Properties

Label 243.2.g.a.127.4
Level $243$
Weight $2$
Character 243.127
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(10,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 127.4
Character \(\chi\) \(=\) 243.127
Dual form 243.2.g.a.199.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.259760 + 0.275329i) q^{2} +(0.107959 + 1.85358i) q^{4} +(1.27364 + 0.148867i) q^{5} +(1.70721 - 0.857394i) q^{7} +(-1.11832 - 0.938383i) q^{8} +(-0.371828 + 0.312001i) q^{10} +(-1.93272 + 4.48054i) q^{11} +(3.34705 - 0.793266i) q^{13} +(-0.207399 + 0.692762i) q^{14} +(-3.13947 + 0.366951i) q^{16} +(-0.0728119 - 0.412937i) q^{17} +(-0.626542 + 3.55329i) q^{19} +(-0.138437 + 2.37686i) q^{20} +(-0.731582 - 1.69600i) q^{22} +(5.99966 + 3.01314i) q^{23} +(-3.26522 - 0.773872i) q^{25} +(-0.651020 + 1.12760i) q^{26} +(1.77356 + 3.07189i) q^{28} +(-1.44045 - 4.81145i) q^{29} +(5.54449 - 3.64667i) q^{31} +(2.45802 - 3.30169i) q^{32} +(0.132607 + 0.0872170i) q^{34} +(2.30201 - 0.837864i) q^{35} +(0.465059 + 0.169268i) q^{37} +(-0.815575 - 1.09551i) q^{38} +(-1.28465 - 1.36164i) q^{40} +(-4.16545 - 4.41512i) q^{41} +(-6.92694 - 9.30450i) q^{43} +(-8.51368 - 3.09873i) q^{44} +(-2.38808 + 0.869188i) q^{46} +(5.06765 + 3.33305i) q^{47} +(-2.00066 + 2.68735i) q^{49} +(1.06124 - 0.697991i) q^{50} +(1.83172 + 6.11838i) q^{52} +(-2.95007 - 5.10967i) q^{53} +(-3.12859 + 5.41888i) q^{55} +(-2.71378 - 0.643177i) q^{56} +(1.69890 + 0.853222i) q^{58} +(-2.23192 - 5.17418i) q^{59} +(0.161757 - 2.77726i) q^{61} +(-0.436200 + 2.47381i) q^{62} +(-0.827191 - 4.69124i) q^{64} +(4.38103 - 0.512069i) q^{65} +(2.07542 - 6.93240i) q^{67} +(0.757549 - 0.179542i) q^{68} +(-0.367282 + 0.851455i) q^{70} +(11.9949 - 10.0649i) q^{71} +(-5.04326 - 4.23179i) q^{73} +(-0.167408 + 0.0840754i) q^{74} +(-6.65395 - 0.777735i) q^{76} +(0.542032 + 9.30634i) q^{77} +(-2.62307 + 2.78030i) q^{79} -4.05318 q^{80} +2.29763 q^{82} +(-3.32898 + 3.52851i) q^{83} +(-0.0312634 - 0.536772i) q^{85} +(4.36114 + 0.509744i) q^{86} +(6.36586 - 3.19706i) q^{88} +(7.97723 + 6.69369i) q^{89} +(5.03399 - 4.22402i) q^{91} +(-4.93738 + 11.4461i) q^{92} +(-2.23406 + 0.529481i) q^{94} +(-1.32696 + 4.43235i) q^{95} +(2.14884 - 0.251163i) q^{97} +(-0.220216 - 1.24891i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{20}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.259760 + 0.275329i −0.183678 + 0.194687i −0.812669 0.582725i \(-0.801986\pi\)
0.628992 + 0.777412i \(0.283468\pi\)
\(3\) 0 0
\(4\) 0.107959 + 1.85358i 0.0539793 + 0.926789i
\(5\) 1.27364 + 0.148867i 0.569590 + 0.0665755i 0.396013 0.918245i \(-0.370394\pi\)
0.173577 + 0.984820i \(0.444468\pi\)
\(6\) 0 0
\(7\) 1.70721 0.857394i 0.645266 0.324065i −0.0958958 0.995391i \(-0.530572\pi\)
0.741161 + 0.671327i \(0.234275\pi\)
\(8\) −1.11832 0.938383i −0.395386 0.331768i
\(9\) 0 0
\(10\) −0.371828 + 0.312001i −0.117582 + 0.0986633i
\(11\) −1.93272 + 4.48054i −0.582736 + 1.35093i 0.330617 + 0.943765i \(0.392743\pi\)
−0.913353 + 0.407169i \(0.866516\pi\)
\(12\) 0 0
\(13\) 3.34705 0.793266i 0.928305 0.220012i 0.261465 0.965213i \(-0.415794\pi\)
0.666840 + 0.745201i \(0.267646\pi\)
\(14\) −0.207399 + 0.692762i −0.0554298 + 0.185148i
\(15\) 0 0
\(16\) −3.13947 + 0.366951i −0.784867 + 0.0917379i
\(17\) −0.0728119 0.412937i −0.0176595 0.100152i 0.974704 0.223499i \(-0.0717481\pi\)
−0.992364 + 0.123348i \(0.960637\pi\)
\(18\) 0 0
\(19\) −0.626542 + 3.55329i −0.143739 + 0.815182i 0.824633 + 0.565668i \(0.191382\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(20\) −0.138437 + 2.37686i −0.0309554 + 0.531483i
\(21\) 0 0
\(22\) −0.731582 1.69600i −0.155974 0.361588i
\(23\) 5.99966 + 3.01314i 1.25102 + 0.628284i 0.946032 0.324074i \(-0.105053\pi\)
0.304984 + 0.952358i \(0.401349\pi\)
\(24\) 0 0
\(25\) −3.26522 0.773872i −0.653045 0.154774i
\(26\) −0.651020 + 1.12760i −0.127675 + 0.221140i
\(27\) 0 0
\(28\) 1.77356 + 3.07189i 0.335170 + 0.580532i
\(29\) −1.44045 4.81145i −0.267486 0.893464i −0.981194 0.193022i \(-0.938171\pi\)
0.713709 0.700443i \(-0.247014\pi\)
\(30\) 0 0
\(31\) 5.54449 3.64667i 0.995819 0.654960i 0.0566423 0.998395i \(-0.481961\pi\)
0.939177 + 0.343434i \(0.111590\pi\)
\(32\) 2.45802 3.30169i 0.434520 0.583662i
\(33\) 0 0
\(34\) 0.132607 + 0.0872170i 0.0227419 + 0.0149576i
\(35\) 2.30201 0.837864i 0.389111 0.141625i
\(36\) 0 0
\(37\) 0.465059 + 0.169268i 0.0764552 + 0.0278274i 0.379965 0.925001i \(-0.375936\pi\)
−0.303509 + 0.952828i \(0.598158\pi\)
\(38\) −0.815575 1.09551i −0.132304 0.177715i
\(39\) 0 0
\(40\) −1.28465 1.36164i −0.203120 0.215295i
\(41\) −4.16545 4.41512i −0.650535 0.689526i 0.315210 0.949022i \(-0.397925\pi\)
−0.965744 + 0.259496i \(0.916444\pi\)
\(42\) 0 0
\(43\) −6.92694 9.30450i −1.05635 1.41892i −0.902429 0.430839i \(-0.858218\pi\)
−0.153920 0.988083i \(-0.549190\pi\)
\(44\) −8.51368 3.09873i −1.28349 0.467151i
\(45\) 0 0
\(46\) −2.38808 + 0.869188i −0.352102 + 0.128155i
\(47\) 5.06765 + 3.33305i 0.739193 + 0.486175i 0.862413 0.506205i \(-0.168952\pi\)
−0.123221 + 0.992379i \(0.539322\pi\)
\(48\) 0 0
\(49\) −2.00066 + 2.68735i −0.285809 + 0.383908i
\(50\) 1.06124 0.697991i 0.150082 0.0987108i
\(51\) 0 0
\(52\) 1.83172 + 6.11838i 0.254014 + 0.848467i
\(53\) −2.95007 5.10967i −0.405223 0.701867i 0.589124 0.808043i \(-0.299473\pi\)
−0.994347 + 0.106175i \(0.966140\pi\)
\(54\) 0 0
\(55\) −3.12859 + 5.41888i −0.421859 + 0.730682i
\(56\) −2.71378 0.643177i −0.362644 0.0859481i
\(57\) 0 0
\(58\) 1.69890 + 0.853222i 0.223077 + 0.112034i
\(59\) −2.23192 5.17418i −0.290572 0.673621i 0.708927 0.705282i \(-0.249180\pi\)
−0.999499 + 0.0316611i \(0.989920\pi\)
\(60\) 0 0
\(61\) 0.161757 2.77726i 0.0207109 0.355592i −0.971993 0.235011i \(-0.924487\pi\)
0.992704 0.120581i \(-0.0384757\pi\)
\(62\) −0.436200 + 2.47381i −0.0553975 + 0.314175i
\(63\) 0 0
\(64\) −0.827191 4.69124i −0.103399 0.586404i
\(65\) 4.38103 0.512069i 0.543400 0.0635144i
\(66\) 0 0
\(67\) 2.07542 6.93240i 0.253553 0.846928i −0.732538 0.680726i \(-0.761665\pi\)
0.986092 0.166202i \(-0.0531503\pi\)
\(68\) 0.757549 0.179542i 0.0918664 0.0217727i
\(69\) 0 0
\(70\) −0.367282 + 0.851455i −0.0438986 + 0.101768i
\(71\) 11.9949 10.0649i 1.42353 1.19448i 0.474109 0.880466i \(-0.342770\pi\)
0.949418 0.314015i \(-0.101674\pi\)
\(72\) 0 0
\(73\) −5.04326 4.23179i −0.590268 0.495294i 0.298033 0.954556i \(-0.403670\pi\)
−0.888301 + 0.459262i \(0.848114\pi\)
\(74\) −0.167408 + 0.0840754i −0.0194608 + 0.00977357i
