Properties

Label 240.8.a.l.1.1
Level $240$
Weight $8$
Character 240.1
Self dual yes
Analytic conductor $74.972$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,8,Mod(1,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9724061162\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+27.0000 q^{3} +125.000 q^{5} -512.000 q^{7} +729.000 q^{9} -5460.00 q^{11} +10166.0 q^{13} +3375.00 q^{15} -9918.00 q^{17} +12436.0 q^{19} -13824.0 q^{21} -33600.0 q^{23} +15625.0 q^{25} +19683.0 q^{27} -187914. q^{29} +42592.0 q^{31} -147420. q^{33} -64000.0 q^{35} -544066. q^{37} +274482. q^{39} +374394. q^{41} +540532. q^{43} +91125.0 q^{45} -1.33836e6 q^{47} -561399. q^{49} -267786. q^{51} +1.30822e6 q^{53} -682500. q^{55} +335772. q^{57} -262740. q^{59} -976330. q^{61} -373248. q^{63} +1.27075e6 q^{65} -3.55917e6 q^{67} -907200. q^{69} +2.67372e6 q^{71} -3.03213e6 q^{73} +421875. q^{75} +2.79552e6 q^{77} +5.47581e6 q^{79} +531441. q^{81} -2.23156e6 q^{83} -1.23975e6 q^{85} -5.07368e6 q^{87} -1.00507e7 q^{89} -5.20499e6 q^{91} +1.14998e6 q^{93} +1.55450e6 q^{95} +5.72755e6 q^{97} -3.98034e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 27.0000 0.577350
\(4\) 0 0
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) −512.000 −0.564192 −0.282096 0.959386i \(-0.591030\pi\)
−0.282096 + 0.959386i \(0.591030\pi\)
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) −5460.00 −1.23685 −0.618427 0.785842i \(-0.712230\pi\)
−0.618427 + 0.785842i \(0.712230\pi\)
\(12\) 0 0
\(13\) 10166.0 1.28336 0.641680 0.766973i \(-0.278238\pi\)
0.641680 + 0.766973i \(0.278238\pi\)
\(14\) 0 0
\(15\) 3375.00 0.258199
\(16\) 0 0
\(17\) −9918.00 −0.489613 −0.244806 0.969572i \(-0.578724\pi\)
−0.244806 + 0.969572i \(0.578724\pi\)
\(18\) 0 0
\(19\) 12436.0 0.415952 0.207976 0.978134i \(-0.433312\pi\)
0.207976 + 0.978134i \(0.433312\pi\)
\(20\) 0 0
\(21\) −13824.0 −0.325736
\(22\) 0 0
\(23\) −33600.0 −0.575827 −0.287913 0.957656i \(-0.592962\pi\)
−0.287913 + 0.957656i \(0.592962\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 0 0
\(27\) 19683.0 0.192450
\(28\) 0 0
\(29\) −187914. −1.43076 −0.715379 0.698737i \(-0.753746\pi\)
−0.715379 + 0.698737i \(0.753746\pi\)
\(30\) 0 0
\(31\) 42592.0 0.256781 0.128390 0.991724i \(-0.459019\pi\)
0.128390 + 0.991724i \(0.459019\pi\)
\(32\) 0 0
\(33\) −147420. −0.714098
\(34\) 0 0
\(35\) −64000.0 −0.252314
\(36\) 0 0
\(37\) −544066. −1.76582 −0.882908 0.469546i \(-0.844418\pi\)
−0.882908 + 0.469546i \(0.844418\pi\)
\(38\) 0 0
\(39\) 274482. 0.740948
\(40\) 0 0
\(41\) 374394. 0.848370 0.424185 0.905576i \(-0.360561\pi\)
0.424185 + 0.905576i \(0.360561\pi\)
\(42\) 0 0
\(43\) 540532. 1.03677 0.518384 0.855148i \(-0.326534\pi\)
0.518384 + 0.855148i \(0.326534\pi\)
\(44\) 0 0
\(45\) 91125.0 0.149071
\(46\) 0 0
\(47\) −1.33836e6 −1.88031 −0.940157 0.340741i \(-0.889322\pi\)
−0.940157 + 0.340741i \(0.889322\pi\)
\(48\) 0 0
\(49\) −561399. −0.681688
\(50\) 0 0
\(51\) −267786. −0.282678
\(52\) 0 0
\(53\) 1.30822e6 1.20702 0.603512 0.797354i \(-0.293768\pi\)
0.603512 + 0.797354i \(0.293768\pi\)
\(54\) 0 0
\(55\) −682500. −0.553138
\(56\) 0 0
\(57\) 335772. 0.240150
\(58\) 0 0
\(59\) −262740. −0.166550 −0.0832749 0.996527i \(-0.526538\pi\)
−0.0832749 + 0.996527i \(0.526538\pi\)
\(60\) 0 0
\(61\) −976330. −0.550734 −0.275367 0.961339i \(-0.588799\pi\)
−0.275367 + 0.961339i \(0.588799\pi\)
\(62\) 0 0
\(63\) −373248. −0.188064
\(64\) 0 0
\(65\) 1.27075e6 0.573936
\(66\) 0 0
\(67\) −3.55917e6 −1.44573 −0.722865 0.690989i \(-0.757175\pi\)
−0.722865 + 0.690989i \(0.757175\pi\)
\(68\) 0 0
\(69\) −907200. −0.332454
\(70\) 0 0
\(71\) 2.67372e6 0.886567 0.443284 0.896381i \(-0.353813\pi\)
0.443284 + 0.896381i \(0.353813\pi\)
\(72\) 0 0
\(73\) −3.03213e6 −0.912259 −0.456130 0.889913i \(-0.650765\pi\)
−0.456130 + 0.889913i \(0.650765\pi\)
\(74\) 0 0
\(75\) 421875. 0.115470
\(76\) 0 0
\(77\) 2.79552e6 0.697823
\(78\) 0 0
\(79\) 5.47581e6 1.24955 0.624775 0.780805i \(-0.285191\pi\)
0.624775 + 0.780805i \(0.285191\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) −2.23156e6 −0.428385 −0.214193 0.976791i \(-0.568712\pi\)
−0.214193 + 0.976791i \(0.568712\pi\)
\(84\) 0 0
\(85\) −1.23975e6 −0.218962
\(86\) 0 0
\(87\) −5.07368e6 −0.826048
\(88\) 0 0
