Properties

Label 240.8.h.b.191.19
Level $240$
Weight $8$
Character 240.191
Analytic conductor $74.972$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,8,Mod(191,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.191");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.9724061162\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.19
Character \(\chi\) \(=\) 240.191
Dual form 240.8.h.b.191.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.89558 - 46.0940i) q^{3} -125.000i q^{5} -1350.65i q^{7} +(-2062.32 - 727.879i) q^{9} -5196.14 q^{11} +5879.53 q^{13} +(-5761.75 - 986.948i) q^{15} -34471.9i q^{17} +4137.04i q^{19} +(-62256.9 - 10664.2i) q^{21} -70821.0 q^{23} -15625.0 q^{25} +(-49834.1 + 89313.6i) q^{27} +36075.8i q^{29} -48178.2i q^{31} +(-41026.5 + 239511. i) q^{33} -168831. q^{35} +337011. q^{37} +(46422.3 - 271011. i) q^{39} -728822. i q^{41} +495437. i q^{43} +(-90984.8 + 257790. i) q^{45} +558564. q^{47} -1.00071e6 q^{49} +(-1.58895e6 - 272176. i) q^{51} -337164. i q^{53} +649517. i q^{55} +(190693. + 32664.4i) q^{57} -1.71716e6 q^{59} +2.22966e6 q^{61} +(-983109. + 2.78547e6i) q^{63} -734941. i q^{65} -1.37032e6i q^{67} +(-559173. + 3.26442e6i) q^{69} -1.34294e6 q^{71} -34540.7 q^{73} +(-123369. + 720219. i) q^{75} +7.01816e6i q^{77} -6.07870e6i q^{79} +(3.72335e6 + 3.00224e6i) q^{81} +7.21089e6 q^{83} -4.30899e6 q^{85} +(1.66288e6 + 284839. i) q^{87} +5.78395e6i q^{89} -7.94119e6i q^{91} +(-2.22073e6 - 380395. i) q^{93} +517131. q^{95} +4.38168e6 q^{97} +(1.07161e7 + 3.78216e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3324 q^{9} - 432 q^{13} - 22032 q^{21} - 562500 q^{25} - 386232 q^{33} + 1200048 q^{37} - 1710000 q^{45} - 3237972 q^{49} - 9331200 q^{57} + 11262360 q^{61} - 11352552 q^{69} + 37210296 q^{73} - 12564252 q^{81}+ \cdots + 94537320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.89558 46.0940i 0.168834 0.985645i
\(4\) 0 0
\(5\) 125.000i 0.447214i
\(6\) 0 0
\(7\) 1350.65i 1.48833i −0.667995 0.744166i \(-0.732847\pi\)
0.667995 0.744166i \(-0.267153\pi\)
\(8\) 0 0
\(9\) −2062.32 727.879i −0.942990 0.332821i
\(10\) 0 0
\(11\) −5196.14 −1.17708 −0.588540 0.808468i \(-0.700297\pi\)
−0.588540 + 0.808468i \(0.700297\pi\)
\(12\) 0 0
\(13\) 5879.53 0.742234 0.371117 0.928586i \(-0.378975\pi\)
0.371117 + 0.928586i \(0.378975\pi\)
\(14\) 0 0
\(15\) −5761.75 986.948i −0.440794 0.0755049i
\(16\) 0 0
\(17\) 34471.9i 1.70174i −0.525374 0.850871i \(-0.676075\pi\)
0.525374 0.850871i \(-0.323925\pi\)
\(18\) 0 0
\(19\) 4137.04i 0.138373i 0.997604 + 0.0691867i \(0.0220404\pi\)
−0.997604 + 0.0691867i \(0.977960\pi\)
\(20\) 0 0
\(21\) −62256.9 10664.2i −1.46697 0.251281i
\(22\) 0 0
\(23\) −70821.0 −1.21371 −0.606854 0.794813i \(-0.707569\pi\)
−0.606854 + 0.794813i \(0.707569\pi\)
\(24\) 0 0
\(25\) −15625.0 −0.200000
\(26\) 0 0
\(27\) −49834.1 + 89313.6i −0.487252 + 0.873262i
\(28\) 0 0
\(29\) 36075.8i 0.274677i 0.990524 + 0.137339i \(0.0438549\pi\)
−0.990524 + 0.137339i \(0.956145\pi\)
\(30\) 0 0
\(31\) 48178.2i 0.290459i −0.989398 0.145229i \(-0.953608\pi\)
0.989398 0.145229i \(-0.0463920\pi\)
\(32\) 0 0
\(33\) −41026.5 + 239511.i −0.198731 + 1.16018i
\(34\) 0 0
\(35\) −168831. −0.665602
\(36\) 0 0
\(37\) 337011. 1.09380 0.546901 0.837198i \(-0.315808\pi\)
0.546901 + 0.837198i \(0.315808\pi\)
\(38\) 0 0
\(39\) 46422.3 271011.i 0.125314 0.731579i
\(40\) 0 0
\(41\) 728822.i 1.65150i −0.564037 0.825749i \(-0.690753\pi\)
0.564037 0.825749i \(-0.309247\pi\)
\(42\) 0 0
\(43\) 495437.i 0.950274i 0.879912 + 0.475137i \(0.157602\pi\)
−0.879912 + 0.475137i \(0.842398\pi\)
\(44\) 0 0
\(45\) −90984.8 + 257790.i −0.148842 + 0.421718i
\(46\) 0 0
\(47\) 558564. 0.784749 0.392374 0.919806i \(-0.371654\pi\)
0.392374 + 0.919806i \(0.371654\pi\)
\(48\) 0 0
\(49\) −1.00071e6 −1.21513
\(50\) 0 0
\(51\) −1.58895e6 272176.i −1.67731 0.287312i
\(52\) 0 0
\(53\) 337164.i 0.311082i −0.987829 0.155541i \(-0.950288\pi\)
0.987829 0.155541i \(-0.0497122\pi\)
\(54\) 0 0
\(55\) 649517.i 0.526406i
\(56\) 0 0
\(57\) 190693. + 32664.4i 0.136387 + 0.0233621i
\(58\) 0 0
\(59\) −1.71716e6 −1.08850 −0.544251 0.838923i \(-0.683186\pi\)
−0.544251 + 0.838923i \(0.683186\pi\)
\(60\) 0 0
\(61\) 2.22966e6 1.25772 0.628861 0.777518i \(-0.283521\pi\)
0.628861 + 0.777518i \(0.283521\pi\)
\(62\) 0 0
\(63\) −983109. + 2.78547e6i −0.495347 + 1.40348i
\(64\) 0 0
\(65\) 734941.i 0.331937i
\(66\) 0 0
\(67\) 1.37032e6i 0.556622i −0.960491 0.278311i \(-0.910225\pi\)
0.960491 0.278311i \(-0.0897746\pi\)
\(68\) 0 0
\(69\) −559173. + 3.26442e6i −0.204915 + 1.19629i
\(70\) 0 0
\(71\) −1.34294e6 −0.445301 −0.222650 0.974898i \(-0.571471\pi\)
−0.222650 + 0.974898i \(0.571471\pi\)
\(72\) 0 0
\(73\) −34540.7 −0.0103921 −0.00519603 0.999987i \(-0.501654\pi\)
−0.00519603 + 0.999987i \(0.501654\pi\)
\(74\) 0 0
\(75\) −123369. + 720219.i −0.0337668 + 0.197129i
