Properties

Label 729.2.g.d.352.5
Level $729$
Weight $2$
Character 729.352
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 352.5
Character \(\chi\) \(=\) 729.352
Dual form 729.2.g.d.379.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.108562 - 0.362623i) q^{2} +(1.55127 + 1.02028i) q^{4} +(0.507898 - 1.17744i) q^{5} +(-0.111081 - 1.90719i) q^{7} +(1.11832 - 0.938383i) q^{8} +(-0.371828 - 0.312001i) q^{10} +(2.91390 - 3.91405i) q^{11} +(-2.36051 + 2.50200i) q^{13} +(-0.703649 - 0.166768i) q^{14} +(1.25195 + 2.90234i) q^{16} +(0.0728119 - 0.412937i) q^{17} +(-0.626542 - 3.55329i) q^{19} +(1.98921 - 1.30832i) q^{20} +(-1.10299 - 1.48157i) q^{22} +(0.390372 - 6.70243i) q^{23} +(2.30281 + 2.44083i) q^{25} +(0.651020 + 1.12760i) q^{26} +(1.77356 - 3.07189i) q^{28} +(-4.88707 + 1.15826i) q^{29} +(-5.93035 + 2.97833i) q^{31} +(4.08835 - 0.477860i) q^{32} +(-0.141836 - 0.0712326i) q^{34} +(-2.30201 - 0.837864i) q^{35} +(0.465059 - 0.169268i) q^{37} +(-1.35652 - 0.158555i) q^{38} +(-0.536896 - 1.79336i) q^{40} +(1.74088 + 5.81495i) q^{41} +(11.5214 + 1.34666i) q^{43} +(8.51368 - 3.09873i) q^{44} +(-2.38808 - 0.869188i) q^{46} +(5.42033 + 2.72219i) q^{47} +(3.32765 - 0.388946i) q^{49} +(1.13510 - 0.570068i) q^{50} +(-6.21453 + 1.47287i) q^{52} +(2.95007 - 5.10967i) q^{53} +(-3.12859 - 5.41888i) q^{55} +(-1.91390 - 2.02861i) q^{56} +(-0.110540 + 1.89791i) q^{58} +(3.36501 + 4.51999i) q^{59} +(2.32430 - 1.52872i) q^{61} +(0.436200 + 2.47381i) q^{62} +(-0.827191 + 4.69124i) q^{64} +(1.74705 + 4.05012i) q^{65} +(-7.04135 - 1.66883i) q^{67} +(0.534263 - 0.566286i) q^{68} +(-0.553741 + 0.743803i) q^{70} +(-11.9949 - 10.0649i) q^{71} +(-5.04326 + 4.23179i) q^{73} +(-0.0108925 - 0.187017i) q^{74} +(2.65344 - 6.15135i) q^{76} +(-7.78851 - 5.12258i) q^{77} +(-1.09627 + 3.66180i) q^{79} +4.05318 q^{80} +2.29763 q^{82} +(1.39129 - 4.64723i) q^{83} +(-0.449227 - 0.295461i) q^{85} +(1.73912 - 4.03173i) q^{86} +(-0.414199 - 7.11153i) q^{88} +(-7.97723 + 6.69369i) q^{89} +(5.03399 + 4.22402i) q^{91} +(7.44395 - 9.99896i) q^{92} +(1.57557 - 1.67001i) q^{94} +(-4.50201 - 1.06700i) q^{95} +(-0.856906 - 1.98653i) q^{97} +(0.220216 - 1.24891i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{16}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.108562 0.362623i 0.0767651 0.256413i −0.910989 0.412430i \(-0.864680\pi\)
0.987754 + 0.156017i \(0.0498654\pi\)
\(3\) 0 0
\(4\) 1.55127 + 1.02028i 0.775633 + 0.510142i
\(5\) 0.507898 1.17744i 0.227139 0.526567i −0.766091 0.642732i \(-0.777801\pi\)
0.993230 + 0.116165i \(0.0370602\pi\)
\(6\) 0 0
\(7\) −0.111081 1.90719i −0.0419847 0.720849i −0.951967 0.306201i \(-0.900942\pi\)
0.909982 0.414647i \(-0.136095\pi\)
\(8\) 1.11832 0.938383i 0.395386 0.331768i
\(9\) 0 0
\(10\) −0.371828 0.312001i −0.117582 0.0986633i
\(11\) 2.91390 3.91405i 0.878575 1.18013i −0.104058 0.994571i \(-0.533183\pi\)
0.982633 0.185560i \(-0.0594099\pi\)
\(12\) 0 0
\(13\) −2.36051 + 2.50200i −0.654689 + 0.693930i −0.966631 0.256171i \(-0.917539\pi\)
0.311942 + 0.950101i \(0.399020\pi\)
\(14\) −0.703649 0.166768i −0.188058 0.0445706i
\(15\) 0 0
\(16\) 1.25195 + 2.90234i 0.312986 + 0.725584i
\(17\) 0.0728119 0.412937i 0.0176595 0.100152i −0.974704 0.223499i \(-0.928252\pi\)
0.992364 + 0.123348i \(0.0393630\pi\)
\(18\) 0 0
\(19\) −0.626542 3.55329i −0.143739 0.815182i −0.968371 0.249513i \(-0.919729\pi\)
0.824633 0.565668i \(-0.191382\pi\)
\(20\) 1.98921 1.30832i 0.444800 0.292550i
\(21\) 0 0
\(22\) −1.10299 1.48157i −0.235157 0.315871i
\(23\) 0.390372 6.70243i 0.0813982 1.39755i −0.672274 0.740302i \(-0.734682\pi\)
0.753672 0.657251i \(-0.228281\pi\)
\(24\) 0 0
\(25\) 2.30281 + 2.44083i 0.460561 + 0.488166i
\(26\) 0.651020 + 1.12760i 0.127675 + 0.221140i
\(27\) 0 0
\(28\) 1.77356 3.07189i 0.335170 0.580532i
\(29\) −4.88707 + 1.15826i −0.907506 + 0.215083i −0.657759 0.753228i \(-0.728495\pi\)
−0.249747 + 0.968311i \(0.580347\pi\)
\(30\) 0 0
\(31\) −5.93035 + 2.97833i −1.06512 + 0.534924i −0.892956 0.450144i \(-0.851373\pi\)
−0.172166 + 0.985068i \(0.555076\pi\)
\(32\) 4.08835 0.477860i 0.722726 0.0844745i
\(33\) 0 0
\(34\) −0.141836 0.0712326i −0.0243246 0.0122163i
\(35\) −2.30201 0.837864i −0.389111 0.141625i
\(36\) 0 0
\(37\) 0.465059 0.169268i 0.0764552 0.0278274i −0.303509 0.952828i \(-0.598158\pi\)
0.379965 + 0.925001i \(0.375936\pi\)
\(38\) −1.35652 0.158555i −0.220057 0.0257210i
\(39\) 0 0
\(40\) −0.536896 1.79336i −0.0848907 0.283555i
\(41\) 1.74088 + 5.81495i 0.271880 + 0.908143i 0.979482 + 0.201531i \(0.0645918\pi\)
−0.707602 + 0.706611i \(0.750223\pi\)
\(42\) 0 0
\(43\) 11.5214 + 1.34666i 1.75700 + 0.205364i 0.932665 0.360743i \(-0.117477\pi\)
0.824332 + 0.566107i \(0.191551\pi\)
\(44\) 8.51368 3.09873i 1.28349 0.467151i
\(45\) 0 0
\(46\) −2.38808 0.869188i −0.352102 0.128155i
\(47\) 5.42033 + 2.72219i 0.790636 + 0.397072i 0.797815 0.602902i \(-0.205989\pi\)
−0.00717941 + 0.999974i \(0.502285\pi\)
\(48\) 0 0
\(49\) 3.32765 0.388946i 0.475378 0.0555637i
\(50\) 1.13510 0.570068i 0.160527 0.0806198i
\(51\) 0 0
\(52\) −6.21453 + 1.47287i −0.861801 + 0.204251i
\(53\) 2.95007 5.10967i 0.405223 0.701867i −0.589124 0.808043i \(-0.700527\pi\)
0.994347 + 0.106175i \(0.0338605\pi\)
\(54\) 0 0
\(55\) −3.12859 5.41888i −0.421859 0.730682i
\(56\) −1.91390 2.02861i −0.255755 0.271084i
\(57\) 0 0
\(58\) −0.110540 + 1.89791i −0.0145147 + 0.249207i
\(59\) 3.36501 + 4.51999i 0.438087 + 0.588453i 0.965255 0.261308i \(-0.0841538\pi\)
−0.527169 + 0.849761i \(0.676746\pi\)
\(60\) 0 0
\(61\) 2.32430 1.52872i 0.297596 0.195732i −0.391926 0.919997i \(-0.628191\pi\)
0.689522 + 0.724265i \(0.257821\pi\)
\(62\) 0.436200 + 2.47381i 0.0553975 + 0.314175i
\(63\) 0 0
\(64\) −0.827191 + 4.69124i −0.103399 + 0.586404i
\(65\) 1.74705 + 4.05012i 0.216695 + 0.502356i
\(66\) 0 0
\(67\) −7.04135 1.66883i −0.860238 0.203880i −0.223257 0.974760i \(-0.571669\pi\)
−0.636981 + 0.770880i \(0.719817\pi\)
\(68\) 0.534263 0.566286i 0.0647889 0.0686722i
\(69\) 0 0
\(70\) −0.553741 + 0.743803i −0.0661847 + 0.0889014i
\(71\) −11.9949 10.0649i −1.42353 1.19448i −0.949418 0.314015i \(-0.898326\pi\)
−0.474109 0.880466i \(-0.657230\pi\)
\(72\) 0 0
\(73\) −5.04326 + 4.23179i −0.590268 + 0.495294i −0.888301 0.459262i \(-0.848114\pi\)
0.298033 + 0.954556i \(0.403670\pi\)
\(74\) −0.0108925 0.187017i −0.00126623 0.0217403i
\(75\) 0 0
\(76\) 2.65344 6.15135i 0.304370 0.705609i
\(77\) −7.78851 5.12258i −0.887583 0.583772i
