Properties

Label 240.8.h.b.191.1
Level $240$
Weight $8$
Character 240.191
Analytic conductor $74.972$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,8,Mod(191,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.191");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.9724061162\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.1
Character \(\chi\) \(=\) 240.191
Dual form 240.8.h.b.191.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-45.6703 - 10.0611i) q^{3} -125.000i q^{5} -760.932i q^{7} +(1984.55 + 918.983i) q^{9} -3804.34 q^{11} +10503.7 q^{13} +(-1257.63 + 5708.79i) q^{15} -12061.0i q^{17} +30050.7i q^{19} +(-7655.78 + 34752.0i) q^{21} +50110.0 q^{23} -15625.0 q^{25} +(-81389.0 - 61936.9i) q^{27} +151965. i q^{29} +135147. i q^{31} +(173745. + 38275.6i) q^{33} -95116.5 q^{35} -79956.1 q^{37} +(-479707. - 105678. i) q^{39} +201072. i q^{41} -198815. i q^{43} +(114873. - 248069. i) q^{45} -828817. q^{47} +244525. q^{49} +(-121346. + 550829. i) q^{51} +908729. i q^{53} +475542. i q^{55} +(302342. - 1.37242e6i) q^{57} +566260. q^{59} +2.64404e6 q^{61} +(699284. - 1.51011e6i) q^{63} -1.31296e6i q^{65} +589032. i q^{67} +(-2.28854e6 - 504160. i) q^{69} -2.36264e6 q^{71} +3.01222e6 q^{73} +(713598. + 157204. i) q^{75} +2.89484e6i q^{77} -2.54546e6i q^{79} +(3.09391e6 + 3.64754e6i) q^{81} +7.29920e6 q^{83} -1.50762e6 q^{85} +(1.52893e6 - 6.94031e6i) q^{87} -9.16320e6i q^{89} -7.99261e6i q^{91} +(1.35972e6 - 6.17221e6i) q^{93} +3.75634e6 q^{95} +1.23848e7 q^{97} +(-7.54989e6 - 3.49612e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3324 q^{9} - 432 q^{13} - 22032 q^{21} - 562500 q^{25} - 386232 q^{33} + 1200048 q^{37} - 1710000 q^{45} - 3237972 q^{49} - 9331200 q^{57} + 11262360 q^{61} - 11352552 q^{69} + 37210296 q^{73} - 12564252 q^{81}+ \cdots + 94537320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −45.6703 10.0611i −0.976583 0.215139i
\(4\) 0 0
\(5\) 125.000i 0.447214i
\(6\) 0 0
\(7\) 760.932i 0.838499i −0.907871 0.419250i \(-0.862293\pi\)
0.907871 0.419250i \(-0.137707\pi\)
\(8\) 0 0
\(9\) 1984.55 + 918.983i 0.907430 + 0.420203i
\(10\) 0 0
\(11\) −3804.34 −0.861796 −0.430898 0.902401i \(-0.641803\pi\)
−0.430898 + 0.902401i \(0.641803\pi\)
\(12\) 0 0
\(13\) 10503.7 1.32599 0.662996 0.748623i \(-0.269285\pi\)
0.662996 + 0.748623i \(0.269285\pi\)
\(14\) 0 0
\(15\) −1257.63 + 5708.79i −0.0962131 + 0.436741i
\(16\) 0 0
\(17\) 12061.0i 0.595404i −0.954659 0.297702i \(-0.903780\pi\)
0.954659 0.297702i \(-0.0962202\pi\)
\(18\) 0 0
\(19\) 30050.7i 1.00512i 0.864543 + 0.502559i \(0.167608\pi\)
−0.864543 + 0.502559i \(0.832392\pi\)
\(20\) 0 0
\(21\) −7655.78 + 34752.0i −0.180394 + 0.818865i
\(22\) 0 0
\(23\) 50110.0 0.858770 0.429385 0.903122i \(-0.358730\pi\)
0.429385 + 0.903122i \(0.358730\pi\)
\(24\) 0 0
\(25\) −15625.0 −0.200000
\(26\) 0 0
\(27\) −81389.0 61936.9i −0.795779 0.605587i
\(28\) 0 0
\(29\) 151965.i 1.15705i 0.815665 + 0.578525i \(0.196371\pi\)
−0.815665 + 0.578525i \(0.803629\pi\)
\(30\) 0 0
\(31\) 135147.i 0.814781i 0.913254 + 0.407391i \(0.133561\pi\)
−0.913254 + 0.407391i \(0.866439\pi\)
\(32\) 0 0
\(33\) 173745. + 38275.6i 0.841616 + 0.185406i
\(34\) 0 0
\(35\) −95116.5 −0.374988
\(36\) 0 0
\(37\) −79956.1 −0.259505 −0.129752 0.991546i \(-0.541418\pi\)
−0.129752 + 0.991546i \(0.541418\pi\)
\(38\) 0 0
\(39\) −479707. 105678.i −1.29494 0.285273i
\(40\) 0 0
\(41\) 201072.i 0.455626i 0.973705 + 0.227813i \(0.0731575\pi\)
−0.973705 + 0.227813i \(0.926842\pi\)
\(42\) 0 0
\(43\) 198815.i 0.381338i −0.981654 0.190669i \(-0.938934\pi\)
0.981654 0.190669i \(-0.0610657\pi\)
\(44\) 0 0
\(45\) 114873. 248069.i 0.187920 0.405815i
\(46\) 0 0
\(47\) −828817. −1.16444 −0.582218 0.813032i \(-0.697815\pi\)
−0.582218 + 0.813032i \(0.697815\pi\)
\(48\) 0 0
\(49\) 244525. 0.296919
\(50\) 0 0
\(51\) −121346. + 550829.i −0.128095 + 0.581462i
\(52\) 0 0
\(53\) 908729.i 0.838434i 0.907886 + 0.419217i \(0.137695\pi\)
−0.907886 + 0.419217i \(0.862305\pi\)
\(54\) 0 0
\(55\) 475542.i 0.385407i
\(56\) 0 0
\(57\) 302342. 1.37242e6i 0.216240 0.981582i
\(58\) 0 0
\(59\) 566260. 0.358950 0.179475 0.983763i \(-0.442560\pi\)
0.179475 + 0.983763i \(0.442560\pi\)
\(60\) 0 0
\(61\) 2.64404e6 1.49147 0.745734 0.666243i \(-0.232099\pi\)
0.745734 + 0.666243i \(0.232099\pi\)
\(62\) 0 0
\(63\) 699284. 1.51011e6i 0.352340 0.760880i
\(64\) 0 0
\(65\) 1.31296e6i 0.593002i
\(66\) 0 0
\(67\) 589032.i 0.239264i 0.992818 + 0.119632i \(0.0381715\pi\)
−0.992818 + 0.119632i \(0.961829\pi\)
\(68\) 0 0
\(69\) −2.28854e6 504160.i −0.838661 0.184755i
\(70\) 0 0
\(71\) −2.36264e6 −0.783416 −0.391708 0.920090i \(-0.628116\pi\)
−0.391708 + 0.920090i \(0.628116\pi\)
\(72\) 0 0
\(73\) 3.01222e6 0.906269 0.453134 0.891442i \(-0.350306\pi\)
0.453134 + 0.891442i \(0.350306\pi\)
\(74\) 0 0
\(75\) 713598. + 157204.i 0.195317 + 0.0430278i