\(75\) 0 0
\(76\) −6.65395 0.777735i −0.763260 0.0892123i
\(77\) 0.542032 + 9.30634i 0.0617703 + 1.06056i
\(78\) 0 0
\(79\) −2.62307 + 2.78030i −0.295119 + 0.312808i −0.857919 0.513786i \(-0.828243\pi\)
0.562800 + 0.826593i \(0.309724\pi\)
\(80\) −4.05318 −0.453160
\(81\) 0 0
\(82\) 2.29763 0.253731
\(83\) −3.32898 + 3.52851i −0.365403 + 0.387304i −0.883823 0.467822i \(-0.845039\pi\)
0.518420 + 0.855126i \(0.326520\pi\)
\(84\) 0 0
\(85\) −0.0312634 0.536772i −0.00339099 0.0582211i
\(86\) 4.36114 + 0.509744i 0.470274 + 0.0549671i
\(87\) 0 0
\(88\) 6.36586 3.19706i 0.678603 0.340807i
\(89\) 7.97723 + 6.69369i 0.845585 + 0.709530i 0.958813 0.284039i \(-0.0916746\pi\)
−0.113228 + 0.993569i \(0.536119\pi\)
\(90\) 0 0
\(91\) 5.03399 4.22402i 0.527705 0.442797i
\(92\) −4.93738 + 11.4461i −0.514757 + 1.19334i
\(93\) 0 0
\(94\) −2.23406 + 0.529481i −0.230425 + 0.0546118i
\(95\) −1.32696 + 4.43235i −0.136143 + 0.454749i
\(96\) 0 0
\(97\) 2.14884 0.251163i 0.218182 0.0255018i −0.00629978 0.999980i \(-0.502005\pi\)
0.224481 + 0.974478i \(0.427931\pi\)
\(98\) −0.220216 1.24891i −0.0222452 0.126159i
\(99\) 0 0
\(100\) 1.08192 6.13589i 0.108192 0.613589i
\(101\) 0.949061 16.2948i 0.0944351 1.62139i −0.535358 0.844625i \(-0.679823\pi\)
0.629793 0.776763i \(-0.283140\pi\)
\(102\) 0 0
\(103\) 7.15634 + 16.5903i 0.705135 + 1.63469i 0.770982 + 0.636857i \(0.219766\pi\)
−0.0658471 + 0.997830i \(0.520975\pi\)
\(104\) −4.48747 2.25369i −0.440032 0.220993i
\(105\) 0 0
\(106\) 2.17315 + 0.515046i 0.211075 + 0.0500257i
\(107\) −8.06607 + 13.9708i −0.779777 + 1.35061i 0.152294 + 0.988335i \(0.451334\pi\)
−0.932070 + 0.362277i \(0.881999\pi\)
\(108\) 0 0
\(109\) 4.04171 + 7.00045i 0.387126 + 0.670521i 0.992062 0.125753i \(-0.0401347\pi\)
−0.604936 + 0.796274i \(0.706801\pi\)
\(110\) −0.679294 2.26900i −0.0647681 0.216341i
\(111\) 0 0
\(112\) −5.04512 + 3.31823i −0.476719 + 0.313543i
\(113\) 1.02756 1.38026i 0.0966651 0.129844i −0.751159 0.660121i \(-0.770505\pi\)
0.847824 + 0.530278i \(0.177912\pi\)
\(114\) 0 0
\(115\) 7.19285 + 4.73081i 0.670737 + 0.441151i
\(116\) 8.76289 3.18943i 0.813614 0.296131i
\(117\) 0 0
\(118\) 2.00437 + 0.729529i 0.184517 + 0.0671586i
\(119\) −0.478355 0.642542i −0.0438507 0.0589017i
\(120\) 0 0
\(121\) −8.79120 9.31813i −0.799200 0.847102i
\(122\) 0.722644 + 0.765957i 0.0654251 + 0.0693465i
\(123\) 0 0
\(124\) 7.35795 + 9.88345i 0.660764 + 0.887560i
\(125\) −10.0684 3.66460i −0.900546 0.327772i
\(126\) 0 0
\(127\) −4.79894 + 1.74667i −0.425837 + 0.154992i −0.546044 0.837757i \(-0.683867\pi\)
0.120206 + 0.992749i \(0.461644\pi\)
\(128\) 8.38455 + 5.51461i 0.741097 + 0.487427i
\(129\) 0 0
\(130\) −0.997028 + 1.33924i −0.0874452 + 0.117459i
\(131\) −9.73457 + 6.40253i −0.850514 + 0.559392i −0.898258 0.439468i \(-0.855167\pi\)
0.0477446 + 0.998860i \(0.484797\pi\)
\(132\) 0 0
\(133\) 1.97693 + 6.60342i 0.171422 + 0.572589i
\(134\) 1.36958 + 2.37218i 0.118314 + 0.204925i
\(135\) 0 0
\(136\) −0.306066 + 0.530121i −0.0262449 + 0.0454575i
\(137\) −4.82005 1.14237i −0.411805 0.0975995i 0.0194912 0.999810i \(-0.493795\pi\)
−0.431296 + 0.902210i \(0.641944\pi\)
\(138\) 0 0
\(139\) 15.0389 + 7.55284i 1.27559 + 0.640623i 0.952151 0.305627i \(-0.0988660\pi\)
0.323435 + 0.946250i \(0.395162\pi\)
\(140\) 1.80157 + 4.17651i 0.152260 + 0.352979i
\(141\) 0 0
\(142\) −0.344625 + 5.91698i −0.0289203 + 0.496542i
\(143\) −2.91464 + 16.5298i −0.243735 + 1.38229i
\(144\) 0 0
\(145\) −1.11835 6.34250i −0.0928742 0.526716i
\(146\) 2.47517 0.289306i 0.204847 0.0239431i
\(147\) 0 0
\(148\) −0.263544 + 0.880297i −0.0216632 + 0.0723600i
\(149\) −16.9579 + 4.01909i −1.38924 + 0.329257i −0.856119 0.516779i \(-0.827131\pi\)
−0.533126 + 0.846036i \(0.678983\pi\)
\(150\) 0 0
\(151\) 2.55693 5.92763i 0.208080 0.482384i −0.781932 0.623363i \(-0.785766\pi\)
0.990013 + 0.140979i \(0.0450251\pi\)
\(152\) 4.03503 3.38579i 0.327284 0.274624i
\(153\) 0 0
\(154\) −2.70310 2.26817i −0.217822 0.182775i
\(155\) 7.60455 3.81915i 0.610812 0.306762i
\(156\) 0 0
\(157\) −12.6850 1.48266i −1.01237 0.118329i −0.406301 0.913739i \(-0.633181\pi\)
−0.606072 + 0.795410i \(0.707256\pi\)
\(158\) −0.0841277 1.44442i −0.00669284 0.114912i
\(159\) 0 0
\(160\) 3.62214 3.83925i 0.286356 0.303519i
\(161\) 12.8261 1.01084
\(162\) 0 0
\(163\) −0.599869 −0.0469853 −0.0234927 0.999724i \(-0.507479\pi\)
−0.0234927 + 0.999724i \(0.507479\pi\)
\(164\) 7.73408 8.19764i 0.603930 0.640128i
\(165\) 0 0
\(166\) −0.106768 1.83313i −0.00828677 0.142278i
\(167\) −3.01391 0.352275i −0.233223 0.0272599i −0.00132163 0.999999i \(-0.500421\pi\)
−0.231902 + 0.972739i \(0.574495\pi\)
\(168\) 0 0
\(169\) −1.04374 + 0.524184i −0.0802874 + 0.0403219i
\(170\) 0.155910 + 0.130824i 0.0119578 + 0.0100337i
\(171\) 0 0
\(172\) 16.4988 13.8441i 1.25802 1.05560i
\(173\) 3.82438 8.86591i 0.290762 0.674063i −0.708745 0.705465i \(-0.750738\pi\)
0.999507 + 0.0314024i \(0.00999735\pi\)
\(174\) 0 0
\(175\) −6.23795 + 1.47842i −0.471544 + 0.111758i
\(176\) 4.42357 14.7757i 0.333439 1.11376i
\(177\) 0 0
\(178\) −3.91513 + 0.457613i −0.293451 + 0.0342995i
\(179\) 4.48229 + 25.4203i 0.335022 + 1.90001i 0.427012 + 0.904246i \(0.359566\pi\)
−0.0919897 + 0.995760i \(0.529323\pi\)
\(180\) 0 0
\(181\) 0.154861 0.878259i 0.0115107 0.0652805i −0.978511 0.206193i \(-0.933893\pi\)
0.990022 + 0.140913i \(0.0450036\pi\)
\(182\) −0.144632 + 2.48323i −0.0107208 + 0.184069i
\(183\) 0 0
\(184\) −3.88206 8.99964i −0.286190 0.663462i
\(185\) 0.567120 + 0.284818i 0.0416955 + 0.0209403i
\(186\) 0 0
\(187\) 1.99090 + 0.471853i 0.145589 + 0.0345053i
\(188\) −5.63096 + 9.75311i −0.410680 + 0.711319i
\(189\) 0 0
\(190\) −0.875665 1.51670i −0.0635274 0.110033i
\(191\) −2.31577 7.73521i −0.167563 0.559700i −0.999985 0.00555685i \(-0.998231\pi\)
0.832421 0.554143i \(-0.186954\pi\)
\(192\) 0 0
\(193\) −0.162747 + 0.107041i −0.0117148 + 0.00770494i −0.555353 0.831615i \(-0.687417\pi\)
0.543638 + 0.839320i \(0.317046\pi\)
\(194\) −0.489029 + 0.656880i −0.0351102 + 0.0471612i
\(195\) 0 0
\(196\) −5.19721 3.41826i −0.371229 0.244161i
\(197\) 10.8405 3.94561i 0.772351 0.281113i 0.0743718 0.997231i \(-0.476305\pi\)
0.697980 + 0.716118i \(0.254083\pi\)
\(198\) 0 0
\(199\) −1.65236 0.601410i −0.117133 0.0426328i 0.282789 0.959182i \(-0.408740\pi\)
−0.399922 + 0.916549i \(0.630963\pi\)
\(200\) 2.92538 + 3.92947i 0.206856 + 0.277855i
\(201\) 0 0
\(202\) 4.23989 + 4.49402i 0.298318 + 0.316198i