\(76\) 0 0
\(77\) 7.01816e6i 1.75189i
\(78\) 0 0
\(79\) 6.07870e6i 1.38713i −0.720396 0.693563i \(-0.756040\pi\)
0.720396 0.693563i \(-0.243960\pi\)
\(80\) 0 0
\(81\) 3.72335e6 + 3.00224e6i 0.778461 + 0.627693i
\(82\) 0 0
\(83\) 7.21089e6 1.38425 0.692127 0.721776i \(-0.256674\pi\)
0.692127 + 0.721776i \(0.256674\pi\)
\(84\) 0 0
\(85\) −4.30899e6 −0.761042
\(86\) 0 0
\(87\) 1.66288e6 + 284839.i 0.270734 + 0.0463749i
\(88\) 0 0
\(89\) 5.78395e6i 0.869679i 0.900508 + 0.434840i \(0.143195\pi\)
−0.900508 + 0.434840i \(0.856805\pi\)
\(90\) 0 0
\(91\) 7.94119e6i 1.10469i
\(92\) 0 0
\(93\) −2.22073e6 380395.i −0.286289 0.0490393i
\(94\) 0 0
\(95\) 517131. 0.0618825
\(96\) 0 0
\(97\) 4.38168e6 0.487461 0.243730 0.969843i \(-0.421629\pi\)
0.243730 + 0.969843i \(0.421629\pi\)
\(98\) 0 0
\(99\) 1.07161e7 + 3.78216e6i 1.10998 + 0.391757i
\(100\) 0 0
\(101\) 1.52429e7i 1.47212i 0.676917 + 0.736059i \(0.263316\pi\)
−0.676917 + 0.736059i \(0.736684\pi\)
\(102\) 0 0
\(103\) 1.94855e7i 1.75704i 0.477705 + 0.878520i \(0.341469\pi\)
−0.477705 + 0.878520i \(0.658531\pi\)
\(104\) 0 0
\(105\) −1.33302e6 + 7.78211e6i −0.112376 + 0.656047i
\(106\) 0 0
\(107\) −1.68239e7 −1.32765 −0.663824 0.747889i \(-0.731068\pi\)
−0.663824 + 0.747889i \(0.731068\pi\)
\(108\) 0 0
\(109\) 1.18569e7 0.876955 0.438477 0.898742i \(-0.355518\pi\)
0.438477 + 0.898742i \(0.355518\pi\)
\(110\) 0 0
\(111\) 2.66090e6 1.55342e7i 0.184671 1.07810i
\(112\) 0 0
\(113\) 2.72608e7i 1.77731i 0.458573 + 0.888657i \(0.348361\pi\)
−0.458573 + 0.888657i \(0.651639\pi\)
\(114\) 0 0
\(115\) 8.85262e6i 0.542787i
\(116\) 0 0
\(117\) −1.21255e7 4.27958e6i −0.699919 0.247031i
\(118\) 0 0
\(119\) −4.65595e7 −2.53276
\(120\) 0 0
\(121\) 7.51265e6 0.385518
\(122\) 0 0
\(123\) −3.35944e7 5.75448e6i −1.62779 0.278829i
\(124\) 0 0
\(125\) 1.95312e6i 0.0894427i
\(126\) 0 0
\(127\) 8.24161e6i 0.357025i 0.983938 + 0.178513i \(0.0571286\pi\)
−0.983938 + 0.178513i \(0.942871\pi\)
\(128\) 0 0
\(129\) 2.28367e7 + 3.91177e6i 0.936633 + 0.160439i
\(130\) 0 0
\(131\) −8.10126e6 −0.314850 −0.157425 0.987531i \(-0.550319\pi\)
−0.157425 + 0.987531i \(0.550319\pi\)
\(132\) 0 0
\(133\) 5.58770e6 0.205946
\(134\) 0 0
\(135\) 1.11642e7 + 6.22926e6i 0.390534 + 0.217906i
\(136\) 0 0
\(137\) 3.17682e7i 1.05553i 0.849391 + 0.527764i \(0.176970\pi\)
−0.849391 + 0.527764i \(0.823030\pi\)
\(138\) 0 0
\(139\) 1.91926e7i 0.606154i −0.952966 0.303077i \(-0.901986\pi\)
0.952966 0.303077i \(-0.0980139\pi\)
\(140\) 0 0
\(141\) 4.41019e6 2.57465e7i 0.132492 0.773483i
\(142\) 0 0
\(143\) −3.05508e7 −0.873669
\(144\) 0 0
\(145\) 4.50947e6 0.122839
\(146\) 0 0
\(147\) −7.90121e6 + 4.61269e7i −0.205155 + 1.19769i
\(148\) 0 0
\(149\) 1.09057e7i 0.270086i −0.990840 0.135043i \(-0.956883\pi\)
0.990840 0.135043i \(-0.0431173\pi\)
\(150\) 0 0
\(151\) 5.82575e7i 1.37700i 0.725239 + 0.688498i \(0.241729\pi\)
−0.725239 + 0.688498i \(0.758271\pi\)
\(152\) 0 0
\(153\) −2.50914e7 + 7.10920e7i −0.566375 + 1.60473i
\(154\) 0 0
\(155\) −6.02227e6 −0.129897
\(156\) 0 0
\(157\) −4.61596e7 −0.951948 −0.475974 0.879459i \(-0.657904\pi\)
−0.475974 + 0.879459i \(0.657904\pi\)
\(158\) 0 0
\(159\) −1.55412e7 2.66211e6i −0.306617 0.0525213i
\(160\) 0 0
\(161\) 9.56544e7i 1.80640i
\(162\) 0 0
\(163\) 1.01728e8i 1.83985i −0.392095 0.919925i \(-0.628250\pi\)
0.392095 0.919925i \(-0.371750\pi\)
\(164\) 0 0
\(165\) 2.99389e7 + 5.12832e6i 0.518849 + 0.0888753i
\(166\) 0 0
\(167\) 1.04307e7 0.173303 0.0866516 0.996239i \(-0.472383\pi\)
0.0866516 + 0.996239i \(0.472383\pi\)
\(168\) 0 0
\(169\) −2.81796e7 −0.449089
\(170\) 0 0
\(171\) 3.01127e6 8.53191e6i 0.0460535 0.130485i
\(172\) 0 0
\(173\) 1.21364e8i 1.78208i −0.453924 0.891040i \(-0.649976\pi\)
0.453924 0.891040i \(-0.350024\pi\)
\(174\) 0 0
\(175\) 2.11039e7i 0.297666i
\(176\) 0 0
\(177\) −1.35580e7 + 7.91509e7i −0.183776 + 1.07288i
\(178\) 0 0
\(179\) 3.02122e7 0.393728 0.196864 0.980431i \(-0.436924\pi\)
0.196864 + 0.980431i \(0.436924\pi\)
\(180\) 0 0
\(181\) −3.75415e7 −0.470584 −0.235292 0.971925i \(-0.575605\pi\)
−0.235292 + 0.971925i \(0.575605\pi\)
\(182\) 0 0
\(183\) 1.76045e7 1.02774e8i 0.212346 1.23967i
\(184\) 0 0
\(185\) 4.21264e7i 0.489163i
\(186\) 0 0
\(187\) 1.79121e8i 2.00309i
\(188\) 0 0
\(189\) 1.20631e8 + 6.73084e7i 1.29970 + 0.725192i
\(190\) 0 0
\(191\) −1.55793e8 −1.61782 −0.808910 0.587932i \(-0.799942\pi\)
−0.808910 + 0.587932i \(0.799942\pi\)
\(192\) 0 0
\(193\) 1.72336e8 1.72554 0.862772 0.505593i \(-0.168726\pi\)
0.862772 + 0.505593i \(0.168726\pi\)
\(194\) 0 0
\(195\) −3.38764e7 5.80279e6i −0.327172 0.0560423i
\(196\) 0 0
\(197\) 2.40835e6i 0.0224434i −0.999937 0.0112217i \(-0.996428\pi\)
0.999937 0.0112217i \(-0.00357205\pi\)
\(198\) 0 0
\(199\) 1.98476e8i 1.78535i −0.450703 0.892674i \(-0.648827\pi\)
0.450703 0.892674i \(-0.351173\pi\)