\(78\) 0 0
\(79\) −1.09627 + 3.66180i −0.123340 + 0.411984i −0.997251 0.0741024i \(-0.976391\pi\)
0.873911 + 0.486087i \(0.161576\pi\)
\(80\) 4.05318 0.453160
\(81\) 0 0
\(82\) 2.29763 0.253731
\(83\) 1.39129 4.64723i 0.152714 0.510100i −0.847057 0.531502i \(-0.821628\pi\)
0.999771 + 0.0214019i \(0.00681295\pi\)
\(84\) 0 0
\(85\) −0.449227 0.295461i −0.0487255 0.0320473i
\(86\) 1.73912 4.03173i 0.187534 0.434753i
\(87\) 0 0
\(88\) −0.414199 7.11153i −0.0441538 0.758091i
\(89\) −7.97723 + 6.69369i −0.845585 + 0.709530i −0.958813 0.284039i \(-0.908325\pi\)
0.113228 + 0.993569i \(0.463881\pi\)
\(90\) 0 0
\(91\) 5.03399 + 4.22402i 0.527705 + 0.442797i
\(92\) 7.44395 9.99896i 0.776085 1.04246i
\(93\) 0 0
\(94\) 1.57557 1.67001i 0.162508 0.172248i
\(95\) −4.50201 1.06700i −0.461896 0.109471i
\(96\) 0 0
\(97\) −0.856906 1.98653i −0.0870056 0.201702i 0.869158 0.494534i \(-0.164661\pi\)
−0.956164 + 0.292833i \(0.905402\pi\)
\(98\) 0.220216 1.24891i 0.0222452 0.126159i
\(99\) 0 0
\(100\) 1.08192 + 6.13589i 0.108192 + 0.613589i
\(101\) −13.6371 + 8.96929i −1.35695 + 0.892477i −0.999146 0.0413207i \(-0.986843\pi\)
−0.357800 + 0.933798i \(0.616473\pi\)
\(102\) 0 0
\(103\) 10.7894 + 14.4927i 1.06311 + 1.42801i 0.897069 + 0.441890i \(0.145692\pi\)
0.166043 + 0.986118i \(0.446901\pi\)
\(104\) −0.291980 + 5.01311i −0.0286310 + 0.491575i
\(105\) 0 0
\(106\) −1.53262 1.62448i −0.148861 0.157783i
\(107\) 8.06607 + 13.9708i 0.779777 + 1.35061i 0.932070 + 0.362277i \(0.118001\pi\)
−0.152294 + 0.988335i \(0.548666\pi\)
\(108\) 0 0
\(109\) 4.04171 7.00045i 0.387126 0.670521i −0.604936 0.796274i \(-0.706801\pi\)
0.992062 + 0.125753i \(0.0401347\pi\)
\(110\) −2.30466 + 0.546214i −0.219741 + 0.0520795i
\(111\) 0 0
\(112\) 5.39623 2.71009i 0.509896 0.256079i
\(113\) 1.70912 0.199768i 0.160781 0.0187926i −0.0353218 0.999376i \(-0.511246\pi\)
0.196102 + 0.980583i \(0.437172\pi\)
\(114\) 0 0
\(115\) −7.69343 3.86379i −0.717416 0.360300i
\(116\) −8.76289 3.18943i −0.813614 0.296131i
\(117\) 0 0
\(118\) 2.00437 0.729529i 0.184517 0.0671586i
\(119\) −0.795635 0.0929964i −0.0729358 0.00852497i
\(120\) 0 0
\(121\) −3.67413 12.2725i −0.334012 1.11568i
\(122\) −0.302017 1.00881i −0.0273433 0.0913330i
\(123\) 0 0
\(124\) −12.2383 1.43045i −1.09903 0.128458i
\(125\) 10.0684 3.66460i 0.900546 0.327772i
\(126\) 0 0
\(127\) −4.79894 1.74667i −0.425837 0.154992i 0.120206 0.992749i \(-0.461644\pi\)
−0.546044 + 0.837757i \(0.683867\pi\)
\(128\) 8.96807 + 4.50393i 0.792673 + 0.398095i
\(129\) 0 0
\(130\) 1.65833 0.193831i 0.145445 0.0170001i
\(131\) −10.4120 + 5.22912i −0.909704 + 0.456871i −0.841165 0.540778i \(-0.818130\pi\)
−0.0685388 + 0.997648i \(0.521834\pi\)
\(132\) 0 0
\(133\) −6.70720 + 1.58964i −0.581588 + 0.137839i
\(134\) −1.36958 + 2.37218i −0.118314 + 0.204925i
\(135\) 0 0
\(136\) −0.306066 0.530121i −0.0262449 0.0454575i
\(137\) −3.39935 3.60310i −0.290426 0.307834i 0.565689 0.824619i \(-0.308610\pi\)
−0.856115 + 0.516785i \(0.827129\pi\)
\(138\) 0 0
\(139\) −0.978519 + 16.8005i −0.0829969 + 1.42500i 0.657759 + 0.753228i \(0.271504\pi\)
−0.740756 + 0.671774i \(0.765533\pi\)
\(140\) −2.71618 3.64846i −0.229559 0.308351i
\(141\) 0 0
\(142\) −4.95194 + 3.25694i −0.415558 + 0.273317i
\(143\) 2.91464 + 16.5298i 0.243735 + 1.38229i
\(144\) 0 0
\(145\) −1.11835 + 6.34250i −0.0928742 + 0.526716i
\(146\) 0.987039 + 2.28821i 0.0816879 + 0.189374i
\(147\) 0 0
\(148\) 0.894131 + 0.211913i 0.0734972 + 0.0174191i
\(149\) −11.9596 + 12.6764i −0.979767 + 1.03849i 0.0194845 + 0.999810i \(0.493797\pi\)
−0.999252 + 0.0386822i \(0.987684\pi\)
\(150\) 0 0
\(151\) 3.85502 5.17818i 0.313717 0.421395i −0.617098 0.786886i \(-0.711692\pi\)
0.930815 + 0.365492i \(0.119099\pi\)
\(152\) −4.03503 3.38579i −0.327284 0.274624i
\(153\) 0 0
\(154\) −2.70310 + 2.26817i −0.217822 + 0.182775i
\(155\) 0.494796 + 8.49531i 0.0397429 + 0.682360i
\(156\) 0 0
\(157\) 5.05847 11.7269i 0.403710 0.935905i −0.588171 0.808736i \(-0.700152\pi\)
0.991881 0.127168i \(-0.0405889\pi\)
\(158\) 1.20884 + 0.795065i 0.0961700 + 0.0632520i
\(159\) 0 0
\(160\) 1.51381 5.05649i 0.119678 0.399751i
\(161\) −12.8261 −1.01084
\(162\) 0 0
\(163\) −0.599869 −0.0469853 −0.0234927 0.999724i \(-0.507479\pi\)
−0.0234927 + 0.999724i \(0.507479\pi\)
\(164\) −3.23233 + 10.7967i −0.252402 + 0.843083i
\(165\) 0 0
\(166\) −1.53415 1.00903i −0.119073 0.0783158i
\(167\) −1.20188 + 2.78626i −0.0930039 + 0.215607i −0.958368 0.285537i \(-0.907828\pi\)
0.865364 + 0.501144i \(0.167087\pi\)
\(168\) 0 0
\(169\) 0.0679114 + 1.16599i 0.00522396 + 0.0896919i
\(170\) −0.155910 + 0.130824i −0.0119578 + 0.0100337i
\(171\) 0 0
\(172\) 16.4988 + 13.8441i 1.25802 + 1.05560i
\(173\) −5.76591 + 7.74497i −0.438374 + 0.588839i −0.965323 0.261058i \(-0.915929\pi\)
0.526949 + 0.849897i \(0.323336\pi\)
\(174\) 0 0
\(175\) 4.39932 4.66301i 0.332557 0.352490i
\(176\) 15.0079 + 3.55695i 1.13127 + 0.268115i
\(177\) 0 0
\(178\) 1.56126 + 3.61941i 0.117021 + 0.271286i
\(179\) −4.48229 + 25.4203i −0.335022 + 1.90001i 0.0919897 + 0.995760i \(0.470677\pi\)
−0.427012 + 0.904246i \(0.640434\pi\)
\(180\) 0 0
\(181\) 0.154861 + 0.878259i 0.0115107 + 0.0652805i 0.990022 0.140913i \(-0.0450036\pi\)
−0.978511 + 0.206193i \(0.933893\pi\)
\(182\) 2.07823 1.36687i 0.154048 0.101319i
\(183\) 0 0
\(184\) −5.85288 7.86179i −0.431480 0.579579i
\(185\) 0.0369001 0.633549i 0.00271295 0.0465795i
\(186\) 0 0
\(187\) −1.40409 1.48825i −0.102677 0.108831i
\(188\) 5.63096 + 9.75311i 0.410680 + 0.711319i
\(189\) 0 0
\(190\) −0.875665 + 1.51670i −0.0635274 + 0.110033i
\(191\) −7.85677 + 1.86209i −0.568496 + 0.134736i −0.504805 0.863234i \(-0.668435\pi\)
−0.0636914 + 0.997970i \(0.520287\pi\)
\(192\) 0 0
\(193\) 0.174073 0.0874229i 0.0125301 0.00629284i −0.442523 0.896757i \(-0.645917\pi\)
0.455053 + 0.890464i \(0.349620\pi\)
\(194\) −0.813389 + 0.0950716i −0.0583979 + 0.00682574i
\(195\) 0 0
\(196\) 5.55890 + 2.79179i 0.397064 + 0.199413i
\(197\) −10.8405 3.94561i −0.772351 0.281113i −0.0743718 0.997231i \(-0.523695\pi\)
−0.697980 + 0.716118i \(0.745917\pi\)
\(198\) 0 0
\(199\) −1.65236 + 0.601410i −0.117133 + 0.0426328i −0.399922 0.916549i \(-0.630963\pi\)
0.282789 + 0.959182i \(0.408740\pi\)
\(200\) 4.86571 + 0.568720i 0.344058 + 0.0402146i
\(201\) 0 0
\(202\) 1.77199 + 5.91887i 0.124677 + 0.416450i
\(203\) 2.75187 + 9.19189i 0.193143 + 0.645144i
\(204\) 0 0
\(205\) 7.73094 + 0.903617i 0.539952 + 0.0631114i