\(76\) 0 0
\(77\) 2.89484e6i 0.722615i
\(78\) 0 0
\(79\) 2.54546e6i 0.580859i −0.956896 0.290430i \(-0.906202\pi\)
0.956896 0.290430i \(-0.0937982\pi\)
\(80\) 0 0
\(81\) 3.09391e6 + 3.64754e6i 0.646860 + 0.762609i
\(82\) 0 0
\(83\) 7.29920e6 1.40121 0.700603 0.713552i \(-0.252915\pi\)
0.700603 + 0.713552i \(0.252915\pi\)
\(84\) 0 0
\(85\) −1.50762e6 −0.266273
\(86\) 0 0
\(87\) 1.52893e6 6.94031e6i 0.248927 1.12996i
\(88\) 0 0
\(89\) 9.16320e6i 1.37779i −0.724862 0.688894i \(-0.758097\pi\)
0.724862 0.688894i \(-0.241903\pi\)
\(90\) 0 0
\(91\) 7.99261e6i 1.11184i
\(92\) 0 0
\(93\) 1.35972e6 6.17221e6i 0.175291 0.795702i
\(94\) 0 0
\(95\) 3.75634e6 0.449503
\(96\) 0 0
\(97\) 1.23848e7 1.37781 0.688903 0.724853i \(-0.258092\pi\)
0.688903 + 0.724853i \(0.258092\pi\)
\(98\) 0 0
\(99\) −7.54989e6 3.49612e6i −0.782020 0.362129i
\(100\) 0 0
\(101\) 6.04572e6i 0.583879i −0.956437 0.291940i \(-0.905699\pi\)
0.956437 0.291940i \(-0.0943006\pi\)
\(102\) 0 0
\(103\) 1.15425e7i 1.04080i −0.853921 0.520402i \(-0.825782\pi\)
0.853921 0.520402i \(-0.174218\pi\)
\(104\) 0 0
\(105\) 4.34400e6 + 956973.i 0.366207 + 0.0806746i
\(106\) 0 0
\(107\) 6.45345e6 0.509271 0.254635 0.967037i \(-0.418045\pi\)
0.254635 + 0.967037i \(0.418045\pi\)
\(108\) 0 0
\(109\) 2.06544e7 1.52764 0.763818 0.645431i \(-0.223322\pi\)
0.763818 + 0.645431i \(0.223322\pi\)
\(110\) 0 0
\(111\) 3.65162e6 + 804443.i 0.253428 + 0.0558296i
\(112\) 0 0
\(113\) 8.45467e6i 0.551217i −0.961270 0.275608i \(-0.911121\pi\)
0.961270 0.275608i \(-0.0888793\pi\)
\(114\) 0 0
\(115\) 6.26375e6i 0.384054i
\(116\) 0 0
\(117\) 2.08451e7 + 9.65273e6i 1.20325 + 0.557185i
\(118\) 0 0
\(119\) −9.17760e6 −0.499246
\(120\) 0 0
\(121\) −5.01420e6 −0.257308
\(122\) 0 0
\(123\) 2.02300e6 9.18303e6i 0.0980230 0.444957i
\(124\) 0 0
\(125\) 1.95312e6i 0.0894427i
\(126\) 0 0
\(127\) 4.25522e7i 1.84335i 0.387958 + 0.921677i \(0.373181\pi\)
−0.387958 + 0.921677i \(0.626819\pi\)
\(128\) 0 0
\(129\) −2.00029e6 + 9.07995e6i −0.0820407 + 0.372409i
\(130\) 0 0
\(131\) −3.33225e7 −1.29505 −0.647527 0.762043i \(-0.724197\pi\)
−0.647527 + 0.762043i \(0.724197\pi\)
\(132\) 0 0
\(133\) 2.28665e7 0.842791
\(134\) 0 0
\(135\) −7.74211e6 + 1.01736e7i −0.270827 + 0.355883i
\(136\) 0 0
\(137\) 3.60823e7i 1.19887i −0.800424 0.599435i \(-0.795392\pi\)
0.800424 0.599435i \(-0.204608\pi\)
\(138\) 0 0
\(139\) 4.37391e7i 1.38140i −0.723143 0.690698i \(-0.757303\pi\)
0.723143 0.690698i \(-0.242697\pi\)
\(140\) 0 0
\(141\) 3.78523e7 + 8.33877e6i 1.13717 + 0.250516i
\(142\) 0 0
\(143\) −3.99596e7 −1.14273
\(144\) 0 0
\(145\) 1.89957e7 0.517448
\(146\) 0 0
\(147\) −1.11675e7 2.46019e6i −0.289966 0.0638789i
\(148\) 0 0
\(149\) 5.07431e7i 1.25668i 0.777939 + 0.628340i \(0.216265\pi\)
−0.777939 + 0.628340i \(0.783735\pi\)
\(150\) 0 0
\(151\) 7.03294e7i 1.66233i −0.556026 0.831165i \(-0.687674\pi\)
0.556026 0.831165i \(-0.312326\pi\)
\(152\) 0 0
\(153\) 1.10838e7 2.39357e7i 0.250190 0.540288i
\(154\) 0 0
\(155\) 1.68934e7 0.364381
\(156\) 0 0
\(157\) 6.90904e7 1.42485 0.712424 0.701749i \(-0.247597\pi\)
0.712424 + 0.701749i \(0.247597\pi\)
\(158\) 0 0
\(159\) 9.14278e6 4.15019e7i 0.180380 0.818801i
\(160\) 0 0
\(161\) 3.81303e7i 0.720078i
\(162\) 0 0
\(163\) 6.12629e6i 0.110800i −0.998464 0.0554001i \(-0.982357\pi\)
0.998464 0.0554001i \(-0.0176434\pi\)
\(164\) 0 0
\(165\) 4.78446e6 2.17181e7i 0.0829161 0.376382i
\(166\) 0 0
\(167\) 1.81268e7 0.301172 0.150586 0.988597i \(-0.451884\pi\)
0.150586 + 0.988597i \(0.451884\pi\)
\(168\) 0 0
\(169\) 4.75794e7 0.758255
\(170\) 0 0
\(171\) −2.76161e7 + 5.96371e7i −0.422353 + 0.912075i
\(172\) 0 0
\(173\) 9.22004e7i 1.35385i 0.736050 + 0.676927i \(0.236689\pi\)
−0.736050 + 0.676927i \(0.763311\pi\)
\(174\) 0 0
\(175\) 1.18896e7i 0.167700i
\(176\) 0 0
\(177\) −2.58613e7 5.69718e6i −0.350545 0.0772242i
\(178\) 0 0
\(179\) 3.36489e7 0.438516 0.219258 0.975667i \(-0.429636\pi\)
0.219258 + 0.975667i \(0.429636\pi\)
\(180\) 0 0
\(181\) −8.48527e6 −0.106363 −0.0531815 0.998585i \(-0.516936\pi\)
−0.0531815 + 0.998585i \(0.516936\pi\)
\(182\) 0 0
\(183\) −1.20754e8 2.66019e7i −1.45654 0.320873i
\(184\) 0 0
\(185\) 9.99451e6i 0.116054i
\(186\) 0 0
\(187\) 4.58841e7i 0.513117i
\(188\) 0 0
\(189\) −4.71298e7 + 6.19315e7i −0.507784 + 0.667261i
\(190\) 0 0
\(191\) 1.64623e8 1.70952 0.854759 0.519026i \(-0.173705\pi\)
0.854759 + 0.519026i \(0.173705\pi\)
\(192\) 0 0
\(193\) −1.48271e8 −1.48459 −0.742294 0.670074i \(-0.766262\pi\)
−0.742294 + 0.670074i \(0.766262\pi\)
\(194\) 0 0
\(195\) −1.32098e7 + 5.99634e7i −0.127578 + 0.579116i
\(196\) 0 0
\(197\) 1.04866e8i 0.977241i −0.872496 0.488621i \(-0.837500\pi\)
0.872496 0.488621i \(-0.162500\pi\)
\(198\) 0 0
\(199\) 1.40662e8i 1.26529i −0.774442 0.632645i \(-0.781969\pi\)
0.774442 0.632645i \(-0.218031\pi\)
\(200\) 0 0