\(200\) 0 0
\(201\) −6.31636e7 1.08195e7i −0.548631 0.0939767i
\(202\) 0 0
\(203\) 4.87258e7 0.408811
\(204\) 0 0
\(205\) −9.11028e7 −0.738573
\(206\) 0 0
\(207\) 1.46055e8 + 5.15491e7i 1.14452 + 0.403947i
\(208\) 0 0
\(209\) 2.14966e7i 0.162877i
\(210\) 0 0
\(211\) 1.08223e8i 0.793106i 0.918012 + 0.396553i \(0.129794\pi\)
−0.918012 + 0.396553i \(0.870206\pi\)
\(212\) 0 0
\(213\) −1.06033e7 + 6.19017e7i −0.0751819 + 0.438908i
\(214\) 0 0
\(215\) 6.19296e7 0.424976
\(216\) 0 0
\(217\) −6.50719e7 −0.432299
\(218\) 0 0
\(219\) −272719. + 1.59212e6i −0.00175453 + 0.0102429i
\(220\) 0 0
\(221\) 2.02678e8i 1.26309i
\(222\) 0 0
\(223\) 2.35504e7i 0.142210i −0.997469 0.0711052i \(-0.977347\pi\)
0.997469 0.0711052i \(-0.0226526\pi\)
\(224\) 0 0
\(225\) 3.22237e7 + 1.13731e7i 0.188598 + 0.0665641i
\(226\) 0 0
\(227\) 2.10202e8 1.19274 0.596371 0.802709i \(-0.296609\pi\)
0.596371 + 0.802709i \(0.296609\pi\)
\(228\) 0 0
\(229\) −8.01798e7 −0.441206 −0.220603 0.975364i \(-0.570802\pi\)
−0.220603 + 0.975364i \(0.570802\pi\)
\(230\) 0 0
\(231\) 3.23495e8 + 5.54125e7i 1.72674 + 0.295778i
\(232\) 0 0
\(233\) 1.64931e8i 0.854196i −0.904205 0.427098i \(-0.859536\pi\)
0.904205 0.427098i \(-0.140464\pi\)
\(234\) 0 0
\(235\) 6.98205e7i 0.350950i
\(236\) 0 0
\(237\) −2.80192e8 4.79949e7i −1.36721 0.234194i
\(238\) 0 0
\(239\) −1.73746e7 −0.0823231 −0.0411616 0.999153i \(-0.513106\pi\)
−0.0411616 + 0.999153i \(0.513106\pi\)
\(240\) 0 0
\(241\) 2.97495e8 1.36905 0.684527 0.728987i \(-0.260009\pi\)
0.684527 + 0.728987i \(0.260009\pi\)
\(242\) 0 0
\(243\) 1.67783e8 1.47920e8i 0.750113 0.661310i
\(244\) 0 0
\(245\) 1.25089e8i 0.543423i
\(246\) 0 0
\(247\) 2.43239e7i 0.102705i
\(248\) 0 0
\(249\) 5.69342e7 3.32379e8i 0.233709 1.36438i
\(250\) 0 0
\(251\) 1.10527e8 0.441174 0.220587 0.975367i \(-0.429203\pi\)
0.220587 + 0.975367i \(0.429203\pi\)
\(252\) 0 0
\(253\) 3.67995e8 1.42863
\(254\) 0 0
\(255\) −3.40220e7 + 1.98619e8i −0.128490 + 0.750117i
\(256\) 0 0
\(257\) 1.20153e8i 0.441539i −0.975326 0.220769i \(-0.929143\pi\)
0.975326 0.220769i \(-0.0708568\pi\)
\(258\) 0 0
\(259\) 4.55184e8i 1.62794i
\(260\) 0 0
\(261\) 2.62588e7 7.43998e7i 0.0914183 0.259018i
\(262\) 0 0
\(263\) −4.59590e8 −1.55785 −0.778924 0.627118i \(-0.784234\pi\)
−0.778924 + 0.627118i \(0.784234\pi\)
\(264\) 0 0
\(265\) −4.21455e7 −0.139120
\(266\) 0 0
\(267\) 2.66605e8 + 4.56676e7i 0.857195 + 0.146831i
\(268\) 0 0
\(269\) 1.06178e8i 0.332584i −0.986077 0.166292i \(-0.946821\pi\)
0.986077 0.166292i \(-0.0531794\pi\)
\(270\) 0 0
\(271\) 8.03828e7i 0.245341i −0.992447 0.122671i \(-0.960854\pi\)
0.992447 0.122671i \(-0.0391459\pi\)
\(272\) 0 0
\(273\) −3.66041e8 6.27003e7i −1.08883 0.186509i
\(274\) 0 0
\(275\) 8.11896e7 0.235416
\(276\) 0 0
\(277\) −6.34111e8 −1.79261 −0.896305 0.443438i \(-0.853759\pi\)
−0.896305 + 0.443438i \(0.853759\pi\)
\(278\) 0 0
\(279\) −3.50679e7 + 9.93588e7i −0.0966707 + 0.273900i
\(280\) 0 0
\(281\) 6.15999e8i 1.65618i −0.560594 0.828091i \(-0.689427\pi\)
0.560594 0.828091i \(-0.310573\pi\)
\(282\) 0 0
\(283\) 5.51808e8i 1.44722i 0.690207 + 0.723612i \(0.257519\pi\)
−0.690207 + 0.723612i \(0.742481\pi\)
\(284\) 0 0
\(285\) 4.08305e6 2.38366e7i 0.0104479 0.0609941i
\(286\) 0 0
\(287\) −9.84384e8 −2.45798
\(288\) 0 0
\(289\) −7.77972e8 −1.89593
\(290\) 0 0
\(291\) 3.45959e7 2.01969e8i 0.0823000 0.480463i
\(292\) 0 0
\(293\) 4.71303e8i 1.09462i −0.836930 0.547310i \(-0.815652\pi\)
0.836930 0.547310i \(-0.184348\pi\)
\(294\) 0 0
\(295\) 2.14645e8i 0.486793i
\(296\) 0 0
\(297\) 2.58945e8 4.64085e8i 0.573534 1.02790i
\(298\) 0 0
\(299\) −4.16394e8 −0.900856
\(300\) 0 0
\(301\) 6.69162e8 1.41432
\(302\) 0 0
\(303\) 7.02607e8 + 1.20352e8i 1.45099 + 0.248544i
\(304\) 0 0
\(305\) 2.78708e8i 0.562470i
\(306\) 0 0
\(307\) 7.04863e7i 0.139034i 0.997581 + 0.0695169i \(0.0221458\pi\)
−0.997581 + 0.0695169i \(0.977854\pi\)
\(308\) 0 0
\(309\) 8.98166e8 + 1.53850e8i 1.73182 + 0.296648i
\(310\) 0 0
\(311\) 2.13561e7 0.0402588 0.0201294 0.999797i \(-0.493592\pi\)
0.0201294 + 0.999797i \(0.493592\pi\)
\(312\) 0 0
\(313\) −7.44792e8 −1.37287 −0.686435 0.727191i \(-0.740825\pi\)
−0.686435 + 0.727191i \(0.740825\pi\)
\(314\) 0 0
\(315\) 3.48184e8 + 1.22889e8i 0.627656 + 0.221526i
\(316\) 0 0
\(317\) 5.46558e8i 0.963670i −0.876262 0.481835i \(-0.839970\pi\)
0.876262 0.481835i \(-0.160030\pi\)
\(318\) 0 0
\(319\) 1.87455e8i 0.323317i
\(320\) 0 0
\(321\) −1.32834e8 + 7.75480e8i −0.224152 + 1.30859i
\(322\) 0 0
\(323\) 1.42612e8 0.235476
\(324\) 0 0
\(325\) −9.18677e7 −0.148447
\(326\) 0 0
\(327\) 9.36169e7 5.46531e8i 0.148060 0.864365i
\(328\) 0 0
\(329\) 7.54425e8i 1.16797i
\(330\) 0 0
\(331\) 8.38601e8i 1.27103i −0.772087 0.635517i \(-0.780787\pi\)
0.772087 0.635517i \(-0.219213\pi\)
\(332\) 0 0
\(333\) −6.95025e8 2.45303e8i −1.03144 0.364040i