\(206\) 6.42671 2.33913i 0.447770 0.162975i
\(207\) 0 0
\(208\) −10.2169 3.71864i −0.708413 0.257841i
\(209\) −15.7335 7.90164i −1.08831 0.546568i
\(210\) 0 0
\(211\) 3.55247 0.415224i 0.244562 0.0285852i 0.00707131 0.999975i \(-0.497749\pi\)
0.237491 + 0.971390i \(0.423675\pi\)
\(212\) 9.78966 4.91655i 0.672356 0.337670i
\(213\) 0 0
\(214\) 5.94182 1.40824i 0.406174 0.0962651i
\(215\) 7.43730 12.8818i 0.507220 0.878530i
\(216\) 0 0
\(217\) 6.33898 + 10.9794i 0.430318 + 0.745333i
\(218\) −2.09975 2.22560i −0.142213 0.150737i
\(219\) 0 0
\(220\) 0.675517 11.5982i 0.0455434 0.781949i
\(221\) 0.861294 + 1.15692i 0.0579369 + 0.0778227i
\(222\) 0 0
\(223\) 5.48173 3.60539i 0.367083 0.241435i −0.352544 0.935795i \(-0.614683\pi\)
0.719627 + 0.694361i \(0.244313\pi\)
\(224\) −1.36551 7.74417i −0.0912368 0.517429i
\(225\) 0 0
\(226\) 0.113106 0.641454i 0.00752367 0.0426689i
\(227\) −3.21943 7.46348i −0.213681 0.495369i 0.777339 0.629082i \(-0.216569\pi\)
−0.991020 + 0.133713i \(0.957310\pi\)
\(228\) 0 0
\(229\) 7.62361 + 1.80683i 0.503782 + 0.119399i 0.474646 0.880177i \(-0.342576\pi\)
0.0291365 + 0.999575i \(0.490724\pi\)
\(230\) −2.23631 + 2.37035i −0.147458 + 0.156297i
\(231\) 0 0
\(232\) −4.37842 + 5.88124i −0.287458 + 0.386122i
\(233\) −19.7955 16.6104i −1.29685 1.08818i −0.990681 0.136205i \(-0.956509\pi\)
−0.306166 0.951978i \(-0.599046\pi\)
\(234\) 0 0
\(235\) 5.95818 4.99951i 0.388669 0.326132i
\(236\) 0.608350 + 10.4450i 0.0396002 + 0.679910i
\(237\) 0 0
\(238\) −0.120099 + 0.278420i −0.00778483 + 0.0180473i
\(239\) −0.146694 0.0964819i −0.00948882 0.00624090i 0.544756 0.838595i \(-0.316622\pi\)
−0.554245 + 0.832354i \(0.686993\pi\)
\(240\) 0 0
\(241\) −5.54360 + 18.5169i −0.357095 + 1.19278i 0.571161 + 0.820838i \(0.306493\pi\)
−0.928256 + 0.371942i \(0.878692\pi\)
\(242\) −4.84915 −0.311715
\(243\) 0 0
\(244\) 5.16534 0.330677
\(245\) 1.23214 4.11565i 0.0787188 0.262939i
\(246\) 0 0
\(247\) 10.3693 + 6.82000i 0.659783 + 0.433946i
\(248\) −3.83722 + 8.89567i −0.243664 + 0.564876i
\(249\) 0 0
\(250\) −0.235820 4.04888i −0.0149146 0.256073i
\(251\) 18.5138 15.5349i 1.16858 0.980554i 0.168592 0.985686i \(-0.446078\pi\)
0.999987 + 0.00513137i \(0.00163337\pi\)
\(252\) 0 0
\(253\) −25.0962 21.0582i −1.57778 1.32392i
\(254\) −1.15437 + 1.55058i −0.0724315 + 0.0972924i
\(255\) 0 0
\(256\) −3.93115 + 4.16677i −0.245697 + 0.260423i
\(257\) −13.3227 3.15754i −0.831049 0.196962i −0.206994 0.978342i \(-0.566368\pi\)
−0.624055 + 0.781380i \(0.714516\pi\)
\(258\) 0 0
\(259\) −0.374484 0.868152i −0.0232693 0.0539443i
\(260\) −1.42213 + 8.06530i −0.0881968 + 0.500189i
\(261\) 0 0
\(262\) 0.765846 + 4.34333i 0.0473141 + 0.268332i
\(263\) 12.1331 7.98009i 0.748162 0.492074i −0.117270 0.993100i \(-0.537414\pi\)
0.865432 + 0.501026i \(0.167044\pi\)
\(264\) 0 0
\(265\) −4.51799 6.06872i −0.277538 0.372798i
\(266\) −0.151710 + 2.60476i −0.00930193 + 0.159708i
\(267\) 0 0
\(268\) −9.22032 9.77297i −0.563221 0.596979i
\(269\) 0.0908847 + 0.157417i 0.00554134 + 0.00959788i 0.868783 0.495193i \(-0.164903\pi\)
−0.863241 + 0.504791i \(0.831569\pi\)
\(270\) 0 0
\(271\) −10.1446 + 17.5709i −0.616239 + 1.06736i 0.373927 + 0.927458i \(0.378011\pi\)
−0.990166 + 0.139899i \(0.955322\pi\)
\(272\) 1.28964 0.305650i 0.0781958 0.0185327i
\(273\) 0 0
\(274\) −1.67561 + 0.841522i −0.101227 + 0.0508382i
\(275\) 16.2637 1.90095i 0.980738 0.114632i
\(276\) 0 0
\(277\) −9.95402 4.99910i −0.598079 0.300367i 0.123885 0.992297i \(-0.460464\pi\)
−0.721965 + 0.691930i \(0.756761\pi\)
\(278\) 5.98603 + 2.17874i 0.359018 + 0.130672i
\(279\) 0 0
\(280\) −3.36063 + 1.22317i −0.200836 + 0.0730983i
\(281\) −1.98964 0.232555i −0.118692 0.0138731i 0.0565396 0.998400i \(-0.481993\pi\)
−0.175231 + 0.984527i \(0.556067\pi\)
\(282\) 0 0
\(283\) −0.656114 2.19157i −0.0390020 0.130276i 0.936271 0.351277i \(-0.114253\pi\)
−0.975273 + 0.221002i \(0.929067\pi\)
\(284\) −8.33818 27.8514i −0.494780 1.65268i
\(285\) 0 0
\(286\) 6.31049 + 0.737591i 0.373147 + 0.0436147i
\(287\) 10.8968 3.96612i 0.643219 0.234112i
\(288\) 0 0
\(289\) 15.8096 + 5.75421i 0.929974 + 0.338483i
\(290\) 2.17853 + 1.09410i 0.127927 + 0.0642476i
\(291\) 0 0
\(292\) −12.1411 + 1.41909i −0.710502 + 0.0830458i
\(293\) 4.48342 2.25166i 0.261924 0.131543i −0.312991 0.949756i \(-0.601331\pi\)
0.574916 + 0.818213i \(0.305035\pi\)
\(294\) 0 0
\(295\) 7.03109 1.66640i 0.409366 0.0970216i
\(296\) 0.361248 0.625699i 0.0209971 0.0363680i
\(297\) 0 0
\(298\) 3.29840 + 5.71300i 0.191071 + 0.330945i
\(299\) 15.8480 + 16.7979i 0.916513 + 0.971447i
\(300\) 0 0
\(301\) 1.28852 22.1230i 0.0742691 1.27515i
\(302\) −1.45922 1.96007i −0.0839687 0.112789i
\(303\) 0 0
\(304\) 9.52846 6.26697i 0.546495 0.359435i
\(305\) −0.619464 3.51316i −0.0354704 0.201163i
\(306\) 0 0
\(307\) 3.72532 21.1273i 0.212615 1.20580i −0.672382 0.740204i \(-0.734729\pi\)
0.884997 0.465596i \(-0.154160\pi\)
\(308\) −6.85556 15.8930i −0.390632 0.905586i
\(309\) 0 0
\(310\) 3.13431 + 0.742845i 0.178017 + 0.0421908i
\(311\) 8.26246 8.75770i 0.468521 0.496603i −0.449420 0.893321i \(-0.648369\pi\)
0.917941 + 0.396717i \(0.129851\pi\)
\(312\) 0 0
\(313\) 5.56046 7.46899i 0.314296 0.422172i −0.616703 0.787196i \(-0.711532\pi\)
0.930998 + 0.365024i \(0.118939\pi\)
\(314\) −3.70327 3.10741i −0.208988 0.175361i
\(315\) 0 0
\(316\) −5.43668 + 4.56191i −0.305837 + 0.256628i
\(317\) −0.952314 16.3506i −0.0534873 0.918341i −0.913187 0.407541i \(-0.866386\pi\)
0.859700 0.510800i \(-0.170651\pi\)
\(318\) 0 0
\(319\) −9.70697 + 22.5033i −0.543486 + 1.25994i
\(320\) 5.10352 + 3.35663i 0.285295 + 0.187642i
\(321\) 0 0
\(322\) −1.39243 + 4.65105i −0.0775973 + 0.259193i
\(323\) −1.51290 −0.0841803
\(324\) 0 0
\(325\) −11.5428 −0.640277
\(326\) −0.0651231 + 0.217526i −0.00360683 + 0.0120477i
\(327\) 0 0
\(328\) 7.40351 + 4.86937i 0.408791 + 0.268866i
\(329\) 4.58963 10.6400i 0.253034 0.586600i
\(330\) 0 0
\(331\) 0.298222 + 5.12027i 0.0163918 + 0.281436i 0.996537 + 0.0831535i \(0.0264992\pi\)
−0.980145 + 0.198282i \(0.936464\pi\)
\(332\) 6.89976 5.78959i 0.378673 0.317745i
\(333\) 0 0
\(334\) 0.879884 + 0.738310i 0.0481451 + 0.0403985i
\(335\) −5.54123 + 7.44316i −0.302750 + 0.406663i
\(336\) 0 0
\(337\) −8.59479 + 9.10995i −0.468188 + 0.496251i −0.917838 0.396954i \(-0.870067\pi\)
0.449650 + 0.893205i \(0.351549\pi\)
\(338\) 0.430189 + 0.101957i 0.0233992 + 0.00554571i
\(339\) 0 0