\(89\) −1.00507e7 −1.51123 −0.755615 0.655016i \(-0.772662\pi\)
−0.755615 + 0.655016i \(0.772662\pi\)
\(90\) 0 0
\(91\) −5.20499e6 −0.724061
\(92\) 0 0
\(93\) 1.14998e6 0.148252
\(94\) 0 0
\(95\) 1.55450e6 0.186019
\(96\) 0 0
\(97\) 5.72755e6 0.637189 0.318594 0.947891i \(-0.396789\pi\)
0.318594 + 0.947891i \(0.396789\pi\)
\(98\) 0 0
\(99\) −3.98034e6 −0.412284
\(100\) 0 0
\(101\) −1.33358e7 −1.28793 −0.643966 0.765054i \(-0.722712\pi\)
−0.643966 + 0.765054i \(0.722712\pi\)
\(102\) 0 0
\(103\) 2.71019e6 0.244382 0.122191 0.992507i \(-0.461008\pi\)
0.122191 + 0.992507i \(0.461008\pi\)
\(104\) 0 0
\(105\) −1.72800e6 −0.145674
\(106\) 0 0
\(107\) −1.13195e7 −0.893274 −0.446637 0.894715i \(-0.647378\pi\)
−0.446637 + 0.894715i \(0.647378\pi\)
\(108\) 0 0
\(109\) −2.19732e7 −1.62518 −0.812589 0.582838i \(-0.801942\pi\)
−0.812589 + 0.582838i \(0.801942\pi\)
\(110\) 0 0
\(111\) −1.46898e7 −1.01949
\(112\) 0 0
\(113\) 3.68359e6 0.240158 0.120079 0.992764i \(-0.461685\pi\)
0.120079 + 0.992764i \(0.461685\pi\)
\(114\) 0 0
\(115\) −4.20000e6 −0.257518
\(116\) 0 0
\(117\) 7.41101e6 0.427787
\(118\) 0 0
\(119\) 5.07802e6 0.276236
\(120\) 0 0
\(121\) 1.03244e7 0.529806
\(122\) 0 0
\(123\) 1.01086e7 0.489807
\(124\) 0 0
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) 2.67953e7 1.16077 0.580385 0.814342i \(-0.302902\pi\)
0.580385 + 0.814342i \(0.302902\pi\)
\(128\) 0 0
\(129\) 1.45944e7 0.598579
\(130\) 0 0
\(131\) −1.48085e7 −0.575523 −0.287762 0.957702i \(-0.592911\pi\)
−0.287762 + 0.957702i \(0.592911\pi\)
\(132\) 0 0
\(133\) −6.36723e6 −0.234677
\(134\) 0 0
\(135\) 2.46038e6 0.0860663
\(136\) 0 0
\(137\) −5.76532e7 −1.91559 −0.957793 0.287458i \(-0.907190\pi\)
−0.957793 + 0.287458i \(0.907190\pi\)
\(138\) 0 0
\(139\) 8.37800e6 0.264599 0.132300 0.991210i \(-0.457764\pi\)
0.132300 + 0.991210i \(0.457764\pi\)
\(140\) 0 0
\(141\) −3.61357e7 −1.08560
\(142\) 0 0
\(143\) −5.55064e7 −1.58733
\(144\) 0 0
\(145\) −2.34892e7 −0.639854
\(146\) 0 0
\(147\) −1.51578e7 −0.393572
\(148\) 0 0
\(149\) 5.56477e6 0.137815 0.0689073 0.997623i \(-0.478049\pi\)
0.0689073 + 0.997623i \(0.478049\pi\)
\(150\) 0 0
\(151\) −6.62933e7 −1.56693 −0.783466 0.621434i \(-0.786550\pi\)
−0.783466 + 0.621434i \(0.786550\pi\)
\(152\) 0 0
\(153\) −7.23022e6 −0.163204
\(154\) 0 0
\(155\) 5.32400e6 0.114836
\(156\) 0 0
\(157\) −6.42791e7 −1.32563 −0.662813 0.748785i \(-0.730637\pi\)
−0.662813 + 0.748785i \(0.730637\pi\)
\(158\) 0 0
\(159\) 3.53220e7 0.696876
\(160\) 0 0
\(161\) 1.72032e7 0.324877
\(162\) 0 0
\(163\) −8.48552e7 −1.53469 −0.767347 0.641232i \(-0.778424\pi\)
−0.767347 + 0.641232i \(0.778424\pi\)
\(164\) 0 0
\(165\) −1.84275e7 −0.319354
\(166\) 0 0
\(167\) −6.42144e7 −1.06690 −0.533451 0.845831i \(-0.679105\pi\)
−0.533451 + 0.845831i \(0.679105\pi\)
\(168\) 0 0
\(169\) 4.05990e7 0.647012
\(170\) 0 0
\(171\) 9.06584e6 0.138651
\(172\) 0 0
\(173\) 1.10058e8 1.61607 0.808036 0.589134i \(-0.200531\pi\)
0.808036 + 0.589134i \(0.200531\pi\)
\(174\) 0 0
\(175\) −8.00000e6 −0.112838
\(176\) 0 0
\(177\) −7.09398e6 −0.0961576
\(178\) 0 0
\(179\) −8.68778e7 −1.13220 −0.566100 0.824337i \(-0.691548\pi\)
−0.566100 + 0.824337i \(0.691548\pi\)
\(180\) 0 0
\(181\) 1.29730e8 1.62617 0.813083 0.582148i \(-0.197787\pi\)
0.813083 + 0.582148i \(0.197787\pi\)
\(182\) 0 0
\(183\) −2.63609e7 −0.317967
\(184\) 0 0
\(185\) −6.80082e7 −0.789697
\(186\) 0 0
\(187\) 5.41523e7 0.605579
\(188\) 0 0
\(189\) −1.00777e7 −0.108579
\(190\) 0 0
\(191\) 1.42024e8 1.47484 0.737418 0.675437i \(-0.236045\pi\)
0.737418 + 0.675437i \(0.236045\pi\)
\(192\) 0 0
\(193\) −2.58910e7 −0.259238 −0.129619 0.991564i \(-0.541375\pi\)
−0.129619 + 0.991564i \(0.541375\pi\)
\(194\) 0 0
\(195\) 3.43102e7 0.331362
\(196\) 0 0
\(197\) −3.59130e7 −0.334673 −0.167336 0.985900i \(-0.553517\pi\)
−0.167336 + 0.985900i \(0.553517\pi\)
\(198\) 0 0
\(199\) 1.75453e8 1.57824 0.789122 0.614237i \(-0.210536\pi\)
0.789122 + 0.614237i \(0.210536\pi\)
\(200\) 0 0
\(201\) −9.60976e7 −0.834693
\(202\) 0 0
\(203\) 9.62120e7 0.807222
\(204\) 0 0
\(205\) 4.67992e7 0.379403
\(206\) 0 0
\(207\) −2.44944e7 −0.191942
\(208\) 0 0
\(209\) −6.79006e7 −0.514472
\(210\) 0 0
\(211\) 9.18337e7 0.672998 0.336499 0.941684i \(-0.390757\pi\)
0.336499 + 0.941684i \(0.390757\pi\)
\(212\) 0 0