\(334\) 0 0
\(335\) −1.71290e8 −0.248929
\(336\) 0 0
\(337\) 8.75298e8 1.24581 0.622904 0.782298i \(-0.285953\pi\)
0.622904 + 0.782298i \(0.285953\pi\)
\(338\) 0 0
\(339\) 1.25656e9 + 2.15240e8i 1.75180 + 0.300071i
\(340\) 0 0
\(341\) 2.50340e8i 0.341893i
\(342\) 0 0
\(343\) 2.39294e8i 0.320187i
\(344\) 0 0
\(345\) 4.08053e8 + 6.98966e7i 0.534995 + 0.0916409i
\(346\) 0 0
\(347\) 1.03353e9 1.32792 0.663960 0.747768i \(-0.268875\pi\)
0.663960 + 0.747768i \(0.268875\pi\)
\(348\) 0 0
\(349\) 2.55964e7 0.0322322 0.0161161 0.999870i \(-0.494870\pi\)
0.0161161 + 0.999870i \(0.494870\pi\)
\(350\) 0 0
\(351\) −2.93001e8 + 5.25122e8i −0.361655 + 0.648164i
\(352\) 0 0
\(353\) 9.32132e8i 1.12789i 0.825813 + 0.563944i \(0.190717\pi\)
−0.825813 + 0.563944i \(0.809283\pi\)
\(354\) 0 0
\(355\) 1.67868e8i 0.199145i
\(356\) 0 0
\(357\) −3.67614e8 + 2.14611e9i −0.427616 + 2.49640i
\(358\) 0 0
\(359\) −1.83930e8 −0.209808 −0.104904 0.994482i \(-0.533453\pi\)
−0.104904 + 0.994482i \(0.533453\pi\)
\(360\) 0 0
\(361\) 8.76757e8 0.980853
\(362\) 0 0
\(363\) 5.93168e7 3.46288e8i 0.0650885 0.379983i
\(364\) 0 0
\(365\) 4.31759e6i 0.00464747i
\(366\) 0 0
\(367\) 8.07499e8i 0.852729i −0.904552 0.426364i \(-0.859794\pi\)
0.904552 0.426364i \(-0.140206\pi\)
\(368\) 0 0
\(369\) −5.30494e8 + 1.50306e9i −0.549653 + 1.55735i
\(370\) 0 0
\(371\) −4.55391e8 −0.462994
\(372\) 0 0
\(373\) 7.97292e8 0.795494 0.397747 0.917495i \(-0.369792\pi\)
0.397747 + 0.917495i \(0.369792\pi\)
\(374\) 0 0
\(375\) 9.00274e7 + 1.54211e7i 0.0881587 + 0.0151010i
\(376\) 0 0
\(377\) 2.12109e8i 0.203875i
\(378\) 0 0
\(379\) 8.62959e8i 0.814241i 0.913374 + 0.407120i \(0.133467\pi\)
−0.913374 + 0.407120i \(0.866533\pi\)
\(380\) 0 0
\(381\) 3.79889e8 + 6.50723e7i 0.351900 + 0.0602780i
\(382\) 0 0
\(383\) −7.09139e8 −0.644964 −0.322482 0.946576i \(-0.604517\pi\)
−0.322482 + 0.946576i \(0.604517\pi\)
\(384\) 0 0
\(385\) 8.77270e8 0.783467
\(386\) 0 0
\(387\) 3.60618e8 1.02175e9i 0.316271 0.896099i
\(388\) 0 0
\(389\) 3.74248e8i 0.322356i −0.986925 0.161178i \(-0.948471\pi\)
0.986925 0.161178i \(-0.0515293\pi\)
\(390\) 0 0
\(391\) 2.44133e9i 2.06542i
\(392\) 0 0
\(393\) −6.39642e7 + 3.73420e8i −0.0531573 + 0.310330i
\(394\) 0 0
\(395\) −7.59838e8 −0.620342
\(396\) 0 0
\(397\) −2.26270e9 −1.81493 −0.907466 0.420124i \(-0.861986\pi\)
−0.907466 + 0.420124i \(0.861986\pi\)
\(398\) 0 0
\(399\) 4.41182e7 2.57560e8i 0.0347706 0.202989i
\(400\) 0 0
\(401\) 2.16218e9i 1.67451i −0.546816 0.837253i \(-0.684160\pi\)
0.546816 0.837253i \(-0.315840\pi\)
\(402\) 0 0
\(403\) 2.83265e8i 0.215588i
\(404\) 0 0
\(405\) 3.75280e8 4.65419e8i 0.280713 0.348138i
\(406\) 0 0
\(407\) −1.75116e9 −1.28749
\(408\) 0 0
\(409\) −1.29551e9 −0.936286 −0.468143 0.883653i \(-0.655077\pi\)
−0.468143 + 0.883653i \(0.655077\pi\)
\(410\) 0 0
\(411\) 1.46432e9 + 2.50828e8i 1.04038 + 0.178209i
\(412\) 0 0
\(413\) 2.31928e9i 1.62005i
\(414\) 0 0
\(415\) 9.01361e8i 0.619057i
\(416\) 0 0
\(417\) −8.84666e8 1.51537e8i −0.597452 0.102339i
\(418\) 0 0
\(419\) −1.39379e9 −0.925652 −0.462826 0.886449i \(-0.653165\pi\)
−0.462826 + 0.886449i \(0.653165\pi\)
\(420\) 0 0
\(421\) 9.40084e8 0.614016 0.307008 0.951707i \(-0.400672\pi\)
0.307008 + 0.951707i \(0.400672\pi\)
\(422\) 0 0
\(423\) −1.15194e9 4.06567e8i −0.740010 0.261181i
\(424\) 0 0
\(425\) 5.38623e8i 0.340348i
\(426\) 0 0
\(427\) 3.01149e9i 1.87191i
\(428\) 0 0
\(429\) −2.41217e8 + 1.40821e9i −0.147505 + 0.861127i
\(430\) 0 0
\(431\) −1.96356e9 −1.18134 −0.590668 0.806915i \(-0.701136\pi\)
−0.590668 + 0.806915i \(0.701136\pi\)
\(432\) 0 0
\(433\) −7.55538e8 −0.447248 −0.223624 0.974675i \(-0.571789\pi\)
−0.223624 + 0.974675i \(0.571789\pi\)
\(434\) 0 0
\(435\) 3.56049e7 2.07860e8i 0.0207395 0.121076i
\(436\) 0 0
\(437\) 2.92990e8i 0.167945i
\(438\) 0 0
\(439\) 1.05923e9i 0.597537i 0.954326 + 0.298769i \(0.0965759\pi\)
−0.954326 + 0.298769i \(0.903424\pi\)
\(440\) 0 0
\(441\) 2.06379e9 + 7.28397e8i 1.14586 + 0.404421i
\(442\) 0 0
\(443\) −7.83328e8 −0.428085 −0.214043 0.976824i \(-0.568663\pi\)
−0.214043 + 0.976824i \(0.568663\pi\)
\(444\) 0 0
\(445\) 7.22993e8 0.388932
\(446\) 0 0
\(447\) −5.02688e8 8.61070e7i −0.266209 0.0455997i
\(448\) 0 0
\(449\) 2.73310e9i 1.42493i 0.701708 + 0.712465i \(0.252421\pi\)
−0.701708 + 0.712465i \(0.747579\pi\)
\(450\) 0 0
\(451\) 3.78706e9i 1.94395i
\(452\) 0 0
\(453\) 2.68532e9 + 4.59977e8i 1.35723 + 0.232484i
\(454\) 0 0
\(455\) −9.92648e8 −0.494033
\(456\) 0 0
\(457\) 4.98698e8 0.244417 0.122208 0.992504i \(-0.461002\pi\)
0.122208 + 0.992504i \(0.461002\pi\)
\(458\) 0 0
\(459\) 3.07881e9 + 1.71787e9i 1.48607 + 0.829177i
\(460\) 0 0
\(461\) 3.66061e9i 1.74020i 0.492873 + 0.870101i \(0.335947\pi\)
−0.492873 + 0.870101i \(0.664053\pi\)
\(462\) 0 0
\(463\) 4.77840e8i 0.223743i −0.993723 0.111871i \(-0.964316\pi\)
