Properties

Label 729.2.g.c.595.4
Level $729$
Weight $2$
Character 729.595
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 595.4
Character \(\chi\) \(=\) 729.595
Dual form 729.2.g.c.136.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.368322 + 0.0872939i) q^{2} +(-1.65922 + 0.833294i) q^{4} +(0.765743 + 1.02857i) q^{5} +(-1.59613 + 1.04979i) q^{7} +(1.11832 - 0.938383i) q^{8} +(-0.371828 - 0.312001i) q^{10} +(-4.84662 - 0.566489i) q^{11} +(-0.986538 - 3.29527i) q^{13} +(0.496250 - 0.525994i) q^{14} +(1.88752 - 2.53538i) q^{16} +(0.0728119 - 0.412937i) q^{17} +(-0.626542 - 3.55329i) q^{19} +(-2.12764 - 1.06854i) q^{20} +(1.83457 - 0.214430i) q^{22} +(5.60929 + 3.68929i) q^{23} +(0.962419 - 3.21470i) q^{25} +(0.651020 + 1.12760i) q^{26} +(1.77356 - 3.07189i) q^{28} +(3.44661 + 3.65320i) q^{29} +(0.385862 - 6.62500i) q^{31} +(-1.63034 + 3.77955i) q^{32} +(0.00922864 + 0.158450i) q^{34} +(-2.30201 - 0.837864i) q^{35} +(0.465059 - 0.169268i) q^{37} +(0.540950 + 1.25406i) q^{38} +(1.82154 + 0.431713i) q^{40} +(-5.90634 - 1.39983i) q^{41} +(-4.59446 - 10.6512i) q^{43} +(8.51368 - 3.09873i) q^{44} +(-2.38808 - 0.869188i) q^{46} +(-0.352677 - 6.05524i) q^{47} +(-1.32699 + 3.07630i) q^{49} +(-0.0738560 + 1.26806i) q^{50} +(4.38281 + 4.64551i) q^{52} +(2.95007 - 5.10967i) q^{53} +(-3.12859 - 5.41888i) q^{55} +(-0.799881 + 2.67179i) q^{56} +(-1.58836 - 1.04468i) q^{58} +(-5.59693 + 0.654187i) q^{59} +(-2.48606 - 1.24855i) q^{61} +(0.436200 + 2.47381i) q^{62} +(-0.827191 + 4.69124i) q^{64} +(2.63398 - 3.53805i) q^{65} +(4.96592 - 5.26357i) q^{67} +(0.223286 + 0.745828i) q^{68} +(0.921022 + 0.107652i) q^{70} +(-11.9949 - 10.0649i) q^{71} +(-5.04326 + 4.23179i) q^{73} +(-0.156515 + 0.102942i) q^{74} +(4.00051 + 5.37362i) q^{76} +(8.33054 - 4.18375i) q^{77} +(3.71934 - 0.881500i) q^{79} +4.05318 q^{80} +2.29763 q^{82} +(-4.72027 + 1.11872i) q^{83} +(0.480490 - 0.241311i) q^{85} +(2.62202 + 3.52198i) q^{86} +(-5.95166 + 3.91447i) q^{88} +(-7.97723 + 6.69369i) q^{89} +(5.03399 + 4.22402i) q^{91} +(-12.3813 - 1.44717i) q^{92} +(0.658484 + 2.19949i) q^{94} +(3.17505 - 3.36535i) q^{95} +(-1.29193 + 1.73537i) q^{97} +(0.220216 - 1.24891i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{25}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.368322 + 0.0872939i −0.260443 + 0.0617261i −0.358763 0.933429i \(-0.616801\pi\)
0.0983199 + 0.995155i \(0.468653\pi\)
\(3\) 0 0
\(4\) −1.65922 + 0.833294i −0.829612 + 0.416647i
\(5\) 0.765743 + 1.02857i 0.342451 + 0.459991i 0.939668 0.342088i \(-0.111134\pi\)
−0.597217 + 0.802080i \(0.703727\pi\)
\(6\) 0 0
\(7\) −1.59613 + 1.04979i −0.603281 + 0.396784i −0.814086 0.580744i \(-0.802762\pi\)
0.210805 + 0.977528i \(0.432391\pi\)
\(8\) 1.11832 0.938383i 0.395386 0.331768i
\(9\) 0 0
\(10\) −0.371828 0.312001i −0.117582 0.0986633i
\(11\) −4.84662 0.566489i −1.46131 0.170803i −0.652016 0.758205i \(-0.726077\pi\)
−0.809295 + 0.587402i \(0.800151\pi\)
\(12\) 0 0
\(13\) −0.986538 3.29527i −0.273616 0.913942i −0.978783 0.204900i \(-0.934313\pi\)
0.705167 0.709042i \(-0.250872\pi\)
\(14\) 0.496250 0.525994i 0.132628 0.140578i
\(15\) 0 0
\(16\) 1.88752 2.53538i 0.471881 0.633846i
\(17\) 0.0728119 0.412937i 0.0176595 0.100152i −0.974704 0.223499i \(-0.928252\pi\)
0.992364 + 0.123348i \(0.0393630\pi\)
\(18\) 0 0
\(19\) −0.626542 3.55329i −0.143739 0.815182i −0.968371 0.249513i \(-0.919729\pi\)
0.824633 0.565668i \(-0.191382\pi\)
\(20\) −2.12764 1.06854i −0.475755 0.238933i
\(21\) 0 0
\(22\) 1.83457 0.214430i 0.391131 0.0457167i
\(23\) 5.60929 + 3.68929i 1.16962 + 0.769269i 0.977258 0.212055i \(-0.0680156\pi\)
0.192360 + 0.981325i \(0.438386\pi\)
\(24\) 0 0
\(25\) 0.962419 3.21470i 0.192484 0.642941i
\(26\) 0.651020 + 1.12760i 0.127675 + 0.221140i
\(27\) 0 0
\(28\) 1.77356 3.07189i 0.335170 0.580532i
\(29\) 3.44661 + 3.65320i 0.640020 + 0.678382i 0.963455 0.267869i \(-0.0863193\pi\)
−0.323435 + 0.946250i \(0.604838\pi\)
\(30\) 0 0
\(31\) 0.385862 6.62500i 0.0693029 1.18988i −0.767011 0.641634i \(-0.778257\pi\)
0.836314 0.548251i \(-0.184706\pi\)
\(32\) −1.63034 + 3.77955i −0.288206 + 0.668136i
\(33\) 0 0
\(34\) 0.00922864 + 0.158450i 0.00158270 + 0.0271739i
\(35\) −2.30201 0.837864i −0.389111 0.141625i
\(36\) 0 0
\(37\) 0.465059 0.169268i 0.0764552 0.0278274i −0.303509 0.952828i \(-0.598158\pi\)
0.379965 + 0.925001i \(0.375936\pi\)
\(38\) 0.540950 + 1.25406i 0.0877536 + 0.203436i
\(39\) 0 0
\(40\) 1.82154 + 0.431713i 0.288011 + 0.0682598i
\(41\) −5.90634 1.39983i −0.922415 0.218616i −0.258142 0.966107i \(-0.583110\pi\)
−0.664272 + 0.747491i \(0.731258\pi\)
\(42\) 0 0
\(43\) −4.59446 10.6512i −0.700649 1.62429i −0.778745 0.627340i \(-0.784144\pi\)
0.0780967 0.996946i \(-0.475116\pi\)
\(44\) 8.51368 3.09873i 1.28349 0.467151i
\(45\) 0 0
\(46\) −2.38808 0.869188i −0.352102 0.128155i
\(47\) −0.352677 6.05524i −0.0514433 0.883247i −0.921036 0.389477i \(-0.872656\pi\)
0.869593 0.493770i \(-0.164381\pi\)
\(48\) 0 0
\(49\) −1.32699 + 3.07630i −0.189569 + 0.439471i
\(50\) −0.0738560 + 1.26806i −0.0104448 + 0.179331i
\(51\) 0 0
\(52\) 4.38281 + 4.64551i 0.607787 + 0.644216i
\(53\) 2.95007 5.10967i 0.405223 0.701867i −0.589124 0.808043i \(-0.700527\pi\)
0.994347 + 0.106175i \(0.0338605\pi\)
\(54\) 0 0
\(55\) −3.12859 5.41888i −0.421859 0.730682i
\(56\) −0.799881 + 2.67179i −0.106889 + 0.357033i
\(57\) 0 0
\(58\) −1.58836 1.04468i −0.208562 0.137174i
\(59\) −5.59693 + 0.654187i −0.728658 + 0.0851680i −0.472330 0.881422i \(-0.656587\pi\)
−0.256328 + 0.966590i \(0.582513\pi\)
\(60\) 0 0
\(61\) −2.48606 1.24855i −0.318307 0.159860i 0.282471 0.959276i \(-0.408846\pi\)
−0.600778 + 0.799416i \(0.705142\pi\)
\(62\) 0.436200 + 2.47381i 0.0553975 + 0.314175i
\(63\) 0 0
\(64\) −0.827191 + 4.69124i −0.103399 + 0.586404i
\(65\) 2.63398 3.53805i 0.326705 0.438841i
\(66\) 0 0
\(67\) 4.96592 5.26357i 0.606684 0.643048i −0.349111 0.937081i \(-0.613516\pi\)
0.955795 + 0.294034i \(0.0949978\pi\)
\(68\) 0.223286 + 0.745828i 0.0270774 + 0.0904450i
\(69\) 0 0
\(70\) 0.921022 + 0.107652i 0.110083 + 0.0128669i
\(71\) −11.9949 10.0649i −1.42353 1.19448i −0.949418 0.314015i \(-0.898326\pi\)
−0.474109 0.880466i \(-0.657230\pi\)
\(72\) 0 0
\(73\) −5.04326 + 4.23179i −0.590268 + 0.495294i −0.888301 0.459262i \(-0.848114\pi\)
0.298033 + 0.954556i \(0.403670\pi\)
\(74\) −0.156515 + 0.102942i −0.0181945 + 0.0119667i
\(75\) 0 0
\(76\) 4.00051 + 5.37362i 0.458890 + 0.616396i