\(203\) −6.58447 6.97913i −0.462139 0.489839i
\(204\) 0 0
\(205\) −4.64803 6.24338i −0.324632 0.436057i
\(206\) −6.42671 2.33913i −0.447770 0.162975i
\(207\) 0 0
\(208\) −10.2169 + 3.71864i −0.708413 + 0.257841i
\(209\) −14.7098 9.67476i −1.01749 0.669217i
\(210\) 0 0
\(211\) −2.13583 + 2.86892i −0.147037 + 0.197504i −0.869539 0.493864i \(-0.835584\pi\)
0.722503 + 0.691368i \(0.242992\pi\)
\(212\) 9.15269 6.01982i 0.628609 0.413443i
\(213\) 0 0
\(214\) −1.75134 5.84989i −0.119719 0.399890i
\(215\) −7.43730 12.8818i −0.507220 0.878530i
\(216\) 0 0
\(217\) 6.33898 10.9794i 0.430318 0.745333i
\(218\) −2.97730 0.705633i −0.201648 0.0477915i
\(219\) 0 0
\(220\) −10.3821 5.21408i −0.699960 0.351533i
\(221\) −0.571274 1.32436i −0.0384280 0.0890862i
\(222\) 0 0
\(223\) 0.381494 6.55001i 0.0255468 0.438621i −0.961148 0.276035i \(-0.910979\pi\)
0.986694 0.162586i \(-0.0519835\pi\)
\(224\) 1.36551 7.74417i 0.0912368 0.517429i
\(225\) 0 0
\(226\) 0.113106 + 0.641454i 0.00752367 + 0.0426689i
\(227\) −8.07328 + 0.943631i −0.535843 + 0.0626310i −0.379711 0.925105i \(-0.623977\pi\)
−0.156132 + 0.987736i \(0.549902\pi\)
\(228\) 0 0
\(229\) −2.24705 + 7.50566i −0.148489 + 0.495988i −0.999578 0.0290329i \(-0.990757\pi\)
0.851089 + 0.525021i \(0.175942\pi\)
\(230\) −3.17094 + 0.751528i −0.209086 + 0.0495543i
\(231\) 0 0
\(232\) −2.90409 + 6.73245i −0.190663 + 0.442007i
\(233\) 19.7955 16.6104i 1.29685 1.08818i 0.306166 0.951978i \(-0.400954\pi\)
0.990681 0.136205i \(-0.0434907\pi\)
\(234\) 0 0
\(235\) 5.95818 + 4.99951i 0.388669 + 0.326132i
\(236\) 9.34979 4.69564i 0.608619 0.305660i
\(237\) 0 0
\(238\) 0.301168 + 0.0352015i 0.0195218 + 0.00228177i
\(239\) 0.0102090 + 0.175281i 0.000660364 + 0.0113380i 0.998622 0.0524749i \(-0.0167110\pi\)
−0.997962 + 0.0638129i \(0.979674\pi\)
\(240\) 0 0
\(241\) −13.2643 + 14.0594i −0.854430 + 0.905643i −0.996447 0.0842212i \(-0.973160\pi\)
0.142017 + 0.989864i \(0.454641\pi\)
\(242\) 4.84915 0.311715
\(243\) 0 0
\(244\) 5.16534 0.330677
\(245\) −2.94818 + 3.12489i −0.188352 + 0.199642i
\(246\) 0 0
\(247\) 0.721640 + 12.3901i 0.0459168 + 0.788362i
\(248\) −9.62248 1.12471i −0.611028 0.0714190i
\(249\) 0 0
\(250\) 3.62434 1.82021i 0.229223 0.115120i
\(251\) −18.5138 15.5349i −1.16858 0.980554i −0.168592 0.985686i \(-0.553922\pi\)
−0.999987 + 0.00513137i \(0.998367\pi\)
\(252\) 0 0
\(253\) −25.0962 + 21.0582i −1.57778 + 1.32392i
\(254\) 0.765662 1.77500i 0.0480419 0.111374i
\(255\) 0 0
\(256\) 5.57410 1.32109i 0.348381 0.0825679i
\(257\) −3.92685 + 13.1166i −0.244950 + 0.818191i 0.743773 + 0.668433i \(0.233035\pi\)
−0.988723 + 0.149758i \(0.952151\pi\)
\(258\) 0 0
\(259\) 0.939084 0.109763i 0.0583518 0.00682035i
\(260\) 1.42213 + 8.06530i 0.0881968 + 0.500189i
\(261\) 0 0
\(262\) 0.765846 4.34333i 0.0473141 0.268332i
\(263\) −0.844392 + 14.4977i −0.0520675 + 0.893964i 0.866618 + 0.498973i \(0.166289\pi\)
−0.918685 + 0.394991i \(0.870748\pi\)
\(264\) 0 0
\(265\) −2.99667 6.94706i −0.184084 0.426754i
\(266\) −2.33164 1.17099i −0.142962 0.0717983i
\(267\) 0 0
\(268\) 13.0738 + 3.09855i 0.798610 + 0.189274i
\(269\) −0.0908847 + 0.157417i −0.00554134 + 0.00959788i −0.868783 0.495193i \(-0.835097\pi\)
0.863241 + 0.504791i \(0.168431\pi\)
\(270\) 0 0
\(271\) −10.1446 17.5709i −0.616239 1.06736i −0.990166 0.139899i \(-0.955322\pi\)
0.373927 0.927458i \(-0.378011\pi\)
\(272\) 0.380118 + 1.26968i 0.0230481 + 0.0769859i
\(273\) 0 0
\(274\) 1.56658 1.03036i 0.0946408 0.0622462i
\(275\) 9.77812 13.1343i 0.589643 0.792028i
\(276\) 0 0
\(277\) 9.30636 + 6.12089i 0.559165 + 0.367769i 0.797411 0.603436i \(-0.206202\pi\)
−0.238246 + 0.971205i \(0.576573\pi\)
\(278\) −5.98603 + 2.17874i −0.359018 + 0.130672i
\(279\) 0 0
\(280\) −3.36063 1.22317i −0.200836 0.0730983i
\(281\) −1.19622 1.60680i −0.0713603 0.0958535i 0.765010 0.644018i \(-0.222734\pi\)
−0.836370 + 0.548165i \(0.815327\pi\)
\(282\) 0 0
\(283\) −1.56990 1.66400i −0.0933210 0.0989145i 0.679030 0.734111i \(-0.262401\pi\)
−0.772351 + 0.635196i \(0.780919\pi\)
\(284\) 19.9510 + 21.1468i 1.18387 + 1.25483i
\(285\) 0 0
\(286\) −3.79402 5.09625i −0.224345 0.301348i
\(287\) −10.8968 3.96612i −0.643219 0.234112i
\(288\) 0 0
\(289\) 15.8096 5.75421i 0.929974 0.338483i
\(290\) 2.03678 + 1.33961i 0.119604 + 0.0786646i
\(291\) 0 0
\(292\) 7.29950 9.80492i 0.427171 0.573790i
\(293\) 4.19171 2.75693i 0.244882 0.161061i −0.421135 0.906998i \(-0.638368\pi\)
0.666017 + 0.745936i \(0.267998\pi\)
\(294\) 0 0
\(295\) −2.07240 6.92231i −0.120660 0.403032i
\(296\) −0.361248 0.625699i −0.0209971 0.0363680i
\(297\) 0 0
\(298\) 3.29840 5.71300i 0.191071 0.330945i
\(299\) 22.4714 + 5.32582i 1.29955 + 0.308000i
\(300\) 0 0
\(301\) −19.8034 9.94563i −1.14145 0.573257i
\(302\) 0.967862 + 2.24376i 0.0556942 + 0.129114i
\(303\) 0 0
\(304\) 0.663122 11.3854i 0.0380327 0.652996i
\(305\) 0.619464 3.51316i 0.0354704 0.201163i
\(306\) 0 0
\(307\) 3.72532 + 21.1273i 0.212615 + 1.20580i 0.884997 + 0.465596i \(0.154160\pi\)
−0.672382 + 0.740204i \(0.734729\pi\)
\(308\) −17.1915 + 2.00940i −0.979577 + 0.114496i
\(309\) 0 0
\(310\) −0.923833 + 3.08582i −0.0524702 + 0.175263i
\(311\) 11.7156 2.77665i 0.664332 0.157450i 0.115403 0.993319i \(-0.463184\pi\)
0.548929 + 0.835869i \(0.315036\pi\)
\(312\) 0 0
\(313\) 3.68811 8.54999i 0.208464 0.483274i −0.781619 0.623756i \(-0.785606\pi\)
0.990083 + 0.140482i \(0.0448652\pi\)
\(314\) 3.70327 3.10741i 0.208988 0.175361i
\(315\) 0 0
\(316\) −5.43668 4.56191i −0.305837 0.256628i
\(317\) −14.6362 + 7.35057i −0.822051 + 0.412849i −0.809534 0.587072i \(-0.800280\pi\)
−0.0125161 + 0.999922i \(0.503984\pi\)
\(318\) 0 0
\(319\) 24.3419 + 2.84516i 1.36288 + 0.159298i
\(320\) −0.355173 6.09809i −0.0198548 0.340894i
\(321\) 0 0
\(322\) −3.33171 + 3.53141i −0.185669 + 0.196798i
\(323\) 1.51290 0.0841803
\(324\) 0 0
\(325\) −11.5428 −0.640277
\(326\) 0.155822 0.165161i 0.00863016 0.00914744i
\(327\) 0 0
\(328\) 0.515239 + 8.84632i 0.0284493 + 0.488456i
\(329\) 11.5093 + 1.34524i 0.634528 + 0.0741656i
\(330\) 0 0
\(331\) −4.58340 + 2.30187i −0.251926 + 0.126522i −0.570281 0.821449i \(-0.693166\pi\)
0.318355 + 0.947972i \(0.396870\pi\)
\(332\) −6.89976 5.78959i −0.378673 0.317745i
\(333\) 0 0
\(334\) 0.879884 0.738310i 0.0481451 0.0403985i
\(335\) 3.67535 8.52043i 0.200806 0.465521i
\(336\) 0 0
\(337\) 12.1868 2.88834i 0.663860 0.157338i 0.115147 0.993348i \(-0.463266\pi\)
0.548713 + 0.836011i \(0.315118\pi\)
