Properties

Label 243.2.g.a.199.1
Level $243$
Weight $2$
Character 243.199
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(10,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 199.1
Character \(\chi\) \(=\) 243.199
Dual form 243.2.g.a.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71221 - 1.81484i) q^{2} +(-0.245679 + 4.21814i) q^{4} +(-1.39804 + 0.163408i) q^{5} +(-2.85083 - 1.43174i) q^{7} +(4.25325 - 3.56890i) q^{8} +(2.69030 + 2.25743i) q^{10} +(1.87624 + 4.34961i) q^{11} +(2.07522 + 0.491837i) q^{13} +(2.28284 + 7.62523i) q^{14} +(-5.36597 - 0.627192i) q^{16} +(-0.520249 + 2.95048i) q^{17} +(1.23380 + 6.99724i) q^{19} +(-0.345808 - 5.93730i) q^{20} +(4.68131 - 10.8525i) q^{22} +(2.70239 - 1.35719i) q^{23} +(-2.93740 + 0.696176i) q^{25} +(-2.66061 - 4.60832i) q^{26} +(6.73968 - 11.6735i) q^{28} +(0.631591 - 2.10966i) q^{29} +(3.14652 + 2.06950i) q^{31} +(1.41830 + 1.90511i) q^{32} +(6.24541 - 4.10767i) q^{34} +(4.21955 + 1.53579i) q^{35} +(-6.31317 + 2.29781i) q^{37} +(10.5863 - 14.2199i) q^{38} +(-5.36304 + 5.68449i) q^{40} +(-2.90628 + 3.08048i) q^{41} +(0.474097 - 0.636822i) q^{43} +(-18.8082 + 6.84563i) q^{44} +(-7.09015 - 2.58060i) q^{46} +(-4.83370 + 3.17917i) q^{47} +(1.89725 + 2.54844i) q^{49} +(6.29289 + 4.13890i) q^{50} +(-2.58448 + 8.63275i) q^{52} +(-4.83254 + 8.37020i) q^{53} +(-3.33382 - 5.77435i) q^{55} +(-17.2350 + 4.08478i) q^{56} +(-4.91010 + 2.46595i) q^{58} +(0.636054 - 1.47454i) q^{59} +(0.0674875 + 1.15872i) q^{61} +(-1.63170 - 9.25383i) q^{62} +(-0.847235 + 4.80491i) q^{64} +(-2.98162 - 0.348502i) q^{65} +(1.71558 + 5.73045i) q^{67} +(-12.3177 - 2.91935i) q^{68} +(-4.43754 - 10.2874i) q^{70} +(-2.74773 - 2.30562i) q^{71} +(8.55952 - 7.18229i) q^{73} +(14.9796 + 7.52304i) q^{74} +(-29.8185 + 3.48528i) q^{76} +(0.878675 - 15.0863i) q^{77} +(-3.21730 - 3.41014i) q^{79} +7.60435 q^{80} +10.5667 q^{82} +(10.2659 + 10.8812i) q^{83} +(0.245199 - 4.20991i) q^{85} +(-1.96748 + 0.229966i) q^{86} +(23.5034 + 11.8038i) q^{88} +(-3.17449 + 2.66371i) q^{89} +(-5.21193 - 4.37333i) q^{91} +(5.06091 + 11.7325i) q^{92} +(14.0460 + 3.32896i) q^{94} +(-2.86831 - 9.58083i) q^{95} +(-12.5027 - 1.46135i) q^{97} +(1.37652 - 7.80666i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.71221 1.81484i −1.21071 1.28328i −0.947949 0.318423i \(-0.896847\pi\)
−0.262766 0.964860i \(-0.584635\pi\)
\(3\) 0 0
\(4\) −0.245679 + 4.21814i −0.122839 + 2.10907i