\(77\) 8.33054 4.18375i 0.949353 0.476783i
\(78\) 0 0
\(79\) 3.71934 0.881500i 0.418459 0.0991765i −0.0159920 0.999872i \(-0.505091\pi\)
0.434451 + 0.900696i \(0.356942\pi\)
\(80\) 4.05318 0.453160
\(81\) 0 0
\(82\) 2.29763 0.253731
\(83\) −4.72027 + 1.11872i −0.518117 + 0.122796i −0.481351 0.876528i \(-0.659854\pi\)
−0.0367659 + 0.999324i \(0.511706\pi\)
\(84\) 0 0
\(85\) 0.480490 0.241311i 0.0521165 0.0261739i
\(86\) 2.62202 + 3.52198i 0.282740 + 0.379785i
\(87\) 0 0
\(88\) −5.95166 + 3.91447i −0.634449 + 0.417284i
\(89\) −7.97723 + 6.69369i −0.845585 + 0.709530i −0.958813 0.284039i \(-0.908325\pi\)
0.113228 + 0.993569i \(0.463881\pi\)
\(90\) 0 0
\(91\) 5.03399 + 4.22402i 0.527705 + 0.442797i
\(92\) −12.3813 1.44717i −1.29084 0.150878i
\(93\) 0 0
\(94\) 0.658484 + 2.19949i 0.0679174 + 0.226860i
\(95\) 3.17505 3.36535i 0.325753 0.345278i
\(96\) 0 0
\(97\) −1.29193 + 1.73537i −0.131176 + 0.176200i −0.862858 0.505446i \(-0.831328\pi\)
0.731682 + 0.681646i \(0.238735\pi\)
\(98\) 0.220216 1.24891i 0.0222452 0.126159i
\(99\) 0 0
\(100\) 1.08192 + 6.13589i 0.108192 + 0.613589i
\(101\) 14.5862 + 7.32547i 1.45138 + 0.728911i 0.987593 0.157035i \(-0.0501936\pi\)
0.463788 + 0.885946i \(0.346490\pi\)
\(102\) 0 0
\(103\) −17.9458 + 2.09756i −1.76825 + 0.206679i −0.937025 0.349262i \(-0.886432\pi\)
−0.831222 + 0.555940i \(0.812358\pi\)
\(104\) −4.19549 2.75941i −0.411401 0.270583i
\(105\) 0 0
\(106\) −0.640532 + 2.13953i −0.0622140 + 0.207809i
\(107\) 8.06607 + 13.9708i 0.779777 + 1.35061i 0.932070 + 0.362277i \(0.118001\pi\)
−0.152294 + 0.988335i \(0.548666\pi\)
\(108\) 0 0
\(109\) 4.04171 7.00045i 0.387126 0.670521i −0.604936 0.796274i \(-0.706801\pi\)
0.992062 + 0.125753i \(0.0401347\pi\)
\(110\) 1.62536 + 1.72279i 0.154972 + 0.164261i
\(111\) 0 0
\(112\) −0.351109 + 6.02832i −0.0331767 + 0.569622i
\(113\) −0.681557 + 1.58003i −0.0641154 + 0.148636i −0.947261 0.320462i \(-0.896162\pi\)
0.883146 + 0.469098i \(0.155421\pi\)
\(114\) 0 0
\(115\) 0.500579 + 8.59460i 0.0466792 + 0.801451i
\(116\) −8.76289 3.18943i −0.813614 0.296131i
\(117\) 0 0
\(118\) 2.00437 0.729529i 0.184517 0.0671586i
\(119\) 0.317280 + 0.735538i 0.0290850 + 0.0674267i
\(120\) 0 0
\(121\) 12.4653 + 2.95434i 1.13321 + 0.268576i
\(122\) 1.02466 + 0.242849i 0.0927684 + 0.0219865i
\(123\) 0 0
\(124\) 4.88034 + 11.3139i 0.438267 + 1.01602i
\(125\) 10.0684 3.66460i 0.900546 0.327772i
\(126\) 0 0
\(127\) −4.79894 1.74667i −0.425837 0.154992i 0.120206 0.992749i \(-0.461644\pi\)
−0.546044 + 0.837757i \(0.683867\pi\)
\(128\) −0.583513 10.0185i −0.0515758 0.885522i
\(129\) 0 0
\(130\) −0.661303 + 1.53307i −0.0580001 + 0.134459i
\(131\) 0.677467 11.6317i 0.0591905 1.01626i −0.829720 0.558181i \(-0.811500\pi\)
0.888910 0.458082i \(-0.151463\pi\)
\(132\) 0 0
\(133\) 4.73026 + 5.01379i 0.410166 + 0.434750i
\(134\) −1.36958 + 2.37218i −0.118314 + 0.204925i
\(135\) 0 0
\(136\) −0.306066 0.530121i −0.0262449 0.0454575i
\(137\) −1.42070 + 4.74547i −0.121379 + 0.405433i −0.996985 0.0775920i \(-0.975277\pi\)
0.875606 + 0.483025i \(0.160462\pi\)
\(138\) 0 0
\(139\) −14.0604 9.24768i −1.19259 0.784378i −0.211395 0.977401i \(-0.567801\pi\)
−0.981194 + 0.193022i \(0.938171\pi\)
\(140\) 4.51775 0.528049i 0.381819 0.0446283i
\(141\) 0 0
\(142\) 5.29657 + 2.66004i 0.444478 + 0.223225i
\(143\) 2.91464 + 16.5298i 0.243735 + 1.38229i
\(144\) 0 0
\(145\) −1.11835 + 6.34250i −0.0928742 + 0.526716i
\(146\) 1.48813 1.99891i 0.123159 0.165431i
\(147\) 0 0
\(148\) −0.630588 + 0.668384i −0.0518340 + 0.0549408i
\(149\) −4.99831 16.6955i −0.409477 1.36775i −0.875603 0.483031i \(-0.839536\pi\)
0.466126 0.884718i \(-0.345649\pi\)
\(150\) 0 0
\(151\) −6.41195 0.749449i −0.521797 0.0609893i −0.148882 0.988855i \(-0.547568\pi\)
−0.372915 + 0.927866i \(0.621642\pi\)
\(152\) −4.03503 3.38579i −0.327284 0.274624i
\(153\) 0 0
\(154\) −2.70310 + 2.26817i −0.217822 + 0.182775i
\(155\) 7.10976 4.67616i 0.571070 0.375598i
\(156\) 0 0
\(157\) 7.62652 + 10.2442i 0.608662 + 0.817576i 0.994472 0.105003i \(-0.0334852\pi\)
−0.385809 + 0.922578i \(0.626078\pi\)
\(158\) −1.29297 + 0.649352i −0.102863 + 0.0516596i
\(159\) 0 0
\(160\) −5.13596 + 1.21724i −0.406033 + 0.0962316i
\(161\) −12.8261 −1.01084
\(162\) 0 0
\(163\) −0.599869 −0.0469853 −0.0234927 0.999724i \(-0.507479\pi\)
−0.0234927 + 0.999724i \(0.507479\pi\)
\(164\) 10.9664 2.59909i 0.856332 0.202954i
\(165\) 0 0
\(166\) 1.64092 0.824101i 0.127360 0.0639626i
\(167\) −1.81203 2.43398i −0.140219 0.188347i 0.726466 0.687202i \(-0.241161\pi\)
−0.866685 + 0.498855i \(0.833754\pi\)
\(168\) 0 0
\(169\) 0.975825 0.641810i 0.0750635 0.0493700i
\(170\) −0.155910 + 0.130824i −0.0119578 + 0.0100337i
\(171\) 0 0
\(172\) 16.4988 + 13.8441i 1.25802 + 1.05560i
\(173\) 9.59030 + 1.12094i 0.729137 + 0.0852239i 0.472558 0.881300i \(-0.343331\pi\)
0.256579 + 0.966523i \(0.417405\pi\)
\(174\) 0 0
\(175\) 1.83862 + 6.14143i 0.138987 + 0.464248i
\(176\) −10.5844 + 11.2188i −0.797828 + 0.845648i
\(177\) 0 0
\(178\) 2.35387 3.16180i 0.176430 0.236987i
\(179\) −4.48229 + 25.4203i −0.335022 + 1.90001i 0.0919897 + 0.995760i \(0.470677\pi\)
−0.427012 + 0.904246i \(0.640434\pi\)
\(180\) 0 0
\(181\) 0.154861 + 0.878259i 0.0115107 + 0.0652805i 0.990022 0.140913i \(-0.0450036\pi\)
−0.978511 + 0.206193i \(0.933893\pi\)
\(182\) −2.22286 1.11636i −0.164769 0.0827502i
\(183\) 0 0
\(184\) 9.73495 1.13785i 0.717670 0.0838836i
\(185\) 0.530220 + 0.348731i 0.0389825 + 0.0256392i
\(186\) 0 0
\(187\) −0.586815 + 1.96010i −0.0429122 + 0.143337i
\(188\) 5.63096 + 9.75311i 0.410680 + 0.711319i
\(189\) 0 0
\(190\) −0.875665 + 1.51670i −0.0635274 + 0.110033i
\(191\) 5.54100 + 5.87312i 0.400933 + 0.424964i 0.896113 0.443826i \(-0.146379\pi\)
−0.495180 + 0.868790i \(0.664898\pi\)
\(192\) 0 0
\(193\) −0.0113262 + 0.194463i −0.000815278 + 0.0139978i −0.998691 0.0511445i \(-0.983713\pi\)
0.997876 + 0.0651423i \(0.0207501\pi\)
\(194\) 0.324360 0.751952i 0.0232877 0.0539870i
\(195\) 0 0
\(196\) −0.361694 6.21004i −0.0258353 0.443574i
\(197\) −10.8405 3.94561i −0.772351 0.281113i −0.0743718 0.997231i \(-0.523695\pi\)
−0.697980 + 0.716118i \(0.745917\pi\)
\(198\) 0 0
\(199\) −1.65236 + 0.601410i −0.117133 + 0.0426328i −0.399922 0.916549i \(-0.630963\pi\)
0.282789 + 0.959182i \(0.408740\pi\)
\(200\) −1.94033 4.49819i −0.137202 0.318070i
\(201\) 0 0
\(202\) −6.01188 1.42484i −0.422995 0.100252i
\(203\) −9.33634 2.21275i −0.655283 0.155305i