\(338\) 0.126797 0.423533i 0.00689687 0.0230372i
\(339\) 0 0
\(340\) 0.991574 0.115898i 0.0537756 0.00628547i
\(341\) 5.62311 + 31.8903i 0.304509 + 1.72695i
\(342\) 0 0
\(343\) −3.43362 + 19.4730i −0.185398 + 1.05144i
\(344\) −0.984635 + 16.9055i −0.0530880 + 0.911486i
\(345\) 0 0
\(346\) 1.44762 + 3.35597i 0.0778247 + 0.180418i
\(347\) 12.5791 + 6.31748i 0.675284 + 0.339140i 0.753174 0.657822i \(-0.228522\pi\)
−0.0778899 + 0.996962i \(0.524818\pi\)
\(348\) 0 0
\(349\) −14.9834 3.55113i −0.802043 0.190088i −0.190902 0.981609i \(-0.561141\pi\)
−0.611141 + 0.791522i \(0.709289\pi\)
\(350\) 1.21331 2.10152i 0.0648544 0.112331i
\(351\) 0 0
\(352\) 10.0427 + 17.3945i 0.535278 + 0.927129i
\(353\) 9.63269 + 32.1754i 0.512696 + 1.71252i 0.685951 + 0.727648i \(0.259386\pi\)
−0.173255 + 0.984877i \(0.555428\pi\)
\(354\) 0 0
\(355\) 16.7755 11.0334i 0.890349 0.585592i
\(356\) −11.5461 + 15.5091i −0.611940 + 0.821978i
\(357\) 0 0
\(358\) −8.16328 5.36907i −0.431443 0.283764i
\(359\) −11.6368 + 4.23546i −0.614168 + 0.223539i −0.630326 0.776330i \(-0.717079\pi\)
0.0161577 + 0.999869i \(0.494857\pi\)
\(360\) 0 0
\(361\) 5.62081 + 2.04581i 0.295832 + 0.107674i
\(362\) 0.201584 + 0.270774i 0.0105950 + 0.0142316i
\(363\) 0 0
\(364\) 8.37301 + 8.87487i 0.438865 + 0.465169i
\(365\) −5.79332 6.14056i −0.303236 0.321412i
\(366\) 0 0
\(367\) 17.1370 + 23.0189i 0.894543 + 1.20158i 0.978735 + 0.205130i \(0.0657617\pi\)
−0.0841921 + 0.996450i \(0.526831\pi\)
\(368\) −19.9414 7.25809i −1.03952 0.378354i
\(369\) 0 0
\(370\) −0.225734 + 0.0821603i −0.0117353 + 0.00427131i
\(371\) −9.41740 6.19392i −0.488927 0.321572i
\(372\) 0 0
\(373\) 11.3384 15.2301i 0.587080 0.788586i −0.404983 0.914324i \(-0.632723\pi\)
0.992063 + 0.125738i \(0.0401300\pi\)
\(374\) −0.647071 + 0.425586i −0.0334593 + 0.0220065i
\(375\) 0 0
\(376\) −2.53959 8.48281i −0.130969 0.437468i
\(377\) −8.63804 14.9615i −0.444882 0.770557i
\(378\) 0 0
\(379\) −9.40390 + 16.2880i −0.483046 + 0.836660i −0.999810 0.0194673i \(-0.993803\pi\)
0.516764 + 0.856128i \(0.327136\pi\)
\(380\) −8.35896 1.98111i −0.428806 0.101629i
\(381\) 0 0
\(382\) 2.73127 + 1.37170i 0.139744 + 0.0701821i
\(383\) −2.63824 6.11612i −0.134808 0.312519i 0.837419 0.546562i \(-0.184064\pi\)
−0.972226 + 0.234043i \(0.924804\pi\)
\(384\) 0 0
\(385\) −0.695054 + 11.9336i −0.0354233 + 0.608194i
\(386\) 0.0128038 0.0726138i 0.000651695 0.00369595i
\(387\) 0 0
\(388\) 0.697536 + 3.95592i 0.0354120 + 0.200832i
\(389\) 0.868765 0.101544i 0.0440481 0.00514849i −0.0940403 0.995568i \(-0.529978\pi\)
0.138088 + 0.990420i \(0.455904\pi\)
\(390\) 0 0
\(391\) 0.807390 2.69687i 0.0408315 0.136387i
\(392\) 4.75915 1.12794i 0.240373 0.0569695i
\(393\) 0 0
\(394\) −1.72958 + 4.00961i −0.0871347 + 0.202001i
\(395\) −3.75475 + 3.15061i −0.188922 + 0.158524i
\(396\) 0 0
\(397\) 26.1379 + 21.9323i 1.31182 + 1.10075i 0.987970 + 0.154644i \(0.0494231\pi\)
0.323854 + 0.946107i \(0.395021\pi\)
\(398\) 0.594802 0.298721i 0.0298147 0.0149735i
\(399\) 0 0
\(400\) 10.5350 + 1.23137i 0.526752 + 0.0615685i
\(401\) −0.244187 4.19252i −0.0121941 0.209364i −0.998902 0.0468580i \(-0.985079\pi\)
0.986707 0.162507i \(-0.0519579\pi\)
\(402\) 0 0
\(403\) 15.6649 16.6038i 0.780325 0.827096i
\(404\) 30.3060 1.50778
\(405\) 0 0
\(406\) 3.63194 0.180250
\(407\) −1.65724 + 1.75657i −0.0821463 + 0.0870699i
\(408\) 0 0
\(409\) −1.26061 21.6439i −0.0623333 1.07022i −0.873945 0.486025i \(-0.838447\pi\)
0.811612 0.584197i \(-0.198590\pi\)
\(410\) 2.92635 + 0.342042i 0.144522 + 0.0168922i
\(411\) 0 0
\(412\) −29.9787 + 15.0559i −1.47695 + 0.741750i
\(413\) −8.24668 6.91978i −0.405792 0.340500i
\(414\) 0 0
\(415\) −4.76520 + 3.99848i −0.233915 + 0.196278i
\(416\) 5.60799 13.0008i 0.274954 0.637416i
\(417\) 0 0
\(418\) 6.48474 1.53691i 0.317179 0.0751728i
\(419\) −1.20046 + 4.00981i −0.0586462 + 0.195892i −0.982292 0.187354i \(-0.940009\pi\)
0.923646 + 0.383246i \(0.125194\pi\)
\(420\) 0 0
\(421\) −4.93643 + 0.576986i −0.240587 + 0.0281206i −0.235532 0.971867i \(-0.575683\pi\)
−0.00505515 + 0.999987i \(0.501609\pi\)
\(422\) −0.235094 1.33328i −0.0114442 0.0649033i
\(423\) 0 0
\(424\) −1.49570 + 8.48255i −0.0726377 + 0.411949i
\(425\) −0.0818132 + 1.40468i −0.00396852 + 0.0681369i
\(426\) 0 0
\(427\) −2.10506 4.88007i −0.101871 0.236163i
\(428\) −26.7668 13.4428i −1.29382 0.649783i
\(429\) 0 0
\(430\) 5.47864 + 1.29846i 0.264204 + 0.0626174i
\(431\) 13.2418 22.9355i 0.637837 1.10477i −0.348070 0.937469i \(-0.613163\pi\)
0.985907 0.167297i \(-0.0535039\pi\)
\(432\) 0 0
\(433\) −10.6919 18.5189i −0.513820 0.889962i −0.999871 0.0160319i \(-0.994897\pi\)
0.486052 0.873930i \(-0.338437\pi\)
\(434\) 1.37635 + 4.59732i 0.0660668 + 0.220679i
\(435\) 0 0
\(436\) −12.5395 + 8.24738i −0.600535 + 0.394978i
\(437\) −14.4656 + 19.4307i −0.691984 + 0.929496i
\(438\) 0 0
\(439\) −26.9943 17.7544i −1.28837 0.847372i −0.294255 0.955727i \(-0.595071\pi\)
−0.994112 + 0.108355i \(0.965442\pi\)
\(440\) 8.58376 3.12423i 0.409215 0.148942i
\(441\) 0 0
\(442\) 0.513029 + 0.186727i 0.0244023 + 0.00888171i
\(443\) 19.4171 + 26.0817i 0.922535 + 1.23918i 0.970689 + 0.240340i \(0.0772589\pi\)
−0.0481536 + 0.998840i \(0.515334\pi\)
\(444\) 0 0
\(445\) 9.16365 + 9.71291i 0.434399 + 0.460436i
\(446\) 1.70431 + 1.80646i 0.0807015 + 0.0855385i
\(447\) 0 0
\(448\) −5.43443 7.29971i −0.256753 0.344879i
\(449\) −15.0197 5.46673i −0.708825 0.257991i −0.0376508 0.999291i \(-0.511987\pi\)
−0.671174 + 0.741300i \(0.734210\pi\)
\(450\) 0 0
\(451\) 27.8328 10.1303i 1.31059 0.477017i
\(452\) 2.66935 + 1.75566i 0.125556 + 0.0825793i
\(453\) 0 0
\(454\) 1.83730 2.46793i 0.0862289 0.115826i
\(455\) 7.04031 4.63049i 0.330055 0.217081i
\(456\) 0 0
\(457\) −5.53279 18.4808i −0.258813 0.864495i −0.984337 0.176298i \(-0.943588\pi\)
0.725524 0.688197i \(-0.241597\pi\)
\(458\) −1.48283 2.56834i −0.0692883 0.120011i
\(459\) 0 0
\(460\) −7.99240 + 13.8432i −0.372648 + 0.645445i
\(461\) −14.4202 3.41765i −0.671615 0.159176i −0.119360 0.992851i \(-0.538084\pi\)
−0.552255 + 0.833675i \(0.686233\pi\)
\(462\) 0 0
\(463\) 2.47485 + 1.24292i 0.115016 + 0.0577632i 0.505377 0.862899i \(-0.331353\pi\)
−0.390361 + 0.920662i \(0.627650\pi\)
\(464\) 6.28783 + 14.5768i 0.291905 + 0.676713i
\(465\) 0 0
\(466\) −0.568746 + 9.76499i −0.0263466 + 0.452354i
\(467\) −3.42252 + 19.4101i −0.158375 + 0.898191i 0.797259 + 0.603637i \(0.206282\pi\)
−0.955635 + 0.294554i \(0.904829\pi\)
\(468\) 0 0