\(5\) −1.39804 + 0.163408i −0.625224 + 0.0730783i −0.422805 0.906221i \(-0.638954\pi\)
−0.202419 + 0.979299i \(0.564880\pi\)
\(6\) 0 0
\(7\) −2.85083 1.43174i −1.07751 0.541147i −0.180691 0.983540i \(-0.557834\pi\)
−0.896822 + 0.442393i \(0.854130\pi\)
\(8\) 4.25325 3.56890i 1.50375 1.26180i
\(9\) 0 0
\(10\) 2.69030 + 2.25743i 0.850749 + 0.713863i
\(11\) 1.87624 + 4.34961i 0.565707 + 1.31146i 0.925615 + 0.378468i \(0.123549\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(12\) 0 0
\(13\) 2.07522 + 0.491837i 0.575563 + 0.136411i 0.508081 0.861309i \(-0.330355\pi\)
0.0674826 + 0.997720i \(0.478503\pi\)
\(14\) 2.28284 + 7.62523i 0.610116 + 2.03793i
\(15\) 0 0
\(16\) −5.36597 0.627192i −1.34149 0.156798i
\(17\) −0.520249 + 2.95048i −0.126179 + 0.715596i 0.854422 + 0.519580i \(0.173912\pi\)
−0.980601 + 0.196016i \(0.937200\pi\)
\(18\) 0 0
\(19\) 1.23380 + 6.99724i 0.283053 + 1.60528i 0.712157 + 0.702020i \(0.247718\pi\)
−0.429103 + 0.903255i \(0.641170\pi\)
\(20\) −0.345808 5.93730i −0.0773250 1.32762i
\(21\) 0 0
\(22\) 4.68131 10.8525i 0.998059 2.31376i
\(23\) 2.70239 1.35719i 0.563488 0.282994i −0.144166 0.989554i \(-0.546050\pi\)
0.707654 + 0.706559i \(0.249754\pi\)
\(24\) 0 0
\(25\) −2.93740 + 0.696176i −0.587480 + 0.139235i
\(26\) −2.66061 4.60832i −0.521789 0.903765i
\(27\) 0 0
\(28\) 6.73968 11.6735i 1.27368 2.20608i
\(29\) 0.631591 2.10966i 0.117284 0.391754i −0.879109 0.476621i \(-0.841861\pi\)
0.996392 + 0.0848670i \(0.0270465\pi\)
\(30\) 0 0
\(31\) 3.14652 + 2.06950i 0.565132 + 0.371693i 0.799694 0.600408i \(-0.204995\pi\)
−0.234562 + 0.972101i \(0.575366\pi\)
\(32\) 1.41830 + 1.90511i 0.250723 + 0.336779i
\(33\) 0 0
\(34\) 6.24541 4.10767i 1.07108 0.704459i
\(35\) 4.21955 + 1.53579i 0.713233 + 0.259596i
\(36\) 0 0
\(37\) −6.31317 + 2.29781i −1.03788 + 0.377757i −0.804076 0.594527i \(-0.797339\pi\)
−0.233803 + 0.972284i \(0.575117\pi\)
\(38\) 10.5863 14.2199i 1.71733 2.30677i
\(39\) 0 0
\(40\) −5.36304 + 5.68449i −0.847971 + 0.898797i
\(41\) −2.90628 + 3.08048i −0.453884 + 0.481089i −0.913390 0.407085i \(-0.866545\pi\)
0.459506 + 0.888175i \(0.348027\pi\)
\(42\) 0 0
\(43\) 0.474097 0.636822i 0.0722991 0.0971145i −0.764503 0.644621i \(-0.777015\pi\)
0.836802 + 0.547506i \(0.184423\pi\)
\(44\) −18.8082 + 6.84563i −2.83544 + 1.03202i
\(45\) 0 0
\(46\) −7.09015 2.58060i −1.04538 0.380489i
\(47\) −4.83370 + 3.17917i −0.705067 + 0.463730i −0.850729 0.525605i \(-0.823839\pi\)
0.145662 + 0.989334i \(0.453469\pi\)