0.993723 0.111871i \(-0.0356844\pi\)
\(464\) 0 0
\(465\) −4.75494e7 + 2.77591e8i −0.0219311 + 0.128032i
\(466\) 0 0
\(467\) −3.82209e9 −1.73657 −0.868283 0.496069i \(-0.834776\pi\)
−0.868283 + 0.496069i \(0.834776\pi\)
\(468\) 0 0
\(469\) −1.85082e9 −0.828438
\(470\) 0 0
\(471\) −3.64457e8 + 2.12768e9i −0.160721 + 0.938282i
\(472\) 0 0
\(473\) 2.57436e9i 1.11855i
\(474\) 0 0
\(475\) 6.46413e7i 0.0276747i
\(476\) 0 0
\(477\) −2.45414e8 + 6.95340e8i −0.103535 + 0.293348i
\(478\) 0 0
\(479\) −3.37672e9 −1.40385 −0.701924 0.712251i \(-0.747676\pi\)
−0.701924 + 0.712251i \(0.747676\pi\)
\(480\) 0 0
\(481\) 1.98147e9 0.811857
\(482\) 0 0
\(483\) 4.40910e9 + 7.55247e8i 1.78047 + 0.304982i
\(484\) 0 0
\(485\) 5.47710e8i 0.217999i
\(486\) 0 0
\(487\) 1.21677e9i 0.477372i −0.971097 0.238686i \(-0.923283\pi\)
0.971097 0.238686i \(-0.0767166\pi\)
\(488\) 0 0
\(489\) −4.68904e9 8.03199e8i −1.81344 0.310629i
\(490\) 0 0
\(491\) 1.56009e9 0.594789 0.297395 0.954755i \(-0.403882\pi\)
0.297395 + 0.954755i \(0.403882\pi\)
\(492\) 0 0
\(493\) 1.24360e9 0.467430
\(494\) 0 0
\(495\) 4.72769e8 1.33951e9i 0.175199 0.496396i
\(496\) 0 0
\(497\) 1.81385e9i 0.662755i
\(498\) 0 0
\(499\) 1.24349e9i 0.448011i −0.974588 0.224006i \(-0.928087\pi\)
0.974588 0.224006i \(-0.0719134\pi\)
\(500\) 0 0
\(501\) 8.23567e7 4.80794e8i 0.0292595 0.170815i
\(502\) 0 0
\(503\) −4.22042e9 −1.47866 −0.739330 0.673344i \(-0.764857\pi\)
−0.739330 + 0.673344i \(0.764857\pi\)
\(504\) 0 0
\(505\) 1.90536e9 0.658351
\(506\) 0 0
\(507\) −2.22495e8 + 1.29891e9i −0.0758214 + 0.442642i
\(508\) 0 0
\(509\) 5.82245e8i 0.195701i −0.995201 0.0978507i \(-0.968803\pi\)
0.995201 0.0978507i \(-0.0311968\pi\)
\(510\) 0 0
\(511\) 4.66524e7i 0.0154668i
\(512\) 0 0
\(513\) −3.69494e8 2.06166e8i −0.120836 0.0674227i
\(514\) 0 0
\(515\) 2.43569e9 0.785773
\(516\) 0 0
\(517\) −2.90238e9 −0.923712
\(518\) 0 0
\(519\) −5.59414e9 9.58237e8i −1.75650 0.300876i
\(520\) 0 0
\(521\) 1.00581e7i 0.00311589i −0.999999 0.00155794i \(-0.999504\pi\)
0.999999 0.00155794i \(-0.000495909\pi\)
\(522\) 0 0
\(523\) 1.69033e9i 0.516673i −0.966055 0.258337i \(-0.916826\pi\)
0.966055 0.258337i \(-0.0831744\pi\)
\(524\) 0 0
\(525\) 9.72764e8 + 1.66628e8i 0.293393 + 0.0502562i
\(526\) 0 0
\(527\) −1.66079e9 −0.494286
\(528\) 0 0
\(529\) 1.61079e9 0.473089
\(530\) 0 0
\(531\) 3.54134e9 + 1.24989e9i 1.02645 + 0.362276i
\(532\) 0 0
\(533\) 4.28513e9i 1.22580i
\(534\) 0 0
\(535\) 2.10298e9i 0.593742i
\(536\) 0 0
\(537\) 2.38543e8 1.39260e9i 0.0664747 0.388076i
\(538\) 0 0
\(539\) 5.19984e9 1.43031
\(540\) 0 0
\(541\) 5.04328e9 1.36938 0.684688 0.728836i \(-0.259938\pi\)
0.684688 + 0.728836i \(0.259938\pi\)
\(542\) 0 0
\(543\) −2.96412e8 + 1.73044e9i −0.0794505 + 0.463828i
\(544\) 0 0
\(545\) 1.48211e9i 0.392186i
\(546\) 0 0
\(547\) 7.31685e9i 1.91147i −0.294222 0.955737i \(-0.595060\pi\)
0.294222 0.955737i \(-0.404940\pi\)
\(548\) 0 0
\(549\) −4.59828e9 1.62292e9i −1.18602 0.418596i
\(550\) 0 0
\(551\) −1.49247e8 −0.0380080
\(552\) 0 0
\(553\) −8.21020e9 −2.06450
\(554\) 0 0
\(555\) −1.94178e9 3.32613e8i −0.482141 0.0825873i
\(556\) 0 0
\(557\) 1.09682e9i 0.268931i −0.990918 0.134466i \(-0.957068\pi\)
0.990918 0.134466i \(-0.0429318\pi\)
\(558\) 0 0
\(559\) 2.91294e9i 0.705326i
\(560\) 0 0
\(561\) 8.25639e9 + 1.41426e9i 1.97433 + 0.338189i
\(562\) 0 0
\(563\) 4.01062e9 0.947178 0.473589 0.880746i \(-0.342958\pi\)
0.473589 + 0.880746i \(0.342958\pi\)
\(564\) 0 0
\(565\) 3.40760e9 0.794839
\(566\) 0 0
\(567\) 4.05497e9 5.02895e9i 0.934216 1.15861i
\(568\) 0 0
\(569\) 4.04252e9i 0.919941i 0.887934 + 0.459970i \(0.152140\pi\)
−0.887934 + 0.459970i \(0.847860\pi\)
\(570\) 0 0
\(571\) 2.49867e9i 0.561673i 0.959756 + 0.280836i \(0.0906118\pi\)
−0.959756 + 0.280836i \(0.909388\pi\)
\(572\) 0 0
\(573\) −1.23007e9 + 7.18111e9i −0.273143 + 1.59460i
\(574\) 0 0
\(575\) 1.10658e9 0.242742
\(576\) 0 0
\(577\) −5.59645e9 −1.21282 −0.606412 0.795151i \(-0.707392\pi\)
−0.606412 + 0.795151i \(0.707392\pi\)
\(578\) 0 0
\(579\) 1.36070e9 7.94367e9i 0.291331 1.70077i
\(580\) 0 0
\(581\) 9.73939e9i 2.06023i
\(582\) 0 0
\(583\) 1.75195e9i 0.366169i
\(584\) 0 0
\(585\) −5.34948e8 + 1.51568e9i −0.110476 + 0.313013i
\(586\) 0 0
\(587\) 5.95277e9 1.21475 0.607373 0.794416i \(-0.292223\pi\)
0.607373 + 0.794416i \(0.292223\pi\)
\(588\) 0 0
\(589\) 1.99315e8 0.0401918
\(590\) 0 0
\(591\) −1.11011e8 1.90154e7i −0.0221212 0.00378921i
\(592\) 0 0
\(593\) 3.99539e9i 0.786806i 0.919366 + 0.393403i \(0.128702\pi\)
−0.919366 + 0.393403i \(0.871298\pi\)
\(594\) 0 0
\(595\) 5.81993e9i 1.13268i
\(596\) 0 0
\(597\) −9.14857e9 1.56709e9i −1.75972 0.301427i
\(598\) 0 0
\(599\) 7.68215e9 1.46046 0.730228 0.683203i \(-0.239414\pi\)
0.730228 + 0.683203i \(0.239414\pi\)
\(600\) 0 0
\(601\) 8.42836e9 1.58374 0.791868 0.610693i \(-0.209109\pi\)