\(204\) 0 0
\(205\) −3.08291 7.14700i −0.215320 0.499168i
\(206\) 6.42671 2.33913i 0.447770 0.162975i
\(207\) 0 0
\(208\) −10.2169 3.71864i −0.708413 0.257841i
\(209\) 1.02371 + 17.5764i 0.0708114 + 1.21578i
\(210\) 0 0
\(211\) −1.41664 + 3.28414i −0.0975255 + 0.226090i −0.959994 0.280022i \(-0.909658\pi\)
0.862468 + 0.506111i \(0.168918\pi\)
\(212\) −0.636971 + 10.9364i −0.0437473 + 0.751113i
\(213\) 0 0
\(214\) −4.19048 4.44165i −0.286455 0.303625i
\(215\) 7.43730 12.8818i 0.507220 0.878530i
\(216\) 0 0
\(217\) 6.33898 + 10.9794i 0.430318 + 0.745333i
\(218\) −0.877554 + 2.93123i −0.0594354 + 0.198528i
\(219\) 0 0
\(220\) 9.70656 + 6.38411i 0.654416 + 0.430416i
\(221\) −1.43257 + 0.167443i −0.0963649 + 0.0112634i
\(222\) 0 0
\(223\) −5.86322 2.94462i −0.392630 0.197186i 0.241521 0.970396i \(-0.422354\pi\)
−0.634151 + 0.773209i \(0.718650\pi\)
\(224\) −1.36551 7.74417i −0.0912368 0.517429i
\(225\) 0 0
\(226\) 0.113106 0.641454i 0.00752367 0.0426689i
\(227\) −4.85385 + 6.51985i −0.322161 + 0.432738i −0.933471 0.358654i \(-0.883236\pi\)
0.611309 + 0.791392i \(0.290643\pi\)
\(228\) 0 0
\(229\) −5.37657 + 5.69883i −0.355294 + 0.376589i −0.880226 0.474555i \(-0.842609\pi\)
0.524932 + 0.851144i \(0.324091\pi\)
\(230\) −0.934630 3.12188i −0.0616277 0.205851i
\(231\) 0 0
\(232\) 7.28252 + 0.851204i 0.478121 + 0.0558843i
\(233\) −19.7955 16.6104i −1.29685 1.08818i −0.990681 0.136205i \(-0.956509\pi\)
−0.306166 0.951978i \(-0.599046\pi\)
\(234\) 0 0
\(235\) 5.95818 4.99951i 0.388669 0.326132i
\(236\) 8.74144 5.74933i 0.569019 0.374250i
\(237\) 0 0
\(238\) −0.181069 0.243218i −0.0117370 0.0157655i
\(239\) 0.156903 0.0787995i 0.0101492 0.00509711i −0.443717 0.896167i \(-0.646341\pi\)
0.453867 + 0.891070i \(0.350044\pi\)
\(240\) 0 0
\(241\) 18.8079 4.45756i 1.21152 0.287137i 0.425286 0.905059i \(-0.360174\pi\)
0.786239 + 0.617922i \(0.212025\pi\)
\(242\) −4.84915 −0.311715
\(243\) 0 0
\(244\) 5.16534 0.330677
\(245\) −4.18033 + 0.990756i −0.267071 + 0.0632971i
\(246\) 0 0
\(247\) −11.0909 + 5.57008i −0.705700 + 0.354416i
\(248\) −5.78527 7.77096i −0.367365 0.493457i
\(249\) 0 0
\(250\) −3.38852 + 2.22866i −0.214309 + 0.140953i
\(251\) 18.5138 15.5349i 1.16858 0.980554i 0.168592 0.985686i \(-0.446078\pi\)
0.999987 + 0.00513137i \(0.00163337\pi\)
\(252\) 0 0
\(253\) −25.0962 21.0582i −1.57778 1.32392i
\(254\) 1.92003 + 0.224419i 0.120473 + 0.0140813i
\(255\) 0 0
\(256\) −1.64296 5.48786i −0.102685 0.342991i
\(257\) 9.39588 9.95905i 0.586099 0.621228i −0.364667 0.931138i \(-0.618817\pi\)
0.950766 + 0.309909i \(0.100299\pi\)
\(258\) 0 0
\(259\) −0.564600 + 0.758389i −0.0350825 + 0.0471240i
\(260\) −1.42213 + 8.06530i −0.0881968 + 0.500189i
\(261\) 0 0
\(262\) 0.765846 + 4.34333i 0.0473141 + 0.268332i
\(263\) −12.9775 6.51756i −0.800229 0.401890i 0.00118561 0.999999i \(-0.499623\pi\)
−0.801415 + 0.598109i \(0.795919\pi\)
\(264\) 0 0
\(265\) 7.51466 0.878338i 0.461622 0.0539559i
\(266\) −2.17993 1.43376i −0.133660 0.0879097i
\(267\) 0 0
\(268\) −3.85348 + 12.8715i −0.235389 + 0.786253i
\(269\) 0.0908847 + 0.157417i 0.00554134 + 0.00959788i 0.868783 0.495193i \(-0.164903\pi\)
−0.863241 + 0.504791i \(0.831569\pi\)
\(270\) 0 0
\(271\) −10.1446 + 17.5709i −0.616239 + 1.06736i 0.373927 + 0.927458i \(0.378011\pi\)
−0.990166 + 0.139899i \(0.955322\pi\)
\(272\) −0.909519 0.964034i −0.0551477 0.0584531i
\(273\) 0 0
\(274\) 0.109025 1.87188i 0.00658642 0.113084i
\(275\) −6.48557 + 15.0352i −0.391095 + 0.906660i
\(276\) 0 0
\(277\) 0.647666 + 11.1200i 0.0389144 + 0.668135i 0.960211 + 0.279275i \(0.0900941\pi\)
−0.921297 + 0.388860i \(0.872869\pi\)
\(278\) 5.98603 + 2.17874i 0.359018 + 0.130672i
\(279\) 0 0
\(280\) −3.36063 + 1.22317i −0.200836 + 0.0730983i
\(281\) 0.793419 + 1.83935i 0.0473314 + 0.109727i 0.940241 0.340509i \(-0.110599\pi\)
−0.892910 + 0.450235i \(0.851340\pi\)
\(282\) 0 0
\(283\) 2.22602 + 0.527576i 0.132323 + 0.0313611i 0.296244 0.955112i \(-0.404266\pi\)
−0.163921 + 0.986474i \(0.552414\pi\)
\(284\) 28.2891 + 6.70465i 1.67865 + 0.397848i
\(285\) 0 0
\(286\) −2.51647 5.83384i −0.148802 0.344962i
\(287\) 10.8968 3.96612i 0.643219 0.234112i
\(288\) 0 0
\(289\) 15.8096 + 5.75421i 0.929974 + 0.338483i
\(290\) −0.141747 2.43371i −0.00832369 0.142912i
\(291\) 0 0
\(292\) 4.84157 11.2240i 0.283331 0.656836i
\(293\) −0.291717 + 5.00859i −0.0170423 + 0.292605i 0.979008 + 0.203819i \(0.0653356\pi\)
−0.996051 + 0.0887854i \(0.971701\pi\)
\(294\) 0 0
\(295\) −4.95869 5.25591i −0.288706 0.306011i
\(296\) 0.361248 0.625699i 0.0209971 0.0363680i
\(297\) 0 0
\(298\) 3.29840 + 5.71300i 0.191071 + 0.330945i
\(299\) 6.62340 22.1237i 0.383041 1.27945i
\(300\) 0 0
\(301\) 18.5149 + 12.1774i 1.06718 + 0.701895i
\(302\) 2.42708 0.283685i 0.139663 0.0163243i
\(303\) 0 0
\(304\) −10.1916 5.11840i −0.584527 0.293561i
\(305\) −0.619464 3.51316i −0.0354704 0.201163i
\(306\) 0 0
\(307\) 3.72532 21.1273i 0.212615 1.20580i −0.672382 0.740204i \(-0.734729\pi\)
0.884997 0.465596i \(-0.154160\pi\)
\(308\) −10.3359 + 13.8836i −0.588945 + 0.791090i
\(309\) 0 0
\(310\) −2.21048 + 2.34297i −0.125547 + 0.133072i
\(311\) 3.45316 + 11.5344i 0.195811 + 0.654053i 0.998348 + 0.0574516i \(0.0182975\pi\)
−0.802538 + 0.596601i \(0.796517\pi\)
\(312\) 0 0
\(313\) −9.24856 1.08100i −0.522760 0.0611018i −0.149379 0.988780i \(-0.547727\pi\)
−0.373381 + 0.927678i \(0.621801\pi\)
\(314\) −3.70327 3.10741i −0.208988 0.175361i
\(315\) 0 0
\(316\) −5.43668 + 4.56191i −0.305837 + 0.256628i
\(317\) −13.6839 + 9.00003i −0.768563 + 0.505492i −0.872216 0.489122i \(-0.837317\pi\)
0.103652 + 0.994614i \(0.466947\pi\)
\(318\) 0 0
\(319\) −14.6349 19.6581i −0.819399 1.10064i
\(320\) −5.45869 + 2.74146i −0.305150 + 0.153252i
\(321\) 0 0
\(322\) 4.72415 1.11964i 0.263267 0.0623953i
\(323\) −1.51290 −0.0841803
\(324\) 0 0
\(325\) −11.5428 −0.640277
\(326\) 0.220945 0.0523649i 0.0122370 0.00290022i
\(327\) 0 0
\(328\) −7.91875 + 3.97695i −0.437240 + 0.219590i
\(329\) 6.91966 + 9.29471i 0.381493 + 0.512434i
\(330\) 0 0
\(331\) 4.28517 2.81840i 0.235534 0.154913i −0.426255 0.904603i \(-0.640167\pi\)
0.661790 + 0.749689i \(0.269797\pi\)
\(332\) 6.89976 5.78959i 0.378673 0.317745i
\(333\) 0 0
\(334\) 0.879884 + 0.738310i 0.0481451 + 0.0403985i
\(335\) 9.21658 + 1.07726i 0.503556 + 0.0588572i
\(336\) 0 0
\(337\) −3.59205 11.9983i −0.195671 0.653588i −0.998363 0.0571939i \(-0.981785\pi\)
0.802692 0.596394i \(-0.203401\pi\)