\(469\) −2.40061 13.6145i −0.110850 0.628661i
\(470\) −2.92421 + 0.341791i −0.134884 + 0.0157656i
\(471\) 0 0
\(472\) −2.35935 + 7.88079i −0.108598 + 0.362743i
\(473\) 55.0770 13.0535i 2.53244 0.600200i
\(474\) 0 0
\(475\) 4.79560 11.1174i 0.220037 0.510103i
\(476\) 1.13936 0.956036i 0.0522224 0.0438198i
\(477\) 0 0
\(478\) −0.0509120 0.0427202i −0.00232866 0.00195398i
\(479\) −16.6577 + 8.36582i −0.761110 + 0.382244i −0.786625 0.617431i \(-0.788174\pi\)
0.0255152 + 0.999674i \(0.491877\pi\)
\(480\) 0 0
\(481\) 1.69085 + 0.197632i 0.0770962 + 0.00901125i
\(482\) −0.425416 7.30411i −0.0193772 0.332693i
\(483\) 0 0
\(484\) 16.3228 17.3011i 0.741945 0.786415i
\(485\) 2.77424 0.125972
\(486\) 0 0
\(487\) −5.34343 −0.242134 −0.121067 0.992644i \(-0.538632\pi\)
−0.121067 + 0.992644i \(0.538632\pi\)
\(488\) −2.78703 + 2.95408i −0.126163 + 0.133725i
\(489\) 0 0
\(490\) −0.0945547 1.62344i −0.00427155 0.0733396i
\(491\) 3.67611 + 0.429676i 0.165901 + 0.0193910i 0.198638 0.980073i \(-0.436348\pi\)
−0.0327371 + 0.999464i \(0.510422\pi\)
\(492\) 0 0
\(493\) −1.88194 + 0.945147i −0.0847584 + 0.0425673i
\(494\) −3.59880 3.01975i −0.161918 0.135865i
\(495\) 0 0
\(496\) −16.0686 + 13.4832i −0.721501 + 0.605411i
\(497\) 11.8482 27.4672i 0.531464 1.23207i
\(498\) 0 0
\(499\) −27.1971 + 6.44583i −1.21751 + 0.288555i −0.788664 0.614824i \(-0.789227\pi\)
−0.428844 + 0.903379i \(0.641079\pi\)
\(500\) 5.70565 19.0582i 0.255165 0.852309i
\(501\) 0 0
\(502\) 9.08634 1.06204i 0.405543 0.0474012i
\(503\) 1.72317 + 9.77258i 0.0768323 + 0.435738i 0.998822 + 0.0485234i \(0.0154516\pi\)
−0.921990 + 0.387214i \(0.873437\pi\)
\(504\) 0 0
\(505\) 3.63452 20.6124i 0.161734 0.917239i
\(506\) 0.721039 12.3798i 0.0320541 0.550348i
\(507\) 0 0
\(508\) −3.75568 8.70665i −0.166631 0.386295i
\(509\) 0.0252818 + 0.0126970i 0.00112059 + 0.000562784i 0.449359 0.893351i \(-0.351652\pi\)
−0.448239 + 0.893914i \(0.647949\pi\)
\(510\) 0 0
\(511\) −12.2382 2.90051i −0.541387 0.128311i
\(512\) −11.1197 + 19.2599i −0.491426 + 0.851176i
\(513\) 0 0
\(514\) −2.59134 4.48834i −0.114299 0.197972i
\(515\) 6.64486 + 22.1954i 0.292808 + 0.978045i
\(516\) 0 0
\(517\) −24.7282 + 16.2640i −1.08754 + 0.715289i
\(518\) −0.213715 + 0.287069i −0.00939010 + 0.0126131i
\(519\) 0 0
\(520\) −5.37992 3.53843i −0.235925 0.155170i
\(521\) 2.11604 0.770177i 0.0927056 0.0337421i −0.295251 0.955420i \(-0.595403\pi\)
0.387957 + 0.921678i \(0.373181\pi\)
\(522\) 0 0
\(523\) −11.5433 4.20142i −0.504753 0.183715i 0.0770775 0.997025i \(-0.475441\pi\)
−0.581831 + 0.813310i \(0.697663\pi\)
\(524\) −12.9185 17.3526i −0.564348 0.758051i
\(525\) 0 0
\(526\) −3.77229 3.99839i −0.164480 0.174338i
\(527\) −1.90955 2.02400i −0.0831811 0.0881669i
\(528\) 0 0
\(529\) 13.1822 + 17.7068i 0.573141 + 0.769862i
\(530\) 2.69114 + 0.979495i 0.116896 + 0.0425465i
\(531\) 0 0
\(532\) −12.0265 + 4.37730i −0.521416 + 0.189780i
\(533\) −17.4444 11.4733i −0.755599 0.496965i
\(534\) 0 0
\(535\) −12.3531 + 16.5931i −0.534070 + 0.717381i
\(536\) −8.82624 + 5.80511i −0.381235 + 0.250742i
\(537\) 0 0
\(538\) −0.0197333 0.0659138i −0.000850762 0.00284174i
\(539\) −8.17409 14.1579i −0.352083 0.609826i
\(540\) 0 0
\(541\) 19.8474 34.3766i 0.853304 1.47797i −0.0249047 0.999690i \(-0.507928\pi\)
0.878209 0.478277i \(-0.158738\pi\)
\(542\) 7.47294 + 1.77112i 0.320990 + 0.0760761i
\(543\) 0 0
\(544\) −1.54236 0.774603i −0.0661282 0.0332108i
\(545\) 4.10555 + 9.51773i 0.175862 + 0.407695i
\(546\) 0 0
\(547\) −0.472894 + 8.11928i −0.0202195 + 0.347155i 0.972992 + 0.230837i \(0.0741464\pi\)
−0.993212 + 0.116318i \(0.962891\pi\)
\(548\) 1.59711 9.05767i 0.0682252 0.386924i
\(549\) 0 0
\(550\) 1.07629 + 6.10396i 0.0458933 + 0.260274i
\(551\) 17.9990 2.10378i 0.766784 0.0896242i
\(552\) 0 0
\(553\) −2.09433 + 6.99556i −0.0890601 + 0.297482i
\(554\) −4.10268 + 0.972352i −0.174306 + 0.0413113i
\(555\) 0 0
\(556\) −12.3762 + 28.6912i −0.524867 + 1.21678i
\(557\) 16.2629 13.6462i 0.689081 0.578207i −0.229563 0.973294i \(-0.573730\pi\)
0.918644 + 0.395086i \(0.129285\pi\)
\(558\) 0 0
\(559\) −30.5658 25.6477i −1.29279 1.08478i
\(560\) −6.91965 + 3.47518i −0.292408 + 0.146853i
\(561\) 0 0
\(562\) 0.753127 + 0.0880279i 0.0317687 + 0.00371323i
\(563\) −2.62696 45.1032i −0.110713 1.90087i −0.360791 0.932647i \(-0.617493\pi\)
0.250078 0.968226i \(-0.419544\pi\)
\(564\) 0 0
\(565\) 1.51422 1.60498i 0.0637038 0.0675221i
\(566\) 0.865945 0.0363984
\(567\) 0 0
\(568\) −22.8588 −0.959134
\(569\) 3.93683 4.17280i 0.165041 0.174933i −0.639575 0.768728i \(-0.720890\pi\)
0.804616 + 0.593796i \(0.202371\pi\)
\(570\) 0 0
\(571\) −2.52145 43.2916i −0.105519 1.81170i −0.472351 0.881411i \(-0.656594\pi\)
0.366831 0.930287i \(-0.380443\pi\)
\(572\) −30.9539 3.61799i −1.29425 0.151276i
\(573\) 0 0
\(574\) 3.92254 1.96997i 0.163724 0.0822251i
\(575\) −17.2584 14.4816i −0.719727 0.603923i
\(576\) 0 0
\(577\) 10.1857 8.54680i 0.424035 0.355808i −0.405660 0.914024i \(-0.632958\pi\)
0.829696 + 0.558216i \(0.188514\pi\)
\(578\) −2.52238 + 5.84754i −0.104917 + 0.243226i
\(579\) 0 0
\(580\) 11.6356 2.75768i 0.483141 0.114507i
\(581\) −2.65795 + 8.87816i −0.110270 + 0.368328i
\(582\) 0 0
\(583\) 28.5957 3.34236i 1.18431 0.138427i
\(584\) 1.66894 + 9.46501i 0.0690611 + 0.391665i
\(585\) 0 0
\(586\) −0.329773 + 1.87024i −0.0136228 + 0.0772588i
\(587\) 0.719217 12.3485i 0.0296853 0.509677i −0.950391 0.311057i \(-0.899317\pi\)
0.980077 0.198620i \(-0.0636459\pi\)
\(588\) 0 0
\(589\) 9.48382 + 21.9860i 0.390774 + 0.905916i
\(590\) 2.44424 + 1.22754i 0.100628 + 0.0505371i
\(591\) 0 0
\(592\) −1.52215 0.360757i −0.0625601 0.0148270i
\(593\) −0.572367 + 0.991369i −0.0235043 + 0.0407106i −0.877538 0.479507i \(-0.840816\pi\)
0.854034 + 0.520217i \(0.174149\pi\)
\(594\) 0 0
\(595\) −0.513599 0.889579i −0.0210555 0.0364692i
\(596\) −9.28045 30.9989i −0.380142 1.26976i
\(597\) 0 0
\(598\) −7.30351 + 4.80360i −0.298663 + 0.196434i
\(599\) −1.44868 + 1.94591i −0.0591913 + 0.0795078i −0.830733 0.556671i \(-0.812078\pi\)
0.771542 + 0.636179i \(0.219486\pi\)
\(600\) 0 0
\(601\) 32.7732 + 21.5553i 1.33685 + 0.879259i 0.998100 0.0616181i \(-0.0196261\pi\)
0.338748 + 0.940877i \(0.389996\pi\)
\(602\) 7.88244 2.86897i 0.321264 0.116931i
\(603\) 0 0
\(604\) 11.2634 + 4.09953i 0.458300 + 0.166808i
\(605\) −9.80967 13.1767i −0.398820 0.535708i
\(606\) 0 0
\(607\) 4.86035 + 5.15167i 0.197276 + 0.209100i 0.818458 0.574566i \(-0.194829\pi\)
