + 12.0288i 0.233253 + 0.432365i
\(775\) −1.17092 0.878193i −0.0420608 0.0315456i
\(776\) 10.9804 9.22605i 0.394172 0.331196i
\(777\) −1.37169 + 1.37169i −0.0492092 + 0.0492092i
\(778\) −9.38397 + 31.3699i −0.336432 + 1.12467i
\(779\) −11.3288 11.3288i −0.405898 0.405898i
\(780\) 0 0
\(781\) −0.671153 + 0.671153i −0.0240158 + 0.0240158i
\(782\) 25.9859 14.0189i 0.929255 0.501315i
\(783\) −1.00000 1.00000i −0.0357371 0.0357371i
\(784\) −25.5429 + 11.0450i −0.912247 + 0.394463i
\(785\) −24.7434 49.4868i −0.883129 1.76626i
\(786\) −25.3411 7.58053i −0.903888 0.270389i
\(787\) 47.2369i 1.68381i 0.539623 + 0.841907i \(0.318567\pi\)
−0.539623 + 0.841907i \(0.681433\pi\)
\(788\) −14.6858 9.64973i −0.523162 0.343757i
\(789\) −14.2467 + 14.2467i −0.507198 + 0.507198i
\(790\) −11.8652 8.33558i −0.422145 0.296567i
\(791\) −0.493499 −0.0175468
\(792\) 0.376625 + 0.448240i 0.0133828 + 0.0159275i
\(793\) 0 0
\(794\) −0.782020 + 0.421884i −0.0277528 + 0.0149721i
\(795\) −11.9572 23.9143i −0.424077 0.848153i
\(796\) 19.5682 + 12.8578i 0.693578 + 0.455734i
\(797\) 19.8715 0.703883 0.351942 0.936022i \(-0.385522\pi\)
0.351942 + 0.936022i \(0.385522\pi\)
\(798\) −1.03190 + 0.556693i −0.0365290 + 0.0197067i
\(799\) 52.5229 1.85813
\(800\) −27.3383 + 7.25379i −0.966555 + 0.256460i
\(801\) 3.37169 0.119133
\(802\) 10.6325 5.73604i 0.375447 0.202547i
\(803\) 1.86519 0.0658212
\(804\) −21.8610 14.3643i −0.770977 0.506591i
\(805\) −0.829076 1.65815i −0.0292211 0.0584422i
\(806\) 0 0
\(807\) 11.7862 + 11.7862i 0.414895 + 0.414895i
\(808\) 31.7630 26.6883i 1.11742 0.938890i
\(809\) 38.3158 1.34711 0.673557 0.739136i \(-0.264766\pi\)
0.673557 + 0.739136i \(0.264766\pi\)
\(810\) −2.58757 1.81783i −0.0909178 0.0638719i
\(811\) 7.50337 7.50337i 0.263479 0.263479i −0.562987 0.826466i \(-0.690348\pi\)
0.826466 + 0.562987i \(0.190348\pi\)
\(812\) −0.489289 0.321500i −0.0171707 0.0112824i
\(813\) 11.7073i 0.410592i
\(814\) −2.62831 0.786230i −0.0921221 0.0275574i
\(815\) −7.41454 14.8291i −0.259720 0.519440i
\(816\) 7.68091 19.3840i 0.268886 0.678575i
\(817\) −27.3717 27.3717i −0.957614 0.957614i
\(818\) 48.1684 25.9859i 1.68417 0.908577i
\(819\) 0 0
\(820\) 2.10038 17.7648i 0.0733486 0.620374i
\(821\) 35.1151 + 35.1151i 1.22552 + 1.22552i 0.965640 + 0.259885i \(0.0836847\pi\)
0.259885 + 0.965640i \(0.416315\pi\)
\(822\) −7.03370 + 23.5131i −0.245329 + 0.820114i
\(823\) −30.8041 + 30.8041i −1.07376 + 1.07376i −0.0767084 + 0.997054i \(0.524441\pi\)
−0.997054 + 0.0767084i \(0.975559\pi\)
\(824\) −14.1990 16.8989i −0.494645 0.588701i
\(825\) 0.146365 + 1.02456i 0.00509579 + 0.0356705i