\(48\) 0 0
\(49\) 1.89725 + 2.54844i 0.271035 + 0.364063i
\(50\) 6.29289 + 4.13890i 0.889949 + 0.585328i
\(51\) 0 0
\(52\) −2.58448 + 8.63275i −0.358402 + 1.19715i
\(53\) −4.83254 + 8.37020i −0.663800 + 1.14973i 0.315809 + 0.948823i \(0.397724\pi\)
−0.979609 + 0.200912i \(0.935609\pi\)
\(54\) 0 0
\(55\) −3.33382 5.77435i −0.449532 0.778613i
\(56\) −17.2350 + 4.08478i −2.30313 + 0.545851i
\(57\) 0 0
\(58\) −4.91010 + 2.46595i −0.644728 + 0.323795i
\(59\) 0.636054 1.47454i 0.0828072 0.191969i −0.871782 0.489894i \(-0.837035\pi\)
0.954589 + 0.297926i \(0.0962947\pi\)
\(60\) 0 0
\(61\) 0.0674875 + 1.15872i 0.00864089 + 0.148358i 0.999869 + 0.0161951i \(0.00515528\pi\)
−0.991228 + 0.132163i \(0.957808\pi\)
\(62\) −1.63170 9.25383i −0.207226 1.17524i
\(63\) 0 0
\(64\) −0.847235 + 4.80491i −0.105904 + 0.600613i
\(65\) −2.98162 0.348502i −0.369825 0.0432263i
\(66\) 0 0
\(67\) 1.71558 + 5.73045i 0.209592 + 0.700085i 0.996544 + 0.0830710i \(0.0264728\pi\)
−0.786952 + 0.617014i \(0.788342\pi\)
\(68\) −12.3177 2.91935i −1.49374 0.354024i
\(69\) 0 0
\(70\) −4.43754 10.2874i −0.530388 1.22958i
\(71\) −2.74773 2.30562i −0.326095 0.273626i 0.465011 0.885305i \(-0.346050\pi\)
−0.791107 + 0.611678i \(0.790495\pi\)
\(72\) 0 0
\(73\) 8.55952 7.18229i 1.00182 0.840623i 0.0145810 0.999894i \(-0.495359\pi\)
0.987235 + 0.159270i \(0.0509141\pi\)
\(74\) 14.9796 + 7.52304i 1.74134 + 0.874536i
\(75\) 0 0
\(76\) −29.8185 + 3.48528i −3.42041 + 0.399789i
\(77\) 0.878675 15.0863i 0.100134 1.71924i
\(78\) 0 0
\(79\) −3.21730 3.41014i −0.361975 0.383671i 0.520633 0.853780i \(-0.325696\pi\)
−0.882608 + 0.470110i \(0.844214\pi\)
\(80\) 7.60435 0.850192
\(81\) 0 0
\(82\) 10.5667 1.16690
\(83\) 10.2659 + 10.8812i 1.12683 + 1.19437i 0.978677 + 0.205406i \(0.0658516\pi\)
0.148154 + 0.988964i \(0.452667\pi\)
\(84\) 0 0
\(85\) 0.245199 4.20991i 0.0265956 0.456629i
\(86\) −1.96748 + 0.229966i −0.212159 + 0.0247978i
\(87\) 0 0
\(88\) 23.5034 + 11.8038i 2.50547 + 1.25829i
\(89\) −3.17449 + 2.66371i −0.336495 + 0.282353i −0.795340 0.606164i \(-0.792708\pi\)
0.458845 + 0.888516i \(0.348263\pi\)
\(90\) 0 0
\(91\) −5.21193 4.37333i −0.546358 0.458449i
\(92\) 5.06091 + 11.7325i 0.527637 + 1.22320i
\(93\) 0 0
\(94\) 14.0460 + 3.32896i 1.44873 + 0.343356i
\(95\) −2.86831 9.58083i −0.294283 0.982973i
\(96\) 0 0
\(97\) −12.5027 1.46135i −1.26946 0.148378i −0.545433 0.838154i \(-0.683635\pi\)
−0.724023 + 0.689776i \(0.757709\pi\)