\(340\) −0.395416 0.916677i −0.0214444 0.0497138i
\(341\) −5.62311 + 31.8903i −0.304509 + 1.72695i
\(342\) 0 0
\(343\) −3.43362 19.4730i −0.185398 1.05144i
\(344\) 14.1483 9.30549i 0.762826 0.501718i
\(345\) 0 0
\(346\) 2.18254 + 2.93166i 0.117334 + 0.157607i
\(347\) 0.818471 14.0526i 0.0439378 0.754383i −0.902339 0.431026i \(-0.858152\pi\)
0.946277 0.323357i \(-0.104811\pi\)
\(348\) 0 0
\(349\) 10.5671 + 11.2004i 0.565642 + 0.599546i 0.945549 0.325479i \(-0.105526\pi\)
−0.379907 + 0.925025i \(0.624044\pi\)
\(350\) −1.21331 2.10152i −0.0648544 0.112331i
\(351\) 0 0
\(352\) 10.0427 17.3945i 0.535278 0.927129i
\(353\) 32.6811 7.74556i 1.73944 0.412254i 0.766301 0.642482i \(-0.222095\pi\)
0.973137 + 0.230227i \(0.0739469\pi\)
\(354\) 0 0
\(355\) −17.9429 + 9.01128i −0.952312 + 0.478269i
\(356\) −19.2043 + 2.24466i −1.01782 + 0.118967i
\(357\) 0 0
\(358\) 8.73139 + 4.38507i 0.461469 + 0.231758i
\(359\) 11.6368 + 4.23546i 0.614168 + 0.223539i 0.630326 0.776330i \(-0.282921\pi\)
−0.0161577 + 0.999869i \(0.505143\pi\)
\(360\) 0 0
\(361\) 5.62081 2.04581i 0.295832 0.107674i
\(362\) 0.335289 + 0.0391897i 0.0176224 + 0.00205976i
\(363\) 0 0
\(364\) 3.49936 + 11.6887i 0.183416 + 0.612653i
\(365\) 2.42122 + 8.08745i 0.126733 + 0.423316i
\(366\) 0 0
\(367\) −28.5035 3.33158i −1.48787 0.173907i −0.667015 0.745044i \(-0.732428\pi\)
−0.820855 + 0.571137i \(0.806502\pi\)
\(368\) 19.9414 7.25809i 1.03952 0.378354i
\(369\) 0 0
\(370\) −0.225734 0.0821603i −0.0117353 0.00427131i
\(371\) −10.0728 5.05875i −0.522953 0.262637i
\(372\) 0 0
\(373\) −18.8589 + 2.20429i −0.976476 + 0.114134i −0.589337 0.807888i \(-0.700611\pi\)
−0.387139 + 0.922021i \(0.626537\pi\)
\(374\) −0.692104 + 0.347587i −0.0357878 + 0.0179733i
\(375\) 0 0
\(376\) 8.61612 2.04206i 0.444343 0.105311i
\(377\) 8.63804 14.9615i 0.444882 0.770557i
\(378\) 0 0
\(379\) −9.40390 16.2880i −0.483046 0.836660i 0.516764 0.856128i \(-0.327136\pi\)
−0.999810 + 0.0194673i \(0.993803\pi\)
\(380\) −5.89517 6.24852i −0.302416 0.320542i
\(381\) 0 0
\(382\) −0.177712 + 3.05120i −0.00909254 + 0.156113i
\(383\) 3.97760 + 5.34284i 0.203246 + 0.273006i 0.892046 0.451945i \(-0.149270\pi\)
−0.688800 + 0.724951i \(0.741862\pi\)
\(384\) 0 0
\(385\) −9.98729 + 6.56875i −0.509000 + 0.334774i
\(386\) −0.0128038 0.0726138i −0.000651695 0.00369595i
\(387\) 0 0
\(388\) 0.697536 3.95592i 0.0354120 0.200832i
\(389\) 0.346443 + 0.803144i 0.0175653 + 0.0407210i 0.926773 0.375622i \(-0.122571\pi\)
−0.909208 + 0.416343i \(0.863312\pi\)
\(390\) 0 0
\(391\) −2.73925 0.649215i −0.138530 0.0328322i
\(392\) 3.35640 3.55757i 0.169524 0.179685i
\(393\) 0 0
\(394\) −2.60763 + 3.50266i −0.131371 + 0.176461i
\(395\) 3.75475 + 3.15061i 0.188922 + 0.158524i
\(396\) 0 0
\(397\) 26.1379 21.9323i 1.31182 1.10075i 0.323854 0.946107i \(-0.395021\pi\)
0.987970 0.154644i \(-0.0494231\pi\)
\(398\) 0.0387012 + 0.664474i 0.00193992 + 0.0333071i
\(399\) 0 0
\(400\) −4.20113 + 9.73930i −0.210056 + 0.486965i
\(401\) 3.50874 + 2.30773i 0.175218 + 0.115243i 0.634089 0.773260i \(-0.281375\pi\)
−0.458871 + 0.888503i \(0.651746\pi\)
\(402\) 0 0
\(403\) 6.54689 21.8681i 0.326124 1.08933i
\(404\) −30.3060 −1.50778
\(405\) 0 0
\(406\) 3.63194 0.180250
\(407\) 0.692615 2.31350i 0.0343317 0.114676i
\(408\) 0 0
\(409\) −18.1139 11.9137i −0.895672 0.589093i 0.0160629 0.999871i \(-0.494887\pi\)
−0.911735 + 0.410778i \(0.865257\pi\)
\(410\) 1.16696 2.70532i 0.0576321 0.133606i
\(411\) 0 0
\(412\) 1.95059 + 33.4903i 0.0960986 + 1.64995i
\(413\) 8.24668 6.91978i 0.405792 0.340500i
\(414\) 0 0
\(415\) −4.76520 3.99848i −0.233915 0.196278i
\(416\) −8.45502 + 11.3571i −0.414541 + 0.556826i
\(417\) 0 0
\(418\) −4.57338 + 4.84750i −0.223691 + 0.237099i
\(419\) −4.07282 0.965277i −0.198971 0.0471569i 0.129922 0.991524i \(-0.458527\pi\)
−0.328893 + 0.944367i \(0.606675\pi\)
\(420\) 0 0
\(421\) 1.96853 + 4.56357i 0.0959403 + 0.222415i 0.959427 0.281957i \(-0.0909835\pi\)
−0.863487 + 0.504372i \(0.831724\pi\)
\(422\) 0.235094 1.33328i 0.0114442 0.0649033i
\(423\) 0 0
\(424\) −1.49570 8.48255i −0.0726377 0.411949i
\(425\) 1.17558 0.773191i 0.0570240 0.0375053i
\(426\) 0 0
\(427\) −3.17374 4.26307i −0.153588 0.206304i
\(428\) −1.74160 + 29.9022i −0.0841836 + 1.44538i
\(429\) 0 0
\(430\) −3.86382 4.09541i −0.186330 0.197498i
\(431\) −13.2418 22.9355i −0.637837 1.10477i −0.985907 0.167297i \(-0.946496\pi\)
0.348070 0.937469i \(-0.386837\pi\)
\(432\) 0 0
\(433\) −10.6919 + 18.5189i −0.513820 + 0.889962i 0.486052 + 0.873930i \(0.338437\pi\)
−0.999871 + 0.0160319i \(0.994897\pi\)
\(434\) 4.66957 1.10671i 0.224147 0.0531237i
\(435\) 0 0
\(436\) 13.4122 6.73586i 0.642328 0.322589i
\(437\) −24.0603 + 2.81224i −1.15096 + 0.134528i
\(438\) 0 0
\(439\) 28.8729 + 14.5005i 1.37803 + 0.692072i 0.974811 0.223031i \(-0.0715953\pi\)
0.403218 + 0.915104i \(0.367892\pi\)
\(440\) −8.58376 3.12423i −0.409215 0.148942i
\(441\) 0 0
\(442\) 0.513029 0.186727i 0.0244023 0.00888171i
\(443\) 32.2960 + 3.77486i 1.53443 + 0.179349i 0.840944 0.541122i \(-0.182000\pi\)
0.693485 + 0.720471i \(0.256074\pi\)
\(444\) 0 0
\(445\) 3.82980 + 12.7924i 0.181550 + 0.606418i
\(446\) −0.712288 2.37921i −0.0337278 0.112659i
\(447\) 0 0
\(448\) 9.03895 + 1.05650i 0.427050 + 0.0499150i
\(449\) 15.0197 5.46673i 0.708825 0.257991i 0.0376508 0.999291i \(-0.488013\pi\)
0.671174 + 0.741300i \(0.265790\pi\)
\(450\) 0 0
\(451\) 27.8328 + 10.1303i 1.31059 + 0.477017i
\(452\) 2.85512 + 1.43390i 0.134294 + 0.0674448i
\(453\) 0 0
\(454\) −3.05594 + 0.357188i −0.143422 + 0.0167637i
\(455\) 7.53027 3.78185i 0.353025 0.177296i
\(456\) 0 0
\(457\) 18.7712 4.44886i 0.878081 0.208109i 0.233234 0.972421i \(-0.425069\pi\)
0.644847 + 0.764312i \(0.276921\pi\)
\(458\) 1.48283 2.56834i 0.0692883 0.120011i
\(459\) 0 0
\(460\) −7.99240 13.8432i −0.372648 0.645445i
\(461\) −10.1699 10.7794i −0.473658 0.502048i 0.445856 0.895105i \(-0.352899\pi\)
−0.919514 + 0.393056i \(0.871418\pi\)
\(462\) 0 0
\(463\) −0.161028 + 2.76474i −0.00748359 + 0.128488i 0.992497 + 0.122268i \(0.0390169\pi\)
−0.999981 + 0.00621987i \(0.998020\pi\)
\(464\) −9.47999 12.7338i −0.440098 0.591154i
\(465\) 0 0
\(466\) −8.17236 + 5.37504i −0.378577 + 0.248994i
\(467\) 3.42252 + 19.4101i 0.158375 + 0.898191i 0.955635 + 0.294554i \(0.0951712\pi\)
−0.797259 + 0.603637i \(0.793718\pi\)
\(468\) 0 0
\(469\) −2.40061 + 13.6145i −0.110850 + 0.628661i
\(470\) −1.16610 2.70333i −0.0537884 0.124695i