\(826\) 1.87085 + 3.46787i 0.0650951 + 0.120662i
\(827\) −23.9143 −0.831582 −0.415791 0.909460i \(-0.636495\pi\)
−0.415791 + 0.909460i \(0.636495\pi\)
\(828\) 1.62337 + 7.84449i 0.0564162 + 0.272615i
\(829\) −8.47208 8.47208i −0.294247 0.294247i 0.544508 0.838756i \(-0.316716\pi\)
−0.838756 + 0.544508i \(0.816716\pi\)
\(830\) 22.2155 + 15.6069i 0.771110 + 0.541723i
\(831\) 18.5426i 0.643236i
\(832\) 0 0
\(833\) 25.6430 25.6430i 0.888477 0.888477i
\(834\) −12.5303 3.74832i −0.433890 0.129794i
\(835\) −12.2039 + 36.6117i −0.422334 + 1.26700i
\(836\) −1.38577 0.910557i −0.0479278 0.0314923i
\(837\) 0.292731i 0.0101183i
\(838\) 5.62337 18.7985i 0.194256 0.649384i
\(839\) 49.5787i 1.71165i 0.517267 + 0.855824i \(0.326949\pi\)
−0.517267 + 0.855824i \(0.673051\pi\)
\(840\) −1.20149 0.519855i −0.0414554 0.0179367i
\(841\) 27.0000i 0.931034i
\(842\) 38.8420 + 11.6192i 1.33858 + 0.400423i
\(843\) 2.62831i 0.0905237i
\(844\) 34.6124 7.16286i 1.19141 0.246556i
\(845\) 13.0000 + 26.0000i 0.447214 + 0.894427i
\(846\) −4.08389 + 13.6521i −0.140407 + 0.469370i
\(847\) −1.60375 + 1.60375i −0.0551055 + 0.0551055i
\(848\) 18.9828 + 43.9002i 0.651872 + 1.50754i
\(849\) 22.2499i 0.763614i
\(850\) 29.6381 21.9119i 1.01658 0.751572i
\(851\) −26.5426 26.5426i −0.909869 0.909869i
\(852\) −5.03612 + 7.66442i −0.172534 + 0.262579i
\(853\) −28.6283 −0.980215 −0.490107 0.871662i \(-0.663042\pi\)
−0.490107 + 0.871662i \(0.663042\pi\)
\(854\) −0.614231 + 0.331366i −0.0210186 + 0.0113391i
\(855\) 8.49663 + 2.83221i 0.290579 + 0.0968596i
\(856\) 2.77154 31.9227i 0.0947292 1.09110i
\(857\) −0.899616 + 0.899616i −0.0307303 + 0.0307303i −0.722305 0.691575i \(-0.756917\pi\)
0.691575 + 0.722305i \(0.256917\pi\)
\(858\) 0 0
\(859\) −38.0754 38.0754i −1.29911 1.29911i −0.928977 0.370138i \(-0.879310\pi\)
−0.370138 0.928977i \(-0.620690\pi\)
\(860\) 5.07475 42.9217i 0.173048 1.46362i
\(861\) 0.585462 0.585462i 0.0199525 0.0199525i
\(862\) 19.5254 + 36.1930i 0.665038 + 1.23274i
\(863\) −3.12494 3.12494i −0.106374 0.106374i 0.651916 0.758291i \(-0.273965\pi\)
−0.758291 + 0.651916i \(0.773965\pi\)
\(864\) 4.44120 + 3.50367i 0.151093 + 0.119197i
\(865\) 29.4868 14.7434i 1.00258 0.501290i
\(866\) 5.13409 17.1629i 0.174463 0.583218i
\(867\) 10.1709i 0.345423i
\(868\) 0.0245584 + 0.118671i 0.000833567 + 0.00402797i
\(869\) 0.671153 0.671153i 0.0227673 0.0227673i
\(870\) 0.769740 + 4.40539i 0.0260966 + 0.149357i
\(871\) 0 0
\(872\) −31.4556 + 26.4300i −1.06522 + 0.895031i
\(873\) −3.58546 3.58546i −0.121350 0.121350i
\(874\) −10.7722 19.9676i −0.364374 0.675415i