0.791868 + 0.610693i \(0.209109\pi\)
\(602\) 0 0
\(603\) −9.97427e8 + 2.82604e9i −0.185255 + 0.524889i
\(604\) 0 0
\(605\) 9.39081e8i 0.172409i
\(606\) 0 0
\(607\) 1.38208e9i 0.250826i −0.992105 0.125413i \(-0.959974\pi\)
0.992105 0.125413i \(-0.0400257\pi\)
\(608\) 0 0
\(609\) 3.84718e8 2.24597e9i 0.0690212 0.402942i
\(610\) 0 0
\(611\) 3.28409e9 0.582467
\(612\) 0 0
\(613\) −4.50316e9 −0.789598 −0.394799 0.918768i \(-0.629186\pi\)
−0.394799 + 0.918768i \(0.629186\pi\)
\(614\) 0 0
\(615\) −7.19310e8 + 4.19930e9i −0.124696 + 0.727970i
\(616\) 0 0
\(617\) 1.00952e9i 0.173029i 0.996251 + 0.0865144i \(0.0275729\pi\)
−0.996251 + 0.0865144i \(0.972427\pi\)
\(618\) 0 0
\(619\) 1.88930e9i 0.320172i −0.987103 0.160086i \(-0.948823\pi\)
0.987103 0.160086i \(-0.0511771\pi\)
\(620\) 0 0
\(621\) 3.52930e9 6.32528e9i 0.591382 1.05989i
\(622\) 0 0
\(623\) 7.81209e9 1.29437
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) −9.90867e8 1.69729e8i −0.160538 0.0274991i
\(628\) 0 0
\(629\) 1.16174e10i 1.86137i
\(630\) 0 0
\(631\) 8.07412e9i 1.27936i −0.768642 0.639680i \(-0.779067\pi\)
0.768642 0.639680i \(-0.220933\pi\)
\(632\) 0 0
\(633\) 4.98844e9 + 8.54485e8i 0.781721 + 0.133903i
\(634\) 0 0
\(635\) 1.03020e9 0.159667
\(636\) 0 0
\(637\) −5.88372e9 −0.901912
\(638\) 0 0
\(639\) 2.76958e9 + 9.77500e8i 0.419914 + 0.148205i
\(640\) 0 0
\(641\) 5.93182e9i 0.889579i −0.895635 0.444789i \(-0.853278\pi\)
0.895635 0.444789i \(-0.146722\pi\)
\(642\) 0 0
\(643\) 5.47689e8i 0.0812448i 0.999175 + 0.0406224i \(0.0129341\pi\)
−0.999175 + 0.0406224i \(0.987066\pi\)
\(644\) 0 0
\(645\) 4.88971e8 2.85459e9i 0.0717503 0.418875i
\(646\) 0 0
\(647\) −4.07837e9 −0.591999 −0.296000 0.955188i \(-0.595653\pi\)
−0.296000 + 0.955188i \(0.595653\pi\)
\(648\) 0 0
\(649\) 8.92260e9 1.28125
\(650\) 0 0
\(651\) −5.13781e8 + 2.99943e9i −0.0729868 + 0.426093i
\(652\) 0 0
\(653\) 1.23204e10i 1.73152i −0.500456 0.865762i \(-0.666834\pi\)
0.500456 0.865762i \(-0.333166\pi\)
\(654\) 0 0
\(655\) 1.01266e9i 0.140805i
\(656\) 0 0
\(657\) 7.12340e7 + 2.51415e7i 0.00979960 + 0.00345869i
\(658\) 0 0
\(659\) −4.58602e9 −0.624219 −0.312109 0.950046i \(-0.601036\pi\)
−0.312109 + 0.950046i \(0.601036\pi\)
\(660\) 0 0
\(661\) 6.61798e8 0.0891293 0.0445647 0.999007i \(-0.485810\pi\)
0.0445647 + 0.999007i \(0.485810\pi\)
\(662\) 0 0
\(663\) −9.34227e9 1.60027e9i −1.24496 0.213253i
\(664\) 0 0
\(665\) 6.98462e8i 0.0921016i
\(666\) 0 0
\(667\) 2.55492e9i 0.333378i
\(668\) 0 0
\(669\) −1.08553e9 1.85944e8i −0.140169 0.0240100i
\(670\) 0 0
\(671\) −1.15856e10 −1.48044
\(672\) 0 0
\(673\) −1.17729e10 −1.48878 −0.744389 0.667746i \(-0.767259\pi\)
−0.744389 + 0.667746i \(0.767259\pi\)
\(674\) 0 0
\(675\) 7.78657e8 1.39552e9i 0.0974503 0.174652i
\(676\) 0 0
\(677\) 1.01101e9i 0.125226i −0.998038 0.0626131i \(-0.980057\pi\)
0.998038 0.0626131i \(-0.0199434\pi\)
\(678\) 0 0
\(679\) 5.91812e9i 0.725504i
\(680\) 0 0
\(681\) 1.65967e9 9.68906e9i 0.201375 1.17562i
\(682\) 0 0
\(683\) −2.59887e9 −0.312114 −0.156057 0.987748i \(-0.549878\pi\)
−0.156057 + 0.987748i \(0.549878\pi\)
\(684\) 0 0
\(685\) 3.97102e9 0.472047
\(686\) 0 0
\(687\) −6.33067e8 + 3.69581e9i −0.0744905 + 0.434872i
\(688\) 0 0
\(689\) 1.98237e9i 0.230896i
\(690\) 0 0
\(691\) 1.19545e10i 1.37835i 0.724597 + 0.689173i \(0.242026\pi\)
−0.724597 + 0.689173i \(0.757974\pi\)
\(692\) 0 0
\(693\) 5.10837e9 1.44737e10i 0.583064 1.65201i
\(694\) 0 0
\(695\) −2.39908e9 −0.271080
\(696\) 0 0
\(697\) −2.51239e10 −2.81043
\(698\) 0 0
\(699\) −7.60235e9 1.30223e9i −0.841934 0.144217i
\(700\) 0 0
\(701\) 1.68159e10i 1.84377i 0.387465 + 0.921884i \(0.373351\pi\)
−0.387465 + 0.921884i \(0.626649\pi\)
\(702\) 0 0
\(703\) 1.39423e9i 0.151353i
\(704\) 0 0
\(705\) −3.21831e9 5.51274e8i −0.345912 0.0592523i
\(706\) 0 0
\(707\) 2.05878e10 2.19100
\(708\) 0 0
\(709\) −8.91920e9 −0.939862 −0.469931 0.882703i \(-0.655721\pi\)
−0.469931 + 0.882703i \(0.655721\pi\)
\(710\) 0 0
\(711\) −4.42456e9 + 1.25362e10i −0.461664 + 1.30805i
\(712\) 0 0
\(713\) 3.41203e9i 0.352532i
\(714\) 0 0
\(715\) 3.81885e9i 0.390717i
\(716\) 0 0
\(717\) −1.37182e8 + 8.00865e8i −0.0138989 + 0.0811413i
\(718\) 0 0
\(719\) −1.20751e10 −1.21155 −0.605775 0.795636i \(-0.707137\pi\)
−0.605775 + 0.795636i \(0.707137\pi\)
\(720\) 0 0
\(721\) 2.63181e10 2.61506
\(722\) 0 0
\(723\) 2.34890e9 1.37128e10i 0.231143 1.34940i
\(724\) 0 0
\(725\) 5.63684e8i 0.0549355i
\(726\) 0 0
\(727\) 1.52930e10i 1.47612i 0.674735 + 0.738060i \(0.264258\pi\)
−0.674735 + 0.738060i \(0.735742\pi\)
\(728\) 0 0
\(729\) −5.49348e9 8.90172e9i −0.525172 0.850996i
\(730\) 0 0
\(731\) 1.70787e10 1.61712
\(732\) 0 0
\(733\) 1.34809e10 1.26431 0.632157 0.774841i \(-0.282170\pi\)
0.632157 + 0.774841i \(0.282170\pi\)
\(734\) 0 0
\(735\) 5.76586e9 + 9.87652e8i 0.535622 + 0.0917483i
\(736\) 0 0
\(737\) 7.12037e9i 0.655189i