\(201\) 5.92629e6 2.69013e7i 0.0514750 0.233661i
\(202\) 0 0
\(203\) 1.15635e8 0.970185
\(204\) 0 0
\(205\) 2.51340e7 0.203762
\(206\) 0 0
\(207\) 9.94458e7 + 4.60502e7i 0.779274 + 0.360857i
\(208\) 0 0
\(209\) 1.14323e8i 0.866207i
\(210\) 0 0
\(211\) 9.98157e7i 0.731493i 0.930714 + 0.365747i \(0.119186\pi\)
−0.930714 + 0.365747i \(0.880814\pi\)
\(212\) 0 0
\(213\) 1.07902e8 + 2.37706e7i 0.765071 + 0.168543i
\(214\) 0 0
\(215\) −2.48519e7 −0.170540
\(216\) 0 0
\(217\) 1.02838e8 0.683193
\(218\) 0 0
\(219\) −1.37569e8 3.03061e7i −0.885047 0.194974i
\(220\) 0 0
\(221\) 1.26685e8i 0.789501i
\(222\) 0 0
\(223\) 1.79936e7i 0.108655i −0.998523 0.0543277i \(-0.982698\pi\)
0.998523 0.0543277i \(-0.0173016\pi\)
\(224\) 0 0
\(225\) −3.10086e7 1.43591e7i −0.181486 0.0840405i
\(226\) 0 0
\(227\) 2.98422e8 1.69332 0.846662 0.532131i \(-0.178609\pi\)
0.846662 + 0.532131i \(0.178609\pi\)
\(228\) 0 0
\(229\) −3.46069e8 −1.90431 −0.952156 0.305613i \(-0.901139\pi\)
−0.952156 + 0.305613i \(0.901139\pi\)
\(230\) 0 0
\(231\) 2.91252e7 1.32208e8i 0.155463 0.705694i
\(232\) 0 0
\(233\) 4.55950e7i 0.236141i −0.993005 0.118071i \(-0.962329\pi\)
0.993005 0.118071i \(-0.0376709\pi\)
\(234\) 0 0
\(235\) 1.03602e8i 0.520752i
\(236\) 0 0
\(237\) −2.56100e7 + 1.16252e8i −0.124966 + 0.567257i
\(238\) 0 0
\(239\) −1.71629e8 −0.813203 −0.406602 0.913606i \(-0.633286\pi\)
−0.406602 + 0.913606i \(0.633286\pi\)
\(240\) 0 0
\(241\) −2.30295e8 −1.05980 −0.529900 0.848060i \(-0.677771\pi\)
−0.529900 + 0.848060i \(0.677771\pi\)
\(242\) 0 0
\(243\) −1.04602e8 1.97712e8i −0.467645 0.883916i
\(244\) 0 0
\(245\) 3.05657e7i 0.132786i
\(246\) 0 0
\(247\) 3.15644e8i 1.33278i
\(248\) 0 0
\(249\) −3.33356e8 7.34376e7i −1.36839 0.301454i
\(250\) 0 0
\(251\) −1.92142e8 −0.766947 −0.383473 0.923552i \(-0.625272\pi\)
−0.383473 + 0.923552i \(0.625272\pi\)
\(252\) 0 0
\(253\) −1.90635e8 −0.740084
\(254\) 0 0
\(255\) 6.88536e7 + 1.51683e7i 0.260038 + 0.0572857i
\(256\) 0 0
\(257\) 4.15493e8i 1.52686i 0.645893 + 0.763428i \(0.276485\pi\)
−0.645893 + 0.763428i \(0.723515\pi\)
\(258\) 0 0
\(259\) 6.08411e7i 0.217595i
\(260\) 0 0
\(261\) −1.39654e8 + 3.01583e8i −0.486195 + 1.04994i
\(262\) 0 0
\(263\) 1.51351e8 0.513025 0.256513 0.966541i \(-0.417426\pi\)
0.256513 + 0.966541i \(0.417426\pi\)
\(264\) 0 0
\(265\) 1.13591e8 0.374959
\(266\) 0 0
\(267\) −9.21915e7 + 4.18486e8i −0.296416 + 1.34552i
\(268\) 0 0
\(269\) 8.24085e7i 0.258130i 0.991636 + 0.129065i \(0.0411976\pi\)
−0.991636 + 0.129065i \(0.958802\pi\)
\(270\) 0 0
\(271\) 1.59569e8i 0.487032i 0.969897 + 0.243516i \(0.0783008\pi\)
−0.969897 + 0.243516i \(0.921699\pi\)
\(272\) 0 0
\(273\) −8.04141e7 + 3.65025e8i −0.239201 + 1.08581i
\(274\) 0 0
\(275\) 5.94427e7 0.172359
\(276\) 0 0
\(277\) −2.29446e8 −0.648638 −0.324319 0.945948i \(-0.605135\pi\)
−0.324319 + 0.945948i \(0.605135\pi\)
\(278\) 0 0
\(279\) −1.24198e8 + 2.68206e8i −0.342373 + 0.739357i
\(280\) 0 0
\(281\) 2.03011e8i 0.545817i −0.962040 0.272909i \(-0.912014\pi\)
0.962040 0.272909i \(-0.0879856\pi\)
\(282\) 0 0
\(283\) 3.76831e8i 0.988313i 0.869373 + 0.494156i \(0.164523\pi\)
−0.869373 + 0.494156i \(0.835477\pi\)
\(284\) 0 0
\(285\) −1.71553e8 3.77928e7i −0.438977 0.0967056i
\(286\) 0 0
\(287\) 1.53002e8 0.382042
\(288\) 0 0
\(289\) 2.64871e8 0.645494
\(290\) 0 0
\(291\) −5.65618e8 1.24604e8i −1.34554 0.296420i
\(292\) 0 0
\(293\) 7.41770e7i 0.172279i −0.996283 0.0861396i \(-0.972547\pi\)
0.996283 0.0861396i \(-0.0274531\pi\)
\(294\) 0 0
\(295\) 7.07825e7i 0.160527i
\(296\) 0 0
\(297\) 3.09631e8 + 2.35629e8i 0.685799 + 0.521892i
\(298\) 0 0
\(299\) 5.26341e8 1.13872
\(300\) 0 0
\(301\) −1.51285e8 −0.319752
\(302\) 0 0
\(303\) −6.08263e7 + 2.76110e8i −0.125615 + 0.570207i
\(304\) 0 0
\(305\) 3.30505e8i 0.667005i
\(306\) 0 0
\(307\) 2.00392e8i 0.395272i 0.980276 + 0.197636i \(0.0633263\pi\)
−0.980276 + 0.197636i \(0.936674\pi\)
\(308\) 0 0
\(309\) −1.16130e8 + 5.27149e8i −0.223918 + 1.01643i
\(310\) 0 0
\(311\) −3.17968e7 −0.0599407 −0.0299703 0.999551i \(-0.509541\pi\)
−0.0299703 + 0.999551i \(0.509541\pi\)
\(312\) 0 0
\(313\) −3.85295e8 −0.710213 −0.355106 0.934826i \(-0.615555\pi\)
−0.355106 + 0.934826i \(0.615555\pi\)
\(314\) 0 0
\(315\) −1.88763e8 8.74104e7i −0.340276 0.157571i
\(316\) 0 0
\(317\) 6.29377e8i 1.10969i −0.831952 0.554847i \(-0.812777\pi\)
0.831952 0.554847i \(-0.187223\pi\)
\(318\) 0 0
\(319\) 5.78128e8i 0.997140i
\(320\) 0 0
\(321\) −2.94731e8 6.49286e7i −0.497345 0.109564i
\(322\) 0 0
\(323\) 3.62442e8 0.598452
\(324\) 0 0
\(325\) −1.64120e8 −0.265198
\(326\) 0 0
\(327\) −9.43293e8 2.07805e8i −1.49186 0.328654i
\(328\) 0 0
\(329\) 6.30673e8i 0.976379i
\(330\) 0 0
\(331\) 9.39863e8i 1.42451i 0.701919 + 0.712257i \(0.252327\pi\)
−0.701919 + 0.712257i \(0.747673\pi\)
\(332\) 0 0
\(333\) −1.58677e8 7.34783e7i −0.235483 0.109045i