−0.621183 + 0.783666i \(0.713348\pi\)
\(608\) 10.1918 + 10.8027i 0.413333 + 0.438107i
\(609\) 0 0
\(610\) 0.806362 + 1.08313i 0.0326487 + 0.0438548i
\(611\) 19.6057 + 7.13588i 0.793161 + 0.288687i
\(612\) 0 0
\(613\) 19.4482 7.07855i 0.785503 0.285900i 0.0820378 0.996629i \(-0.473857\pi\)
0.703466 + 0.710729i \(0.251635\pi\)
\(614\) −6.78466 4.46234i −0.273806 0.180085i
\(615\) 0 0
\(616\) 8.12674 10.9161i 0.327436 0.439822i
\(617\) −19.9175 + 13.1000i −0.801849 + 0.527385i −0.883031 0.469315i \(-0.844501\pi\)
0.0811816 + 0.996699i \(0.474131\pi\)
\(618\) 0 0
\(619\) 0.190902 + 0.637658i 0.00767301 + 0.0256296i 0.961740 0.273963i \(-0.0883345\pi\)
−0.954067 + 0.299592i \(0.903149\pi\)
\(620\) 7.90007 + 13.6833i 0.317274 + 0.549535i
\(621\) 0 0
\(622\) −2.27875 + 3.94691i −0.0913696 + 0.158257i
\(623\) 19.3580 + 4.58792i 0.775560 + 0.183811i
\(624\) 0 0
\(625\) 2.71571 + 1.36388i 0.108628 + 0.0545552i
\(626\) 1.39604 + 3.23639i 0.0557970 + 0.129352i
\(627\) 0 0
\(628\) 1.37878 23.6727i 0.0550192 0.944643i
\(629\) 0.0360350 0.204365i 0.00143681 0.00814855i
\(630\) 0 0
\(631\) 4.06193 + 23.0363i 0.161703 + 0.917062i 0.952399 + 0.304854i \(0.0986076\pi\)
−0.790696 + 0.612209i \(0.790281\pi\)
\(632\) 5.54242 0.647816i 0.220466 0.0257687i
\(633\) 0 0
\(634\) 1.77807 5.93915i 0.0706160 0.235874i
\(635\) −6.37216 + 1.51023i −0.252871 + 0.0599316i
\(636\) 0 0
\(637\) −4.56453 + 10.5818i −0.180853 + 0.419265i
\(638\) −7.10640 + 5.96298i −0.281345 + 0.236077i
\(639\) 0 0
\(640\) 9.85797 + 8.27182i 0.389670 + 0.326972i
\(641\) −6.36402 + 3.19613i −0.251364 + 0.126240i −0.570020 0.821631i \(-0.693065\pi\)
0.318657 + 0.947870i \(0.396768\pi\)
\(642\) 0 0
\(643\) −15.3703 1.79653i −0.606144 0.0708481i −0.192516 0.981294i \(-0.561665\pi\)
−0.413628 + 0.910446i \(0.635739\pi\)
\(644\) 1.38469 + 23.7743i 0.0545645 + 0.936837i
\(645\) 0 0
\(646\) −0.392992 + 0.416547i −0.0154620 + 0.0163888i
\(647\) 15.3916 0.605107 0.302554 0.953132i \(-0.402161\pi\)
0.302554 + 0.953132i \(0.402161\pi\)
\(648\) 0 0
\(649\) 27.4968 1.07934
\(650\) 2.99834 3.17806i 0.117605 0.124654i
\(651\) 0 0
\(652\) −0.0647610 1.11190i −0.00253624 0.0435455i
\(653\) −1.22345 0.143001i −0.0478773 0.00559605i 0.0921206 0.995748i \(-0.470635\pi\)
−0.139998 + 0.990152i \(0.544710\pi\)
\(654\) 0 0
\(655\) −13.3515 + 6.70537i −0.521686 + 0.262000i
\(656\) 14.6975 + 12.3326i 0.573839 + 0.481508i
\(657\) 0 0
\(658\) −3.36003 + 2.81940i −0.130988 + 0.109912i
\(659\) −2.73379 + 6.33763i −0.106493 + 0.246879i −0.963128 0.269045i \(-0.913292\pi\)
0.856634 + 0.515924i \(0.172551\pi\)
\(660\) 0 0
\(661\) −34.9734 + 8.28885i −1.36031 + 0.322399i −0.845073 0.534650i \(-0.820443\pi\)
−0.515235 + 0.857049i \(0.672295\pi\)
\(662\) 0.556810 1.85987i 0.0216410 0.0722861i
\(663\) 0 0
\(664\) 7.03396 0.822152i 0.272971 0.0319057i
\(665\) 1.53487 + 8.70469i 0.0595198 + 0.337553i
\(666\) 0 0
\(667\) 5.85536 33.2074i 0.226720 1.28579i
\(668\) 0.327592 5.62455i 0.0126749 0.217620i
\(669\) 0 0
\(670\) 1.39121 + 3.22519i 0.0537473 + 0.124600i
\(671\) 12.1310 + 6.09242i 0.468313 + 0.235195i
\(672\) 0 0
\(673\) 8.46457 + 2.00614i 0.326285 + 0.0773310i 0.390494 0.920606i \(-0.372304\pi\)
−0.0642089 + 0.997936i \(0.520452\pi\)
\(674\) −2.37041 + 4.10567i −0.0913047 + 0.158144i
\(675\) 0 0
\(676\) −1.08430 1.87806i −0.0417037 0.0722329i
\(677\) −0.165536 0.552928i −0.00636206 0.0212508i 0.954750 0.297411i \(-0.0961231\pi\)
−0.961112 + 0.276160i \(0.910938\pi\)
\(678\) 0 0
\(679\) 3.45318 2.27119i 0.132521 0.0871603i
\(680\) −0.468735 + 0.629621i −0.0179752 + 0.0241449i
\(681\) 0 0
\(682\) −10.2410 6.73560i −0.392147 0.257919i
\(683\) −33.8572 + 12.3230i −1.29551 + 0.471528i −0.895532 0.444997i \(-0.853205\pi\)
−0.399979 + 0.916524i \(0.630983\pi\)
\(684\) 0 0
\(685\) −5.96895 2.17252i −0.228062 0.0830078i
\(686\) −4.46957 6.00367i −0.170649 0.229221i
\(687\) 0 0
\(688\) 25.1612 + 26.6693i 0.959263 + 1.01676i
\(689\) −13.9274 14.7621i −0.530590 0.562393i
\(690\) 0 0
\(691\) −8.76512 11.7736i −0.333441 0.447889i 0.603507 0.797357i \(-0.293769\pi\)
−0.936948 + 0.349469i \(0.886362\pi\)
\(692\) 16.8465 + 6.13164i 0.640409 + 0.233090i
\(693\) 0 0
\(694\) −5.00694 + 1.82238i −0.190061 + 0.0691765i
\(695\) 18.0298 + 11.8584i 0.683911 + 0.449815i
\(696\) 0 0
\(697\) −1.51987 + 2.04154i −0.0575692 + 0.0773289i
\(698\) 4.86981 3.20293i 0.184325 0.121233i
\(699\) 0 0
\(700\) −3.41381 11.4029i −0.129030 0.430989i
\(701\) 15.3027 + 26.5051i 0.577976 + 1.00108i 0.995711 + 0.0925152i \(0.0294907\pi\)
−0.417735 + 0.908569i \(0.637176\pi\)
\(702\) 0 0
\(703\) −0.892837 + 1.54644i −0.0336740 + 0.0583250i
\(704\) 22.6180 + 5.36056i 0.852448 + 0.202034i
\(705\) 0 0
\(706\) −11.3610 5.70572i −0.427577 0.214737i
\(707\) −12.3508 28.6323i −0.464499 1.07683i
\(708\) 0 0
\(709\) −2.68046 + 46.0217i −0.100667 + 1.72838i 0.449462 + 0.893300i \(0.351616\pi\)
−0.550128 + 0.835080i \(0.685421\pi\)
\(710\) −1.31977 + 7.48480i −0.0495302 + 0.280900i
\(711\) 0 0
\(712\) −2.63986 14.9714i −0.0989329 0.561077i
\(713\) 44.2529 5.17243i 1.65729 0.193709i
\(714\) 0 0
\(715\) −6.17295 + 20.6191i −0.230855 + 0.771110i
\(716\) −46.6347 + 11.0526i −1.74282 + 0.413056i
\(717\) 0 0
\(718\) 1.85663 4.30416i 0.0692889 0.160630i
\(719\) −15.5899 + 13.0815i −0.581404 + 0.487856i −0.885408 0.464815i \(-0.846121\pi\)
0.304004 + 0.952671i \(0.401676\pi\)
\(720\) 0 0
\(721\) 26.4418 + 22.1873i 0.984743 + 0.826298i
\(722\) −2.02333 + 1.01616i −0.0753006 + 0.0378174i
\(723\) 0 0
\(724\) 1.64464 + 0.192231i 0.0611226 + 0.00714421i
\(725\) 0.979956 + 16.8252i 0.0363947 + 0.624872i
\(726\) 0 0
\(727\) 16.6791 17.6788i 0.618593 0.655670i −0.340008 0.940422i \(-0.610430\pi\)
0.958601 + 0.284752i \(0.0919114\pi\)
\(728\) −9.59336 −0.355554
\(729\) 0 0
\(730\) 3.19555 0.118272
\(731\) −3.33780 + 3.53787i −0.123453 + 0.130853i
\(732\) 0 0
\(733\) 2.31961 + 39.8261i 0.0856767 + 1.47101i 0.717857 + 0.696191i \(0.245123\pi\)
−0.632180 + 0.774821i \(0.717840\pi\)
\(734\) −10.7893 1.26109i −0.398240 0.0465475i
\(735\) 0 0
\(736\) 24.6957 12.4027i 0.910296 0.457168i
\(737\) 27.0497 + 22.6974i 0.996389 + 0.836069i
\(738\) 0 0
\(739\) 6.20932 5.21024i 0.228413 0.191662i −0.521397 0.853314i \(-0.674589\pi\)
0.749811 + 0.661652i \(0.230145\pi\)
\(740\) −0.466707 + 1.08195i −0.0171565 + 0.0397733i
\(741\) 0 0
\(742\) 4.15163 0.983954i 0.152411 0.0361221i
\(743\) −7.11485 + 23.7653i −0.261019 + 0.871863i 0.722548 + 0.691320i \(0.242971\pi\)