\(98\) 1.37652 7.80666i 0.139050 0.788591i
\(99\) 0 0
\(100\) −2.21491 12.5614i −0.221491 1.25614i
\(101\) −0.261942 4.49737i −0.0260642 0.447505i −0.985942 0.167087i \(-0.946564\pi\)
0.959878 0.280418i \(-0.0904732\pi\)
\(102\) 0 0
\(103\) 5.52933 12.8184i 0.544821 1.26304i −0.394152 0.919045i \(-0.628962\pi\)
0.938973 0.343992i \(-0.111779\pi\)
\(104\) 10.5817 5.31435i 1.03763 0.521115i
\(105\) 0 0
\(106\) 23.4648 5.56127i 2.27911 0.540158i
\(107\) 2.27719 + 3.94420i 0.220144 + 0.381301i 0.954852 0.297083i \(-0.0960139\pi\)
−0.734708 + 0.678384i \(0.762681\pi\)
\(108\) 0 0
\(109\) −3.56879 + 6.18132i −0.341828 + 0.592063i −0.984772 0.173850i \(-0.944379\pi\)
0.642944 + 0.765913i \(0.277713\pi\)
\(110\) −4.77129 + 15.9372i −0.454925 + 1.51956i
\(111\) 0 0
\(112\) 14.3995 + 9.47070i 1.36062 + 0.894897i
\(113\) −4.67557 6.28038i −0.439840 0.590808i 0.525826 0.850592i \(-0.323756\pi\)
−0.965667 + 0.259784i \(0.916349\pi\)
\(114\) 0 0
\(115\) −3.55629 + 2.33901i −0.331626 + 0.218114i
\(116\) 8.74368 + 3.18244i 0.811830 + 0.295482i
\(117\) 0 0
\(118\) −3.76510 + 1.37039i −0.346606 + 0.126154i
\(119\) 5.70746 7.66645i 0.523202 0.702782i
\(120\) 0 0
\(121\) −7.85014 + 8.32067i −0.713649 + 0.756424i
\(122\) 1.98733 2.10644i 0.179924 0.190708i
\(123\) 0 0
\(124\) −9.50247 + 12.7640i −0.853347 + 1.14624i
\(125\) 10.6062 3.86035i 0.948650 0.345280i
\(126\) 0 0
\(127\) 9.61531 + 3.49969i 0.853220 + 0.310547i 0.731353 0.681999i \(-0.238889\pi\)
0.121868 + 0.992546i \(0.461112\pi\)
\(128\) 14.1395 9.29968i 1.24976 0.821983i
\(129\) 0 0
\(130\) 4.47269 + 6.00787i 0.392281 + 0.526925i
\(131\) 7.19028 + 4.72912i 0.628218 + 0.413185i 0.823304 0.567601i \(-0.192128\pi\)
−0.195086 + 0.980786i \(0.562499\pi\)
\(132\) 0 0
\(133\) 6.50087 21.7144i 0.563697 1.88288i
\(134\) 7.46238 12.9252i 0.644652 1.11657i
\(135\) 0 0
\(136\) 8.31720 + 14.4058i 0.713194 + 1.23529i
\(137\) −1.03986 + 0.246452i −0.0888413 + 0.0210558i −0.274796 0.961503i \(-0.588610\pi\)
0.185955 + 0.982558i \(0.440462\pi\)
\(138\) 0 0
\(139\) −6.65577 + 3.34265i −0.564535 + 0.283520i −0.708090 0.706122i \(-0.750443\pi\)
0.143555 + 0.989642i \(0.454147\pi\)
\(140\) −7.51483 + 17.4213i −0.635119 + 1.47237i
\(141\) 0 0
\(142\) 0.520368 + 8.93437i 0.0436683 + 0.749756i
\(143\) 1.75431 + 9.94920i 0.146703 + 0.831994i
\(144\) 0 0
\(145\) −0.538257 + 3.05261i −0.0446998 + 0.253505i
\(146\) −27.6904 3.23654i −2.29167 0.267858i
\(147\) 0 0