\(334\) 0 0
\(335\) 7.36291e7 0.107002
\(336\) 0 0
\(337\) −5.21667e8 −0.742487 −0.371243 0.928536i \(-0.621068\pi\)
−0.371243 + 0.928536i \(0.621068\pi\)
\(338\) 0 0
\(339\) −8.50630e7 + 3.86127e8i −0.118588 + 0.538309i
\(340\) 0 0
\(341\) 5.14145e8i 0.702175i
\(342\) 0 0
\(343\) 8.12727e8i 1.08747i
\(344\) 0 0
\(345\) −6.30199e7 + 2.86067e8i −0.0826249 + 0.375060i
\(346\) 0 0
\(347\) 1.09409e9 1.40573 0.702863 0.711325i \(-0.251905\pi\)
0.702863 + 0.711325i \(0.251905\pi\)
\(348\) 0 0
\(349\) 7.37051e8 0.928130 0.464065 0.885801i \(-0.346390\pi\)
0.464065 + 0.885801i \(0.346390\pi\)
\(350\) 0 0
\(351\) −8.54887e8 6.50567e8i −1.05520 0.803003i
\(352\) 0 0
\(353\) 1.02817e9i 1.24410i −0.782979 0.622048i \(-0.786301\pi\)
0.782979 0.622048i \(-0.213699\pi\)
\(354\) 0 0
\(355\) 2.95330e8i 0.350354i
\(356\) 0 0
\(357\) 4.19144e8 + 9.23364e7i 0.487555 + 0.107407i
\(358\) 0 0
\(359\) 1.03362e9 1.17904 0.589521 0.807753i \(-0.299317\pi\)
0.589521 + 0.807753i \(0.299317\pi\)
\(360\) 0 0
\(361\) −9.17367e6 −0.0102628
\(362\) 0 0
\(363\) 2.29000e8 + 5.04482e7i 0.251283 + 0.0553570i
\(364\) 0 0
\(365\) 3.76528e8i 0.405296i
\(366\) 0 0
\(367\) 1.56202e9i 1.64951i −0.565487 0.824757i \(-0.691312\pi\)
0.565487 0.824757i \(-0.308688\pi\)
\(368\) 0 0
\(369\) −1.84782e8 + 3.99038e8i −0.191455 + 0.413449i
\(370\) 0 0
\(371\) 6.91481e8 0.703026
\(372\) 0 0
\(373\) −2.43288e8 −0.242739 −0.121370 0.992607i \(-0.538729\pi\)
−0.121370 + 0.992607i \(0.538729\pi\)
\(374\) 0 0
\(375\) 1.96505e7 8.91998e7i 0.0192426 0.0873483i
\(376\) 0 0
\(377\) 1.59620e9i 1.53424i
\(378\) 0 0
\(379\) 1.70107e8i 0.160503i −0.996775 0.0802517i \(-0.974428\pi\)
0.996775 0.0802517i \(-0.0255724\pi\)
\(380\) 0 0
\(381\) 4.28120e8 1.94337e9i 0.396578 1.80019i
\(382\) 0 0
\(383\) 9.90159e8 0.900553 0.450276 0.892889i \(-0.351325\pi\)
0.450276 + 0.892889i \(0.351325\pi\)
\(384\) 0 0
\(385\) 3.61855e8 0.323163
\(386\) 0 0
\(387\) 1.82708e8 3.94559e8i 0.160239 0.346038i
\(388\) 0 0
\(389\) 5.23780e8i 0.451155i −0.974225 0.225577i \(-0.927573\pi\)
0.974225 0.225577i \(-0.0724269\pi\)
\(390\) 0 0
\(391\) 6.04376e8i 0.511315i
\(392\) 0 0
\(393\) 1.52185e9 + 3.35259e8i 1.26473 + 0.278617i
\(394\) 0 0
\(395\) −3.18182e8 −0.259768
\(396\) 0 0
\(397\) −9.50812e7 −0.0762654 −0.0381327 0.999273i \(-0.512141\pi\)
−0.0381327 + 0.999273i \(0.512141\pi\)
\(398\) 0 0
\(399\) −1.04432e9 2.30062e8i −0.823056 0.181317i
\(400\) 0 0
\(401\) 1.36022e9i 1.05342i −0.850044 0.526712i \(-0.823425\pi\)
0.850044 0.526712i \(-0.176575\pi\)
\(402\) 0 0
\(403\) 1.41955e9i 1.08039i
\(404\) 0 0
\(405\) 4.55942e8 3.86739e8i 0.341049 0.289284i
\(406\) 0 0
\(407\) 3.04180e8 0.223640
\(408\) 0 0
\(409\) 1.30616e9 0.943987 0.471994 0.881602i \(-0.343535\pi\)
0.471994 + 0.881602i \(0.343535\pi\)
\(410\) 0 0
\(411\) −3.63026e8 + 1.64789e9i −0.257924 + 1.17080i
\(412\) 0 0
\(413\) 4.30886e8i 0.300979i
\(414\) 0 0
\(415\) 9.12400e8i 0.626638i
\(416\) 0 0
\(417\) −4.40062e8 + 1.99758e9i −0.297192 + 1.34905i
\(418\) 0 0
\(419\) 1.67879e9 1.11493 0.557464 0.830201i \(-0.311775\pi\)
0.557464 + 0.830201i \(0.311775\pi\)
\(420\) 0 0
\(421\) 1.27287e9 0.831373 0.415686 0.909508i \(-0.363541\pi\)
0.415686 + 0.909508i \(0.363541\pi\)
\(422\) 0 0
\(423\) −1.64483e9 7.61668e8i −1.05665 0.489299i
\(424\) 0 0
\(425\) 1.88453e8i 0.119081i
\(426\) 0 0
\(427\) 2.01194e9i 1.25060i
\(428\) 0 0
\(429\) 1.82497e9 + 4.02036e8i 1.11598 + 0.245847i
\(430\) 0 0
\(431\) −3.52146e8 −0.211862 −0.105931 0.994374i \(-0.533782\pi\)
−0.105931 + 0.994374i \(0.533782\pi\)
\(432\) 0 0
\(433\) 2.89022e9 1.71090 0.855448 0.517889i \(-0.173282\pi\)
0.855448 + 0.517889i \(0.173282\pi\)
\(434\) 0 0
\(435\) −8.67538e8 1.91117e8i −0.505331 0.111323i
\(436\) 0 0
\(437\) 1.50584e9i 0.863165i
\(438\) 0 0
\(439\) 1.32877e9i 0.749588i 0.927108 + 0.374794i \(0.122287\pi\)
−0.927108 + 0.374794i \(0.877713\pi\)
\(440\) 0 0
\(441\) 4.85273e8 + 2.24715e8i 0.269433 + 0.124766i
\(442\) 0 0
\(443\) −2.31758e9 −1.26655 −0.633274 0.773928i \(-0.718289\pi\)
−0.633274 + 0.773928i \(0.718289\pi\)
\(444\) 0 0
\(445\) −1.14540e9 −0.616165
\(446\) 0 0
\(447\) 5.10529e8 2.31745e9i 0.270361 1.22725i
\(448\) 0 0
\(449\) 2.97362e9i 1.55033i −0.631761 0.775164i \(-0.717667\pi\)
0.631761 0.775164i \(-0.282333\pi\)
\(450\) 0 0
\(451\) 7.64946e8i 0.392657i
\(452\) 0 0
\(453\) −7.07588e8 + 3.21196e9i −0.357632 + 1.62340i
\(454\) 0 0
\(455\) −9.99076e8 −0.497232
\(456\) 0 0
\(457\) 2.71785e9 1.33205 0.666023 0.745931i \(-0.267995\pi\)
0.666023 + 0.745931i \(0.267995\pi\)
\(458\) 0 0
\(459\) −7.47021e8 + 9.81633e8i −0.360569 + 0.473810i
\(460\) 0 0
\(461\) 3.77424e9i 1.79422i −0.441805 0.897111i \(-0.645662\pi\)
0.441805 0.897111i \(-0.354338\pi\)
\(462\) 0 0
\(463\) 1.58236e9i 0.740922i −0.928848 0.370461i \(-0.879200\pi\)
0.928848 0.370461i \(-0.120800\pi\)