\(213\) 7.21904e7 0.511860
\(214\) 0 0
\(215\) 6.75665e7 0.463657
\(216\) 0 0
\(217\) −2.18071e7 −0.144873
\(218\) 0 0
\(219\) −8.18676e7 −0.526693
\(220\) 0 0
\(221\) −1.00826e8 −0.628349
\(222\) 0 0
\(223\) −1.15780e7 −0.0699146 −0.0349573 0.999389i \(-0.511130\pi\)
−0.0349573 + 0.999389i \(0.511130\pi\)
\(224\) 0 0
\(225\) 1.13906e7 0.0666667
\(226\) 0 0
\(227\) 2.99769e7 0.170097 0.0850485 0.996377i \(-0.472895\pi\)
0.0850485 + 0.996377i \(0.472895\pi\)
\(228\) 0 0
\(229\) 1.19721e8 0.658787 0.329394 0.944193i \(-0.393156\pi\)
0.329394 + 0.944193i \(0.393156\pi\)
\(230\) 0 0
\(231\) 7.54790e7 0.402888
\(232\) 0 0
\(233\) −1.27607e8 −0.660890 −0.330445 0.943825i \(-0.607199\pi\)
−0.330445 + 0.943825i \(0.607199\pi\)
\(234\) 0 0
\(235\) −1.67295e8 −0.840902
\(236\) 0 0
\(237\) 1.47847e8 0.721428
\(238\) 0 0
\(239\) 1.64949e8 0.781549 0.390775 0.920486i \(-0.372207\pi\)
0.390775 + 0.920486i \(0.372207\pi\)
\(240\) 0 0
\(241\) 3.98628e8 1.83446 0.917230 0.398357i \(-0.130420\pi\)
0.917230 + 0.398357i \(0.130420\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) 0 0
\(245\) −7.01749e7 −0.304860
\(246\) 0 0
\(247\) 1.26424e8 0.533816
\(248\) 0 0
\(249\) −6.02520e7 −0.247328
\(250\) 0 0
\(251\) −2.42512e8 −0.967999 −0.484000 0.875068i \(-0.660816\pi\)
−0.484000 + 0.875068i \(0.660816\pi\)
\(252\) 0 0
\(253\) 1.83456e8 0.712213
\(254\) 0 0
\(255\) −3.34732e7 −0.126418
\(256\) 0 0
\(257\) 3.22956e8 1.18680 0.593399 0.804908i \(-0.297786\pi\)
0.593399 + 0.804908i \(0.297786\pi\)
\(258\) 0 0
\(259\) 2.78562e8 0.996259
\(260\) 0 0
\(261\) −1.36989e8 −0.476919
\(262\) 0 0
\(263\) 3.37426e8 1.14376 0.571879 0.820338i \(-0.306215\pi\)
0.571879 + 0.820338i \(0.306215\pi\)
\(264\) 0 0
\(265\) 1.63528e8 0.539798
\(266\) 0 0
\(267\) −2.71368e8 −0.872509
\(268\) 0 0
\(269\) 2.55886e8 0.801517 0.400759 0.916184i \(-0.368747\pi\)
0.400759 + 0.916184i \(0.368747\pi\)
\(270\) 0 0
\(271\) −4.85679e8 −1.48237 −0.741185 0.671301i \(-0.765736\pi\)
−0.741185 + 0.671301i \(0.765736\pi\)
\(272\) 0 0
\(273\) −1.40535e8 −0.418037
\(274\) 0 0
\(275\) −8.53125e7 −0.247371
\(276\) 0 0
\(277\) 2.92732e8 0.827545 0.413772 0.910380i \(-0.364211\pi\)
0.413772 + 0.910380i \(0.364211\pi\)
\(278\) 0 0
\(279\) 3.10496e7 0.0855935
\(280\) 0 0
\(281\) −1.86225e8 −0.500685 −0.250343 0.968157i \(-0.580543\pi\)
−0.250343 + 0.968157i \(0.580543\pi\)
\(282\) 0 0
\(283\) 6.58251e8 1.72639 0.863196 0.504870i \(-0.168459\pi\)
0.863196 + 0.504870i \(0.168459\pi\)
\(284\) 0 0
\(285\) 4.19715e7 0.107398
\(286\) 0 0
\(287\) −1.91690e8 −0.478644
\(288\) 0 0
\(289\) −3.11972e8 −0.760279
\(290\) 0 0
\(291\) 1.54644e8 0.367881
\(292\) 0 0
\(293\) 1.61426e8 0.374918 0.187459 0.982272i \(-0.439975\pi\)
0.187459 + 0.982272i \(0.439975\pi\)
\(294\) 0 0
\(295\) −3.28425e7 −0.0744833
\(296\) 0 0
\(297\) −1.07469e8 −0.238033
\(298\) 0 0
\(299\) −3.41578e8 −0.738993
\(300\) 0 0
\(301\) −2.76752e8 −0.584936
\(302\) 0 0
\(303\) −3.60066e8 −0.743588
\(304\) 0 0
\(305\) −1.22041e8 −0.246296
\(306\) 0 0
\(307\) 7.15488e8 1.41130 0.705648 0.708562i \(-0.250656\pi\)
0.705648 + 0.708562i \(0.250656\pi\)
\(308\) 0 0
\(309\) 7.31752e7 0.141094
\(310\) 0 0
\(311\) 6.86692e7 0.129449 0.0647247 0.997903i \(-0.479383\pi\)
0.0647247 + 0.997903i \(0.479383\pi\)
\(312\) 0 0
\(313\) 9.27771e7 0.171015 0.0855077 0.996338i \(-0.472749\pi\)
0.0855077 + 0.996338i \(0.472749\pi\)
\(314\) 0 0
\(315\) −4.66560e7 −0.0841048
\(316\) 0 0
\(317\) 3.90749e8 0.688954 0.344477 0.938795i \(-0.388056\pi\)
0.344477 + 0.938795i \(0.388056\pi\)
\(318\) 0 0
\(319\) 1.02601e9 1.76964
\(320\) 0 0
\(321\) −3.05627e8 −0.515732
\(322\) 0 0
\(323\) −1.23340e8 −0.203655
\(324\) 0 0
\(325\) 1.58844e8 0.256672
\(326\) 0 0
\(327\) −5.93277e8 −0.938297
\(328\) 0 0
\(329\) 6.85240e8 1.06086
\(330\) 0 0
\(331\) 4.80269e8 0.727925 0.363962 0.931414i \(-0.381424\pi\)
0.363962 + 0.931414i \(0.381424\pi\)
\(332\) 0 0
\(333\) −3.96624e8 −0.588605
\(334\) 0 0
\(335\) −4.44896e8 −0.646550
\(336\) 0 0
\(337\) −2.30504e8 −0.328075 −0.164038 0.986454i \(-0.552452\pi\)
−0.164038 + 0.986454i \(0.552452\pi\)
\(338\) 0 0
\(339\) 9.94568e7 0.138655
\(340\) 0 0
\(341\) −2.32552e8 −0.317600
\(342\) 0 0
\(343\) 7.09090e8 0.948794
\(344\) 0 0
\(345\) −1.13400e8 −0.148678
\(346\) 0 0