\(148\) −8.14146 27.1944i −0.669224 2.23536i
\(149\) 2.37562 + 0.563032i 0.194618 + 0.0461254i 0.326769 0.945104i \(-0.394040\pi\)
−0.132151 + 0.991230i \(0.542188\pi\)
\(150\) 0 0
\(151\) 8.46731 + 19.6294i 0.689060 + 1.59742i 0.797501 + 0.603318i \(0.206155\pi\)
−0.108440 + 0.994103i \(0.534586\pi\)
\(152\) 30.2201 + 25.3577i 2.45117 + 2.05678i
\(153\) 0 0
\(154\) −28.8836 + 24.2362i −2.32751 + 1.95301i
\(155\) −4.73715 2.37908i −0.380497 0.191093i
\(156\) 0 0
\(157\) 6.41788 0.750143i 0.512203 0.0598679i 0.143934 0.989587i \(-0.454025\pi\)
0.368269 + 0.929719i \(0.379951\pi\)
\(158\) −0.680151 + 11.6777i −0.0541099 + 0.929031i
\(159\) 0 0
\(160\) −2.29416 2.43167i −0.181369 0.192240i
\(161\) −9.64722 −0.760307
\(162\) 0 0
\(163\) −6.49040 −0.508367 −0.254184 0.967156i \(-0.581807\pi\)
−0.254184 + 0.967156i \(0.581807\pi\)
\(164\) −12.2799 13.0159i −0.958897 1.01637i
\(165\) 0 0
\(166\) 2.17026 37.2619i 0.168445 2.89208i
\(167\) −3.87721 + 0.453181i −0.300028 + 0.0350682i −0.264775 0.964310i \(-0.585298\pi\)
−0.0352527 + 0.999378i \(0.511224\pi\)
\(168\) 0 0
\(169\) −7.55258 3.79305i −0.580967 0.291773i
\(170\) −8.06013 + 6.76325i −0.618184 + 0.518718i
\(171\) 0 0
\(172\) 2.56973 + 2.15626i 0.195940 + 0.164413i
\(173\) −6.46827 14.9951i −0.491774 1.14006i −0.965739 0.259516i \(-0.916437\pi\)
0.473965 0.880544i \(-0.342822\pi\)
\(174\) 0 0
\(175\) 9.37077 + 2.22091i 0.708364 + 0.167885i
\(176\) −7.33979 24.5166i −0.553258 1.84801i
\(177\) 0 0
\(178\) 10.2696 + 1.20034i 0.769737 + 0.0899694i
\(179\) 3.76729 21.3654i 0.281581 1.59692i −0.435670 0.900107i \(-0.643488\pi\)
0.717250 0.696816i \(-0.245401\pi\)
\(180\) 0 0
\(181\) −1.10326 6.25687i −0.0820043 0.465070i −0.997963 0.0637968i \(-0.979679\pi\)
0.915959 0.401273i \(-0.131432\pi\)
\(182\) 0.987041 + 16.9468i 0.0731644 + 1.25618i
\(183\) 0 0
\(184\) 6.65026 15.4170i 0.490264 1.13656i
\(185\) 8.45061 4.24406i 0.621301 0.312029i
\(186\) 0 0
\(187\) −13.8095 + 3.27292i −1.00985 + 0.239339i
\(188\) −12.2227 21.1703i −0.891429 1.54400i
\(189\) 0 0
\(190\) −12.4765 + 21.6099i −0.905139 + 1.56775i
\(191\) 3.95814 13.2211i 0.286401 0.956646i −0.686830 0.726818i \(-0.740998\pi\)
0.973231 0.229828i \(-0.0738164\pi\)
\(192\) 0 0
\(193\) −3.15541 2.07534i −0.227131 0.149387i 0.430843 0.902427i \(-0.358216\pi\)
−0.657974 + 0.753040i \(0.728587\pi\)
\(194\) 18.7551 + 25.1925i 1.34654 + 1.80871i
\(195\) 0 0
\(196\) −11.2158 + 7.37675i −0.801129 + 0.526911i