\(471\) 0 0
\(472\) 8.00464 + 1.89714i 0.368444 + 0.0873227i
\(473\) 38.8432 41.1713i 1.78601 1.89306i
\(474\) 0 0
\(475\) 7.23019 9.71183i 0.331744 0.445609i
\(476\) −1.13936 0.956036i −0.0522224 0.0438198i
\(477\) 0 0
\(478\) −0.0509120 + 0.0427202i −0.00232866 + 0.00195398i
\(479\) −1.08385 18.6089i −0.0495222 0.850263i −0.928023 0.372522i \(-0.878493\pi\)
0.878501 0.477740i \(-0.158544\pi\)
\(480\) 0 0
\(481\) −0.674271 + 1.56314i −0.0307441 + 0.0712729i
\(482\) 6.11284 + 4.02048i 0.278432 + 0.183128i
\(483\) 0 0
\(484\) 6.82183 22.7865i 0.310083 1.03575i
\(485\) −2.77424 −0.125972
\(486\) 0 0
\(487\) −5.34343 −0.242134 −0.121067 0.992644i \(-0.538632\pi\)
−0.121067 + 0.992644i \(0.538632\pi\)
\(488\) 1.16479 3.89068i 0.0527277 0.176123i
\(489\) 0 0
\(490\) −1.35866 0.893607i −0.0613782 0.0403691i
\(491\) 1.46595 3.39844i 0.0661572 0.153370i −0.881930 0.471381i \(-0.843756\pi\)
0.948087 + 0.318011i \(0.103015\pi\)
\(492\) 0 0
\(493\) 0.122450 + 2.10238i 0.00551487 + 0.0946866i
\(494\) 3.59880 3.01975i 0.161918 0.135865i
\(495\) 0 0
\(496\) −16.0686 13.4832i −0.721501 0.605411i
\(497\) −17.8632 + 23.9944i −0.801274 + 1.07630i
\(498\) 0 0
\(499\) 19.1808 20.3304i 0.858650 0.910116i −0.138121 0.990415i \(-0.544106\pi\)
0.996771 + 0.0802996i \(0.0255877\pi\)
\(500\) 19.3577 + 4.58786i 0.865704 + 0.205176i
\(501\) 0 0
\(502\) −3.62342 8.40002i −0.161721 0.374911i
\(503\) −1.72317 + 9.77258i −0.0768323 + 0.435738i 0.921990 + 0.387214i \(0.126563\pi\)
−0.998822 + 0.0485234i \(0.984548\pi\)
\(504\) 0 0
\(505\) 3.63452 + 20.6124i 0.161734 + 0.917239i
\(506\) −10.3607 + 6.81432i −0.460588 + 0.302933i
\(507\) 0 0
\(508\) −5.66234 7.60584i −0.251226 0.337455i
\(509\) 0.00164498 0.0282431i 7.29123e−5 0.00125186i −0.998272 0.0587707i \(-0.981282\pi\)
0.998344 + 0.0575189i \(0.0183189\pi\)
\(510\) 0 0
\(511\) 8.63103 + 9.14836i 0.381814 + 0.404700i
\(512\) 11.1197 + 19.2599i 0.491426 + 0.851176i
\(513\) 0 0
\(514\) −2.59134 + 4.48834i −0.114299 + 0.197972i
\(515\) 22.5442 5.34307i 0.993416 0.235444i
\(516\) 0 0
\(517\) 26.4491 13.2832i 1.16323 0.584196i
\(518\) −0.355467 + 0.0415481i −0.0156183 + 0.00182552i
\(519\) 0 0
\(520\) 5.75433 + 2.88993i 0.252344 + 0.126732i
\(521\) −2.11604 0.770177i −0.0927056 0.0337421i 0.295251 0.955420i \(-0.404597\pi\)
−0.387957 + 0.921678i \(0.626819\pi\)
\(522\) 0 0
\(523\) −11.5433 + 4.20142i −0.504753 + 0.183715i −0.581831 0.813310i \(-0.697663\pi\)
0.0770775 + 0.997025i \(0.475441\pi\)
\(524\) −21.4870 2.51147i −0.938665 0.109714i
\(525\) 0 0
\(526\) −1.57656 5.26609i −0.0687415 0.229613i
\(527\) 0.798063 + 2.66572i 0.0347642 + 0.116120i
\(528\) 0 0
\(529\) −21.9257 2.56274i −0.953290 0.111424i
\(530\) −2.69114 + 0.979495i −0.116896 + 0.0425465i
\(531\) 0 0
\(532\) −12.0265 4.37730i −0.521416 0.189780i
\(533\) −18.6584 9.37059i −0.808184 0.405885i
\(534\) 0 0
\(535\) 20.5466 2.40155i 0.888305 0.103828i
\(536\) −9.44049 + 4.74119i −0.407767 + 0.204788i
\(537\) 0 0
\(538\) 0.0669496 0.0158674i 0.00288640 0.000684090i
\(539\) 8.17409 14.1579i 0.352083 0.609826i
\(540\) 0 0
\(541\) 19.8474 + 34.3766i 0.853304 + 1.47797i 0.878209 + 0.478277i \(0.158738\pi\)
−0.0249047 + 0.999690i \(0.507928\pi\)
\(542\) 5.27030 + 5.58619i 0.226379 + 0.239948i
\(543\) 0 0
\(544\) 0.100355 1.72303i 0.00430268 0.0738741i
\(545\) −6.18982 8.31438i −0.265143 0.356149i
\(546\) 0 0
\(547\) −6.79505 + 4.46918i −0.290536 + 0.191088i −0.686407 0.727218i \(-0.740813\pi\)
0.395871 + 0.918306i \(0.370443\pi\)
\(548\) −1.59711 9.05767i −0.0682252 0.386924i
\(549\) 0 0
\(550\) 1.07629 6.10396i 0.0458933 0.260274i
\(551\) 7.17758 + 16.6395i 0.305775 + 0.708866i
\(552\) 0 0
\(553\) 7.10550 + 1.68403i 0.302157 + 0.0716124i
\(554\) −2.89342 + 3.06684i −0.122930 + 0.130298i
\(555\) 0 0
\(556\) −18.6592 + 25.0637i −0.791328 + 1.06294i
\(557\) −16.2629 13.6462i −0.689081 0.578207i 0.229563 0.973294i \(-0.426270\pi\)
−0.918644 + 0.395086i \(0.870715\pi\)
\(558\) 0 0
\(559\) −30.5658 + 25.6477i −1.29279 + 1.08478i
\(560\) −0.450232 7.73018i −0.0190258 0.326660i
\(561\) 0 0
\(562\) −0.300329 + 0.696241i −0.0126686 + 0.0293692i
\(563\) 37.7470 + 24.8266i 1.59085 + 1.04632i 0.963547 + 0.267539i \(0.0862105\pi\)
0.627300 + 0.778777i \(0.284160\pi\)
\(564\) 0 0
\(565\) 0.632844 2.11385i 0.0266240 0.0889302i
\(566\) −0.865945 −0.0363984
\(567\) 0 0
\(568\) −22.8588 −0.959134
\(569\) −1.64533 + 5.49580i −0.0689760 + 0.230396i −0.985526 0.169524i \(-0.945777\pi\)
0.916550 + 0.399920i \(0.130962\pi\)
\(570\) 0 0
\(571\) −36.2309 23.8295i −1.51622 0.997232i −0.989068 0.147458i \(-0.952891\pi\)
−0.527149 0.849773i \(-0.676739\pi\)
\(572\) −12.3437 + 28.6158i −0.516114 + 1.19649i
\(573\) 0 0
\(574\) −0.255223 4.38201i −0.0106528 0.182901i
\(575\) 17.2584 14.4816i 0.719727 0.603923i
\(576\) 0 0
\(577\) 10.1857 + 8.54680i 0.424035 + 0.355808i 0.829696 0.558216i \(-0.188514\pi\)
−0.405660 + 0.914024i \(0.632958\pi\)
\(578\) 3.80293 5.10822i 0.158181 0.212474i
\(579\) 0 0
\(580\) −8.20601 + 8.69787i −0.340736 + 0.361159i
\(581\) −9.01769 2.13723i −0.374117 0.0886673i
\(582\) 0 0
\(583\) −11.4033 26.4358i −0.472276 1.09486i
\(584\) −1.66894 + 9.46501i −0.0690611 + 0.391665i
\(585\) 0 0
\(586\) −0.329773 1.87024i −0.0136228 0.0772588i
\(587\) −10.3345 + 6.79710i −0.426550 + 0.280546i −0.744579 0.667535i \(-0.767350\pi\)
0.318029 + 0.948081i \(0.396979\pi\)
\(588\) 0 0
\(589\) 14.2985 + 19.2062i 0.589160 + 0.791379i
\(590\) 0.159036 2.73054i 0.00654741 0.112415i
\(591\) 0 0
\(592\) 1.07350 + 1.13784i 0.0441206 + 0.0467651i
\(593\) 0.572367 + 0.991369i 0.0235043 + 0.0407106i 0.877538 0.479507i \(-0.159184\pi\)
−0.854034 + 0.520217i \(0.825851\pi\)
\(594\) 0 0
\(595\) −0.513599 + 0.889579i −0.0210555 + 0.0364692i
\(596\) −31.4860 + 7.46233i −1.28972 + 0.305669i
\(597\) 0 0
\(598\) 7.81179 3.92323i 0.319448 0.160433i
\(599\) −2.40955 + 0.281636i −0.0984514 + 0.0115073i −0.165176 0.986264i \(-0.552819\pi\)
0.0667245 + 0.997771i \(0.478745\pi\)
\(600\) 0 0
\(601\) −35.0541 17.6048i −1.42988 0.718115i −0.445687 0.895189i \(-0.647041\pi\)
−0.984198 + 0.177074i \(0.943337\pi\)
\(602\) −7.88244 2.86897i −0.321264 0.116931i
\(603\) 0 0
\(604\) 11.2634 4.09953i 0.458300 0.166808i
\(605\) −16.3162 1.90709i −0.663346 0.0775341i
\(606\) 0 0
\(607\) 2.03130 + 6.78502i 0.0824480 + 0.275396i 0.989266 0.146127i \(-0.0466809\pi\)
−0.906818 + 0.421523i \(0.861496\pi\)
\(608\) −4.25950 14.2277i −0.172746 0.577011i