\(347\) 8.36727e8 1.07505 0.537527 0.843246i \(-0.319359\pi\)
0.537527 + 0.843246i \(0.319359\pi\)
\(348\) 0 0
\(349\) 1.51659e9 1.90976 0.954881 0.296988i \(-0.0959820\pi\)
0.954881 + 0.296988i \(0.0959820\pi\)
\(350\) 0 0
\(351\) 2.00097e8 0.246983
\(352\) 0 0
\(353\) 2.33016e7 0.0281952 0.0140976 0.999901i \(-0.495512\pi\)
0.0140976 + 0.999901i \(0.495512\pi\)
\(354\) 0 0
\(355\) 3.34215e8 0.396485
\(356\) 0 0
\(357\) 1.37106e8 0.159485
\(358\) 0 0
\(359\) −1.63162e9 −1.86118 −0.930590 0.366063i \(-0.880705\pi\)
−0.930590 + 0.366063i \(0.880705\pi\)
\(360\) 0 0
\(361\) −7.39218e8 −0.826984
\(362\) 0 0
\(363\) 2.78760e8 0.305884
\(364\) 0 0
\(365\) −3.79017e8 −0.407975
\(366\) 0 0
\(367\) −3.47807e8 −0.367289 −0.183644 0.982993i \(-0.558789\pi\)
−0.183644 + 0.982993i \(0.558789\pi\)
\(368\) 0 0
\(369\) 2.72933e8 0.282790
\(370\) 0 0
\(371\) −6.69810e8 −0.680993
\(372\) 0 0
\(373\) 5.00769e7 0.0499639 0.0249820 0.999688i \(-0.492047\pi\)
0.0249820 + 0.999688i \(0.492047\pi\)
\(374\) 0 0
\(375\) 5.27344e7 0.0516398
\(376\) 0 0
\(377\) −1.91033e9 −1.83618
\(378\) 0 0
\(379\) −1.40154e9 −1.32241 −0.661207 0.750204i \(-0.729955\pi\)
−0.661207 + 0.750204i \(0.729955\pi\)
\(380\) 0 0
\(381\) 7.23474e8 0.670170
\(382\) 0 0
\(383\) −1.06830e9 −0.971623 −0.485811 0.874064i \(-0.661476\pi\)
−0.485811 + 0.874064i \(0.661476\pi\)
\(384\) 0 0
\(385\) 3.49440e8 0.312076
\(386\) 0 0
\(387\) 3.94048e8 0.345590
\(388\) 0 0
\(389\) −2.13713e8 −0.184080 −0.0920401 0.995755i \(-0.529339\pi\)
−0.0920401 + 0.995755i \(0.529339\pi\)
\(390\) 0 0
\(391\) 3.33245e8 0.281932
\(392\) 0 0
\(393\) −3.99831e8 −0.332278
\(394\) 0 0
\(395\) 6.84476e8 0.558815
\(396\) 0 0
\(397\) 9.69088e8 0.777314 0.388657 0.921383i \(-0.372939\pi\)
0.388657 + 0.921383i \(0.372939\pi\)
\(398\) 0 0
\(399\) −1.71915e8 −0.135491
\(400\) 0 0
\(401\) −2.21767e9 −1.71748 −0.858738 0.512415i \(-0.828751\pi\)
−0.858738 + 0.512415i \(0.828751\pi\)
\(402\) 0 0
\(403\) 4.32990e8 0.329542
\(404\) 0 0
\(405\) 6.64301e7 0.0496904
\(406\) 0 0
\(407\) 2.97060e9 2.18406
\(408\) 0 0
\(409\) −1.04837e9 −0.757674 −0.378837 0.925463i \(-0.623676\pi\)
−0.378837 + 0.925463i \(0.623676\pi\)
\(410\) 0 0
\(411\) −1.55664e9 −1.10596
\(412\) 0 0
\(413\) 1.34523e8 0.0939661
\(414\) 0 0
\(415\) −2.78944e8 −0.191580
\(416\) 0 0
\(417\) 2.26206e8 0.152766
\(418\) 0 0
\(419\) 2.21021e8 0.146786 0.0733930 0.997303i \(-0.476617\pi\)
0.0733930 + 0.997303i \(0.476617\pi\)
\(420\) 0 0
\(421\) 1.51339e9 0.988472 0.494236 0.869328i \(-0.335448\pi\)
0.494236 + 0.869328i \(0.335448\pi\)
\(422\) 0 0
\(423\) −9.75664e8 −0.626771
\(424\) 0 0
\(425\) −1.54969e8 −0.0979226
\(426\) 0 0
\(427\) 4.99881e8 0.310720
\(428\) 0 0
\(429\) −1.49867e9 −0.916444
\(430\) 0 0
\(431\) −1.46801e9 −0.883201 −0.441601 0.897212i \(-0.645589\pi\)
−0.441601 + 0.897212i \(0.645589\pi\)
\(432\) 0 0
\(433\) 3.97508e8 0.235309 0.117654 0.993055i \(-0.462463\pi\)
0.117654 + 0.993055i \(0.462463\pi\)
\(434\) 0 0
\(435\) −6.34210e8 −0.369420
\(436\) 0 0
\(437\) −4.17850e8 −0.239516
\(438\) 0 0
\(439\) −1.22071e9 −0.688629 −0.344315 0.938854i \(-0.611889\pi\)
−0.344315 + 0.938854i \(0.611889\pi\)
\(440\) 0 0
\(441\) −4.09260e8 −0.227229
\(442\) 0 0
\(443\) −3.24551e9 −1.77366 −0.886830 0.462095i \(-0.847098\pi\)
−0.886830 + 0.462095i \(0.847098\pi\)
\(444\) 0 0
\(445\) −1.25633e9 −0.675842
\(446\) 0 0
\(447\) 1.50249e8 0.0795672
\(448\) 0 0
\(449\) −7.04211e8 −0.367147 −0.183574 0.983006i \(-0.558767\pi\)
−0.183574 + 0.983006i \(0.558767\pi\)
\(450\) 0 0
\(451\) −2.04419e9 −1.04931
\(452\) 0 0
\(453\) −1.78992e9 −0.904669
\(454\) 0 0
\(455\) −6.50624e8 −0.323810
\(456\) 0 0
\(457\) 3.70970e9 1.81816 0.909080 0.416621i \(-0.136786\pi\)
0.909080 + 0.416621i \(0.136786\pi\)
\(458\) 0 0
\(459\) −1.95216e8 −0.0942261
\(460\) 0 0
\(461\) 1.12514e9 0.534878 0.267439 0.963575i \(-0.413823\pi\)
0.267439 + 0.963575i \(0.413823\pi\)
\(462\) 0 0
\(463\) 7.64328e7 0.0357887 0.0178944 0.999840i \(-0.494304\pi\)
0.0178944 + 0.999840i \(0.494304\pi\)
\(464\) 0 0
\(465\) 1.43748e8 0.0663004
\(466\) 0 0
\(467\) 6.41328e7 0.0291388 0.0145694 0.999894i \(-0.495362\pi\)
0.0145694 + 0.999894i \(0.495362\pi\)
\(468\) 0 0
\(469\) 1.82230e9 0.815669
\(470\) 0 0
\(471\) −1.73553e9 −0.765350
\(472\) 0 0