\(875\) −1.31729 1.90275i −0.0445325 0.0643247i
\(876\) 17.6479 3.65214i 0.596268 0.123395i
\(877\) −0.743385 −0.0251023 −0.0125512 0.999921i \(-0.503995\pi\)
−0.0125512 + 0.999921i \(0.503995\pi\)
\(878\) 4.72448 + 8.75746i 0.159444 + 0.295550i
\(879\) 21.9143 0.739151
\(880\) −0.159720 1.84449i −0.00538416 0.0621778i
\(881\) −35.2860 −1.18882 −0.594408 0.804164i \(-0.702613\pi\)
−0.594408 + 0.804164i \(0.702613\pi\)
\(882\) 4.67146 + 8.65918i 0.157296 + 0.291570i
\(883\) 32.9870 1.11010 0.555050 0.831817i \(-0.312699\pi\)
0.555050 + 0.831817i \(0.312699\pi\)
\(884\) 0 0
\(885\) 9.51806 28.5542i 0.319946 0.959838i
\(886\) −22.7392 42.1501i −0.763937 1.41606i
\(887\) −5.16779 5.16779i −0.173517 0.173517i 0.615005 0.788523i \(-0.289154\pi\)
−0.788523 + 0.615005i \(0.789154\pi\)
\(888\) −26.4078 2.29273i −0.886188 0.0769390i
\(889\) 1.12808 0.0378345
\(890\) −8.72448 6.12915i −0.292445 0.205450i
\(891\) 0.146365 0.146365i 0.00490343 0.00490343i
\(892\) −47.7097 + 9.87326i −1.59744 + 0.330581i
\(893\) 40.3587i 1.35055i
\(894\) −4.79851 + 16.0410i −0.160486 + 0.536493i
\(895\) −27.6760 9.22533i −0.925106 0.308369i
\(896\) 2.09438 + 1.04778i 0.0699682 + 0.0350038i
\(897\) 0 0
\(898\) −21.5640 39.9718i −0.719601 1.33388i
\(899\) 0.292731 0.292731i 0.00976312 0.00976312i
\(900\) 3.39101 + 9.40750i 0.113034 + 0.313583i
\(901\) −44.0722 44.0722i −1.46826 1.46826i
\(902\) 1.12181 + 0.335577i 0.0373521 + 0.0111735i
\(903\) 1.41454 1.41454i 0.0470729 0.0470729i
\(904\) −4.33799 5.16286i −0.144279 0.171714i
\(905\) 3.68585 11.0575i 0.122522 0.367565i
\(906\) 0 0
\(907\) −6.74338 −0.223910 −0.111955 0.993713i \(-0.535711\pi\)
−0.111955 + 0.993713i \(0.535711\pi\)
\(908\) 13.8610 + 9.10773i 0.459993 + 0.302251i
\(909\) −10.3717 10.3717i −0.344007 0.344007i
\(910\) 0 0
\(911\) 1.16465i 0.0385867i −0.999814 0.0192933i \(-0.993858\pi\)
0.999814 0.0192933i \(-0.00614164\pi\)
\(912\) −14.8947 5.90203i −0.493212 0.195436i
\(913\) −1.25662 + 1.25662i −0.0415879 + 0.0415879i
\(914\) −2.53034 + 8.45872i −0.0836961 + 0.279790i
\(915\) 5.05754 + 1.68585i 0.167197 + 0.0557324i
\(916\) −5.88734 28.4489i −0.194523 0.939977i
\(917\) 3.87146i 0.127847i
\(918\) −7.06247 2.11266i −0.233096 0.0697283i
\(919\) 25.8652i 0.853214i 0.904437 + 0.426607i \(0.140291\pi\)
−0.904437 + 0.426607i \(0.859709\pi\)
\(920\) 10.0593 23.2492i 0.331646 0.766502i
\(921\) 6.33558i 0.208764i
\(922\) −2.84136 + 9.49843i −0.0935751 + 0.312814i
\(923\) 0 0
\(924\) 0.0470565 0.0716150i 0.00154805 0.00235596i
\(925\) −37.4868 28.1151i −1.23256 0.924418i
\(926\) −5.31657 1.59039i −0.174713 0.0522636i