\(338\) −0.303392 + 0.321576i −0.0165023 + 0.0174914i
\(339\) 0 0
\(340\) −0.596158 + 0.800779i −0.0323312 + 0.0434283i
\(341\) −5.62311 + 31.8903i −0.304509 + 1.72695i
\(342\) 0 0
\(343\) −3.43362 19.4730i −0.185398 1.05144i
\(344\) −15.1329 7.60005i −0.815914 0.409767i
\(345\) 0 0
\(346\) −3.63017 + 0.424306i −0.195159 + 0.0228108i
\(347\) 11.7607 + 7.73512i 0.631346 + 0.415243i 0.824449 0.565936i \(-0.191485\pi\)
−0.193103 + 0.981178i \(0.561855\pi\)
\(348\) 0 0
\(349\) 4.41633 14.7516i 0.236401 0.789633i −0.754648 0.656130i \(-0.772192\pi\)
0.991048 0.133503i \(-0.0426226\pi\)
\(350\) −1.21331 2.10152i −0.0648544 0.112331i
\(351\) 0 0
\(352\) 10.0427 17.3945i 0.535278 0.927129i
\(353\) −23.0484 24.4299i −1.22674 1.30027i −0.939556 0.342395i \(-0.888762\pi\)
−0.287186 0.957875i \(-0.592720\pi\)
\(354\) 0 0
\(355\) 1.16747 20.0447i 0.0619628 1.06386i
\(356\) 7.65820 17.7537i 0.405884 0.940945i
\(357\) 0 0
\(358\) −0.568114 9.75415i −0.0300258 0.515523i
\(359\) 11.6368 + 4.23546i 0.614168 + 0.223539i 0.630326 0.776330i \(-0.282921\pi\)
−0.0161577 + 0.999869i \(0.505143\pi\)
\(360\) 0 0
\(361\) 5.62081 2.04581i 0.295832 0.107674i
\(362\) −0.133705 0.309964i −0.00702739 0.0162913i
\(363\) 0 0
\(364\) −11.8724 2.81380i −0.622281 0.147483i
\(365\) −8.21454 1.94688i −0.429969 0.101904i
\(366\) 0 0
\(367\) 11.3665 + 26.3505i 0.593327 + 1.37549i 0.905047 + 0.425312i \(0.139836\pi\)
−0.311720 + 0.950174i \(0.600905\pi\)
\(368\) 19.9414 7.25809i 1.03952 0.378354i
\(369\) 0 0
\(370\) −0.225734 0.0821603i −0.0117353 0.00427131i
\(371\) 0.655393 + 11.2527i 0.0340263 + 0.584209i
\(372\) 0 0
\(373\) 7.52047 17.4344i 0.389395 0.902720i −0.604924 0.796283i \(-0.706797\pi\)
0.994319 0.106437i \(-0.0339441\pi\)
\(374\) 0.0450322 0.773173i 0.00232856 0.0399798i
\(375\) 0 0
\(376\) −6.07654 6.44075i −0.313373 0.332156i
\(377\) 8.63804 14.9615i 0.444882 0.770557i
\(378\) 0 0
\(379\) −9.40390 16.2880i −0.483046 0.836660i 0.516764 0.856128i \(-0.327136\pi\)
−0.999810 + 0.0194673i \(0.993803\pi\)
\(380\) −2.46379 + 8.22963i −0.126390 + 0.422171i
\(381\) 0 0
\(382\) −2.55356 1.67950i −0.130651 0.0859308i
\(383\) −6.61584 + 0.773280i −0.338053 + 0.0395128i −0.283426 0.958994i \(-0.591471\pi\)
−0.0546272 + 0.998507i \(0.517397\pi\)
\(384\) 0 0
\(385\) 10.6823 + 5.36488i 0.544423 + 0.273419i
\(386\) −0.0128038 0.0726138i −0.000651695 0.00369595i
\(387\) 0 0
\(388\) 0.697536 3.95592i 0.0354120 0.200832i
\(389\) 0.522322 0.701600i 0.0264828 0.0355725i −0.788685 0.614798i \(-0.789238\pi\)
0.815167 + 0.579225i \(0.196645\pi\)
\(390\) 0 0
\(391\) 1.93186 2.04766i 0.0976986 0.103554i
\(392\) 1.40275 + 4.68551i 0.0708496 + 0.236654i
\(393\) 0 0
\(394\) 4.33721 + 0.506947i 0.218505 + 0.0255396i
\(395\) 3.75475 + 3.15061i 0.188922 + 0.158524i
\(396\) 0 0
\(397\) 26.1379 21.9323i 1.31182 1.10075i 0.323854 0.946107i \(-0.395021\pi\)
0.987970 0.154644i \(-0.0494231\pi\)
\(398\) 0.556101 0.365753i 0.0278748 0.0183336i
\(399\) 0 0
\(400\) −6.33392 8.50793i −0.316696 0.425397i
\(401\) −3.75292 + 1.88479i −0.187412 + 0.0941218i −0.540031 0.841645i \(-0.681587\pi\)
0.352619 + 0.935767i \(0.385291\pi\)
\(402\) 0 0
\(403\) −22.2118 + 5.26429i −1.10645 + 0.262233i
\(404\) −30.3060 −1.50778
\(405\) 0 0
\(406\) 3.63194 0.180250
\(407\) −2.34985 + 0.556926i −0.116478 + 0.0276058i
\(408\) 0 0
\(409\) 19.3745 9.73022i 0.958006 0.481129i 0.100124 0.994975i \(-0.468076\pi\)
0.857882 + 0.513846i \(0.171780\pi\)
\(410\) 1.75939 + 2.36328i 0.0868903 + 0.116714i
\(411\) 0 0
\(412\) 28.0282 18.4344i 1.38085 0.908198i
\(413\) 8.24668 6.91978i 0.405792 0.340500i
\(414\) 0 0
\(415\) −4.76520 3.99848i −0.233915 0.196278i
\(416\) 14.0630 + 1.64373i 0.689496 + 0.0805905i
\(417\) 0 0
\(418\) −1.91137 6.38441i −0.0934880 0.312272i
\(419\) 2.87237 3.04453i 0.140324 0.148735i −0.653400 0.757013i \(-0.726658\pi\)
0.793724 + 0.608278i \(0.208139\pi\)
\(420\) 0 0
\(421\) 2.96790 3.98658i 0.144647 0.194294i −0.723895 0.689910i \(-0.757650\pi\)
0.868542 + 0.495616i \(0.165058\pi\)
\(422\) 0.235094 1.33328i 0.0114442 0.0649033i
\(423\) 0 0
\(424\) −1.49570 8.48255i −0.0726377 0.411949i
\(425\) −1.25739 0.631487i −0.0609925 0.0306316i
\(426\) 0 0
\(427\) 5.27879 0.617002i 0.255459 0.0298588i
\(428\) −25.0252 16.4594i −1.20964 0.795593i
\(429\) 0 0
\(430\) −1.61482 + 5.39387i −0.0778735 + 0.260116i
\(431\) −13.2418 22.9355i −0.637837 1.10477i −0.985907 0.167297i \(-0.946496\pi\)
0.348070 0.937469i \(-0.386837\pi\)
\(432\) 0 0
\(433\) −10.6919 + 18.5189i −0.513820 + 0.889962i 0.486052 + 0.873930i \(0.338437\pi\)
−0.999871 + 0.0160319i \(0.994897\pi\)
\(434\) −3.29322 3.49061i −0.158080 0.167555i
\(435\) 0 0
\(436\) −0.872675 + 14.9832i −0.0417935 + 0.717567i
\(437\) 9.59467 22.2429i 0.458975 1.06402i
\(438\) 0 0
\(439\) −1.87864 32.2549i −0.0896624 1.53944i −0.680557 0.732696i \(-0.738262\pi\)
0.590894 0.806749i \(-0.298775\pi\)
\(440\) −8.58376 3.12423i −0.409215 0.148942i
\(441\) 0 0
\(442\) 0.513029 0.186727i 0.0244023 0.00888171i
\(443\) −12.8789 29.8566i −0.611894 1.41853i −0.889098 0.457718i \(-0.848667\pi\)
0.277204 0.960811i \(-0.410592\pi\)
\(444\) 0 0
\(445\) −12.9935 3.07950i −0.615949 0.145983i
\(446\) 2.41660 + 0.572744i 0.114429 + 0.0271202i
\(447\) 0 0
\(448\) −3.60452 8.35621i −0.170297 0.394794i
\(449\) 15.0197 5.46673i 0.708825 0.257991i 0.0376508 0.999291i \(-0.488013\pi\)
0.671174 + 0.741300i \(0.265790\pi\)
\(450\) 0 0
\(451\) 27.8328 + 10.1303i 1.31059 + 0.477017i
\(452\) −0.185770 3.18955i −0.00873790 0.150024i
\(453\) 0 0
\(454\) 1.21864 2.82512i 0.0571934 0.132589i
\(455\) −0.489962 + 8.41233i −0.0229698 + 0.394376i
\(456\) 0 0
\(457\) −13.2384 14.0319i −0.619268 0.656386i 0.339490 0.940610i \(-0.389746\pi\)
−0.958758 + 0.284224i \(0.908264\pi\)
\(458\) 1.48283 2.56834i 0.0692883 0.120011i
\(459\) 0 0
\(460\) −7.99240 13.8432i −0.372648 0.645445i
\(461\) −4.25033 + 14.1971i −0.197957 + 0.661224i 0.800154 + 0.599795i \(0.204751\pi\)
−0.998111 + 0.0614293i \(0.980434\pi\)
\(462\) 0 0
\(463\) −2.31382 1.52182i −0.107532 0.0707252i 0.494604 0.869119i \(-0.335313\pi\)
−0.602136 + 0.798393i \(0.705684\pi\)
\(464\) 15.7678 1.84299i 0.732003 0.0855589i
\(465\) 0 0
\(466\) 8.74110 + 4.38995i 0.404924 + 0.203360i
\(467\) 3.42252 + 19.4101i 0.158375 + 0.898191i 0.955635 + 0.294554i \(0.0951712\pi\)
−0.797259 + 0.603637i \(0.793718\pi\)
\(468\) 0 0
\(469\) −2.40061 + 13.6145i −0.110850 + 0.628661i