\(473\) −2.95130e9 −1.28233
\(474\) 0 0
\(475\) 1.94312e8 0.0831904
\(476\) 0 0
\(477\) 9.53694e8 0.402341
\(478\) 0 0
\(479\) −1.01386e9 −0.421505 −0.210753 0.977539i \(-0.567591\pi\)
−0.210753 + 0.977539i \(0.567591\pi\)
\(480\) 0 0
\(481\) −5.53097e9 −2.26618
\(482\) 0 0
\(483\) 4.64486e8 0.187568
\(484\) 0 0
\(485\) 7.15944e8 0.284959
\(486\) 0 0
\(487\) 2.79009e8 0.109463 0.0547315 0.998501i \(-0.482570\pi\)
0.0547315 + 0.998501i \(0.482570\pi\)
\(488\) 0 0
\(489\) −2.29109e9 −0.886056
\(490\) 0 0
\(491\) −1.77339e9 −0.676112 −0.338056 0.941126i \(-0.609769\pi\)
−0.338056 + 0.941126i \(0.609769\pi\)
\(492\) 0 0
\(493\) 1.86373e9 0.700518
\(494\) 0 0
\(495\) −4.97542e8 −0.184379
\(496\) 0 0
\(497\) −1.36894e9 −0.500194
\(498\) 0 0
\(499\) 4.66125e9 1.67939 0.839693 0.543061i \(-0.182735\pi\)
0.839693 + 0.543061i \(0.182735\pi\)
\(500\) 0 0
\(501\) −1.73379e9 −0.615977
\(502\) 0 0
\(503\) 2.59549e9 0.909352 0.454676 0.890657i \(-0.349755\pi\)
0.454676 + 0.890657i \(0.349755\pi\)
\(504\) 0 0
\(505\) −1.66697e9 −0.575981
\(506\) 0 0
\(507\) 1.09617e9 0.373553
\(508\) 0 0
\(509\) 9.18100e8 0.308587 0.154293 0.988025i \(-0.450690\pi\)
0.154293 + 0.988025i \(0.450690\pi\)
\(510\) 0 0
\(511\) 1.55245e9 0.514689
\(512\) 0 0
\(513\) 2.44778e8 0.0800500
\(514\) 0 0
\(515\) 3.38774e8 0.109291
\(516\) 0 0
\(517\) 7.30745e9 2.32567
\(518\) 0 0
\(519\) 2.97157e9 0.933039
\(520\) 0 0
\(521\) −5.35323e8 −0.165838 −0.0829189 0.996556i \(-0.526424\pi\)
−0.0829189 + 0.996556i \(0.526424\pi\)
\(522\) 0 0
\(523\) −5.20020e8 −0.158951 −0.0794756 0.996837i \(-0.525325\pi\)
−0.0794756 + 0.996837i \(0.525325\pi\)
\(524\) 0 0
\(525\) −2.16000e8 −0.0651473
\(526\) 0 0
\(527\) −4.22427e8 −0.125723
\(528\) 0 0
\(529\) −2.27587e9 −0.668424
\(530\) 0 0
\(531\) −1.91537e8 −0.0555166
\(532\) 0 0
\(533\) 3.80609e9 1.08876
\(534\) 0 0
\(535\) −1.41494e9 −0.399484
\(536\) 0 0
\(537\) −2.34570e9 −0.653676
\(538\) 0 0
\(539\) 3.06524e9 0.843148
\(540\) 0 0
\(541\) −3.93186e9 −1.06760 −0.533798 0.845612i \(-0.679236\pi\)
−0.533798 + 0.845612i \(0.679236\pi\)
\(542\) 0 0
\(543\) 3.50271e9 0.938867
\(544\) 0 0
\(545\) −2.74665e9 −0.726801
\(546\) 0 0
\(547\) −3.11516e9 −0.813814 −0.406907 0.913470i \(-0.633393\pi\)
−0.406907 + 0.913470i \(0.633393\pi\)
\(548\) 0 0
\(549\) −7.11745e8 −0.183578
\(550\) 0 0
\(551\) −2.33690e9 −0.595126
\(552\) 0 0
\(553\) −2.80361e9 −0.704986
\(554\) 0 0
\(555\) −1.83622e9 −0.455932
\(556\) 0 0
\(557\) 4.14733e9 1.01689 0.508447 0.861093i \(-0.330220\pi\)
0.508447 + 0.861093i \(0.330220\pi\)
\(558\) 0 0
\(559\) 5.49505e9 1.33055
\(560\) 0 0
\(561\) 1.46211e9 0.349631
\(562\) 0 0
\(563\) 5.15380e8 0.121716 0.0608580 0.998146i \(-0.480616\pi\)
0.0608580 + 0.998146i \(0.480616\pi\)
\(564\) 0 0
\(565\) 4.60448e8 0.107402
\(566\) 0 0
\(567\) −2.72098e8 −0.0626880
\(568\) 0 0
\(569\) −4.82868e8 −0.109884 −0.0549421 0.998490i \(-0.517497\pi\)
−0.0549421 + 0.998490i \(0.517497\pi\)
\(570\) 0 0
\(571\) 2.23974e9 0.503466 0.251733 0.967797i \(-0.418999\pi\)
0.251733 + 0.967797i \(0.418999\pi\)
\(572\) 0 0
\(573\) 3.83463e9 0.851496
\(574\) 0 0
\(575\) −5.25000e8 −0.115165
\(576\) 0 0
\(577\) 6.93164e9 1.50218 0.751088 0.660202i \(-0.229529\pi\)
0.751088 + 0.660202i \(0.229529\pi\)
\(578\) 0 0
\(579\) −6.99057e8 −0.149671
\(580\) 0 0
\(581\) 1.14256e9 0.241691
\(582\) 0 0
\(583\) −7.14289e9 −1.49291
\(584\) 0 0
\(585\) 9.26377e8 0.191312
\(586\) 0 0
\(587\) 4.17248e9 0.851454 0.425727 0.904852i \(-0.360018\pi\)
0.425727 + 0.904852i \(0.360018\pi\)
\(588\) 0 0
\(589\) 5.29674e8 0.106808
\(590\) 0 0
\(591\) −9.69652e8 −0.193223
\(592\) 0 0
\(593\) 6.27101e9 1.23494 0.617470 0.786594i \(-0.288158\pi\)
0.617470 + 0.786594i \(0.288158\pi\)
\(594\) 0 0
\(595\) 6.34752e8 0.123536
\(596\) 0 0
\(597\) 4.73722e9 0.911199
\(598\) 0 0
\(599\) 2.10159e9 0.399535 0.199767 0.979843i \(-0.435981\pi\)
0.199767 + 0.979843i \(0.435981\pi\)
\(600\) 0 0
\(601\) −2.41110e9 −0.453059 −0.226529 0.974004i \(-0.572738\pi\)
−0.226529 + 0.974004i \(0.572738\pi\)
\(602\) 0 0
\(603\) −2.59464e9 −0.481910
\(604\) 0 0
\(605\) 1.29055e9 0.236937
\(606\) 0 0
\(607\) 5.94932e9 1.07971 0.539855 0.841758i \(-0.318479\pi\)
0.539855 + 0.841758i \(0.318479\pi\)
\(608\) 0 0
\(609\) 2.59772e9 0.466050
\(610\) 0 0