\(927\) −5.51806 + 5.51806i −0.181237 + 0.181237i
\(928\) −0.937529 7.94488i −0.0307759 0.260803i
\(929\) 37.2003i 1.22050i −0.792208 0.610251i \(-0.791068\pi\)
0.792208 0.610251i \(-0.208932\pi\)
\(930\) 0.532134 0.757461i 0.0174494 0.0248381i
\(931\) −19.7041 19.7041i −0.645777 0.645777i
\(932\) 22.9094 4.74097i 0.750422 0.155296i
\(933\) −7.32885 −0.239936
\(934\) 15.4679 + 28.6718i 0.506124 + 0.938169i
\(935\) 1.07896 + 2.15792i 0.0352858 + 0.0705716i
\(936\) 0 0
\(937\) 20.9143 20.9143i 0.683241 0.683241i −0.277488 0.960729i \(-0.589502\pi\)
0.960729 + 0.277488i \(0.0895020\pi\)
\(938\) −1.09725 + 3.66802i −0.0358264 + 0.119765i
\(939\) −3.00000 3.00000i −0.0979013 0.0979013i
\(940\) 35.3846 27.9020i 1.15412 0.910064i
\(941\) −5.58546 + 5.58546i −0.182081 + 0.182081i −0.792262 0.610181i \(-0.791097\pi\)
0.610181 + 0.792262i \(0.291097\pi\)
\(942\) 30.7967 16.6142i 1.00341 0.541321i
\(943\) 11.3288 + 11.3288i 0.368918 + 0.368918i
\(944\) −19.8346 + 50.0557i −0.645562 + 1.62918i
\(945\) −0.146365 + 0.439096i −0.00476127 + 0.0142838i
\(946\) 2.71040 + 0.810789i 0.0881229 + 0.0263610i
\(947\) 20.7925i 0.675666i −0.941206 0.337833i \(-0.890306\pi\)
0.941206 0.337833i \(-0.109694\pi\)
\(948\) 5.03612 7.66442i 0.163565 0.248929i
\(949\) 0 0
\(950\) −16.8371 22.7740i −0.546269 0.738885i
\(951\) −19.9572 −0.647155
\(952\) −3.04033 0.263962i −0.0985375 0.00855505i
\(953\) −16.3142 16.3142i −0.528467 0.528467i 0.391648 0.920115i \(-0.371905\pi\)
−0.920115 + 0.391648i \(0.871905\pi\)
\(954\) 14.8824 8.02877i 0.481836 0.259941i
\(955\) −12.6712 + 6.33558i −0.410029 + 0.205014i
\(956\) −3.75011 + 5.70727i −0.121287 + 0.184586i
\(957\) −0.292731 −0.00946265
\(958\) 25.6216 13.8223i 0.827796 0.446580i
\(959\) 3.59219 0.115998
\(960\) −5.12284 17.1393i −0.165339 0.553169i
\(961\) 30.9143 0.997236
\(962\) 0 0
\(963\) −11.3288 −0.365067
\(964\) 3.48256 5.30008i 0.112166 0.170704i
\(965\) 1.24361 + 0.414538i 0.0400334 + 0.0133445i
\(966\) 1.03190 0.556693i 0.0332010 0.0179113i
\(967\) −19.5672 19.5672i −0.629238 0.629238i 0.318638 0.947876i \(-0.396774\pi\)
−0.947876 + 0.318638i \(0.896774\pi\)
\(968\) −30.8754 2.68061i −0.992372 0.0861579i
\(969\) 20.8782 0.670704
\(970\) 2.75987 + 15.7954i 0.0886142 + 0.507159i
\(971\) 12.8469 12.8469i 0.412277 0.412277i −0.470254 0.882531i \(-0.655838\pi\)
0.882531 + 0.470254i \(0.155838\pi\)
\(972\) 1.09828 1.67146i 0.0352273 0.0536122i
\(973\) 1.91431i 0.0613699i
\(974\) −10.1885 3.04778i −0.326460 0.0976571i
\(975\) 0 0
\(976\) −8.86591 3.51313i −0.283791 0.112452i
\(977\) −27.6430 27.6430i −0.884378 0.884378i 0.109598 0.993976i \(-0.465044\pi\)