\(738\) 0 0
\(739\) 1.06341e10i 0.969268i −0.874717 0.484634i \(-0.838953\pi\)
0.874717 0.484634i \(-0.161047\pi\)
\(740\) 0 0
\(741\) 1.12119e9 + 1.92051e8i 0.101231 + 0.0173402i
\(742\) 0 0
\(743\) 6.62660e9 0.592693 0.296346 0.955081i \(-0.404232\pi\)
0.296346 + 0.955081i \(0.404232\pi\)
\(744\) 0 0
\(745\) −1.36321e9 −0.120786
\(746\) 0 0
\(747\) −1.48712e10 5.24865e9i −1.30534 0.460708i
\(748\) 0 0
\(749\) 2.27232e10i 1.97598i
\(750\) 0 0
\(751\) 6.65260e9i 0.573128i 0.958061 + 0.286564i \(0.0925131\pi\)
−0.958061 + 0.286564i \(0.907487\pi\)
\(752\) 0 0
\(753\) 8.72675e8 5.09463e9i 0.0744852 0.434841i
\(754\) 0 0
\(755\) 7.28219e9 0.615811
\(756\) 0 0
\(757\) −4.95809e9 −0.415411 −0.207706 0.978191i \(-0.566600\pi\)
−0.207706 + 0.978191i \(0.566600\pi\)
\(758\) 0 0
\(759\) 2.90554e9 1.69624e10i 0.241202 1.40812i
\(760\) 0 0
\(761\) 1.11170e10i 0.914411i 0.889361 + 0.457206i \(0.151150\pi\)
−0.889361 + 0.457206i \(0.848850\pi\)
\(762\) 0 0
\(763\) 1.60145e10i 1.30520i
\(764\) 0 0
\(765\) 8.88651e9 + 3.13642e9i 0.717655 + 0.253291i
\(766\) 0 0
\(767\) −1.00961e10 −0.807923
\(768\) 0 0
\(769\) −7.24814e9 −0.574757 −0.287379 0.957817i \(-0.592784\pi\)
−0.287379 + 0.957817i \(0.592784\pi\)
\(770\) 0 0
\(771\) −5.53834e9 9.48679e8i −0.435200 0.0745468i
\(772\) 0 0
\(773\) 1.50778e10i 1.17411i 0.809546 + 0.587057i \(0.199713\pi\)
−0.809546 + 0.587057i \(0.800287\pi\)
\(774\) 0 0
\(775\) 7.52784e8i 0.0580918i
\(776\) 0 0
\(777\) −2.09813e10 3.59395e9i −1.60457 0.274851i
\(778\) 0 0
\(779\) 3.01517e9 0.228523
\(780\) 0 0
\(781\) 6.97811e9 0.524155
\(782\) 0 0
\(783\) −3.22206e9 1.79780e9i −0.239865 0.133837i
\(784\) 0 0
\(785\) 5.76995e9i 0.425724i
\(786\) 0 0
\(787\) 6.39018e9i 0.467306i 0.972320 + 0.233653i \(0.0750680\pi\)
−0.972320 + 0.233653i \(0.924932\pi\)
\(788\) 0 0
\(789\) −3.62873e9 + 2.11843e10i −0.263018 + 1.53548i
\(790\) 0 0
\(791\) 3.68198e10 2.64523
\(792\) 0 0
\(793\) 1.31094e10 0.933524
\(794\) 0 0
\(795\) −3.32763e8 + 1.94266e9i −0.0234882 + 0.137123i
\(796\) 0 0
\(797\) 2.01379e10i 1.40900i 0.709705 + 0.704499i \(0.248828\pi\)
−0.709705 + 0.704499i \(0.751172\pi\)
\(798\) 0 0
\(799\) 1.92548e10i 1.33544i
\(800\) 0 0
\(801\) 4.21001e9 1.19283e10i 0.289447 0.820099i
\(802\) 0 0
\(803\) 1.79478e8 0.0122323
\(804\) 0 0
\(805\) 1.19568e10 0.807847
\(806\) 0 0
\(807\) −4.89417e9 8.38337e8i −0.327810 0.0561515i
\(808\) 0 0
\(809\) 2.11237e10i 1.40265i −0.712840 0.701326i \(-0.752592\pi\)
0.712840 0.701326i \(-0.247408\pi\)
\(810\) 0 0
\(811\) 1.04253e10i 0.686302i 0.939280 + 0.343151i \(0.111494\pi\)
−0.939280 + 0.343151i \(0.888506\pi\)
\(812\) 0 0
\(813\) −3.70517e9 6.34669e8i −0.241819 0.0414219i
\(814\) 0 0
\(815\) −1.27160e10 −0.822806
\(816\) 0 0
\(817\) −2.04965e9 −0.131493
\(818\) 0 0
\(819\) −5.78022e9 + 1.63773e10i −0.367664 + 1.04171i
\(820\) 0 0
\(821\) 1.41564e10i 0.892796i −0.894834 0.446398i \(-0.852707\pi\)
0.894834 0.446398i \(-0.147293\pi\)
\(822\) 0 0
\(823\) 2.50984e9i 0.156945i −0.996916 0.0784723i \(-0.974996\pi\)
0.996916 0.0784723i \(-0.0250042\pi\)
\(824\) 0 0
\(825\) 6.41039e8 3.74236e9i 0.0397462 0.232037i
\(826\) 0 0
\(827\) 5.62711e9 0.345952 0.172976 0.984926i \(-0.444662\pi\)
0.172976 + 0.984926i \(0.444662\pi\)
\(828\) 0 0
\(829\) −2.36326e10 −1.44069 −0.720345 0.693616i \(-0.756016\pi\)
−0.720345 + 0.693616i \(0.756016\pi\)
\(830\) 0 0
\(831\) −5.00667e9 + 2.92287e10i −0.302654 + 1.76688i
\(832\) 0 0
\(833\) 3.44965e10i 2.06784i
\(834\) 0 0
\(835\) 1.30384e9i 0.0775036i
\(836\) 0 0
\(837\) 4.30297e9 + 2.40092e9i 0.253647 + 0.141527i
\(838\) 0 0
\(839\) 5.28767e9 0.309099 0.154550 0.987985i \(-0.450607\pi\)
0.154550 + 0.987985i \(0.450607\pi\)
\(840\) 0 0
\(841\) 1.59484e10 0.924552
\(842\) 0 0
\(843\) −2.83939e10 4.86367e9i −1.63241 0.279620i
\(844\) 0 0
\(845\) 3.52246e9i 0.200839i
\(846\) 0 0
\(847\) 1.01470e10i 0.573778i
\(848\) 0 0
\(849\) 2.54351e10 + 4.35685e9i 1.42645 + 0.244340i
\(850\) 0 0
\(851\) −2.38675e10 −1.32756
\(852\) 0 0
\(853\) 2.60783e10 1.43866 0.719329 0.694669i \(-0.244449\pi\)
0.719329 + 0.694669i \(0.244449\pi\)
\(854\) 0 0
\(855\) −1.06649e9 3.76408e8i −0.0583546 0.0205958i
\(856\) 0 0
\(857\) 1.23249e10i 0.668882i −0.942417 0.334441i \(-0.891452\pi\)
0.942417 0.334441i \(-0.108548\pi\)
\(858\) 0 0
\(859\) 6.61867e9i 0.356282i 0.984005 + 0.178141i \(0.0570084\pi\)
−0.984005 + 0.178141i \(0.942992\pi\)
\(860\) 0 0
\(861\) −7.77229e9 + 4.53742e10i −0.414990 + 2.42269i
\(862\) 0 0
\(863\) −2.81070e9 −0.148859 −0.0744297 0.997226i \(-0.523714\pi\)
−0.0744297 + 0.997226i \(0.523714\pi\)
\(864\) 0 0
\(865\) −1.51705e10 −0.796971
\(866\) 0 0
\(867\) −6.14255e9 + 3.58599e10i −0.320097 + 1.86871i
\(868\) 0 0
\(869\) 3.15858e10i 1.63276i
\(870\) 0 0
\(871\) 8.05684e9i 0.413144i
\(872\) 0 0
\(873\) −9.03643e9 3.18933e9i −0.459671 0.162237i