−0.983567 + 0.180543i \(0.942215\pi\)
\(744\) 0 0
\(745\) −22.1966 + 2.59441i −0.813220 + 0.0950517i
\(746\) 1.24804 + 7.07796i 0.0456938 + 0.259143i
\(747\) 0 0
\(748\) −0.659681 + 3.74124i −0.0241203 + 0.136793i
\(749\) −1.79197 + 30.7670i −0.0654773 + 1.12420i
\(750\) 0 0
\(751\) −12.5408 29.0728i −0.457619 1.06088i −0.978312 0.207137i \(-0.933586\pi\)
0.520693 0.853744i \(-0.325674\pi\)
\(752\) −17.1328 8.60441i −0.624769 0.313771i
\(753\) 0 0
\(754\) 6.36316 + 1.50810i 0.231732 + 0.0549216i
\(755\) 4.13904 7.16903i 0.150635 0.260908i
\(756\) 0 0
\(757\) −7.21394 12.4949i −0.262195 0.454135i 0.704630 0.709575i \(-0.251113\pi\)
−0.966825 + 0.255440i \(0.917780\pi\)
\(758\) −2.04182 6.82014i −0.0741621 0.247719i
\(759\) 0 0
\(760\) 5.64321 3.71160i 0.204701 0.134634i
\(761\) −13.3336 + 17.9101i −0.483342 + 0.649241i −0.975172 0.221451i \(-0.928921\pi\)
0.491830 + 0.870691i \(0.336328\pi\)
\(762\) 0 0
\(763\) 12.9022 + 8.48591i 0.467091 + 0.307211i
\(764\) 14.0878 5.12754i 0.509679 0.185508i
\(765\) 0 0
\(766\) 2.36925 + 0.862338i 0.0856046 + 0.0311575i
\(767\) −11.5749 15.5477i −0.417944 0.561396i
\(768\) 0 0
\(769\) −18.7216 19.8437i −0.675118 0.715583i 0.295732 0.955271i \(-0.404436\pi\)
−0.970850 + 0.239688i \(0.922955\pi\)
\(770\) −3.10513 3.29124i −0.111901 0.118608i
\(771\) 0 0
\(772\) −0.215978 0.290109i −0.00777321 0.0104412i
\(773\) −7.11832 2.59086i −0.256028 0.0931867i 0.210817 0.977525i \(-0.432387\pi\)
−0.466846 + 0.884339i \(0.654610\pi\)
\(774\) 0 0
\(775\) −20.9260 + 7.61646i −0.751686 + 0.273591i
\(776\) −2.63878 1.73555i −0.0947267 0.0623027i
\(777\) 0 0
\(778\) −0.197712 + 0.265573i −0.00708832 + 0.00952126i
\(779\) 18.2981 12.0348i 0.655596 0.431192i
\(780\) 0 0
\(781\) 21.9134 + 73.1960i 0.784124 + 2.61916i
\(782\) 0.532800 + 0.922836i 0.0190529 + 0.0330006i
\(783\) 0 0
\(784\) 5.29489 9.17101i 0.189103 0.327536i
\(785\) −15.9354 3.77676i −0.568759 0.134798i
\(786\) 0 0
\(787\) −7.15801 3.59489i −0.255155 0.128144i 0.316624 0.948551i \(-0.397451\pi\)
−0.571780 + 0.820407i \(0.693747\pi\)
\(788\) 8.48381 + 19.6677i 0.302223 + 0.700632i
\(789\) 0 0
\(790\) 0.107878 1.85219i 0.00383812 0.0658980i
\(791\) 0.570845 3.23742i 0.0202969 0.115109i
\(792\) 0 0
\(793\) −1.66170 9.42396i −0.0590087 0.334655i
\(794\) −12.8282 + 1.49940i −0.455255 + 0.0532117i
\(795\) 0 0
\(796\) 0.936374 3.12771i 0.0331889 0.110859i
\(797\) −13.3001 + 3.15217i −0.471113 + 0.111656i −0.459313 0.888275i \(-0.651904\pi\)
−0.0117999 + 0.999930i \(0.503756\pi\)
\(798\) 0 0
\(799\) 1.00735 2.33530i 0.0356375 0.0826171i
\(800\) −10.5811 + 8.87856i −0.374097 + 0.313905i
\(801\) 0 0
\(802\) 1.21775 + 1.02182i 0.0430003 + 0.0360816i
\(803\) 28.7079 14.4177i 1.01308 0.508788i
\(804\) 0 0
\(805\) 16.3359 + 1.90939i 0.575765 + 0.0672973i
\(806\) 0.502408 + 8.62601i 0.0176966 + 0.303838i
\(807\) 0 0
\(808\) −16.3521 + 17.3322i −0.575264 + 0.609744i
\(809\) −6.31109 −0.221886 −0.110943 0.993827i \(-0.535387\pi\)
−0.110943 + 0.993827i \(0.535387\pi\)
\(810\) 0 0
\(811\) −29.8809 −1.04926 −0.524631 0.851330i \(-0.675797\pi\)
−0.524631 + 0.851330i \(0.675797\pi\)
\(812\) 12.2255 12.9583i 0.429031 0.454747i
\(813\) 0 0
\(814\) −0.0531513 0.912572i −0.00186295 0.0319856i
\(815\) −0.764017 0.0893008i −0.0267624 0.00312807i
\(816\) 0 0
\(817\) 37.4016 18.7838i 1.30852 0.657162i
\(818\) 6.28665 + 5.27513i 0.219808 + 0.184440i
\(819\) 0 0
\(820\) 11.0708 9.28950i 0.386609 0.324403i
\(821\) −12.5829 + 29.1705i −0.439147 + 1.01806i 0.544633 + 0.838675i \(0.316669\pi\)
−0.983780 + 0.179382i \(0.942590\pi\)
\(822\) 0 0
\(823\) 25.0358 5.93360i 0.872694 0.206832i 0.230219 0.973139i \(-0.426056\pi\)
0.642475 + 0.766307i \(0.277908\pi\)
\(824\) 7.56493 25.2686i 0.263537 0.880274i
\(825\) 0 0
\(826\) 4.04737 0.473070i 0.140826 0.0164602i
\(827\) −3.15225 17.8773i −0.109615 0.621655i −0.989276 0.146056i \(-0.953342\pi\)
0.879662 0.475600i \(-0.157769\pi\)
\(828\) 0 0
\(829\) −4.93669 + 27.9974i −0.171458 + 0.972389i 0.770694 + 0.637205i \(0.219910\pi\)
−0.942153 + 0.335184i \(0.891202\pi\)
\(830\) 0.136909 2.35064i 0.00475219 0.0815920i
\(831\) 0 0
\(832\) −6.49005 15.0456i −0.225002 0.521613i
\(833\) 1.25538 + 0.630475i 0.0434963 + 0.0218447i
\(834\) 0 0
\(835\) −3.78620 0.897345i −0.131027 0.0310539i
\(836\) 16.3449 28.3101i 0.565299 0.979127i
\(837\) 0 0
\(838\) −0.792187 1.37211i −0.0273656 0.0473987i
\(839\) −8.56334 28.6036i −0.295639 0.987504i −0.968766 0.247977i \(-0.920234\pi\)
0.673126 0.739527i \(-0.264951\pi\)
\(840\) 0 0
\(841\) 3.15398 2.07441i 0.108758 0.0715312i
\(842\) 1.12342 1.50902i 0.0387158 0.0520043i
\(843\) 0 0
\(844\) −5.54834 3.64920i −0.190982 0.125611i
\(845\) −1.40738 + 0.512244i −0.0484153 + 0.0176217i
\(846\) 0 0
\(847\) −22.9977 8.37050i −0.790212 0.287614i
\(848\) 11.1367 + 14.9591i 0.382434 + 0.513698i
\(849\) 0 0
\(850\) −0.365497 0.387404i −0.0125364 0.0132879i
\(851\) 2.28017 + 2.41684i 0.0781632 + 0.0828481i
\(852\) 0 0
\(853\) −3.04813 4.09435i −0.104366 0.140188i 0.746872 0.664968i \(-0.231555\pi\)
−0.851238 + 0.524780i \(0.824147\pi\)
\(854\) 1.89043 + 0.688062i 0.0646893 + 0.0235450i
\(855\) 0 0
\(856\) 22.1305 8.05483i 0.756403 0.275308i
\(857\) 11.8982 + 7.82555i 0.406434 + 0.267316i 0.736223 0.676739i \(-0.236607\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(858\) 0 0
\(859\) −25.0637 + 33.6664i −0.855162 + 1.14868i 0.132361 + 0.991202i \(0.457744\pi\)
−0.987522 + 0.157480i \(0.949663\pi\)
\(860\) 23.0745 15.1763i 0.786833 0.517508i
\(861\) 0 0
\(862\) 2.87513 + 9.60359i 0.0979272 + 0.327100i
\(863\) −12.5420 21.7234i −0.426934 0.739472i 0.569665 0.821877i \(-0.307073\pi\)
−0.996599 + 0.0824054i \(0.973740\pi\)
\(864\) 0 0
\(865\) 6.19073 10.7227i 0.210491 0.364582i
\(866\) 7.87612 + 1.86667i 0.267641 + 0.0634322i
\(867\) 0 0
\(868\) 21.0356 + 10.5645i 0.713995 + 0.358582i
\(869\) −7.38757 17.1263i −0.250606 0.580970i
\(870\) 0 0
\(871\) 1.44732 24.8495i 0.0490405 0.841992i
\(872\) 2.04917 11.6214i 0.0693936 0.393551i
\(873\) 0 0
\(874\) −1.59225 9.03012i −0.0538588 0.305448i
\(875\) −20.3309 + 2.37634i −0.687311 + 0.0803351i
\(876\) 0 0
\(877\) 9.14104 30.5332i 0.308671 1.03103i −0.653121 0.757253i \(-0.726541\pi\)
0.961792 0.273780i \(-0.0882739\pi\)
\(878\) 11.9003 2.82043i 0.401617 0.0951849i
\(879\) 0 0
\(880\) 7.83366 18.1605i 0.264073 0.612189i
\(881\) 4.45428 3.73758i 0.150068 0.125922i −0.564662 0.825322i \(-0.690994\pi\)