\(611\) −1.36058e10 −2.41312
\(612\) 0 0
\(613\) 5.45618e9 0.956702 0.478351 0.878169i \(-0.341235\pi\)
0.478351 + 0.878169i \(0.341235\pi\)
\(614\) 0 0
\(615\) 1.26358e9 0.219048
\(616\) 0 0
\(617\) −4.11503e9 −0.705301 −0.352651 0.935755i \(-0.614720\pi\)
−0.352651 + 0.935755i \(0.614720\pi\)
\(618\) 0 0
\(619\) −2.78751e9 −0.472388 −0.236194 0.971706i \(-0.575900\pi\)
−0.236194 + 0.971706i \(0.575900\pi\)
\(620\) 0 0
\(621\) −6.61349e8 −0.110818
\(622\) 0 0
\(623\) 5.14595e9 0.852623
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) −1.83332e9 −0.297030
\(628\) 0 0
\(629\) 5.39605e9 0.864567
\(630\) 0 0
\(631\) −4.87155e8 −0.0771906 −0.0385953 0.999255i \(-0.512288\pi\)
−0.0385953 + 0.999255i \(0.512288\pi\)
\(632\) 0 0
\(633\) 2.47951e9 0.388555
\(634\) 0 0
\(635\) 3.34942e9 0.519112
\(636\) 0 0
\(637\) −5.70718e9 −0.874850
\(638\) 0 0
\(639\) 1.94914e9 0.295522
\(640\) 0 0
\(641\) −2.39918e9 −0.359798 −0.179899 0.983685i \(-0.557577\pi\)
−0.179899 + 0.983685i \(0.557577\pi\)
\(642\) 0 0
\(643\) 1.02984e10 1.52767 0.763836 0.645410i \(-0.223313\pi\)
0.763836 + 0.645410i \(0.223313\pi\)
\(644\) 0 0
\(645\) 1.82430e9 0.267692
\(646\) 0 0
\(647\) 8.49896e9 1.23367 0.616837 0.787091i \(-0.288414\pi\)
0.616837 + 0.787091i \(0.288414\pi\)
\(648\) 0 0
\(649\) 1.43456e9 0.205998
\(650\) 0 0
\(651\) −5.88792e8 −0.0836427
\(652\) 0 0
\(653\) −3.78543e9 −0.532009 −0.266004 0.963972i \(-0.585704\pi\)
−0.266004 + 0.963972i \(0.585704\pi\)
\(654\) 0 0
\(655\) −1.85107e9 −0.257382
\(656\) 0 0
\(657\) −2.21043e9 −0.304086
\(658\) 0 0
\(659\) 7.69061e9 1.04680 0.523398 0.852089i \(-0.324664\pi\)
0.523398 + 0.852089i \(0.324664\pi\)
\(660\) 0 0
\(661\) 5.78185e9 0.778685 0.389343 0.921093i \(-0.372702\pi\)
0.389343 + 0.921093i \(0.372702\pi\)
\(662\) 0 0
\(663\) −2.72231e9 −0.362778
\(664\) 0 0
\(665\) −7.95904e8 −0.104951
\(666\) 0 0
\(667\) 6.31391e9 0.823869
\(668\) 0 0
\(669\) −3.12607e8 −0.0403652
\(670\) 0 0
\(671\) 5.33076e9 0.681178
\(672\) 0 0
\(673\) −1.07125e10 −1.35468 −0.677340 0.735670i \(-0.736867\pi\)
−0.677340 + 0.735670i \(0.736867\pi\)
\(674\) 0 0
\(675\) 3.07547e8 0.0384900
\(676\) 0 0
\(677\) 1.24253e8 0.0153903 0.00769516 0.999970i \(-0.497551\pi\)
0.00769516 + 0.999970i \(0.497551\pi\)
\(678\) 0 0
\(679\) −2.93251e9 −0.359497
\(680\) 0 0
\(681\) 8.09377e8 0.0982055
\(682\) 0 0
\(683\) 5.48973e8 0.0659294 0.0329647 0.999457i \(-0.489505\pi\)
0.0329647 + 0.999457i \(0.489505\pi\)
\(684\) 0 0
\(685\) −7.20665e9 −0.856676
\(686\) 0 0
\(687\) 3.23246e9 0.380351
\(688\) 0 0
\(689\) 1.32994e10 1.54905
\(690\) 0 0
\(691\) −3.86163e9 −0.445243 −0.222622 0.974905i \(-0.571461\pi\)
−0.222622 + 0.974905i \(0.571461\pi\)
\(692\) 0 0
\(693\) 2.03793e9 0.232608
\(694\) 0 0
\(695\) 1.04725e9 0.118332
\(696\) 0 0
\(697\) −3.71324e9 −0.415373
\(698\) 0 0
\(699\) −3.44539e9 −0.381565
\(700\) 0 0
\(701\) −1.24129e10 −1.36100 −0.680501 0.732748i \(-0.738238\pi\)
−0.680501 + 0.732748i \(0.738238\pi\)
\(702\) 0 0
\(703\) −6.76600e9 −0.734495
\(704\) 0 0
\(705\) −4.51697e9 −0.485495
\(706\) 0 0
\(707\) 6.82791e9 0.726641
\(708\) 0 0
\(709\) 8.68970e9 0.915678 0.457839 0.889035i \(-0.348624\pi\)
0.457839 + 0.889035i \(0.348624\pi\)
\(710\) 0 0
\(711\) 3.99186e9 0.416516
\(712\) 0 0
\(713\) −1.43109e9 −0.147861
\(714\) 0 0
\(715\) −6.93830e9 −0.709875
\(716\) 0 0
\(717\) 4.45362e9 0.451228
\(718\) 0 0
\(719\) −1.34874e10 −1.35325 −0.676625 0.736328i \(-0.736558\pi\)
−0.676625 + 0.736328i \(0.736558\pi\)
\(720\) 0 0
\(721\) −1.38762e9 −0.137879
\(722\) 0 0
\(723\) 1.07630e10 1.05913
\(724\) 0 0
\(725\) −2.93616e9 −0.286152
\(726\) 0 0
\(727\) 4.09956e9 0.395700 0.197850 0.980232i \(-0.436604\pi\)
0.197850 + 0.980232i \(0.436604\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −5.36100e9 −0.507615
\(732\) 0 0
\(733\) 9.50716e9 0.891635 0.445818 0.895124i \(-0.352913\pi\)
0.445818 + 0.895124i \(0.352913\pi\)
\(734\) 0 0
\(735\) −1.89472e9 −0.176011
\(736\) 0 0
\(737\) 1.94331e10 1.78816
\(738\) 0 0
\(739\) −2.75490e9 −0.251102 −0.125551 0.992087i \(-0.540070\pi\)
−0.125551 + 0.992087i \(0.540070\pi\)
\(740\) 0 0
\(741\) 3.41346e9 0.308199
\(742\) 0 0
\(743\) −7.88700e9 −0.705425 −0.352712 0.935732i \(-0.614741\pi\)
−0.352712 + 0.935732i \(0.614741\pi\)
\(744\) 0 0