\(609\) 0 0
\(610\) −1.34120 0.156764i −0.0543037 0.00634719i
\(611\) −19.6057 + 7.13588i −0.793161 + 0.288687i
\(612\) 0 0
\(613\) 19.4482 + 7.07855i 0.785503 + 0.285900i 0.703466 0.710729i \(-0.251635\pi\)
0.0820378 + 0.996629i \(0.473857\pi\)
\(614\) −7.25683 3.64452i −0.292862 0.147081i
\(615\) 0 0
\(616\) −13.5170 + 1.57991i −0.544615 + 0.0636564i
\(617\) −21.3037 + 10.6991i −0.857653 + 0.430730i −0.822576 0.568655i \(-0.807464\pi\)
−0.0350771 + 0.999385i \(0.511168\pi\)
\(618\) 0 0
\(619\) −0.647679 + 0.153503i −0.0260324 + 0.00616980i −0.243611 0.969873i \(-0.578332\pi\)
0.217579 + 0.976043i \(0.430184\pi\)
\(620\) −7.90007 + 13.6833i −0.317274 + 0.549535i
\(621\) 0 0
\(622\) −2.27875 3.94691i −0.0913696 0.158257i
\(623\) 13.6522 + 14.4705i 0.546965 + 0.579749i
\(624\) 0 0
\(625\) −0.176699 + 3.03381i −0.00706798 + 0.121352i
\(626\) −2.10477 2.82720i −0.0841236 0.112998i
\(627\) 0 0
\(628\) 19.8118 13.0304i 0.790575 0.519969i
\(629\) −0.0360350 0.204365i −0.00143681 0.00814855i
\(630\) 0 0
\(631\) 4.06193 23.0363i 0.161703 0.917062i −0.790696 0.612209i \(-0.790281\pi\)
0.952399 0.304854i \(-0.0986076\pi\)
\(632\) 2.21018 + 5.12378i 0.0879164 + 0.203813i
\(633\) 0 0
\(634\) −6.03249 1.42973i −0.239581 0.0567817i
\(635\) −4.49397 + 4.76333i −0.178338 + 0.189027i
\(636\) 0 0
\(637\) −6.88182 + 9.24388i −0.272668 + 0.366256i
\(638\) 7.10640 + 5.96298i 0.281345 + 0.236077i
\(639\) 0 0
\(640\) 9.85797 8.27182i 0.389670 0.326972i
\(641\) −0.414079 7.10947i −0.0163552 0.280807i −0.996563 0.0828367i \(-0.973602\pi\)
0.980208 0.197970i \(-0.0634350\pi\)
\(642\) 0 0
\(643\) 6.12929 14.2093i 0.241716 0.560360i −0.753568 0.657370i \(-0.771669\pi\)
0.995283 + 0.0970103i \(0.0309280\pi\)
\(644\) −19.8968 13.0863i −0.784042 0.515673i
\(645\) 0 0
\(646\) −0.164244 + 0.548614i −0.00646210 + 0.0215849i
\(647\) −15.3916 −0.605107 −0.302554 0.953132i \(-0.597839\pi\)
−0.302554 + 0.953132i \(0.597839\pi\)
\(648\) 0 0
\(649\) 27.4968 1.07934
\(650\) −1.25311 + 4.18567i −0.0491509 + 0.164176i
\(651\) 0 0
\(652\) −0.930556 0.612036i −0.0364434 0.0239692i
\(653\) −0.487882 + 1.13104i −0.0190923 + 0.0442610i −0.927496 0.373834i \(-0.878043\pi\)
0.908403 + 0.418095i \(0.137302\pi\)
\(654\) 0 0
\(655\) 0.868723 + 14.9154i 0.0339438 + 0.582793i
\(656\) −14.6975 + 12.3326i −0.573839 + 0.481508i
\(657\) 0 0
\(658\) −3.36003 2.81940i −0.130988 0.109912i
\(659\) 4.12166 5.53635i 0.160557 0.215665i −0.714563 0.699571i \(-0.753375\pi\)
0.875120 + 0.483905i \(0.160782\pi\)
\(660\) 0 0
\(661\) 24.6651 26.1434i 0.959360 1.01686i −0.0404839 0.999180i \(-0.512890\pi\)
0.999844 0.0176818i \(-0.00562858\pi\)
\(662\) 1.88910 + 0.447726i 0.0734221 + 0.0174014i
\(663\) 0 0
\(664\) −2.80498 6.50266i −0.108854 0.252352i
\(665\) −1.53487 + 8.70469i −0.0595198 + 0.337553i
\(666\) 0 0
\(667\) 5.85536 + 33.2074i 0.226720 + 1.28579i
\(668\) −4.70720 + 3.09598i −0.182127 + 0.119787i
\(669\) 0 0
\(670\) 2.09749 + 2.81742i 0.0810333 + 0.108847i
\(671\) 0.789313 13.5520i 0.0304711 0.523168i
\(672\) 0 0
\(673\) −5.96965 6.32746i −0.230113 0.243906i 0.602021 0.798480i \(-0.294362\pi\)
−0.832134 + 0.554575i \(0.812881\pi\)
\(674\) 2.37041 + 4.10567i 0.0913047 + 0.158144i
\(675\) 0 0
\(676\) −1.08430 + 1.87806i −0.0417037 + 0.0722329i
\(677\) −0.561618 + 0.133106i −0.0215847 + 0.00511568i −0.241394 0.970427i \(-0.577605\pi\)
0.219809 + 0.975543i \(0.429456\pi\)
\(678\) 0 0
\(679\) −3.69350 + 1.85494i −0.141743 + 0.0711862i
\(680\) −0.779635 + 0.0911263i −0.0298977 + 0.00349453i
\(681\) 0 0
\(682\) 10.9537 + 5.50115i 0.419438 + 0.210650i
\(683\) 33.8572 + 12.3230i 1.29551 + 0.471528i 0.895532 0.444997i \(-0.146795\pi\)
0.399979 + 0.916524i \(0.369017\pi\)
\(684\) 0 0
\(685\) −5.96895 + 2.17252i −0.228062 + 0.0830078i
\(686\) −7.43412 0.868924i −0.283836 0.0331757i
\(687\) 0 0
\(688\) 10.5157 + 35.1249i 0.400908 + 1.33913i
\(689\) 5.82071 + 19.4425i 0.221751 + 0.740701i
\(690\) 0 0
\(691\) 14.5788 + 1.70402i 0.554603 + 0.0648238i 0.388778 0.921331i \(-0.372897\pi\)
0.165825 + 0.986155i \(0.446971\pi\)
\(692\) −16.8465 + 6.13164i −0.640409 + 0.233090i
\(693\) 0 0
\(694\) −5.00694 1.82238i −0.190061 0.0691765i
\(695\) 19.2846 + 9.68509i 0.731507 + 0.367377i
\(696\) 0 0
\(697\) 2.52796 0.295476i 0.0957534 0.0111920i
\(698\) 5.20872 2.61592i 0.197153 0.0990139i
\(699\) 0 0
\(700\) 11.5821 2.74501i 0.437763 0.103752i
\(701\) −15.3027 + 26.5051i −0.577976 + 1.00108i 0.417735 + 0.908569i \(0.362824\pi\)
−0.995711 + 0.0925152i \(0.970509\pi\)
\(702\) 0 0
\(703\) −0.892837 1.54644i −0.0336740 0.0583250i
\(704\) 15.9514 + 16.9075i 0.601190 + 0.637225i
\(705\) 0 0
\(706\) 0.739212 12.6918i 0.0278206 0.477662i
\(707\) 18.6209 + 25.0123i 0.700312 + 0.940682i
\(708\) 0 0
\(709\) −38.5157 + 25.3322i −1.44649 + 0.951370i −0.448136 + 0.893965i \(0.647912\pi\)
−0.998351 + 0.0574044i \(0.981718\pi\)
\(710\) 1.31977 + 7.48480i 0.0495302 + 0.280900i
\(711\) 0 0
\(712\) −2.63986 + 14.9714i −0.0989329 + 0.561077i
\(713\) 17.6470 + 40.9104i 0.660886 + 1.53211i
\(714\) 0 0
\(715\) 20.9431 + 4.96361i 0.783229 + 0.185629i
\(716\) −32.8892 + 34.8605i −1.22913 + 1.30280i
\(717\) 0 0
\(718\) 2.79920 3.75997i 0.104465 0.140321i
\(719\) 15.5899 + 13.0815i 0.581404 + 0.487856i 0.885408 0.464815i \(-0.153879\pi\)
−0.304004 + 0.952671i \(0.598324\pi\)
\(720\) 0 0
\(721\) 26.4418 22.1873i 0.984743 0.826298i
\(722\) −0.131649 2.26033i −0.00489949 0.0841209i
\(723\) 0 0
\(724\) −0.655843 + 1.52042i −0.0243742 + 0.0565058i
\(725\) −14.0811 9.26127i −0.522958 0.343955i
\(726\) 0 0
\(727\) 6.97074 23.2839i 0.258530 0.863552i −0.725903 0.687797i \(-0.758578\pi\)
0.984434 0.175755i \(-0.0562367\pi\)
\(728\) 9.59336 0.355554
\(729\) 0 0
\(730\) 3.19555 0.118272
\(731\) 1.39498 4.65956i 0.0515952 0.172340i
\(732\) 0 0
\(733\) 33.3307 + 21.9219i 1.23110 + 0.809704i 0.987105 0.160073i \(-0.0511730\pi\)
0.243991 + 0.969778i \(0.421543\pi\)
\(734\) −4.30251 + 9.97433i −0.158808 + 0.368159i
\(735\) 0 0
\(736\) −1.60684 27.5884i −0.0592291 1.01692i
\(737\) −27.0497 + 22.6974i −0.996389 + 0.836069i
\(738\) 0 0
\(739\) 6.20932 + 5.21024i 0.228413 + 0.191662i 0.749811 0.661652i \(-0.230145\pi\)
−0.521397 + 0.853314i \(0.674589\pi\)
\(740\) 0.703642 0.945155i 0.0258664 0.0347446i
\(741\) 0 0
\(742\) −2.92794 + 3.10344i −0.107488 + 0.113931i
\(743\) −24.1388 5.72099i −0.885565 0.209883i −0.237427 0.971405i \(-0.576304\pi\)
−0.648138 + 0.761523i \(0.724452\pi\)