\(470\) −1.75810 + 2.36154i −0.0810952 + 0.108930i
\(471\) 0 0
\(472\) −5.64529 + 5.98366i −0.259845 + 0.275420i
\(473\) 16.2338 + 54.2248i 0.746433 + 2.49326i
\(474\) 0 0
\(475\) −12.0258 1.40561i −0.551781 0.0644939i
\(476\) −1.13936 0.956036i −0.0522224 0.0438198i
\(477\) 0 0
\(478\) −0.0509120 + 0.0427202i −0.00232866 + 0.00195398i
\(479\) −15.5739 + 10.2431i −0.711588 + 0.468019i −0.852986 0.521934i \(-0.825211\pi\)
0.141398 + 0.989953i \(0.454840\pi\)
\(480\) 0 0
\(481\) −1.01658 1.36550i −0.0463521 0.0622616i
\(482\) −6.53825 + 3.28363i −0.297809 + 0.149565i
\(483\) 0 0
\(484\) −23.1446 + 5.48537i −1.05203 + 0.249335i
\(485\) −2.77424 −0.125972
\(486\) 0 0
\(487\) −5.34343 −0.242134 −0.121067 0.992644i \(-0.538632\pi\)
−0.121067 + 0.992644i \(0.538632\pi\)
\(488\) −3.95183 + 0.936600i −0.178891 + 0.0423979i
\(489\) 0 0
\(490\) 1.45322 0.729834i 0.0656497 0.0329705i
\(491\) 2.21017 + 2.96877i 0.0997434 + 0.133979i 0.849193 0.528083i \(-0.177089\pi\)
−0.749449 + 0.662062i \(0.769682\pi\)
\(492\) 0 0
\(493\) 1.75949 1.15724i 0.0792436 0.0521193i
\(494\) 3.59880 3.01975i 0.161918 0.135865i
\(495\) 0 0
\(496\) −16.0686 13.4832i −0.721501 0.605411i
\(497\) 29.7114 + 3.47276i 1.33274 + 0.155775i
\(498\) 0 0
\(499\) 8.01629 + 26.7763i 0.358858 + 1.19867i 0.926785 + 0.375592i \(0.122560\pi\)
−0.567927 + 0.823079i \(0.692254\pi\)
\(500\) −13.6521 + 14.4703i −0.610539 + 0.647134i
\(501\) 0 0
\(502\) −5.46293 + 7.33798i −0.243822 + 0.327510i
\(503\) −1.72317 + 9.77258i −0.0768323 + 0.435738i 0.921990 + 0.387214i \(0.126563\pi\)
−0.998822 + 0.0485234i \(0.984548\pi\)
\(504\) 0 0
\(505\) 3.63452 + 20.6124i 0.161734 + 0.917239i
\(506\) 11.0817 + 5.56544i 0.492642 + 0.247414i
\(507\) 0 0
\(508\) 9.41802 1.10081i 0.417857 0.0488405i
\(509\) 0.0236368 + 0.0155462i 0.00104768 + 0.000689072i 0.550033 0.835143i \(-0.314615\pi\)
−0.548985 + 0.835832i \(0.684986\pi\)
\(510\) 0 0
\(511\) 3.60719 12.0489i 0.159573 0.533011i
\(512\) 11.1197 + 19.2599i 0.491426 + 0.851176i
\(513\) 0 0
\(514\) −2.59134 + 4.48834i −0.114299 + 0.197972i
\(515\) −15.8993 16.8523i −0.700608 0.742601i
\(516\) 0 0
\(517\) −1.72093 + 29.5472i −0.0756864 + 1.29949i
\(518\) 0.141752 0.328617i 0.00622821 0.0144386i
\(519\) 0 0
\(520\) −0.374409 6.42836i −0.0164189 0.281902i
\(521\) −2.11604 0.770177i −0.0927056 0.0337421i 0.295251 0.955420i \(-0.404597\pi\)
−0.387957 + 0.921678i \(0.626819\pi\)
\(522\) 0 0
\(523\) −11.5433 + 4.20142i −0.504753 + 0.183715i −0.581831 0.813310i \(-0.697663\pi\)
0.0770775 + 0.997025i \(0.475441\pi\)
\(524\) 8.56852 + 19.8641i 0.374317 + 0.867765i
\(525\) 0 0
\(526\) 5.34885 + 1.26770i 0.233221 + 0.0552744i
\(527\) −2.70761 0.641715i −0.117945 0.0279535i
\(528\) 0 0
\(529\) 8.74344 + 20.2696i 0.380149 + 0.881285i
\(530\) −2.69114 + 0.979495i −0.116896 + 0.0425465i
\(531\) 0 0
\(532\) −12.0265 4.37730i −0.521416 0.189780i
\(533\) 1.21402 + 20.8439i 0.0525851 + 0.902851i
\(534\) 0 0
\(535\) −8.19348 + 18.9946i −0.354235 + 0.821209i
\(536\) 0.614252 10.5463i 0.0265316 0.455531i
\(537\) 0 0
\(538\) −0.0472163 0.0500464i −0.00203564 0.00215765i
\(539\) 8.17409 14.1579i 0.352083 0.609826i
\(540\) 0 0
\(541\) 19.8474 + 34.3766i 0.853304 + 1.47797i 0.878209 + 0.478277i \(0.158738\pi\)
−0.0249047 + 0.999690i \(0.507928\pi\)
\(542\) 2.20263 7.35731i 0.0946113 0.316024i
\(543\) 0 0
\(544\) 1.44201 + 0.948422i 0.0618255 + 0.0406633i
\(545\) 10.2954 1.20336i 0.441005 0.0515461i
\(546\) 0 0
\(547\) 7.26795 + 3.65010i 0.310755 + 0.156067i 0.597341 0.801988i \(-0.296224\pi\)
−0.286586 + 0.958055i \(0.592520\pi\)
\(548\) −1.59711 9.05767i −0.0682252 0.386924i
\(549\) 0 0
\(550\) 1.07629 6.10396i 0.0458933 0.260274i
\(551\) 10.8214 14.5357i 0.461009 0.619242i
\(552\) 0 0
\(553\) −5.01117 + 5.31153i −0.213097 + 0.225869i
\(554\) −1.20926 4.03920i −0.0513764 0.171609i
\(555\) 0 0
\(556\) 31.0354 + 3.62752i 1.31620 + 0.153841i
\(557\) −16.2629 13.6462i −0.689081 0.578207i 0.229563 0.973294i \(-0.426270\pi\)
−0.918644 + 0.395086i \(0.870715\pi\)
\(558\) 0 0
\(559\) −30.5658 + 25.6477i −1.29279 + 1.08478i
\(560\) −6.46942 + 4.25500i −0.273383 + 0.179807i
\(561\) 0 0
\(562\) −0.452798 0.608213i −0.0191001 0.0256559i
\(563\) −40.3740 + 20.2766i −1.70156 + 0.854556i −0.713469 + 0.700686i \(0.752877\pi\)
−0.988091 + 0.153869i \(0.950827\pi\)
\(564\) 0 0
\(565\) −2.14707 + 0.508864i −0.0903278 + 0.0214081i
\(566\) −0.865945 −0.0363984
\(567\) 0 0
\(568\) −22.8588 −0.959134
\(569\) 5.58216 1.32300i 0.234017 0.0554629i −0.111934 0.993716i \(-0.535705\pi\)
0.345951 + 0.938253i \(0.387556\pi\)
\(570\) 0 0
\(571\) 38.7524 19.4622i 1.62174 0.814467i 0.622237 0.782829i \(-0.286224\pi\)
0.999499 0.0316376i \(-0.0100722\pi\)
\(572\) −18.6102 24.9978i −0.778132 1.04521i
\(573\) 0 0
\(574\) −3.66732 + 2.41203i −0.153071 + 0.100676i
\(575\) 17.2584 14.4816i 0.719727 0.603923i
\(576\) 0 0
\(577\) 10.1857 + 8.54680i 0.424035 + 0.355808i 0.829696 0.558216i \(-0.188514\pi\)
−0.405660 + 0.914024i \(0.632958\pi\)
\(578\) −6.32531 0.739323i −0.263098 0.0307518i
\(579\) 0 0
\(580\) −3.42957 11.4555i −0.142405 0.475666i
\(581\) 6.35974 6.74093i 0.263847 0.279661i
\(582\) 0 0
\(583\) −17.1924 + 23.0935i −0.712038 + 0.956433i
\(584\) −1.66894 + 9.46501i −0.0690611 + 0.391665i
\(585\) 0 0
\(586\) −0.329773 1.87024i −0.0136228 0.0772588i
\(587\) 11.0537 + 5.55138i 0.456235 + 0.229130i 0.662048 0.749461i \(-0.269687\pi\)
−0.205813 + 0.978591i \(0.565984\pi\)
\(588\) 0 0
\(589\) −23.7823 + 2.77976i −0.979934 + 0.114538i
\(590\) 2.28520 + 1.50300i 0.0940803 + 0.0618776i
\(591\) 0 0
\(592\) 0.448652 1.49860i 0.0184395 0.0615921i
\(593\) 0.572367 + 0.991369i 0.0235043 + 0.0407106i 0.877538 0.479507i \(-0.159184\pi\)
−0.854034 + 0.520217i \(0.825851\pi\)
\(594\) 0 0
\(595\) −0.513599 + 0.889579i −0.0210555 + 0.0364692i
\(596\) 22.2056 + 23.5365i 0.909576 + 0.964094i
\(597\) 0 0
\(598\) −0.508280 + 8.72683i −0.0207851 + 0.356867i
\(599\) 0.960870 2.22755i 0.0392601 0.0910151i −0.897458 0.441101i \(-0.854588\pi\)
0.936718 + 0.350085i \(0.113847\pi\)
\(600\) 0 0
\(601\) 2.28082 + 39.1601i 0.0930364 + 1.59737i 0.645449 + 0.763803i \(0.276670\pi\)
−0.552413 + 0.833571i \(0.686293\pi\)
\(602\) −7.88244 2.86897i −0.321264 0.116931i
\(603\) 0 0
\(604\) 11.2634 4.09953i 0.458300 0.166808i
\(605\) 6.50650 + 15.0838i 0.264527 + 0.613242i
\(606\) 0 0
\(607\) −6.89165 1.63335i −0.279724 0.0662957i 0.0883594 0.996089i \(-0.471838\pi\)
−0.368083 + 0.929793i \(0.619986\pi\)