\(745\) 6.95596e8 0.0616325
\(746\) 0 0
\(747\) −1.62680e9 −0.142795
\(748\) 0 0
\(749\) 5.79559e9 0.503978
\(750\) 0 0
\(751\) −1.54231e10 −1.32871 −0.664356 0.747416i \(-0.731294\pi\)
−0.664356 + 0.747416i \(0.731294\pi\)
\(752\) 0 0
\(753\) −6.54782e9 −0.558875
\(754\) 0 0
\(755\) −8.28666e9 −0.700753
\(756\) 0 0
\(757\) −2.28786e10 −1.91687 −0.958436 0.285307i \(-0.907904\pi\)
−0.958436 + 0.285307i \(0.907904\pi\)
\(758\) 0 0
\(759\) 4.95331e9 0.411197
\(760\) 0 0
\(761\) −2.06723e10 −1.70037 −0.850183 0.526488i \(-0.823509\pi\)
−0.850183 + 0.526488i \(0.823509\pi\)
\(762\) 0 0
\(763\) 1.12503e10 0.916912
\(764\) 0 0
\(765\) −9.03778e8 −0.0729872
\(766\) 0 0
\(767\) −2.67101e9 −0.213743
\(768\) 0 0
\(769\) −7.74699e9 −0.614315 −0.307157 0.951659i \(-0.599378\pi\)
−0.307157 + 0.951659i \(0.599378\pi\)
\(770\) 0 0
\(771\) 8.71980e9 0.685198
\(772\) 0 0
\(773\) 1.55352e10 1.20973 0.604866 0.796327i \(-0.293227\pi\)
0.604866 + 0.796327i \(0.293227\pi\)
\(774\) 0 0
\(775\) 6.65500e8 0.0513561
\(776\) 0 0
\(777\) 7.52117e9 0.575191
\(778\) 0 0
\(779\) 4.65596e9 0.352881
\(780\) 0 0
\(781\) −1.45985e10 −1.09655
\(782\) 0 0
\(783\) −3.69871e9 −0.275349
\(784\) 0 0
\(785\) −8.03488e9 −0.592838
\(786\) 0 0
\(787\) −1.21211e10 −0.886399 −0.443199 0.896423i \(-0.646157\pi\)
−0.443199 + 0.896423i \(0.646157\pi\)
\(788\) 0 0
\(789\) 9.11051e9 0.660349
\(790\) 0 0
\(791\) −1.88600e9 −0.135495
\(792\) 0 0
\(793\) −9.92537e9 −0.706790
\(794\) 0 0
\(795\) 4.41525e9 0.311652
\(796\) 0 0
\(797\) 8.20343e9 0.573973 0.286987 0.957935i \(-0.407346\pi\)
0.286987 + 0.957935i \(0.407346\pi\)
\(798\) 0 0
\(799\) 1.32739e10 0.920626
\(800\) 0 0
\(801\) −7.32694e9 −0.503743
\(802\) 0 0
\(803\) 1.65555e10 1.12833
\(804\) 0 0
\(805\) 2.15040e9 0.145289
\(806\) 0 0
\(807\) 6.90891e9 0.462756
\(808\) 0 0
\(809\) 9.91739e9 0.658533 0.329267 0.944237i \(-0.393199\pi\)
0.329267 + 0.944237i \(0.393199\pi\)
\(810\) 0 0
\(811\) −2.13417e10 −1.40494 −0.702469 0.711715i \(-0.747919\pi\)
−0.702469 + 0.711715i \(0.747919\pi\)
\(812\) 0 0
\(813\) −1.31133e10 −0.855847
\(814\) 0 0
\(815\) −1.06069e10 −0.686336
\(816\) 0 0
\(817\) 6.72206e9 0.431246
\(818\) 0 0
\(819\) −3.79444e9 −0.241354
\(820\) 0 0
\(821\) 1.81759e9 0.114629 0.0573145 0.998356i \(-0.481746\pi\)
0.0573145 + 0.998356i \(0.481746\pi\)
\(822\) 0 0
\(823\) −9.68482e9 −0.605609 −0.302804 0.953053i \(-0.597923\pi\)
−0.302804 + 0.953053i \(0.597923\pi\)
\(824\) 0 0
\(825\) −2.30344e9 −0.142820
\(826\) 0 0
\(827\) −1.22370e10 −0.752326 −0.376163 0.926553i \(-0.622757\pi\)
−0.376163 + 0.926553i \(0.622757\pi\)
\(828\) 0 0
\(829\) −1.30073e9 −0.0792951 −0.0396476 0.999214i \(-0.512624\pi\)
−0.0396476 + 0.999214i \(0.512624\pi\)
\(830\) 0 0
\(831\) 7.90377e9 0.477783
\(832\) 0 0
\(833\) 5.56796e9 0.333763
\(834\) 0 0
\(835\) −8.02680e9 −0.477133
\(836\) 0 0
\(837\) 8.38338e8 0.0494174
\(838\) 0 0
\(839\) 1.65720e10 0.968743 0.484372 0.874862i \(-0.339048\pi\)
0.484372 + 0.874862i \(0.339048\pi\)
\(840\) 0 0
\(841\) 1.80618e10 1.04707
\(842\) 0 0
\(843\) −5.02806e9 −0.289071
\(844\) 0 0
\(845\) 5.07488e9 0.289353
\(846\) 0 0
\(847\) −5.28611e9 −0.298912
\(848\) 0 0
\(849\) 1.77728e10 0.996732
\(850\) 0 0
\(851\) 1.82806e10 1.01680
\(852\) 0 0
\(853\) −2.87728e10 −1.58730 −0.793652 0.608372i \(-0.791823\pi\)
−0.793652 + 0.608372i \(0.791823\pi\)
\(854\) 0 0
\(855\) 1.13323e9 0.0620064
\(856\) 0 0
\(857\) −2.85737e9 −0.155072 −0.0775361 0.996990i \(-0.524705\pi\)
−0.0775361 + 0.996990i \(0.524705\pi\)
\(858\) 0 0
\(859\) −1.38088e10 −0.743327 −0.371663 0.928368i \(-0.621212\pi\)
−0.371663 + 0.928368i \(0.621212\pi\)
\(860\) 0 0
\(861\) −5.17562e9 −0.276345
\(862\) 0 0
\(863\) 2.72992e9 0.144581 0.0722905 0.997384i \(-0.476969\pi\)
0.0722905 + 0.997384i \(0.476969\pi\)
\(864\) 0 0
\(865\) 1.37573e10 0.722729
\(866\) 0 0
\(867\) −8.42324e9 −0.438947
\(868\) 0 0
\(869\) −2.98979e10 −1.54551
\(870\) 0 0
\(871\) −3.61825e10 −1.85539
\(872\) 0 0
\(873\) 4.17539e9 0.212396
\(874\) 0 0
\(875\) −1.00000e9 −0.0504629
\(876\) 0 0
\(877\) 1.52412e10 0.762992 0.381496 0.924370i \(-0.375409\pi\)
0.381496 + 0.924370i \(0.375409\pi\)
\(878\) 0 0
\(879\) 4.35850e9 0.216459
\(880\) 0 0
\(881\) −1.89703e10 −0.934672 −0.467336 0.884080i \(-0.654786\pi\)