\(744\) 0 0
\(745\) 8.85146 + 20.5200i 0.324293 + 0.751795i
\(746\) −1.24804 + 7.07796i −0.0456938 + 0.259143i
\(747\) 0 0
\(748\) −0.659681 3.74124i −0.0241203 0.136793i
\(749\) 25.7490 16.9354i 0.940849 0.618806i
\(750\) 0 0
\(751\) −18.9074 25.3970i −0.689940 0.926750i 0.309770 0.950811i \(-0.399748\pi\)
−0.999710 + 0.0240611i \(0.992340\pi\)
\(752\) −1.11476 + 19.1396i −0.0406510 + 0.697951i
\(753\) 0 0
\(754\) −4.48763 4.75661i −0.163430 0.173225i
\(755\) −4.13904 7.16903i −0.150635 0.260908i
\(756\) 0 0
\(757\) −7.21394 + 12.4949i −0.262195 + 0.454135i −0.966825 0.255440i \(-0.917780\pi\)
0.704630 + 0.709575i \(0.251113\pi\)
\(758\) −6.92733 + 1.64181i −0.251612 + 0.0596331i
\(759\) 0 0
\(760\) −6.03594 + 3.03136i −0.218947 + 0.109959i
\(761\) −22.1774 + 2.59217i −0.803930 + 0.0939659i −0.508126 0.861283i \(-0.669662\pi\)
−0.295804 + 0.955249i \(0.595587\pi\)
\(762\) 0 0
\(763\) −13.8001 6.93068i −0.499598 0.250907i
\(764\) −14.0878 5.12754i −0.509679 0.185508i
\(765\) 0 0
\(766\) 2.36925 0.862338i 0.0856046 0.0311575i
\(767\) −19.2522 2.25026i −0.695155 0.0812520i
\(768\) 0 0
\(769\) −7.82437 26.1352i −0.282154 0.942460i −0.975155 0.221524i \(-0.928897\pi\)
0.693001 0.720937i \(-0.256288\pi\)
\(770\) 1.29774 + 4.33474i 0.0467672 + 0.156213i
\(771\) 0 0
\(772\) 0.359230 + 0.0419880i 0.0129290 + 0.00151118i
\(773\) 7.11832 2.59086i 0.256028 0.0931867i −0.210817 0.977525i \(-0.567613\pi\)
0.466846 + 0.884339i \(0.345390\pi\)
\(774\) 0 0
\(775\) −20.9260 7.61646i −0.751686 0.273591i
\(776\) −2.82242 1.41747i −0.101319 0.0508843i
\(777\) 0 0
\(778\) 0.328849 0.0384370i 0.0117898 0.00137803i
\(779\) 19.5715 9.82917i 0.701222 0.352167i
\(780\) 0 0
\(781\) −74.3463 + 17.6204i −2.66032 + 0.630507i
\(782\) −0.532800 + 0.922836i −0.0190529 + 0.0330006i
\(783\) 0 0
\(784\) 5.29489 + 9.17101i 0.189103 + 0.327536i
\(785\) −11.2385 11.9121i −0.401118 0.425161i
\(786\) 0 0
\(787\) 0.465741 7.99646i 0.0166019 0.285043i −0.979781 0.200071i \(-0.935883\pi\)
0.996383 0.0849722i \(-0.0270801\pi\)
\(788\) −12.7908 17.1810i −0.455654 0.612049i
\(789\) 0 0
\(790\) 1.55011 1.01952i 0.0551503 0.0362729i
\(791\) −0.570845 3.23742i −0.0202969 0.115109i
\(792\) 0 0
\(793\) −1.66170 + 9.42396i −0.0590087 + 0.334655i
\(794\) −5.11557 11.8592i −0.181545 0.420868i
\(795\) 0 0
\(796\) −3.17686 0.752929i −0.112601 0.0266869i
\(797\) −9.37990 + 9.94211i −0.332253 + 0.352168i −0.871865 0.489746i \(-0.837089\pi\)
0.539612 + 0.841914i \(0.318571\pi\)
\(798\) 0 0
\(799\) 1.51876 2.04004i 0.0537297 0.0721715i
\(800\) 10.5811 + 8.87856i 0.374097 + 0.313905i
\(801\) 0 0
\(802\) 1.21775 1.02182i 0.0430003 0.0360816i
\(803\) 1.86790 + 32.0706i 0.0659168 + 1.13175i
\(804\) 0 0
\(805\) −6.51437 + 15.1020i −0.229601 + 0.532276i
\(806\) −7.21914 4.74810i −0.254283 0.167245i
\(807\) 0 0
\(808\) −6.83408 + 22.8274i −0.240422 + 0.803065i
\(809\) 6.31109 0.221886 0.110943 0.993827i \(-0.464613\pi\)
0.110943 + 0.993827i \(0.464613\pi\)
\(810\) 0 0
\(811\) −29.8809 −1.04926 −0.524631 0.851330i \(-0.675797\pi\)
−0.524631 + 0.851330i \(0.675797\pi\)
\(812\) −5.10945 + 17.0668i −0.179307 + 0.598926i
\(813\) 0 0
\(814\) −0.763735 0.502316i −0.0267689 0.0176062i
\(815\) −0.304672 + 0.706309i −0.0106722 + 0.0247409i
\(816\) 0 0
\(817\) −2.43356 41.7827i −0.0851396 1.46179i
\(818\) −6.28665 + 5.27513i −0.219808 + 0.184440i
\(819\) 0 0
\(820\) 11.0708 + 9.28950i 0.386609 + 0.324403i
\(821\) 18.9709 25.4824i 0.662089 0.889340i −0.336541 0.941669i \(-0.609257\pi\)
0.998630 + 0.0523287i \(0.0166643\pi\)
\(822\) 0 0
\(823\) −17.6566 + 18.7149i −0.615469 + 0.652359i −0.957872 0.287194i \(-0.907278\pi\)
0.342404 + 0.939553i \(0.388759\pi\)
\(824\) 25.6657 + 6.08289i 0.894108 + 0.211908i
\(825\) 0 0
\(826\) −1.61400 3.74166i −0.0561581 0.130189i
\(827\) 3.15225 17.8773i 0.109615 0.621655i −0.879662 0.475600i \(-0.842231\pi\)
0.989276 0.146056i \(-0.0466578\pi\)
\(828\) 0 0
\(829\) −4.93669 27.9974i −0.171458 0.972389i −0.942153 0.335184i \(-0.891202\pi\)
0.770694 0.637205i \(-0.219910\pi\)
\(830\) −1.96726 + 1.29389i −0.0682846 + 0.0449115i
\(831\) 0 0
\(832\) −9.78487 13.1434i −0.339229 0.455664i
\(833\) 0.0816821 1.40243i 0.00283012 0.0485912i
\(834\) 0 0
\(835\) 2.67022 + 2.83027i 0.0924068 + 0.0979455i
\(836\) −16.3449 28.3101i −0.565299 0.979127i
\(837\) 0 0
\(838\) −0.792187 + 1.37211i −0.0273656 + 0.0473987i
\(839\) −29.0531 + 6.88571i −1.00302 + 0.237721i −0.699137 0.714987i \(-0.746432\pi\)
−0.303886 + 0.952708i \(0.598284\pi\)
\(840\) 0 0
\(841\) −3.37348 + 1.69422i −0.116327 + 0.0584215i
\(842\) 1.86856 0.218404i 0.0643949 0.00752669i
\(843\) 0 0
\(844\) 5.93447 + 2.98040i 0.204273 + 0.102590i
\(845\) 1.40738 + 0.512244i 0.0484153 + 0.0176217i
\(846\) 0 0
\(847\) −22.9977 + 8.37050i −0.790212 + 0.287614i
\(848\) 18.5233 + 2.16506i 0.636093 + 0.0743486i
\(849\) 0 0
\(850\) −0.152753 0.510232i −0.00523940 0.0175008i
\(851\) −0.952958 3.18310i −0.0326670 0.109115i
\(852\) 0 0
\(853\) 5.06987 + 0.592583i 0.173589 + 0.0202897i 0.202443 0.979294i \(-0.435112\pi\)
−0.0288542 + 0.999584i \(0.509186\pi\)
\(854\) −1.89043 + 0.688062i −0.0646893 + 0.0235450i
\(855\) 0 0
\(856\) 22.1305 + 8.05483i 0.756403 + 0.275308i
\(857\) 12.7262 + 6.39134i 0.434719 + 0.218324i 0.652680 0.757633i \(-0.273644\pi\)
−0.217962 + 0.975957i \(0.569941\pi\)
\(858\) 0 0
\(859\) 41.6878 4.87260i 1.42237 0.166251i 0.630143 0.776479i \(-0.282996\pi\)
0.792226 + 0.610228i \(0.208922\pi\)
\(860\) 24.6803 12.3949i 0.841591 0.422663i
\(861\) 0 0
\(862\) −9.75451 + 2.31186i −0.332240 + 0.0787423i
\(863\) 12.5420 21.7234i 0.426934 0.739472i −0.569665 0.821877i \(-0.692927\pi\)
0.996599 + 0.0824054i \(0.0262602\pi\)
\(864\) 0 0
\(865\) 6.19073 + 10.7227i 0.210491 + 0.364582i
\(866\) 5.55465 + 5.88758i 0.188755 + 0.200068i
\(867\) 0 0
\(868\) −1.36870 + 23.4996i −0.0464566 + 0.797628i
\(869\) 11.1380 + 14.9610i 0.377832 + 0.507516i
\(870\) 0 0
\(871\) 20.7966 13.6781i 0.704666 0.463466i
\(872\) −2.04917 11.6214i −0.0693936 0.393551i
\(873\) 0 0
\(874\) −1.59225 + 9.03012i −0.0538588 + 0.305448i
\(875\) −8.10749 18.7953i −0.274083 0.635396i
\(876\) 0 0
\(877\) −31.0130 7.35023i −1.04724 0.248200i −0.329240 0.944246i \(-0.606792\pi\)
−0.717996 + 0.696047i \(0.754941\pi\)
\(878\) 8.39273 8.89578i 0.283241 0.300218i
\(879\) 0 0
\(880\) 11.8106 15.8644i 0.398135 0.534788i
\(881\) −4.45428 3.73758i −0.150068 0.125922i 0.564662 0.825322i \(-0.309006\pi\)