−0.993976 + 0.109598i \(0.965044\pi\)
\(978\) 9.22846 4.97858i 0.295094 0.159197i
\(979\) 0.493499 0.493499i 0.0157723 0.0157723i
\(980\) 3.65317 30.8981i 0.116696 0.987004i
\(981\) 10.2713 + 10.2713i 0.327938 + 0.327938i
\(982\) −12.3338 + 41.2309i −0.393587 + 1.31573i
\(983\) −22.1611 + 22.1611i −0.706828 + 0.706828i −0.965867 0.259039i \(-0.916594\pi\)
0.259039 + 0.965867i \(0.416594\pi\)
\(984\) 11.2713 + 0.978577i 0.359316 + 0.0311959i
\(985\) 17.5725 8.78623i 0.559905 0.279953i
\(986\) 4.94981 + 9.17513i 0.157634 + 0.292196i
\(987\) 2.08569 0.0663883
\(988\) 0 0
\(989\) 27.3717 + 27.3717i 0.870369 + 0.870369i
\(990\) −0.644798 + 0.112663i −0.0204930 + 0.00358068i
\(991\) 50.9504i 1.61849i −0.587469 0.809247i \(-0.699876\pi\)
0.587469 0.809247i \(-0.300124\pi\)
\(992\) −1.02563 + 1.30008i −0.0325639 + 0.0412775i
\(993\) −12.4966 + 12.4966i −0.396569 + 0.396569i
\(994\) 1.28600 + 0.384694i 0.0407895 + 0.0122017i
\(995\) −23.4145 + 11.7073i −0.742291 + 0.371145i
\(996\) −9.42923 + 14.3503i −0.298777 + 0.454706i
\(997\) 19.9143i 0.630692i −0.948977 0.315346i \(-0.897879\pi\)
0.948977 0.315346i \(-0.102121\pi\)
\(998\) −1.62337 + 5.42682i −0.0513870 + 0.171783i
\(999\) 9.37169i 0.296507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.2.y.d.187.1 yes 6
3.2 odd 2 720.2.z.e.667.3 6
4.3 odd 2 960.2.y.d.847.2 6
5.3 odd 4 240.2.bc.d.43.3 yes 6
8.3 odd 2 1920.2.y.h.1567.2 6
8.5 even 2 1920.2.y.g.1567.2 6
15.8 even 4 720.2.bd.e.523.1 6
16.3 odd 4 240.2.bc.d.67.3 yes 6
16.5 even 4 1920.2.bc.h.607.2 6
16.11 odd 4 1920.2.bc.g.607.2 6
16.13 even 4 960.2.bc.d.367.2 6
20.3 even 4 960.2.bc.d.463.2 6
40.3 even 4 1920.2.bc.h.1183.2 6
40.13 odd 4 1920.2.bc.g.1183.2 6
48.35 even 4 720.2.bd.e.307.1 6
80.3 even 4 inner 240.2.y.d.163.1 6
80.13 odd 4 960.2.y.d.943.2 6
80.43 even 4 1920.2.y.g.223.2 6
80.53 odd 4 1920.2.y.h.223.2 6
240.83 odd 4 720.2.z.e.163.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.1 6 80.3 even 4 inner
240.2.y.d.187.1 yes 6 1.1 even 1 trivial
240.2.bc.d.43.3 yes 6 5.3 odd 4
240.2.bc.d.67.3 yes 6 16.3 odd 4
720.2.z.e.163.3 6 240.83 odd 4
720.2.z.e.667.3 6 3.2 odd 2
720.2.bd.e.307.1 6 48.35 even 4
720.2.bd.e.523.1 6 15.8 even 4
960.2.y.d.847.2 6 4.3 odd 2
960.2.y.d.943.2 6 80.13 odd 4
960.2.bc.d.367.2 6 16.13 even 4
960.2.bc.d.463.2 6 20.3 even 4
1920.2.y.g.223.2 6 80.43 even 4
1920.2.y.g.1567.2 6 8.5 even 2
1920.2.y.h.223.2 6 80.53 odd 4
1920.2.y.h.1567.2 6 8.3 odd 2
1920.2.bc.g.607.2 6 16.11 odd 4
1920.2.bc.g.1183.2 6 40.13 odd 4
1920.2.bc.h.607.2 6 16.5 even 4
1920.2.bc.h.1183.2 6 40.3 even 4