\(464\) 0 0
\(465\) −7.71526e8 1.69965e8i −0.355849 0.0783926i
\(466\) 0 0
\(467\) 9.70261e8 0.440838 0.220419 0.975405i \(-0.429257\pi\)
0.220419 + 0.975405i \(0.429257\pi\)
\(468\) 0 0
\(469\) 4.48214e8 0.200623
\(470\) 0 0
\(471\) −3.15538e9 6.95122e8i −1.39148 0.306541i
\(472\) 0 0
\(473\) 7.56360e8i 0.328636i
\(474\) 0 0
\(475\) 4.69542e8i 0.201024i
\(476\) 0 0
\(477\) −8.35107e8 + 1.80342e9i −0.352312 + 0.760820i
\(478\) 0 0
\(479\) 1.46718e9 0.609971 0.304985 0.952357i \(-0.401348\pi\)
0.304985 + 0.952357i \(0.401348\pi\)
\(480\) 0 0
\(481\) −8.39835e8 −0.344101
\(482\) 0 0
\(483\) −3.83631e8 + 1.74142e9i −0.154917 + 0.703216i
\(484\) 0 0
\(485\) 1.54810e9i 0.616174i
\(486\) 0 0
\(487\) 1.12821e9i 0.442628i −0.975203 0.221314i \(-0.928966\pi\)
0.975203 0.221314i \(-0.0710345\pi\)
\(488\) 0 0
\(489\) −6.16369e7 + 2.79789e8i −0.0238375 + 0.108206i
\(490\) 0 0
\(491\) −2.30073e8 −0.0877164 −0.0438582 0.999038i \(-0.513965\pi\)
−0.0438582 + 0.999038i \(0.513965\pi\)
\(492\) 0 0
\(493\) 1.83285e9 0.688912
\(494\) 0 0
\(495\) −4.37015e8 + 9.43737e8i −0.161949 + 0.349730i
\(496\) 0 0
\(497\) 1.79781e9i 0.656894i
\(498\) 0 0
\(499\) 5.08620e9i 1.83249i 0.400619 + 0.916245i \(0.368795\pi\)
−0.400619 + 0.916245i \(0.631205\pi\)
\(500\) 0 0
\(501\) −8.27858e8 1.82375e8i −0.294120 0.0647939i
\(502\) 0 0
\(503\) 3.65029e9 1.27891 0.639455 0.768829i \(-0.279160\pi\)
0.639455 + 0.768829i \(0.279160\pi\)
\(504\) 0 0
\(505\) −7.55714e8 −0.261119
\(506\) 0 0
\(507\) −2.17296e9 4.78699e8i −0.740499 0.163130i
\(508\) 0 0
\(509\) 3.21215e9i 1.07965i 0.841777 + 0.539826i \(0.181510\pi\)
−0.841777 + 0.539826i \(0.818490\pi\)
\(510\) 0 0
\(511\) 2.29210e9i 0.759906i
\(512\) 0 0
\(513\) 1.86125e9 2.44580e9i 0.608686 0.799853i
\(514\) 0 0
\(515\) −1.44281e9 −0.465462
\(516\) 0 0
\(517\) 3.15310e9 1.00351
\(518\) 0 0
\(519\) 9.27634e8 4.21082e9i 0.291267 1.32215i
\(520\) 0 0
\(521\) 6.03429e9i 1.86936i −0.355485 0.934682i \(-0.615684\pi\)
0.355485 0.934682i \(-0.384316\pi\)
\(522\) 0 0
\(523\) 1.74287e9i 0.532733i 0.963872 + 0.266367i \(0.0858232\pi\)
−0.963872 + 0.266367i \(0.914177\pi\)
\(524\) 0 0
\(525\) 1.19622e8 5.43000e8i 0.0360788 0.163773i
\(526\) 0 0
\(527\) 1.63001e9 0.485124
\(528\) 0 0
\(529\) −8.93814e8 −0.262514
\(530\) 0 0
\(531\) 1.12377e9 + 5.20383e8i 0.325722 + 0.150832i
\(532\) 0 0
\(533\) 2.11200e9i 0.604157i
\(534\) 0 0
\(535\) 8.06681e8i 0.227753i
\(536\) 0 0
\(537\) −1.53675e9 3.38543e8i −0.428247 0.0943419i
\(538\) 0 0
\(539\) −9.30257e8 −0.255884
\(540\) 0 0
\(541\) −1.86005e9 −0.505050 −0.252525 0.967590i \(-0.581261\pi\)
−0.252525 + 0.967590i \(0.581261\pi\)
\(542\) 0 0
\(543\) 3.87525e8 + 8.53708e7i 0.103872 + 0.0228828i
\(544\) 0 0
\(545\) 2.58180e9i 0.683180i
\(546\) 0 0
\(547\) 4.73873e9i 1.23796i 0.785407 + 0.618979i \(0.212454\pi\)
−0.785407 + 0.618979i \(0.787546\pi\)
\(548\) 0 0
\(549\) 5.24724e9 + 2.42983e9i 1.35340 + 0.626719i
\(550\) 0 0
\(551\) −4.56667e9 −1.16297
\(552\) 0 0
\(553\) −1.93692e9 −0.487050
\(554\) 0 0
\(555\) 1.00555e8 4.56452e8i 0.0249678 0.113336i
\(556\) 0 0
\(557\) 2.20149e9i 0.539789i 0.962890 + 0.269895i \(0.0869888\pi\)
−0.962890 + 0.269895i \(0.913011\pi\)
\(558\) 0 0
\(559\) 2.08830e9i 0.505651i
\(560\) 0 0
\(561\) 4.61642e8 2.09554e9i 0.110392 0.501102i
\(562\) 0 0
\(563\) 7.38148e9 1.74327 0.871634 0.490158i \(-0.163061\pi\)
0.871634 + 0.490158i \(0.163061\pi\)
\(564\) 0 0
\(565\) −1.05683e9 −0.246512
\(566\) 0 0
\(567\) 2.77553e9 2.35425e9i 0.639447 0.542391i
\(568\) 0 0
\(569\) 7.58120e9i 1.72522i 0.505867 + 0.862611i \(0.331173\pi\)
−0.505867 + 0.862611i \(0.668827\pi\)
\(570\) 0 0
\(571\) 2.97462e9i 0.668659i 0.942456 + 0.334330i \(0.108510\pi\)
−0.942456 + 0.334330i \(0.891490\pi\)
\(572\) 0 0
\(573\) −7.51837e9 1.65628e9i −1.66949 0.367784i
\(574\) 0 0
\(575\) −7.82969e8 −0.171754
\(576\) 0 0
\(577\) −6.91714e9 −1.49903 −0.749516 0.661986i \(-0.769714\pi\)
−0.749516 + 0.661986i \(0.769714\pi\)
\(578\) 0 0
\(579\) 6.77158e9 + 1.49176e9i 1.44982 + 0.319393i
\(580\) 0 0
\(581\) 5.55419e9i 1.17491i
\(582\) 0 0
\(583\) 3.45711e9i 0.722559i
\(584\) 0 0
\(585\) 1.20659e9 2.60564e9i 0.249181 0.538108i
\(586\) 0 0
\(587\) 7.49059e9 1.52856 0.764280 0.644884i \(-0.223095\pi\)
0.764280 + 0.644884i \(0.223095\pi\)
\(588\) 0 0
\(589\) −4.06127e9 −0.818951
\(590\) 0 0
\(591\) −1.05506e9 + 4.78925e9i −0.210243 + 0.954358i
\(592\) 0 0
\(593\) 2.65792e8i 0.0523419i 0.999657 + 0.0261710i \(0.00833143\pi\)
−0.999657 + 0.0261710i \(0.991669\pi\)
\(594\) 0 0
\(595\) 1.14720e9i 0.223270i
\(596\) 0 0
\(597\) −1.41521e9 + 6.42406e9i −0.272214 + 1.23566i
\(598\) 0 0
\(599\) 5.46914e9 1.03974 0.519870 0.854245i \(-0.325980\pi\)
0.519870 + 0.854245i \(0.325980\pi\)
\(600\) 0 0
\(601\) −8.59551e9 −1.61514 −0.807571 0.589770i \(-0.799218\pi\)
−0.807571 + 0.589770i \(0.799218\pi\)