−0.714731 + 0.699400i \(0.753451\pi\)
\(882\) 0 0
\(883\) −0.930865 + 0.781089i −0.0313261 + 0.0262857i −0.658316 0.752741i \(-0.728731\pi\)
0.626990 + 0.779027i \(0.284287\pi\)
\(884\) 0.155711 + 2.67345i 0.00523712 + 0.0899179i
\(885\) 0 0
\(886\) 4.87497 11.3015i 0.163778 0.379680i
\(887\) −2.17614 1.43127i −0.0730675 0.0480572i 0.512450 0.858717i \(-0.328738\pi\)
−0.585517 + 0.810660i \(0.699109\pi\)
\(888\) 0 0
\(889\) −2.79816 + 9.34650i −0.0938473 + 0.313472i
\(890\) 5.05459 0.169430
\(891\) 0 0
\(892\) 12.1821 0.407888
\(893\) 6.27668 20.9656i 0.210041 0.701586i
\(894\) 0 0
\(895\) 27.6544 + 18.1886i 0.924383 + 0.607977i
\(896\) 7.59366 17.6041i 0.253686 0.588111i
\(897\) 0 0
\(898\) −0.351789 6.03998i −0.0117393 0.201557i
\(899\) 25.5323 21.4242i 0.851551 0.714536i
\(900\) 0 0
\(901\) −1.89517 1.59024i −0.0631373 0.0529785i
\(902\) 6.69507 8.99304i 0.222921 0.299435i
\(903\) 0 0
\(904\) 1.72389 1.82721i 0.0573356 0.0607722i
\(905\) 1.11275 + 0.263727i 0.0369891 + 0.00876657i
\(906\) 0 0
\(907\) 5.32533 + 12.3455i 0.176825 + 0.409926i 0.983460 0.181123i \(-0.0579732\pi\)
−0.806636 + 0.591049i \(0.798714\pi\)
\(908\) 2.62067 14.8626i 0.0869701 0.493232i
\(909\) 0 0
\(910\) −0.553881 3.14122i −0.0183610 0.104130i
\(911\) −23.5524 + 15.4906i −0.780325 + 0.513228i −0.876073 0.482178i \(-0.839846\pi\)
0.0957484 + 0.995406i \(0.469476\pi\)
\(912\) 0 0
\(913\) −14.1354 18.9872i −0.467815 0.628384i
\(914\) 0.424586 7.28986i 0.0140441 0.241127i
\(915\) 0 0
\(916\) 9.98277 + 10.5811i 0.329840 + 0.349610i
\(917\) 11.1295 + 19.2768i 0.367528 + 0.636578i
\(918\) 0 0
\(919\) 13.5339 23.4413i 0.446441 0.773258i −0.551710 0.834036i \(-0.686025\pi\)
0.998151 + 0.0607774i \(0.0193580\pi\)
\(920\) −12.2294 + 2.89843i −0.403193 + 0.0955584i
\(921\) 0 0
\(922\) −5.01293 + 2.51759i −0.165092 + 0.0829124i
\(923\) 53.4963 6.25282i 1.76085 0.205814i
\(924\) 0 0
\(925\) 1.48409 + 0.745340i 0.0487967 + 0.0245066i
\(926\) 0.985077 + 0.358539i 0.0323716 + 0.0117823i
\(927\) 0 0
\(928\) −19.4266 + 7.07070i −0.637709 + 0.232107i
\(929\) −47.7953 5.58647i −1.56811 0.183286i −0.712789 0.701379i \(-0.752568\pi\)
−0.855324 + 0.518093i \(0.826642\pi\)
\(930\) 0 0
\(931\) −3.46695 11.5804i −0.113625 0.379533i
\(932\) −13.7608 45.9642i −0.450749 1.50561i
\(933\) 0 0
\(934\) 7.41009 + 0.866116i 0.242466 + 0.0283402i
\(935\) −2.46545 + 0.897352i −0.0806290 + 0.0293465i
\(936\) 0 0
\(937\) −48.7239 17.7340i −1.59174 0.579346i −0.614026 0.789286i \(-0.710451\pi\)
−0.977714 + 0.209940i \(0.932673\pi\)
\(938\) 4.67633 + 2.34854i 0.152688 + 0.0766826i
\(939\) 0 0
\(940\) 14.3436 1.67653i 0.467838 0.0546824i
\(941\) −40.4652 + 20.3224i −1.31913 + 0.662491i −0.962380 0.271709i \(-0.912411\pi\)
−0.356749 + 0.934200i \(0.616115\pi\)
\(942\) 0 0
\(943\) 39.6539 9.39814i 1.29131 0.306046i
\(944\) −8.90573 + 15.4252i −0.289857 + 0.502047i
\(945\) 0 0
\(946\) −10.7128 18.5551i −0.348302 0.603277i
\(947\) −14.4175 15.2817i −0.468506 0.496587i 0.449430 0.893315i \(-0.351627\pi\)
−0.917936 + 0.396728i \(0.870146\pi\)
\(948\) 0 0
\(949\) 1.31673 22.6074i 0.0427430 0.733868i
\(950\) −2.73681 3.67617i −0.0887937 0.119271i
\(951\) 0 0
\(952\) −0.977042 + 0.642610i −0.0316661 + 0.0208271i
\(953\) −1.52233 8.63357i −0.0493132 0.279669i 0.950173 0.311723i \(-0.100906\pi\)
−0.999486 + 0.0320543i \(0.989795\pi\)
\(954\) 0 0
\(955\) −1.79794 + 10.1966i −0.0581800 + 0.329955i
\(956\) −0.129122 0.299338i −0.00417610 0.00968129i
\(957\) 0 0
\(958\) −6.86568 1.62720i −0.221820 0.0525723i
\(959\) −6.49418 + 6.88343i −0.209708 + 0.222278i
\(960\) 0 0
\(961\) 7.78665 10.4593i 0.251182 0.337396i
\(962\) 0.493629 + 0.414204i 0.0159152 + 0.0133545i
\(963\) 0 0
\(964\) −27.4921 + 23.0686i −0.885461 + 0.742990i
\(965\) −0.0145237 0.249363i −0.000467535 0.00802727i
\(966\) 0 0
\(967\) −8.96620 + 20.7860i −0.288334 + 0.668433i −0.999398 0.0346944i \(-0.988954\pi\)
0.711064 + 0.703127i \(0.248213\pi\)
\(968\) −15.6251 10.2768i −0.502211 0.330309i
\(969\) 0 0
\(970\) −0.301178 + 1.00600i −0.00967023 + 0.0323008i
\(971\) 13.1781 0.422905 0.211453 0.977388i \(-0.432181\pi\)
0.211453 + 0.977388i \(0.432181\pi\)
\(972\) 0 0
\(973\) 32.1504 1.03070
\(974\) −0.580094 + 1.93765i −0.0185874 + 0.0620863i
\(975\) 0 0
\(976\) 7.34675 + 4.83204i 0.235164 + 0.154670i
\(977\) 15.7360 36.4800i 0.503438 1.16710i −0.457217 0.889355i \(-0.651154\pi\)
0.960655 0.277745i \(-0.0895869\pi\)
\(978\) 0 0
\(979\) 2.95457 + 50.7281i 0.0944286 + 1.62128i
\(980\) 6.11051 5.12733i 0.195193 0.163786i
\(981\) 0 0
\(982\) −1.07321 0.900528i −0.0342474 0.0287370i
\(983\) 35.0323 47.0565i 1.11736 1.50087i 0.275395 0.961331i \(-0.411191\pi\)
0.841961 0.539538i \(-0.181401\pi\)
\(984\) 0 0
\(985\) −10.1516 + 10.7600i −0.323456 + 0.342843i
\(986\) 0.775666 + 0.183836i 0.0247022 + 0.00585454i
\(987\) 0 0
\(988\) 9.12721 + 21.1593i 0.290375 + 0.673166i
\(989\) 13.5235 76.6957i 0.430023 2.43878i
\(990\) 0 0
\(991\) 3.30423 + 18.7392i 0.104962 + 0.595270i 0.991235 + 0.132108i \(0.0421744\pi\)
−0.886273 + 0.463163i \(0.846714\pi\)
\(992\) −22.8221 + 15.0104i −0.724604 + 0.476579i
\(993\) 0 0
\(994\) 6.76167 + 9.08249i 0.214467 + 0.288079i
\(995\) −0.131106 + 2.25101i −0.00415635 + 0.0713618i
\(996\) 0 0
\(997\) 3.90600 + 4.14012i 0.123704 + 0.131119i 0.786265 0.617889i \(-0.212012\pi\)
−0.662561 + 0.749008i \(0.730530\pi\)
\(998\) −5.28998 9.16251i −0.167451 0.290034i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.352.5 144
3.2 odd 2 729.2.g.a.352.4 144
9.2 odd 6 729.2.g.b.595.5 144
9.4 even 3 81.2.g.a.22.5 144
9.5 odd 6 243.2.g.a.199.4 144
9.7 even 3 729.2.g.c.595.4 144
81.11 odd 54 729.2.g.b.136.5 144
81.16 even 27 81.2.g.a.70.5 yes 144
81.23 odd 54 6561.2.a.d.1.39 72
81.38 odd 54 729.2.g.a.379.4 144
81.43 even 27 inner 729.2.g.d.379.5 144
81.58 even 27 6561.2.a.c.1.34 72
81.65 odd 54 243.2.g.a.127.4 144
81.70 even 27 729.2.g.c.136.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.5 144 9.4 even 3
81.2.g.a.70.5 yes 144 81.16 even 27
243.2.g.a.127.4 144 81.65 odd 54
243.2.g.a.199.4 144 9.5 odd 6
729.2.g.a.352.4 144 3.2 odd 2
729.2.g.a.379.4 144 81.38 odd 54
729.2.g.b.136.5 144 81.11 odd 54
729.2.g.b.595.5 144 9.2 odd 6
729.2.g.c.136.4 144 81.70 even 27
729.2.g.c.595.4 144 9.7 even 3
729.2.g.d.352.5 144 1.1 even 1 trivial
729.2.g.d.379.5 144 81.43 even 27 inner
6561.2.a.c.1.34 72 81.58 even 27
6561.2.a.d.1.39 72 81.23 odd 54