−0.467336 + 0.884080i \(0.654786\pi\)
\(882\) 0 0
\(883\) −1.03565e10 −0.506232 −0.253116 0.967436i \(-0.581455\pi\)
−0.253116 + 0.967436i \(0.581455\pi\)
\(884\) 0 0
\(885\) −8.86748e8 −0.0430030
\(886\) 0 0
\(887\) 4.04503e9 0.194621 0.0973103 0.995254i \(-0.468976\pi\)
0.0973103 + 0.995254i \(0.468976\pi\)
\(888\) 0 0
\(889\) −1.37192e10 −0.654897
\(890\) 0 0
\(891\) −2.90167e9 −0.137428
\(892\) 0 0
\(893\) −1.66438e10 −0.782120
\(894\) 0 0
\(895\) −1.08597e10 −0.506335
\(896\) 0 0
\(897\) −9.22260e9 −0.426658
\(898\) 0 0
\(899\) −8.00363e9 −0.367391
\(900\) 0 0
\(901\) −1.29749e10 −0.590975
\(902\) 0 0
\(903\) −7.47231e9 −0.337713
\(904\) 0 0
\(905\) 1.62162e10 0.727244
\(906\) 0 0
\(907\) 3.30880e10 1.47247 0.736233 0.676728i \(-0.236603\pi\)
0.736233 + 0.676728i \(0.236603\pi\)
\(908\) 0 0
\(909\) −9.72177e9 −0.429311
\(910\) 0 0
\(911\) 2.13526e10 0.935700 0.467850 0.883808i \(-0.345029\pi\)
0.467850 + 0.883808i \(0.345029\pi\)
\(912\) 0 0
\(913\) 1.21843e10 0.529850
\(914\) 0 0
\(915\) −3.29511e9 −0.142199
\(916\) 0 0
\(917\) 7.58197e9 0.324705
\(918\) 0 0
\(919\) −4.49811e10 −1.91173 −0.955863 0.293813i \(-0.905076\pi\)
−0.955863 + 0.293813i \(0.905076\pi\)
\(920\) 0 0
\(921\) 1.93182e10 0.814813
\(922\) 0 0
\(923\) 2.71810e10 1.13778
\(924\) 0 0
\(925\) −8.50103e9 −0.353163
\(926\) 0 0
\(927\) 1.97573e9 0.0814608
\(928\) 0 0
\(929\) −2.15112e10 −0.880258 −0.440129 0.897935i \(-0.645067\pi\)
−0.440129 + 0.897935i \(0.645067\pi\)
\(930\) 0 0
\(931\) −6.98156e9 −0.283549
\(932\) 0 0
\(933\) 1.85407e9 0.0747377
\(934\) 0 0
\(935\) 6.76903e9 0.270823
\(936\) 0 0
\(937\) −3.31276e10 −1.31553 −0.657766 0.753222i \(-0.728498\pi\)
−0.657766 + 0.753222i \(0.728498\pi\)
\(938\) 0 0
\(939\) 2.50498e9 0.0987358
\(940\) 0 0
\(941\) 1.55361e10 0.607824 0.303912 0.952700i \(-0.401707\pi\)
0.303912 + 0.952700i \(0.401707\pi\)
\(942\) 0 0
\(943\) −1.25796e10 −0.488514
\(944\) 0 0
\(945\) −1.25971e9 −0.0485579
\(946\) 0 0
\(947\) −5.05218e10 −1.93310 −0.966549 0.256482i \(-0.917436\pi\)
−0.966549 + 0.256482i \(0.917436\pi\)
\(948\) 0 0
\(949\) −3.08247e10 −1.17076
\(950\) 0 0
\(951\) 1.05502e10 0.397768
\(952\) 0 0
\(953\) −7.93237e9 −0.296878 −0.148439 0.988922i \(-0.547425\pi\)
−0.148439 + 0.988922i \(0.547425\pi\)
\(954\) 0 0
\(955\) 1.77529e10 0.659566
\(956\) 0 0
\(957\) 2.77023e10 1.02170
\(958\) 0 0
\(959\) 2.95185e10 1.08076
\(960\) 0 0
\(961\) −2.56985e10 −0.934064
\(962\) 0 0
\(963\) −8.25193e9 −0.297758
\(964\) 0 0
\(965\) −3.23638e9 −0.115935
\(966\) 0 0
\(967\) −2.50000e10 −0.889095 −0.444547 0.895755i \(-0.646635\pi\)
−0.444547 + 0.895755i \(0.646635\pi\)
\(968\) 0 0
\(969\) −3.33019e9 −0.117581
\(970\) 0 0
\(971\) −2.23544e10 −0.783603 −0.391801 0.920050i \(-0.628148\pi\)
−0.391801 + 0.920050i \(0.628148\pi\)
\(972\) 0 0
\(973\) −4.28953e9 −0.149285
\(974\) 0 0
\(975\) 4.28878e9 0.148190
\(976\) 0 0
\(977\) −1.84311e9 −0.0632297 −0.0316148 0.999500i \(-0.510065\pi\)
−0.0316148 + 0.999500i \(0.510065\pi\)
\(978\) 0 0
\(979\) 5.48767e10 1.86917
\(980\) 0 0
\(981\) −1.60185e10 −0.541726
\(982\) 0 0
\(983\) −1.25816e10 −0.422473 −0.211236 0.977435i \(-0.567749\pi\)
−0.211236 + 0.977435i \(0.567749\pi\)
\(984\) 0 0
\(985\) −4.48913e9 −0.149670
\(986\) 0 0
\(987\) 1.85015e10 0.612487
\(988\) 0 0
\(989\) −1.81619e10 −0.596999
\(990\) 0 0
\(991\) 2.30746e10 0.753142 0.376571 0.926388i \(-0.377103\pi\)
0.376571 + 0.926388i \(0.377103\pi\)
\(992\) 0 0
\(993\) 1.29673e10 0.420267
\(994\) 0 0
\(995\) 2.19316e10 0.705812
\(996\) 0 0
\(997\) −5.91619e9 −0.189064 −0.0945320 0.995522i \(-0.530135\pi\)
−0.0945320 + 0.995522i \(0.530135\pi\)
\(998\) 0 0
\(999\) −1.07089e10 −0.339832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.a.l.1.1 1
4.3 odd 2 30.8.a.e.1.1 1
12.11 even 2 90.8.a.b.1.1 1
20.3 even 4 150.8.c.e.49.1 2
20.7 even 4 150.8.c.e.49.2 2
20.19 odd 2 150.8.a.g.1.1 1
60.23 odd 4 450.8.c.c.199.2 2
60.47 odd 4 450.8.c.c.199.1 2
60.59 even 2 450.8.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.a.e.1.1 1 4.3 odd 2
90.8.a.b.1.1 1 12.11 even 2
150.8.a.g.1.1 1 20.19 odd 2
150.8.c.e.49.1 2 20.3 even 4
150.8.c.e.49.2 2 20.7 even 4
240.8.a.l.1.1 1 1.1 even 1 trivial
450.8.a.r.1.1 1 60.59 even 2
450.8.c.c.199.1 2 60.47 odd 4
450.8.c.c.199.2 2 60.23 odd 4