\(602\) 0 0
\(603\) −5.41311e8 + 1.16896e9i −0.100539 + 0.217115i
\(604\) 0 0
\(605\) 6.26775e8i 0.115072i
\(606\) 0 0
\(607\) 5.12787e9i 0.930630i −0.885145 0.465315i \(-0.845941\pi\)
0.885145 0.465315i \(-0.154059\pi\)
\(608\) 0 0
\(609\) −5.28110e9 1.16341e9i −0.947467 0.208725i
\(610\) 0 0
\(611\) −8.70565e9 −1.54403
\(612\) 0 0
\(613\) −2.23066e9 −0.391131 −0.195565 0.980691i \(-0.562654\pi\)
−0.195565 + 0.980691i \(0.562654\pi\)
\(614\) 0 0
\(615\) −1.14788e9 2.52875e8i −0.198991 0.0438372i
\(616\) 0 0
\(617\) 1.07297e10i 1.83902i 0.393061 + 0.919512i \(0.371416\pi\)
−0.393061 + 0.919512i \(0.628584\pi\)
\(618\) 0 0
\(619\) 1.54216e9i 0.261343i 0.991426 + 0.130672i \(0.0417134\pi\)
−0.991426 + 0.130672i \(0.958287\pi\)
\(620\) 0 0
\(621\) −4.07840e9 3.10366e9i −0.683392 0.520060i
\(622\) 0 0
\(623\) −6.97257e9 −1.15527
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) −1.15021e9 + 5.22116e9i −0.186355 + 0.845923i
\(628\) 0 0
\(629\) 9.64350e8i 0.154510i
\(630\) 0 0
\(631\) 6.82215e9i 1.08098i 0.841350 + 0.540491i \(0.181762\pi\)
−0.841350 + 0.540491i \(0.818238\pi\)
\(632\) 0 0
\(633\) 1.00425e9 4.55861e9i 0.157373 0.714364i
\(634\) 0 0
\(635\) 5.31902e9 0.824373
\(636\) 0 0
\(637\) 2.56842e9 0.393712
\(638\) 0 0
\(639\) −4.68877e9 2.17122e9i −0.710896 0.329194i
\(640\) 0 0
\(641\) 8.91076e9i 1.33632i −0.744016 0.668162i \(-0.767081\pi\)
0.744016 0.668162i \(-0.232919\pi\)
\(642\) 0 0
\(643\) 1.99236e8i 0.0295550i −0.999891 0.0147775i \(-0.995296\pi\)
0.999891 0.0147775i \(-0.00470399\pi\)
\(644\) 0 0
\(645\) 1.13499e9 + 2.50037e8i 0.166546 + 0.0366897i
\(646\) 0 0
\(647\) 1.24392e9 0.180562 0.0902810 0.995916i \(-0.471223\pi\)
0.0902810 + 0.995916i \(0.471223\pi\)
\(648\) 0 0
\(649\) −2.15424e9 −0.309342
\(650\) 0 0
\(651\) −4.69663e9 1.03466e9i −0.667195 0.146982i
\(652\) 0 0
\(653\) 5.19203e8i 0.0729695i −0.999334 0.0364848i \(-0.988384\pi\)
0.999334 0.0364848i \(-0.0116160\pi\)
\(654\) 0 0
\(655\) 4.16531e9i 0.579165i
\(656\) 0 0
\(657\) 5.97791e9 + 2.76818e9i 0.822376 + 0.380816i
\(658\) 0 0
\(659\) −5.86727e9 −0.798615 −0.399307 0.916817i \(-0.630749\pi\)
−0.399307 + 0.916817i \(0.630749\pi\)
\(660\) 0 0
\(661\) 1.08269e10 1.45814 0.729069 0.684441i \(-0.239954\pi\)
0.729069 + 0.684441i \(0.239954\pi\)
\(662\) 0 0
\(663\) −1.27459e9 + 5.78575e9i −0.169853 + 0.771014i
\(664\) 0 0
\(665\) 2.85832e9i 0.376908i
\(666\) 0 0
\(667\) 7.61499e9i 0.993639i
\(668\) 0 0
\(669\) −1.81035e8 + 8.21773e8i −0.0233760 + 0.106111i
\(670\) 0 0
\(671\) −1.00588e10 −1.28534
\(672\) 0 0
\(673\) −3.35910e9 −0.424786 −0.212393 0.977184i \(-0.568126\pi\)
−0.212393 + 0.977184i \(0.568126\pi\)
\(674\) 0 0
\(675\) 1.27170e9 + 9.67764e8i 0.159156 + 0.121117i
\(676\) 0 0
\(677\) 1.33115e10i 1.64879i 0.566014 + 0.824396i \(0.308485\pi\)
−0.566014 + 0.824396i \(0.691515\pi\)
\(678\) 0 0
\(679\) 9.42400e9i 1.15529i
\(680\) 0 0
\(681\) −1.36290e10 3.00244e9i −1.65367 0.364300i
\(682\) 0 0
\(683\) 1.48174e9 0.177951 0.0889755 0.996034i \(-0.471641\pi\)
0.0889755 + 0.996034i \(0.471641\pi\)
\(684\) 0 0
\(685\) −4.51028e9 −0.536151
\(686\) 0 0
\(687\) 1.58051e10 + 3.48182e9i 1.85972 + 0.409692i
\(688\) 0 0
\(689\) 9.54503e9i 1.11176i
\(690\) 0 0
\(691\) 1.14439e10i 1.31948i 0.751495 + 0.659739i \(0.229333\pi\)
−0.751495 + 0.659739i \(0.770667\pi\)
\(692\) 0 0
\(693\) −2.66031e9 + 5.74496e9i −0.303645 + 0.655723i
\(694\) 0 0
\(695\) −5.46739e9 −0.617779
\(696\) 0 0
\(697\) 2.42513e9 0.271282
\(698\) 0 0
\(699\) −4.58734e8 + 2.08234e9i −0.0508032 + 0.230612i
\(700\) 0 0
\(701\) 5.96485e9i 0.654014i −0.945022 0.327007i \(-0.893960\pi\)
0.945022 0.327007i \(-0.106040\pi\)
\(702\) 0 0
\(703\) 2.40274e9i 0.260833i
\(704\) 0 0
\(705\) 1.04235e9 4.73154e9i 0.112034 0.508558i
\(706\) 0 0
\(707\) −4.60038e9 −0.489582
\(708\) 0 0
\(709\) −8.65286e9 −0.911796 −0.455898 0.890032i \(-0.650682\pi\)
−0.455898 + 0.890032i \(0.650682\pi\)
\(710\) 0 0
\(711\) 2.33923e9 5.05159e9i 0.244079 0.527089i
\(712\) 0 0
\(713\) 6.77222e9i 0.699710i
\(714\) 0 0
\(715\) 4.99495e9i 0.511046i
\(716\) 0 0
\(717\) 7.83837e9 + 1.72677e9i 0.794161 + 0.174952i
\(718\) 0 0
\(719\) −4.30863e9 −0.432303 −0.216151 0.976360i \(-0.569350\pi\)
−0.216151 + 0.976360i \(0.569350\pi\)
\(720\) 0 0
\(721\) −8.78305e9 −0.872714
\(722\) 0 0
\(723\) 1.05176e10 + 2.31701e9i 1.03498 + 0.228004i
\(724\) 0 0
\(725\) 2.37446e9i 0.231410i
\(726\) 0 0
\(727\) 1.00091e10i 0.966103i 0.875592 + 0.483051i \(0.160472\pi\)
−0.875592 + 0.483051i \(0.839528\pi\)
\(728\) 0 0
\(729\) 2.78800e9 + 1.00820e10i 0.266530 + 0.963827i
\(730\) 0 0
\(731\) −2.39791e9 −0.227050
\(732\) 0 0
\(733\) −1.13721e10 −1.06653 −0.533267 0.845947i \(-0.679036\pi\)
−0.533267 + 0.845947i \(0.679036\pi\)
\(734\) 0 0
\(735\) −3.07523e8 + 1.39594e9i −0.0285675 + 0.129677i
\(736\) 0 0