\(608\) 14.4513 + 3.42503i 0.586079 + 0.138903i
\(609\) 0 0
\(610\) 0.534839 + 1.23990i 0.0216550 + 0.0502020i
\(611\) −19.6057 + 7.13588i −0.793161 + 0.288687i
\(612\) 0 0
\(613\) 19.4482 + 7.07855i 0.785503 + 0.285900i 0.703466 0.710729i \(-0.251635\pi\)
0.0820378 + 0.996629i \(0.473857\pi\)
\(614\) 0.472171 + 8.10686i 0.0190553 + 0.327166i
\(615\) 0 0
\(616\) 5.39026 12.4960i 0.217180 0.503479i
\(617\) 1.38614 23.7991i 0.0558038 0.958114i −0.847954 0.530070i \(-0.822166\pi\)
0.903758 0.428044i \(-0.140797\pi\)
\(618\) 0 0
\(619\) 0.456777 + 0.484155i 0.0183594 + 0.0194598i 0.736488 0.676450i \(-0.236483\pi\)
−0.718129 + 0.695910i \(0.755001\pi\)
\(620\) −7.90007 + 13.6833i −0.317274 + 0.549535i
\(621\) 0 0
\(622\) −2.27875 3.94691i −0.0913696 0.158257i
\(623\) 5.70572 19.0584i 0.228595 0.763560i
\(624\) 0 0
\(625\) −2.53901 1.66993i −0.101560 0.0667973i
\(626\) 3.50081 0.409186i 0.139921 0.0163544i
\(627\) 0 0
\(628\) −21.1905 10.6423i −0.845594 0.424673i
\(629\) −0.0360350 0.204365i −0.00143681 0.00814855i
\(630\) 0 0
\(631\) 4.06193 23.0363i 0.161703 0.917062i −0.790696 0.612209i \(-0.790281\pi\)
0.952399 0.304854i \(-0.0986076\pi\)
\(632\) 3.33223 4.47597i 0.132549 0.178044i
\(633\) 0 0
\(634\) 4.25442 4.50943i 0.168965 0.179092i
\(635\) −1.87818 6.27356i −0.0745334 0.248959i
\(636\) 0 0
\(637\) 11.4463 + 1.33789i 0.453521 + 0.0530090i
\(638\) 7.10640 + 5.96298i 0.281345 + 0.236077i
\(639\) 0 0
\(640\) 9.85797 8.27182i 0.389670 0.326972i
\(641\) −5.94994 + 3.91334i −0.235009 + 0.154568i −0.661551 0.749900i \(-0.730102\pi\)
0.426543 + 0.904467i \(0.359731\pi\)
\(642\) 0 0
\(643\) 9.24097 + 12.4128i 0.364428 + 0.489512i 0.946083 0.323924i \(-0.105002\pi\)
−0.581655 + 0.813436i \(0.697595\pi\)
\(644\) 21.2815 10.6879i 0.838607 0.421164i
\(645\) 0 0
\(646\) 0.557236 0.132067i 0.0219242 0.00519612i
\(647\) −15.3916 −0.605107 −0.302554 0.953132i \(-0.597839\pi\)
−0.302554 + 0.953132i \(0.597839\pi\)
\(648\) 0 0
\(649\) 27.4968 1.07934
\(650\) 4.25145 1.00761i 0.166756 0.0395218i
\(651\) 0 0
\(652\) 0.995317 0.499867i 0.0389796 0.0195763i
\(653\) −0.735567 0.988038i −0.0287850 0.0386649i 0.787498 0.616318i \(-0.211376\pi\)
−0.816283 + 0.577653i \(0.803969\pi\)
\(654\) 0 0
\(655\) 12.4828 8.21004i 0.487742 0.320793i
\(656\) −14.6975 + 12.3326i −0.573839 + 0.481508i
\(657\) 0 0
\(658\) −3.36003 2.81940i −0.130988 0.109912i
\(659\) −6.85544 0.801287i −0.267050 0.0312137i −0.0184860 0.999829i \(-0.505885\pi\)
−0.248564 + 0.968615i \(0.579959\pi\)
\(660\) 0 0
\(661\) 10.3084 + 34.4323i 0.400948 + 1.33926i 0.885557 + 0.464530i \(0.153777\pi\)
−0.484609 + 0.874731i \(0.661038\pi\)
\(662\) −1.33229 + 1.41215i −0.0517811 + 0.0548847i
\(663\) 0 0
\(664\) −4.22898 + 5.68051i −0.164116 + 0.220447i
\(665\) −1.53487 + 8.70469i −0.0595198 + 0.337553i
\(666\) 0 0
\(667\) 5.85536 + 33.2074i 0.226720 + 1.28579i
\(668\) 5.03480 + 2.52857i 0.194802 + 0.0978333i
\(669\) 0 0
\(670\) −3.48871 + 0.407771i −0.134781 + 0.0157536i
\(671\) 11.3417 + 7.45955i 0.437841 + 0.287973i
\(672\) 0 0
\(673\) −2.49492 + 8.33360i −0.0961719 + 0.321237i −0.992515 0.122125i \(-0.961029\pi\)
0.896343 + 0.443362i \(0.146214\pi\)
\(674\) 2.37041 + 4.10567i 0.0913047 + 0.158144i
\(675\) 0 0
\(676\) −1.08430 + 1.87806i −0.0417037 + 0.0722329i
\(677\) 0.396082 + 0.419823i 0.0152227 + 0.0161351i 0.734940 0.678132i \(-0.237210\pi\)
−0.719718 + 0.694267i \(0.755729\pi\)
\(678\) 0 0
\(679\) 0.240320 4.12614i 0.00922264 0.158347i
\(680\) 0.310900 0.720747i 0.0119225 0.0276394i
\(681\) 0 0
\(682\) −0.712709 12.2367i −0.0272910 0.468569i
\(683\) 33.8572 + 12.3230i 1.29551 + 0.471528i 0.895532 0.444997i \(-0.146795\pi\)
0.399979 + 0.916524i \(0.369017\pi\)
\(684\) 0 0
\(685\) −5.96895 + 2.17252i −0.228062 + 0.0830078i
\(686\) 2.96455 + 6.87260i 0.113187 + 0.262397i
\(687\) 0 0
\(688\) −35.6769 8.45559i −1.36017 0.322366i
\(689\) −19.7481 4.68038i −0.752342 0.178308i
\(690\) 0 0
\(691\) −5.81367 13.4776i −0.221163 0.512712i 0.771123 0.636686i \(-0.219695\pi\)
−0.992285 + 0.123974i \(0.960436\pi\)
\(692\) −16.8465 + 6.13164i −0.640409 + 0.233090i
\(693\) 0 0
\(694\) −5.00694 1.82238i −0.190061 0.0691765i
\(695\) −1.25477 21.5435i −0.0475960 0.817192i
\(696\) 0 0
\(697\) −1.00809 + 2.33702i −0.0381842 + 0.0885209i
\(698\) −0.338909 + 5.81884i −0.0128279 + 0.220246i
\(699\) 0 0
\(700\) −8.16830 8.65790i −0.308733 0.327238i
\(701\) −15.3027 + 26.5051i −0.577976 + 1.00108i 0.417735 + 0.908569i \(0.362824\pi\)
−0.995711 + 0.0925152i \(0.970509\pi\)
\(702\) 0 0
\(703\) −0.892837 1.54644i −0.0336740 0.0583250i
\(704\) 6.66661 22.2680i 0.251257 0.839258i
\(705\) 0 0
\(706\) 10.6218 + 6.98607i 0.399757 + 0.262924i
\(707\) −30.9717 + 3.62007i −1.16481 + 0.136147i
\(708\) 0 0
\(709\) 41.1962 + 20.6895i 1.54715 + 0.777010i 0.998265 0.0588852i \(-0.0187546\pi\)
0.548889 + 0.835895i \(0.315051\pi\)
\(710\) 1.31977 + 7.48480i 0.0495302 + 0.280900i
\(711\) 0 0
\(712\) −2.63986 + 14.9714i −0.0989329 + 0.561077i
\(713\) 26.6059 35.7380i 0.996400 1.33840i
\(714\) 0 0
\(715\) −14.7702 + 15.6555i −0.552373 + 0.585482i
\(716\) −13.7455 45.9131i −0.513693 1.71585i
\(717\) 0 0
\(718\) −4.65583 0.544188i −0.173754 0.0203089i
\(719\) 15.5899 + 13.0815i 0.581404 + 0.487856i 0.885408 0.464815i \(-0.153879\pi\)
−0.304004 + 0.952671i \(0.598324\pi\)
\(720\) 0 0
\(721\) 26.4418 22.1873i 0.984743 0.826298i
\(722\) −1.89168 + 1.24418i −0.0704011 + 0.0463035i
\(723\) 0 0
\(724\) −0.988797 1.32819i −0.0367484 0.0493616i
\(725\) 15.0610 7.56393i 0.559353 0.280917i
\(726\) 0 0
\(727\) −23.6498 + 5.60511i −0.877123 + 0.207882i −0.644425 0.764667i \(-0.722903\pi\)
−0.232698 + 0.972549i \(0.574755\pi\)
\(728\) 9.59336 0.355554
\(729\) 0 0
\(730\) 3.19555 0.118272
\(731\) −4.73278 + 1.12169i −0.175048 + 0.0414872i
\(732\) 0 0
\(733\) −35.6503 + 17.9042i −1.31677 + 0.661308i −0.961847 0.273587i \(-0.911790\pi\)
−0.354925 + 0.934895i \(0.615494\pi\)
\(734\) −6.48677 8.71325i −0.239431 0.321612i
\(735\) 0 0
\(736\) −23.0889 + 15.1858i −0.851067 + 0.559756i
\(737\) −27.0497 + 22.6974i −0.996389 + 0.836069i
\(738\) 0 0
\(739\) 6.20932 + 5.21024i 0.228413 + 0.191662i 0.749811 0.661652i \(-0.230145\pi\)
−0.521397 + 0.853314i \(0.674589\pi\)
\(740\) −1.17035 0.136794i −0.0430229 0.00502866i
\(741\) 0 0
\(742\) −1.22368 4.08739i −0.0449229 0.150053i
\(743\) 17.0239 18.0443i 0.624546 0.661980i −0.335429 0.942066i \(-0.608881\pi\)