0.714731 + 0.699400i \(0.246549\pi\)
\(882\) 0 0
\(883\) −0.930865 0.781089i −0.0313261 0.0262857i 0.626990 0.779027i \(-0.284287\pi\)
−0.658316 + 0.752741i \(0.728731\pi\)
\(884\) 2.39313 1.20188i 0.0804897 0.0404235i
\(885\) 0 0
\(886\) −12.2248 1.42888i −0.410702 0.0480041i
\(887\) 0.151446 + 2.60022i 0.00508505 + 0.0873069i 0.999896 0.0144357i \(-0.00459520\pi\)
−0.994811 + 0.101743i \(0.967558\pi\)
\(888\) 0 0
\(889\) −6.69523 + 7.09653i −0.224551 + 0.238010i
\(890\) −5.05459 −0.169430
\(891\) 0 0
\(892\) 12.1821 0.407888
\(893\) −15.0184 + 15.9186i −0.502571 + 0.532694i
\(894\) 0 0
\(895\) 1.92457 + 33.0437i 0.0643314 + 1.10453i
\(896\) 19.0424 + 2.22574i 0.636162 + 0.0743567i
\(897\) 0 0
\(898\) 5.40667 2.71533i 0.180423 0.0906118i
\(899\) −25.5323 21.4242i −0.851551 0.714536i
\(900\) 0 0
\(901\) −1.89517 + 1.59024i −0.0631373 + 0.0529785i
\(902\) −4.44067 + 10.2946i −0.147858 + 0.342773i
\(903\) 0 0
\(904\) −2.44436 + 0.579323i −0.0812981 + 0.0192680i
\(905\) 0.327981 1.09553i 0.0109025 0.0364168i
\(906\) 0 0
\(907\) −13.3542 + 1.56088i −0.443419 + 0.0518282i −0.334873 0.942263i \(-0.608693\pi\)
−0.108546 + 0.994091i \(0.534619\pi\)
\(908\) −2.62067 14.8626i −0.0869701 0.493232i
\(909\) 0 0
\(910\) −0.553881 + 3.14122i −0.0183610 + 0.104130i
\(911\) 1.63910 28.1423i 0.0543058 0.932395i −0.855615 0.517613i \(-0.826821\pi\)
0.909921 0.414782i \(-0.136142\pi\)
\(912\) 0 0
\(913\) −9.37566 21.7352i −0.310289 0.719331i
\(914\) 6.52549 + 3.27723i 0.215844 + 0.108401i
\(915\) 0 0
\(916\) −14.1549 3.35477i −0.467691 0.110845i
\(917\) −11.1295 + 19.2768i −0.367528 + 0.636578i
\(918\) 0 0
\(919\) 13.5339 + 23.4413i 0.446441 + 0.773258i 0.998151 0.0607774i \(-0.0193580\pi\)
−0.551710 + 0.834036i \(0.686025\pi\)
\(920\) −3.60461 12.0402i −0.118840 0.396954i
\(921\) 0 0
\(922\) 4.68676 3.08253i 0.154350 0.101518i
\(923\) 32.1633 43.2028i 1.05867 1.42204i
\(924\) 0 0
\(925\) −1.38753 0.912593i −0.0456217 0.0300059i
\(926\) −0.985077 + 0.358539i −0.0323716 + 0.0117823i
\(927\) 0 0
\(928\) −19.4266 7.07070i −0.637709 0.232107i
\(929\) −28.7357 38.5987i −0.942787 1.26638i −0.963806 0.266604i \(-0.914099\pi\)
0.0210192 0.999779i \(-0.493309\pi\)
\(930\) 0 0
\(931\) −8.29546 8.79268i −0.271873 0.288168i
\(932\) 32.9258 + 34.8993i 1.07852 + 1.14316i
\(933\) 0 0
\(934\) −4.45513 5.98427i −0.145776 0.195811i
\(935\) 2.46545 + 0.897352i 0.0806290 + 0.0293465i
\(936\) 0 0
\(937\) −48.7239 + 17.7340i −1.59174 + 0.579346i −0.977714 0.209940i \(-0.932673\pi\)
−0.614026 + 0.789286i \(0.710451\pi\)
\(938\) 4.37206 + 2.87555i 0.142753 + 0.0938900i
\(939\) 0 0
\(940\) −8.62374 + 11.5837i −0.281275 + 0.377819i
\(941\) −37.8323 + 24.8827i −1.23330 + 0.811153i −0.987416 0.158146i \(-0.949448\pi\)
−0.245883 + 0.969300i \(0.579078\pi\)
\(942\) 0 0
\(943\) −11.6879 39.0403i −0.380611 1.27133i
\(944\) 8.90573 + 15.4252i 0.289857 + 0.502047i
\(945\) 0 0
\(946\) −10.7128 + 18.5551i −0.348302 + 0.603277i
\(947\) −20.4431 4.84509i −0.664310 0.157444i −0.115391 0.993320i \(-0.536812\pi\)
−0.548919 + 0.835876i \(0.684960\pi\)
\(948\) 0 0
\(949\) −20.2370 10.1634i −0.656920 0.329918i
\(950\) 1.81525 + 4.20823i 0.0588946 + 0.136533i
\(951\) 0 0
\(952\) −0.0679961 + 1.16745i −0.00220377 + 0.0378372i
\(953\) 1.52233 8.63357i 0.0493132 0.279669i −0.950173 0.311723i \(-0.899094\pi\)
0.999486 + 0.0320543i \(0.0102050\pi\)
\(954\) 0 0
\(955\) −1.79794 10.1966i −0.0581800 0.329955i
\(956\) −0.323796 + 0.0378463i −0.0104723 + 0.00122404i
\(957\) 0 0
\(958\) 2.02365 6.75945i 0.0653811 0.218388i
\(959\) −9.20832 + 2.18241i −0.297352 + 0.0704737i
\(960\) 0 0
\(961\) 5.16468 11.9731i 0.166603 0.386228i
\(962\) −0.493629 + 0.414204i −0.0159152 + 0.0133545i
\(963\) 0 0
\(964\) −27.4921 23.0686i −0.885461 0.742990i
\(965\) −0.223216 + 0.112103i −0.00718559 + 0.00360874i
\(966\) 0 0
\(967\) 22.4843 + 2.62804i 0.723047 + 0.0845120i 0.469653 0.882851i \(-0.344379\pi\)
0.253394 + 0.967363i \(0.418453\pi\)
\(968\) 1.08741 + 18.6702i 0.0349508 + 0.600082i
\(969\) 0 0
\(970\) −0.720635 + 0.763829i −0.0231382 + 0.0245251i
\(971\) −13.1781 −0.422905 −0.211453 0.977388i \(-0.567819\pi\)
−0.211453 + 0.977388i \(0.567819\pi\)
\(972\) 0 0
\(973\) 32.1504 1.03070
\(974\) 1.38801 1.47120i 0.0444746 0.0471403i
\(975\) 0 0
\(976\) 0.511289 + 8.77849i 0.0163660 + 0.280993i
\(977\) 39.4606 + 4.61228i 1.26246 + 0.147560i 0.720861 0.693079i \(-0.243746\pi\)
0.541595 + 0.840639i \(0.317821\pi\)
\(978\) 0 0
\(979\) −45.4091 + 22.8053i −1.45128 + 0.728860i
\(980\) −6.11051 5.12733i −0.195193 0.163786i
\(981\) 0 0
\(982\) −1.07321 + 0.900528i −0.0342474 + 0.0287370i
\(983\) −23.2360 + 53.8671i −0.741113 + 1.71809i −0.0462734 + 0.998929i \(0.514735\pi\)
−0.694840 + 0.719165i \(0.744525\pi\)
\(984\) 0 0
\(985\) 14.3942 3.41150i 0.458639 0.108699i
\(986\) 0.228626 0.763665i 0.00728094 0.0243200i
\(987\) 0 0
\(988\) −22.8881 + 2.67523i −0.728166 + 0.0851104i
\(989\) −13.5235 76.6957i −0.430023 2.43878i
\(990\) 0 0
\(991\) 3.30423 18.7392i 0.104962 0.595270i −0.886273 0.463163i \(-0.846714\pi\)
0.991235 0.132108i \(-0.0421744\pi\)
\(992\) 1.58828 27.2697i 0.0504280 0.865815i
\(993\) 0 0
\(994\) 4.48484 + 10.3970i 0.142250 + 0.329773i
\(995\) −2.01498 1.01196i −0.0638793 0.0320814i
\(996\) 0 0
\(997\) −5.53844 1.31264i −0.175404 0.0415716i 0.141975 0.989870i \(-0.454655\pi\)
−0.317379 + 0.948299i \(0.602803\pi\)
\(998\) 5.28998 9.16251i 0.167451 0.290034i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.127.4 144
3.2 odd 2 81.2.g.a.70.5 yes 144
9.2 odd 6 729.2.g.c.136.4 144
9.4 even 3 729.2.g.a.379.4 144
9.5 odd 6 729.2.g.d.379.5 144
9.7 even 3 729.2.g.b.136.5 144
81.5 odd 54 729.2.g.d.352.5 144
81.22 even 27 inner 243.2.g.a.199.4 144
81.32 odd 54 729.2.g.c.595.4 144
81.34 even 27 6561.2.a.d.1.39 72
81.47 odd 54 6561.2.a.c.1.34 72
81.49 even 27 729.2.g.b.595.5 144
81.59 odd 54 81.2.g.a.22.5 144
81.76 even 27 729.2.g.a.352.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.5 144 81.59 odd 54
81.2.g.a.70.5 yes 144 3.2 odd 2
243.2.g.a.127.4 144 1.1 even 1 trivial
243.2.g.a.199.4 144 81.22 even 27 inner
729.2.g.a.352.4 144 81.76 even 27
729.2.g.a.379.4 144 9.4 even 3
729.2.g.b.136.5 144 9.7 even 3
729.2.g.b.595.5 144 81.49 even 27
729.2.g.c.136.4 144 9.2 odd 6
729.2.g.c.595.4 144 81.32 odd 54
729.2.g.d.352.5 144 81.5 odd 54
729.2.g.d.379.5 144 9.5 odd 6
6561.2.a.c.1.34 72 81.47 odd 54
6561.2.a.d.1.39 72 81.34 even 27