\(737\) 2.24088e9i 0.206197i
\(738\) 0 0
\(739\) 1.19662e10i 1.09069i −0.838213 0.545343i \(-0.816399\pi\)
0.838213 0.545343i \(-0.183601\pi\)
\(740\) 0 0
\(741\) 3.17571e9 1.44155e10i 0.286733 1.30157i
\(742\) 0 0
\(743\) −1.28719e10 −1.15128 −0.575639 0.817704i \(-0.695247\pi\)
−0.575639 + 0.817704i \(0.695247\pi\)
\(744\) 0 0
\(745\) 6.34288e9 0.562005
\(746\) 0 0
\(747\) 1.44856e10 + 6.70784e9i 1.27150 + 0.588790i
\(748\) 0 0
\(749\) 4.91064e9i 0.427023i
\(750\) 0 0
\(751\) 1.61524e10i 1.39154i −0.718264 0.695771i \(-0.755063\pi\)
0.718264 0.695771i \(-0.244937\pi\)
\(752\) 0 0
\(753\) 8.77520e9 + 1.93316e9i 0.748988 + 0.165000i
\(754\) 0 0
\(755\) −8.79117e9 −0.743417
\(756\) 0 0
\(757\) 7.64165e9 0.640253 0.320126 0.947375i \(-0.396275\pi\)
0.320126 + 0.947375i \(0.396275\pi\)
\(758\) 0 0
\(759\) 8.70636e9 + 1.91799e9i 0.722754 + 0.159221i
\(760\) 0 0
\(761\) 3.58231e9i 0.294657i 0.989088 + 0.147329i \(0.0470675\pi\)
−0.989088 + 0.147329i \(0.952933\pi\)
\(762\) 0 0
\(763\) 1.57166e10i 1.28092i
\(764\) 0 0
\(765\) −2.99196e9 1.38548e9i −0.241624 0.111889i
\(766\) 0 0
\(767\) 5.94783e9 0.475965
\(768\) 0 0
\(769\) 8.09590e9 0.641982 0.320991 0.947082i \(-0.395984\pi\)
0.320991 + 0.947082i \(0.395984\pi\)
\(770\) 0 0
\(771\) 4.18030e9 1.89757e10i 0.328487 1.49110i
\(772\) 0 0
\(773\) 1.82909e10i 1.42432i 0.702019 + 0.712158i \(0.252282\pi\)
−0.702019 + 0.712158i \(0.747718\pi\)
\(774\) 0 0
\(775\) 2.11167e9i 0.162956i
\(776\) 0 0
\(777\) 6.12126e8 2.77863e9i 0.0468131 0.212499i
\(778\) 0 0
\(779\) −6.04236e9 −0.457958
\(780\) 0 0
\(781\) 8.98826e9 0.675145
\(782\) 0 0
\(783\) 9.41227e9 1.23683e10i 0.700693 0.920756i
\(784\) 0 0
\(785\) 8.63630e9i 0.637212i
\(786\) 0 0
\(787\) 5.79422e9i 0.423725i −0.977300 0.211862i \(-0.932047\pi\)
0.977300 0.211862i \(-0.0679528\pi\)
\(788\) 0 0
\(789\) −6.91222e9 1.52275e9i −0.501012 0.110372i
\(790\) 0 0
\(791\) −6.43343e9 −0.462195
\(792\) 0 0
\(793\) 2.77723e10 1.97768
\(794\) 0 0
\(795\) −5.18774e9 1.14285e9i −0.366179 0.0806684i
\(796\) 0 0
\(797\) 2.41098e9i 0.168690i −0.996437 0.0843449i \(-0.973120\pi\)
0.996437 0.0843449i \(-0.0268798\pi\)
\(798\) 0 0
\(799\) 9.99635e9i 0.693311i
\(800\) 0 0
\(801\) 8.42083e9 1.81848e10i 0.578950 1.25025i
\(802\) 0 0
\(803\) −1.14595e10 −0.781019
\(804\) 0 0
\(805\) −4.76629e9 −0.322029
\(806\) 0 0
\(807\) 8.29117e8 3.76362e9i 0.0555339 0.252086i
\(808\) 0 0
\(809\) 7.58192e9i 0.503454i 0.967798 + 0.251727i \(0.0809984\pi\)
−0.967798 + 0.251727i \(0.919002\pi\)
\(810\) 0 0
\(811\) 1.14466e10i 0.753537i 0.926307 + 0.376769i \(0.122965\pi\)
−0.926307 + 0.376769i \(0.877035\pi\)
\(812\) 0 0
\(813\) 1.60544e9 7.28758e9i 0.104780 0.475627i
\(814\) 0 0
\(815\) −7.65786e8 −0.0495514
\(816\) 0 0
\(817\) 5.97454e9 0.383290
\(818\) 0 0
\(819\) 7.34507e9 1.58617e10i 0.467199 1.00892i
\(820\) 0 0
\(821\) 2.91315e10i 1.83723i −0.395159 0.918613i \(-0.629310\pi\)
0.395159 0.918613i \(-0.370690\pi\)
\(822\) 0 0
\(823\) 1.04276e9i 0.0652053i 0.999468 + 0.0326027i \(0.0103796\pi\)
−0.999468 + 0.0326027i \(0.989620\pi\)
\(824\) 0 0
\(825\) −2.71477e9 5.98057e8i −0.168323 0.0370812i
\(826\) 0 0
\(827\) 2.22845e10 1.37004 0.685022 0.728523i \(-0.259793\pi\)
0.685022 + 0.728523i \(0.259793\pi\)
\(828\) 0 0
\(829\) −1.93468e9 −0.117942 −0.0589710 0.998260i \(-0.518782\pi\)
−0.0589710 + 0.998260i \(0.518782\pi\)
\(830\) 0 0
\(831\) 1.04789e10 + 2.30847e9i 0.633449 + 0.139547i
\(832\) 0 0
\(833\) 2.94922e9i 0.176787i
\(834\) 0 0
\(835\) 2.26586e9i 0.134688i
\(836\) 0 0
\(837\) 8.37059e9 1.09995e10i 0.493421 0.648386i
\(838\) 0 0
\(839\) 1.54591e10 0.903688 0.451844 0.892097i \(-0.350766\pi\)
0.451844 + 0.892097i \(0.350766\pi\)
\(840\) 0 0
\(841\) −5.84362e9 −0.338763
\(842\) 0 0
\(843\) −2.04250e9 + 9.27156e9i −0.117427 + 0.533036i
\(844\) 0 0
\(845\) 5.94742e9i 0.339102i
\(846\) 0 0
\(847\) 3.81547e9i 0.215752i
\(848\) 0 0
\(849\) 3.79132e9 1.72100e10i 0.212625 0.965170i
\(850\) 0 0
\(851\) −4.00660e9 −0.222855
\(852\) 0 0
\(853\) −2.16552e9 −0.119465 −0.0597324 0.998214i \(-0.519025\pi\)
−0.0597324 + 0.998214i \(0.519025\pi\)
\(854\) 0 0
\(855\) 7.45464e9 + 3.45201e9i 0.407892 + 0.188882i
\(856\) 0 0
\(857\) 2.42895e10i 1.31821i 0.752050 + 0.659106i \(0.229065\pi\)
−0.752050 + 0.659106i \(0.770935\pi\)
\(858\) 0 0
\(859\) 1.48431e10i 0.799002i −0.916733 0.399501i \(-0.869183\pi\)
0.916733 0.399501i \(-0.130817\pi\)
\(860\) 0 0
\(861\) −6.98766e9 1.53937e9i −0.373096 0.0821922i
\(862\) 0 0
\(863\) −3.51327e9 −0.186069 −0.0930344 0.995663i \(-0.529657\pi\)
−0.0930344 + 0.995663i \(0.529657\pi\)
\(864\) 0 0
\(865\) 1.15251e10 0.605462
\(866\) 0 0
\(867\) −1.20967e10 2.66488e9i −0.630378 0.138871i
\(868\) 0 0
\(869\) 9.68377e9i 0.500582i
\(870\) 0 0
\(871\) 6.18703e9i 0.317262i
\(872\) 0 0
\(873\) 2.45783e10 + 1.13814e10i 1.25026 + 0.578958i