0.959975 + 0.280085i \(0.0903627\pi\)
\(744\) 0 0
\(745\) 13.3451 17.9256i 0.488927 0.656743i
\(746\) −1.24804 + 7.07796i −0.0456938 + 0.259143i
\(747\) 0 0
\(748\) −0.659681 3.74124i −0.0241203 0.136793i
\(749\) −27.5410 13.8316i −1.00633 0.505396i
\(750\) 0 0
\(751\) 31.4482 3.67576i 1.14756 0.134130i 0.479018 0.877805i \(-0.340993\pi\)
0.668542 + 0.743675i \(0.266919\pi\)
\(752\) −16.0180 10.5352i −0.584118 0.384180i
\(753\) 0 0
\(754\) −1.87553 + 6.26470i −0.0683027 + 0.228147i
\(755\) −4.13904 7.16903i −0.150635 0.260908i
\(756\) 0 0
\(757\) −7.21394 + 12.4949i −0.262195 + 0.454135i −0.966825 0.255440i \(-0.917780\pi\)
0.704630 + 0.709575i \(0.251113\pi\)
\(758\) 4.88551 + 5.17834i 0.177450 + 0.188086i
\(759\) 0 0
\(760\) 0.392733 6.74296i 0.0142459 0.244593i
\(761\) 8.84381 20.5023i 0.320588 0.743207i −0.679368 0.733798i \(-0.737746\pi\)
0.999956 0.00940855i \(-0.00299488\pi\)
\(762\) 0 0
\(763\) 0.897914 + 15.4166i 0.0325067 + 0.558118i
\(764\) −14.0878 5.12754i −0.509679 0.185508i
\(765\) 0 0
\(766\) 2.36925 0.862338i 0.0856046 0.0311575i
\(767\) 7.67730 + 17.7980i 0.277211 + 0.642648i
\(768\) 0 0
\(769\) 26.5460 + 6.29151i 0.957272 + 0.226878i 0.679423 0.733747i \(-0.262230\pi\)
0.277849 + 0.960625i \(0.410378\pi\)
\(770\) −4.40286 1.04350i −0.158668 0.0376050i
\(771\) 0 0
\(772\) −0.143252 0.332097i −0.00515577 0.0119524i
\(773\) 7.11832 2.59086i 0.256028 0.0931867i −0.210817 0.977525i \(-0.567613\pi\)
0.466846 + 0.884339i \(0.345390\pi\)
\(774\) 0 0
\(775\) −20.9260 7.61646i −0.751686 0.273591i
\(776\) 0.183643 + 3.15303i 0.00659239 + 0.113187i
\(777\) 0 0
\(778\) −0.131137 + 0.304010i −0.00470150 + 0.0108993i
\(779\) −1.27343 + 21.8640i −0.0456255 + 0.783359i
\(780\) 0 0
\(781\) 52.4329 + 55.5756i 1.87620 + 1.98865i
\(782\) −0.532800 + 0.922836i −0.0190529 + 0.0330006i
\(783\) 0 0
\(784\) 5.29489 + 9.17101i 0.189103 + 0.327536i
\(785\) −4.69693 + 15.6888i −0.167641 + 0.559959i
\(786\) 0 0
\(787\) 6.69226 + 4.40157i 0.238553 + 0.156899i 0.663157 0.748480i \(-0.269216\pi\)
−0.424604 + 0.905379i \(0.639587\pi\)
\(788\) 21.2746 2.48665i 0.757877 0.0885831i
\(789\) 0 0
\(790\) −1.65798 0.832671i −0.0589884 0.0296251i
\(791\) −0.570845 3.23742i −0.0202969 0.115109i
\(792\) 0 0
\(793\) −1.66170 + 9.42396i −0.0590087 + 0.334655i
\(794\) −7.71261 + 10.3598i −0.273710 + 0.367657i
\(795\) 0 0
\(796\) 2.24049 2.37478i 0.0794119 0.0841717i
\(797\) −3.92017 13.0943i −0.138860 0.463823i 0.860065 0.510184i \(-0.170423\pi\)
−0.998925 + 0.0463609i \(0.985238\pi\)
\(798\) 0 0
\(799\) −2.52611 0.295260i −0.0893673 0.0104455i
\(800\) 10.5811 + 8.87856i 0.374097 + 0.313905i
\(801\) 0 0
\(802\) 1.21775 1.02182i 0.0430003 0.0360816i
\(803\) 26.8400 17.6530i 0.947164 0.622959i
\(804\) 0 0
\(805\) −9.82153 13.1926i −0.346164 0.464978i
\(806\) 7.72155 3.87791i 0.271980 0.136593i
\(807\) 0 0
\(808\) 23.1861 5.49522i 0.815686 0.193321i
\(809\) 6.31109 0.221886 0.110943 0.993827i \(-0.464613\pi\)
0.110943 + 0.993827i \(0.464613\pi\)
\(810\) 0 0
\(811\) −29.8809 −1.04926 −0.524631 0.851330i \(-0.675797\pi\)
−0.524631 + 0.851330i \(0.675797\pi\)
\(812\) 17.3350 4.10846i 0.608338 0.144179i
\(813\) 0 0
\(814\) 0.816886 0.410256i 0.0286318 0.0143795i
\(815\) −0.459345 0.617008i −0.0160902 0.0216128i
\(816\) 0 0
\(817\) −34.9681 + 22.9989i −1.22338 + 0.804628i
\(818\) −6.28665 + 5.27513i −0.219808 + 0.184440i
\(819\) 0 0
\(820\) 11.0708 + 9.28950i 0.386609 + 0.324403i
\(821\) −31.5538 3.68811i −1.10124 0.128716i −0.453997 0.891003i \(-0.650002\pi\)
−0.647239 + 0.762287i \(0.724076\pi\)
\(822\) 0 0
\(823\) −7.37926 24.6485i −0.257225 0.859191i −0.984879 0.173246i \(-0.944574\pi\)
0.727654 0.685945i \(-0.240611\pi\)
\(824\) −18.1008 + 19.1857i −0.630571 + 0.668367i
\(825\) 0 0
\(826\) −2.43338 + 3.26859i −0.0846680 + 0.113729i
\(827\) 3.15225 17.8773i 0.109615 0.621655i −0.879662 0.475600i \(-0.842231\pi\)
0.989276 0.146056i \(-0.0466578\pi\)
\(828\) 0 0
\(829\) −4.93669 27.9974i −0.171458 0.972389i −0.942153 0.335184i \(-0.891202\pi\)
0.770694 0.637205i \(-0.219910\pi\)
\(830\) 2.10417 + 1.05675i 0.0730368 + 0.0366805i
\(831\) 0 0
\(832\) 16.2749 1.90227i 0.564231 0.0659492i
\(833\) 1.17370 + 0.771952i 0.0406662 + 0.0267466i
\(834\) 0 0
\(835\) 1.11597 3.72761i 0.0386199 0.128999i
\(836\) −16.3449 28.3101i −0.565299 0.979127i
\(837\) 0 0
\(838\) −0.792187 + 1.37211i −0.0273656 + 0.0473987i
\(839\) 20.4897 + 21.7178i 0.707384 + 0.749783i 0.977013 0.213181i \(-0.0683824\pi\)
−0.269629 + 0.962964i \(0.586901\pi\)
\(840\) 0 0
\(841\) 0.219498 3.76863i 0.00756889 0.129953i
\(842\) −0.745138 + 1.72742i −0.0256792 + 0.0595310i
\(843\) 0 0
\(844\) −0.386131 6.62961i −0.0132912 0.228200i
\(845\) 1.40738 + 0.512244i 0.0484153 + 0.0176217i
\(846\) 0 0
\(847\) −22.9977 + 8.37050i −0.790212 + 0.287614i
\(848\) −7.38665 17.1242i −0.253659 0.588047i
\(849\) 0 0
\(850\) 0.518250 + 0.122828i 0.0177758 + 0.00421295i
\(851\) 3.23313 + 0.766265i 0.110830 + 0.0262672i
\(852\) 0 0
\(853\) −2.02174 4.68693i −0.0692232 0.160477i 0.880092 0.474803i \(-0.157481\pi\)
−0.949315 + 0.314326i \(0.898222\pi\)
\(854\) −1.89043 + 0.688062i −0.0646893 + 0.0235450i
\(855\) 0 0
\(856\) 22.1305 + 8.05483i 0.756403 + 0.275308i
\(857\) −0.828039 14.2169i −0.0282853 0.485640i −0.982470 0.186421i \(-0.940311\pi\)
0.954185 0.299218i \(-0.0967259\pi\)
\(858\) 0 0
\(859\) −16.6241 + 38.5390i −0.567207 + 1.31493i 0.357380 + 0.933959i \(0.383670\pi\)
−0.924586 + 0.380973i \(0.875589\pi\)
\(860\) −1.60584 + 27.5712i −0.0547587 + 0.940171i
\(861\) 0 0
\(862\) 6.87939 + 7.29173i 0.234313 + 0.248357i
\(863\) 12.5420 21.7234i 0.426934 0.739472i −0.569665 0.821877i \(-0.692927\pi\)
0.996599 + 0.0824054i \(0.0262602\pi\)
\(864\) 0 0
\(865\) 6.19073 + 10.7227i 0.210491 + 0.364582i
\(866\) 2.32147 7.75426i 0.0788868 0.263500i
\(867\) 0 0
\(868\) −19.6669 12.9351i −0.667538 0.439047i
\(869\) −18.5256 + 2.16533i −0.628438 + 0.0734539i
\(870\) 0 0
\(871\) −22.2439 11.1713i −0.753707 0.378526i
\(872\) −2.04917 11.6214i −0.0693936 0.393551i
\(873\) 0 0
\(874\) −1.59225 + 9.03012i −0.0538588 + 0.305448i
\(875\) −12.2234 + 16.4189i −0.413228 + 0.555061i
\(876\) 0 0
\(877\) 21.8720 23.1830i 0.738565 0.782833i −0.243796 0.969827i \(-0.578393\pi\)
0.982361 + 0.186993i \(0.0598742\pi\)
\(878\) 3.50760 + 11.7162i 0.118376 + 0.395403i
\(879\) 0 0
\(880\) −19.6443 2.29608i −0.662208 0.0774010i
\(881\) −4.45428 3.73758i −0.150068 0.125922i 0.564662 0.825322i \(-0.309006\pi\)