\(874\) 0 0
\(875\) 2.63799e9 0.133120
\(876\) 0 0
\(877\) 3.20127e8 0.0160260 0.00801298 0.999968i \(-0.497449\pi\)
0.00801298 + 0.999968i \(0.497449\pi\)
\(878\) 0 0
\(879\) −2.17243e10 3.72121e9i −1.07891 0.184809i
\(880\) 0 0
\(881\) 1.26151e9i 0.0621548i −0.999517 0.0310774i \(-0.990106\pi\)
0.999517 0.0310774i \(-0.00989383\pi\)
\(882\) 0 0
\(883\) 1.52205e10i 0.743990i 0.928235 + 0.371995i \(0.121326\pi\)
−0.928235 + 0.371995i \(0.878674\pi\)
\(884\) 0 0
\(885\) 9.89386e9 + 1.69475e9i 0.479805 + 0.0821872i
\(886\) 0 0
\(887\) 1.67411e10 0.805473 0.402736 0.915316i \(-0.368059\pi\)
0.402736 + 0.915316i \(0.368059\pi\)
\(888\) 0 0
\(889\) 1.11315e10 0.531372
\(890\) 0 0
\(891\) −1.93471e10 1.56000e10i −0.916311 0.738845i
\(892\) 0 0
\(893\) 2.31080e9i 0.108588i
\(894\) 0 0
\(895\) 3.77652e9i 0.176081i
\(896\) 0 0
\(897\) −3.28767e9 + 1.91933e10i −0.152095 + 0.887924i
\(898\) 0 0
\(899\) 1.73807e9 0.0797824
\(900\) 0 0
\(901\) −1.16227e10 −0.529382
\(902\) 0 0
\(903\) 5.28343e9 3.08444e10i 0.238786 1.39402i
\(904\) 0 0
\(905\) 4.69269e9i 0.210451i
\(906\) 0 0
\(907\) 3.15856e10i 1.40560i −0.711385 0.702802i \(-0.751932\pi\)
0.711385 0.702802i \(-0.248068\pi\)
\(908\) 0 0
\(909\) 1.10950e10 3.14357e10i 0.489951 1.38819i
\(910\) 0 0
\(911\) 1.19638e9 0.0524271 0.0262136 0.999656i \(-0.491655\pi\)
0.0262136 + 0.999656i \(0.491655\pi\)
\(912\) 0 0
\(913\) −3.74688e10 −1.62938
\(914\) 0 0
\(915\) −1.28468e10 2.20056e9i −0.554396 0.0949641i
\(916\) 0 0
\(917\) 1.09420e10i 0.468601i
\(918\) 0 0
\(919\) 1.93525e10i 0.822496i 0.911524 + 0.411248i \(0.134907\pi\)
−0.911524 + 0.411248i \(0.865093\pi\)
\(920\) 0 0
\(921\) 3.24900e9 + 5.56531e8i 0.137038 + 0.0234736i
\(922\) 0 0
\(923\) −7.89587e9 −0.330517
\(924\) 0 0
\(925\) −5.26580e9 −0.218760
\(926\) 0 0
\(927\) 1.41831e10 4.01854e10i 0.584779 1.65687i
\(928\) 0 0
\(929\) 2.27011e10i 0.928948i 0.885587 + 0.464474i \(0.153757\pi\)
−0.885587 + 0.464474i \(0.846243\pi\)
\(930\) 0 0
\(931\) 4.13999e9i 0.168142i
\(932\) 0 0
\(933\) 1.68619e8 9.84390e8i 0.00679706 0.0396809i
\(934\) 0 0
\(935\) 2.23901e10 0.895808
\(936\) 0 0
\(937\) 8.34496e9 0.331387 0.165694 0.986177i \(-0.447014\pi\)
0.165694 + 0.986177i \(0.447014\pi\)
\(938\) 0 0
\(939\) −5.88056e9 + 3.43304e10i −0.231787 + 1.35316i
\(940\) 0 0
\(941\) 3.06131e10i 1.19769i −0.800865 0.598845i \(-0.795627\pi\)
0.800865 0.598845i \(-0.204373\pi\)
\(942\) 0 0
\(943\) 5.16159e10i 2.00444i
\(944\) 0 0
\(945\) 8.41355e9 1.50789e10i 0.324316 0.581245i
\(946\) 0 0
\(947\) −2.53338e10 −0.969339 −0.484670 0.874697i \(-0.661060\pi\)
−0.484670 + 0.874697i \(0.661060\pi\)
\(948\) 0 0
\(949\) −2.03083e8 −0.00771334
\(950\) 0 0
\(951\) −2.51930e10 4.31539e9i −0.949837 0.162700i
\(952\) 0 0
\(953\) 1.92371e10i 0.719971i −0.932958 0.359986i \(-0.882782\pi\)
0.932958 0.359986i \(-0.117218\pi\)
\(954\) 0 0
\(955\) 1.94741e10i 0.723511i
\(956\) 0 0
\(957\) −8.64054e9 1.48006e9i −0.318676 0.0545869i
\(958\) 0 0
\(959\) 4.29077e10 1.57098
\(960\) 0 0
\(961\) 2.51915e10 0.915634
\(962\) 0 0
\(963\) 3.46962e10 + 1.22457e10i 1.25196 + 0.441869i
\(964\) 0 0
\(965\) 2.15420e10i 0.771687i
\(966\) 0 0
\(967\) 1.93286e10i 0.687399i −0.939080 0.343699i \(-0.888320\pi\)
0.939080 0.343699i \(-0.111680\pi\)
\(968\) 0 0
\(969\) 1.12600e9 6.57355e9i 0.0397563 0.232096i
\(970\) 0 0
\(971\) −2.56710e10 −0.899861 −0.449931 0.893063i \(-0.648551\pi\)
−0.449931 + 0.893063i \(0.648551\pi\)
\(972\) 0 0
\(973\) −2.59225e10 −0.902158
\(974\) 0 0
\(975\) −7.25349e8 + 4.23455e9i −0.0250629 + 0.146316i
\(976\) 0 0
\(977\) 4.63030e10i 1.58847i 0.607612 + 0.794234i \(0.292128\pi\)
−0.607612 + 0.794234i \(0.707872\pi\)
\(978\) 0 0
\(979\) 3.00542e10i 1.02368i
\(980\) 0 0
\(981\) −2.44526e10 8.63036e9i −0.826959 0.291869i
\(982\) 0 0
\(983\) 4.11266e9 0.138097 0.0690487 0.997613i \(-0.478004\pi\)
0.0690487 + 0.997613i \(0.478004\pi\)
\(984\) 0 0
\(985\) −3.01044e8 −0.0100370
\(986\) 0 0
\(987\) −3.47745e10 5.95662e9i −1.15120 0.197192i
\(988\) 0 0
\(989\) 3.50873e10i 1.15336i
\(990\) 0 0
\(991\) 2.57081e9i 0.0839098i 0.999120 + 0.0419549i \(0.0133586\pi\)
−0.999120 + 0.0419549i \(0.986641\pi\)
\(992\) 0 0
\(993\) −3.86545e10 6.62125e9i −1.25279 0.214594i
\(994\) 0 0
\(995\) −2.48095e10 −0.798432
\(996\) 0 0
\(997\) 1.05992e10 0.338719 0.169360 0.985554i \(-0.445830\pi\)
0.169360 + 0.985554i \(0.445830\pi\)
\(998\) 0 0
\(999\) −1.67946e10 + 3.00997e10i −0.532956 + 0.955175i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.h.b.191.19 yes 36
3.2 odd 2 inner 240.8.h.b.191.17 36
4.3 odd 2 inner 240.8.h.b.191.18 yes 36
12.11 even 2 inner 240.8.h.b.191.20 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.8.h.b.191.17 36 3.2 odd 2 inner
240.8.h.b.191.18 yes 36 4.3 odd 2 inner
240.8.h.b.191.19 yes 36 1.1 even 1 trivial
240.8.h.b.191.20 yes 36 12.11 even 2 inner