\(874\) 0 0
\(875\) 1.48620e9 0.0749977
\(876\) 0 0
\(877\) 3.19417e10 1.59904 0.799521 0.600638i \(-0.205087\pi\)
0.799521 + 0.600638i \(0.205087\pi\)
\(878\) 0 0
\(879\) −7.46300e8 + 3.38769e9i −0.0370640 + 0.168245i
\(880\) 0 0
\(881\) 3.24270e10i 1.59769i 0.601540 + 0.798843i \(0.294554\pi\)
−0.601540 + 0.798843i \(0.705446\pi\)
\(882\) 0 0
\(883\) 9.58112e9i 0.468332i −0.972197 0.234166i \(-0.924764\pi\)
0.972197 0.234166i \(-0.0752359\pi\)
\(884\) 0 0
\(885\) −7.12147e8 + 3.23266e9i −0.0345357 + 0.156768i
\(886\) 0 0
\(887\) −2.36771e10 −1.13919 −0.569593 0.821927i \(-0.692899\pi\)
−0.569593 + 0.821927i \(0.692899\pi\)
\(888\) 0 0
\(889\) 3.23793e10 1.54565
\(890\) 0 0
\(891\) −1.17703e10 1.38764e10i −0.557461 0.657213i
\(892\) 0 0
\(893\) 2.49065e10i 1.17040i
\(894\) 0 0
\(895\) 4.20611e9i 0.196110i
\(896\) 0 0
\(897\) −2.40381e10 5.29555e9i −1.11206 0.244984i
\(898\) 0 0
\(899\) −2.05377e10 −0.942742
\(900\) 0 0
\(901\) 1.09602e10 0.499207
\(902\) 0 0
\(903\) 6.90923e9 + 1.52209e9i 0.312264 + 0.0687911i
\(904\) 0 0
\(905\) 1.06066e9i 0.0475670i
\(906\) 0 0
\(907\) 3.26154e10i 1.45143i −0.687994 0.725716i \(-0.741509\pi\)
0.687994 0.725716i \(-0.258491\pi\)
\(908\) 0 0
\(909\) 5.55591e9 1.19980e10i 0.245347 0.529830i
\(910\) 0 0
\(911\) −2.12092e10 −0.929416 −0.464708 0.885464i \(-0.653841\pi\)
−0.464708 + 0.885464i \(0.653841\pi\)
\(912\) 0 0
\(913\) −2.77686e10 −1.20755
\(914\) 0 0
\(915\) −3.32523e9 + 1.50943e10i −0.143499 + 0.651386i
\(916\) 0 0
\(917\) 2.53561e10i 1.08590i
\(918\) 0 0
\(919\) 1.41019e10i 0.599338i −0.954043 0.299669i \(-0.903124\pi\)
0.954043 0.299669i \(-0.0968763\pi\)
\(920\) 0 0
\(921\) 2.01615e9 9.15195e9i 0.0850383 0.386016i
\(922\) 0 0
\(923\) −2.48164e10 −1.03880
\(924\) 0 0
\(925\) 1.24931e9 0.0519010
\(926\) 0 0
\(927\) 1.06073e10 2.29066e10i 0.437349 0.944457i
\(928\) 0 0
\(929\) 2.75245e10i 1.12633i 0.826346 + 0.563163i \(0.190416\pi\)
−0.826346 + 0.563163i \(0.809584\pi\)
\(930\) 0 0
\(931\) 7.34817e9i 0.298439i
\(932\) 0 0
\(933\) 1.45217e9 + 3.19909e8i 0.0585371 + 0.0128956i
\(934\) 0 0
\(935\) 5.73551e9 0.229473
\(936\) 0 0
\(937\) 7.69338e9 0.305512 0.152756 0.988264i \(-0.451185\pi\)
0.152756 + 0.988264i \(0.451185\pi\)
\(938\) 0 0
\(939\) 1.75965e10 + 3.87648e9i 0.693582 + 0.152795i
\(940\) 0 0
\(941\) 3.48056e10i 1.36171i −0.732417 0.680856i \(-0.761608\pi\)
0.732417 0.680856i \(-0.238392\pi\)
\(942\) 0 0
\(943\) 1.00757e10i 0.391278i
\(944\) 0 0
\(945\) 7.74144e9 + 5.89122e9i 0.298408 + 0.227088i
\(946\) 0 0
\(947\) 2.56634e6 9.81950e−5 4.90975e−5 1.00000i \(-0.499984\pi\)
4.90975e−5 1.00000i \(0.499984\pi\)
\(948\) 0 0
\(949\) 3.16395e10 1.20171
\(950\) 0 0
\(951\) −6.33220e9 + 2.87438e10i −0.238739 + 1.08371i
\(952\) 0 0
\(953\) 6.45497e9i 0.241585i −0.992678 0.120792i \(-0.961456\pi\)
0.992678 0.120792i \(-0.0385435\pi\)
\(954\) 0 0
\(955\) 2.05779e10i 0.764519i
\(956\) 0 0
\(957\) −5.81658e9 + 2.64033e10i −0.214524 + 0.973791i
\(958\) 0 0
\(959\) −2.74562e10 −1.00525
\(960\) 0 0
\(961\) 9.24786e9 0.336132
\(962\) 0 0
\(963\) 1.28072e10 + 5.93061e9i 0.462128 + 0.213997i
\(964\) 0 0
\(965\) 1.85339e10i 0.663928i
\(966\) 0 0
\(967\) 3.54915e10i 1.26221i 0.775697 + 0.631106i \(0.217399\pi\)
−0.775697 + 0.631106i \(0.782601\pi\)
\(968\) 0 0
\(969\) −1.65528e10 3.64655e9i −0.584438 0.128750i
\(970\) 0 0
\(971\) −1.97987e10 −0.694015 −0.347008 0.937862i \(-0.612802\pi\)
−0.347008 + 0.937862i \(0.612802\pi\)
\(972\) 0 0
\(973\) −3.32825e10 −1.15830
\(974\) 0 0
\(975\) 7.49543e9 + 1.65123e9i 0.258988 + 0.0570545i
\(976\) 0 0
\(977\) 9.36552e9i 0.321293i 0.987012 + 0.160646i \(0.0513579\pi\)
−0.987012 + 0.160646i \(0.948642\pi\)
\(978\) 0 0
\(979\) 3.48599e10i 1.18737i
\(980\) 0 0
\(981\) 4.09897e10 + 1.89810e10i 1.38622 + 0.641917i
\(982\) 0 0
\(983\) 3.16871e10 1.06401 0.532005 0.846741i \(-0.321439\pi\)
0.532005 + 0.846741i \(0.321439\pi\)
\(984\) 0 0
\(985\) −1.31082e10 −0.437036
\(986\) 0 0
\(987\) 6.34524e9 2.88030e10i 0.210057 0.953516i
\(988\) 0 0
\(989\) 9.96263e9i 0.327482i
\(990\) 0 0
\(991\) 8.01370e9i 0.261562i 0.991411 + 0.130781i \(0.0417485\pi\)
−0.991411 + 0.130781i \(0.958251\pi\)
\(992\) 0 0
\(993\) 9.45602e9 4.29238e10i 0.306469 1.39116i
\(994\) 0 0
\(995\) −1.75827e10 −0.565855
\(996\) 0 0
\(997\) −4.56357e10 −1.45838 −0.729191 0.684310i \(-0.760104\pi\)
−0.729191 + 0.684310i \(0.760104\pi\)
\(998\) 0 0
\(999\) 6.50755e9 + 4.95223e9i 0.206509 + 0.157153i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.h.b.191.1 36
3.2 odd 2 inner 240.8.h.b.191.35 yes 36
4.3 odd 2 inner 240.8.h.b.191.36 yes 36
12.11 even 2 inner 240.8.h.b.191.2 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.8.h.b.191.1 36 1.1 even 1 trivial
240.8.h.b.191.2 yes 36 12.11 even 2 inner
240.8.h.b.191.35 yes 36 3.2 odd 2 inner
240.8.h.b.191.36 yes 36 4.3 odd 2 inner