−0.714731 + 0.699400i \(0.753451\pi\)
\(882\) 0 0
\(883\) −0.930865 + 0.781089i −0.0313261 + 0.0262857i −0.658316 0.752741i \(-0.728731\pi\)
0.626990 + 0.779027i \(0.284287\pi\)
\(884\) 2.23742 1.47158i 0.0752526 0.0494944i
\(885\) 0 0
\(886\) 7.34987 + 9.87258i 0.246924 + 0.331676i
\(887\) 2.32758 1.16896i 0.0781525 0.0392497i −0.409294 0.912403i \(-0.634225\pi\)
0.487446 + 0.873153i \(0.337929\pi\)
\(888\) 0 0
\(889\) 9.49339 2.24997i 0.318398 0.0754617i
\(890\) 5.05459 0.169430
\(891\) 0 0
\(892\) 12.1821 0.407888
\(893\) −21.2951 + 5.04702i −0.712612 + 0.168892i
\(894\) 0 0
\(895\) −29.5789 + 14.8551i −0.988715 + 0.496551i
\(896\) 11.4487 + 15.3783i 0.382476 + 0.513754i
\(897\) 0 0
\(898\) −5.05488 + 3.32465i −0.168684 + 0.110945i
\(899\) 25.5323 21.4242i 0.851551 0.714536i
\(900\) 0 0
\(901\) −1.89517 1.59024i −0.0631373 0.0529785i
\(902\) −11.1357 1.30158i −0.370779 0.0433379i
\(903\) 0 0
\(904\) 0.720470 + 2.40654i 0.0239625 + 0.0800402i
\(905\) −0.784769 + 0.831807i −0.0260866 + 0.0276502i
\(906\) 0 0
\(907\) 8.02886 10.7846i 0.266594 0.358098i −0.648587 0.761140i \(-0.724640\pi\)
0.915181 + 0.403042i \(0.132047\pi\)
\(908\) 2.62067 14.8626i 0.0869701 0.493232i
\(909\) 0 0
\(910\) −0.553881 3.14122i −0.0183610 0.104130i
\(911\) 25.1915 + 12.6516i 0.834631 + 0.419167i 0.814172 0.580623i \(-0.197191\pi\)
0.0204586 + 0.999791i \(0.493487\pi\)
\(912\) 0 0
\(913\) 23.5111 2.74805i 0.778104 0.0909473i
\(914\) 6.10091 + 4.01263i 0.201800 + 0.132726i
\(915\) 0 0
\(916\) 4.17213 13.9359i 0.137851 0.460455i
\(917\) 11.1295 + 19.2768i 0.367528 + 0.636578i
\(918\) 0 0
\(919\) 13.5339 23.4413i 0.446441 0.773258i −0.551710 0.834036i \(-0.686025\pi\)
0.998151 + 0.0607774i \(0.0193580\pi\)
\(920\) 8.62483 + 9.14179i 0.284352 + 0.301396i
\(921\) 0 0
\(922\) 0.326170 5.60012i 0.0107418 0.184430i
\(923\) −21.3331 + 49.4556i −0.702186 + 1.62785i
\(924\) 0 0
\(925\) −0.0965636 1.65793i −0.00317499 0.0545125i
\(926\) 0.985077 + 0.358539i 0.0323716 + 0.0117823i
\(927\) 0 0
\(928\) −19.4266 + 7.07070i −0.637709 + 0.232107i
\(929\) 19.0596 + 44.1852i 0.625326 + 1.44967i 0.876344 + 0.481686i \(0.159976\pi\)
−0.251018 + 0.967983i \(0.580765\pi\)
\(930\) 0 0
\(931\) 11.7624 + 2.78774i 0.385497 + 0.0913646i
\(932\) 46.6865 + 11.0649i 1.52927 + 0.362443i
\(933\) 0 0
\(934\) −2.95497 6.85039i −0.0966895 0.224152i
\(935\) −2.46545 + 0.897352i −0.0806290 + 0.0293465i
\(936\) 0 0
\(937\) −48.7239 17.7340i −1.59174 0.579346i −0.614026 0.789286i \(-0.710451\pi\)
−0.977714 + 0.209940i \(0.932673\pi\)
\(938\) −0.304269 5.22409i −0.00993472 0.170573i
\(939\) 0 0
\(940\) −5.71990 + 13.2602i −0.186563 + 0.432501i
\(941\) 2.63290 45.2051i 0.0858300 1.47364i −0.630666 0.776054i \(-0.717218\pi\)
0.716496 0.697591i \(-0.245745\pi\)
\(942\) 0 0
\(943\) −27.9660 29.6422i −0.910697 0.965283i
\(944\) −8.90573 + 15.4252i −0.289857 + 0.502047i
\(945\) 0 0
\(946\) −10.7128 18.5551i −0.348302 0.603277i
\(947\) −6.02556 + 20.1268i −0.195804 + 0.654032i 0.802545 + 0.596592i \(0.203479\pi\)
−0.998349 + 0.0574398i \(0.981706\pi\)
\(948\) 0 0
\(949\) 18.9202 + 12.4440i 0.614177 + 0.403951i
\(950\) 4.55206 0.532059i 0.147688 0.0172623i
\(951\) 0 0
\(952\) 1.04504 + 0.524838i 0.0338699 + 0.0170101i
\(953\) −1.52233 8.63357i −0.0493132 0.279669i 0.950173 0.311723i \(-0.100906\pi\)
−0.999486 + 0.0320543i \(0.989795\pi\)
\(954\) 0 0
\(955\) −1.79794 + 10.1966i −0.0581800 + 0.329955i
\(956\) −0.194674 + 0.261492i −0.00629619 + 0.00845726i
\(957\) 0 0
\(958\) 4.84204 5.13226i 0.156439 0.165816i
\(959\) −2.71413 9.06584i −0.0876440 0.292751i
\(960\) 0 0
\(961\) −12.9513 1.51379i −0.417785 0.0488320i
\(962\) 0.493629 + 0.414204i 0.0159152 + 0.0133545i
\(963\) 0 0
\(964\) −27.4921 + 23.0686i −0.885461 + 0.742990i
\(965\) −0.208693 + 0.137259i −0.00671805 + 0.00441853i
\(966\) 0 0
\(967\) −13.5181 18.1580i −0.434713 0.583921i 0.529745 0.848157i \(-0.322288\pi\)
−0.964458 + 0.264236i \(0.914880\pi\)
\(968\) 16.7125 8.39335i 0.537161 0.269773i
\(969\) 0 0
\(970\) 1.02181 0.242174i 0.0328084 0.00777574i
\(971\) 13.1781 0.422905 0.211453 0.977388i \(-0.432181\pi\)
0.211453 + 0.977388i \(0.432181\pi\)
\(972\) 0 0
\(973\) 32.1504 1.03070
\(974\) 1.96810 0.466448i 0.0630620 0.0149460i
\(975\) 0 0
\(976\) −7.85804 + 3.94646i −0.251530 + 0.126323i
\(977\) 23.7247 + 31.8677i 0.759019 + 1.01954i 0.998813 + 0.0487157i \(0.0155128\pi\)
−0.239794 + 0.970824i \(0.577080\pi\)
\(978\) 0 0
\(979\) 42.4545 27.9228i 1.35685 0.892415i
\(980\) 6.11051 5.12733i 0.195193 0.163786i
\(981\) 0 0
\(982\) −1.07321 0.900528i −0.0342474 0.0287370i
\(983\) −58.2683 6.81058i −1.85847 0.217224i −0.888234 0.459390i \(-0.848068\pi\)
−0.970235 + 0.242167i \(0.922142\pi\)
\(984\) 0 0
\(985\) −4.24268 14.1715i −0.135183 0.451542i
\(986\) −0.547040 + 0.579828i −0.0174213 + 0.0184655i
\(987\) 0 0
\(988\) 13.7608 18.4840i 0.437791 0.588055i
\(989\) 13.5235 76.6957i 0.430023 2.43878i
\(990\) 0 0
\(991\) 3.30423 + 18.7392i 0.104962 + 0.595270i 0.991235 + 0.132108i \(0.0421744\pi\)
−0.886273 + 0.463163i \(0.846714\pi\)
\(992\) 24.4104 + 12.2594i 0.775032 + 0.389236i
\(993\) 0 0
\(994\) −11.2465 + 1.31453i −0.356717 + 0.0416943i
\(995\) −1.88388 1.23905i −0.0597229 0.0392804i
\(996\) 0 0
\(997\) 1.63245 5.45275i 0.0517001 0.172690i −0.928240 0.371981i \(-0.878679\pi\)
0.979940 + 0.199291i \(0.0638638\pi\)
\(998\) −5.28998 9.16251i −0.167451 0.290034i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.c.595.4 144
3.2 odd 2 729.2.g.b.595.5 144
9.2 odd 6 243.2.g.a.199.4 144
9.4 even 3 729.2.g.d.352.5 144
9.5 odd 6 729.2.g.a.352.4 144
9.7 even 3 81.2.g.a.22.5 144
81.4 even 27 6561.2.a.c.1.34 72
81.11 odd 54 729.2.g.a.379.4 144
81.16 even 27 inner 729.2.g.c.136.4 144
81.38 odd 54 243.2.g.a.127.4 144
81.43 even 27 81.2.g.a.70.5 yes 144
81.65 odd 54 729.2.g.b.136.5 144
81.70 even 27 729.2.g.d.379.5 144
81.77 odd 54 6561.2.a.d.1.39 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.5 144 9.7 even 3
81.2.g.a.70.5 yes 144 81.43 even 27
243.2.g.a.127.4 144 81.38 odd 54
243.2.g.a.199.4 144 9.2 odd 6
729.2.g.a.352.4 144 9.5 odd 6
729.2.g.a.379.4 144 81.11 odd 54
729.2.g.b.136.5 144 81.65 odd 54
729.2.g.b.595.5 144 3.2 odd 2
729.2.g.c.136.4 144 81.16 even 27 inner
729.2.g.c.595.4 144 1.1 even 1 trivial
729.2.g.d.352.5 144 9.4 even 3
729.2.g.d.379.5 144 81.70 even 27
6561.2.a.c.1.34 72 81.4 even 27
6561.2.a.d.1.39 72 81.77 odd 54