\(197\) 5.18414 + 1.88687i 0.369355 + 0.134434i 0.520027 0.854150i \(-0.325922\pi\)
−0.150673 + 0.988584i \(0.548144\pi\)
\(198\) 0 0
\(199\) 15.9504 5.80546i 1.13069 0.411538i 0.292148 0.956373i \(-0.405630\pi\)
0.838543 + 0.544835i \(0.183408\pi\)
\(200\) −10.0089 + 13.4443i −0.707736 + 0.950654i
\(201\) 0 0
\(202\) −7.71350 + 8.17583i −0.542720 + 0.575249i
\(203\) −4.82105 + 5.11001i −0.338371 + 0.358653i
\(204\) 0 0
\(205\) 3.55973 4.78155i 0.248622 0.333958i
\(206\) −32.7307 + 11.9130i −2.28046 + 0.830018i
\(207\) 0 0
\(208\) −10.8271 3.94075i −0.750725 0.273242i
\(209\) −28.1203 + 18.4950i −1.94512 + 1.27933i
\(210\) 0 0
\(211\) 11.5293 + 15.4866i 0.793712 + 1.06614i 0.996221 + 0.0868601i \(0.0276833\pi\)
−0.202508 + 0.979281i \(0.564909\pi\)
\(212\) −34.1194 22.4407i −2.34333 1.54123i
\(213\) 0 0
\(214\) 3.25906 10.8860i 0.222785 0.744153i
\(215\) −0.558746 + 0.967777i −0.0381062 + 0.0660018i
\(216\) 0 0
\(217\) −6.00721 10.4048i −0.407796 0.706323i
\(218\) 17.3286 4.10695i 1.17364 0.278158i
\(219\) 0 0
\(220\) 25.1761 12.6439i 1.69737 0.852452i
\(221\) −2.53079 + 5.86702i −0.170239 + 0.394659i
\(222\) 0 0
\(223\) 0.880079 + 15.1104i 0.0589345 + 1.01187i 0.890078 + 0.455808i \(0.150650\pi\)
−0.831144 + 0.556058i \(0.812313\pi\)
\(224\) −1.31572 7.46180i −0.0879100 0.498562i
\(225\) 0 0
\(226\) −3.39230 + 19.2387i −0.225653 + 1.27974i
\(227\) 6.25901 + 0.731573i 0.415425 + 0.0485562i 0.321238 0.946998i \(-0.395901\pi\)
0.0941866 + 0.995555i \(0.469975\pi\)
\(228\) 0 0
\(229\) −2.67203 8.92519i −0.176572 0.589793i −0.999758 0.0220199i \(-0.992990\pi\)
0.823185 0.567773i \(-0.192195\pi\)
\(230\) 10.3340 + 2.44921i 0.681406 + 0.161496i
\(231\) 0 0
\(232\) −4.84285 11.2270i −0.317949 0.737088i
\(233\) 16.1221 + 13.5280i 1.05619 + 0.886251i 0.993731 0.111797i \(-0.0356606\pi\)
0.0624612 + 0.998047i \(0.480105\pi\)
\(234\) 0 0
\(235\) 6.23822 5.23449i 0.406937 0.341460i
\(236\) 6.06355 + 3.04523i 0.394703 + 0.198227i
\(237\) 0 0
\(238\) −23.6857 + 2.76846i −1.53532 + 0.179453i
\(239\) −0.953580 + 16.3723i −0.0616819 + 1.05904i 0.815462 + 0.578811i \(0.196483\pi\)
−0.877144 + 0.480227i \(0.840554\pi\)
\(240\) 0 0
\(241\) −1.13385 1.20181i −0.0730377 0.0774155i 0.689824 0.723977i \(-0.257688\pi\)
−0.762862 + 0.646562i \(0.776206\pi\)
\(242\) 28.5417 1.83473
\(243\) 0 0
\(244\) −4.90421 −0.313960
\(245\) −3.06887 3.25281i −0.196063 0.207814i
\(246\) 0 0
\(247\) −0.881085 + 15.1277i −0.0560621 + 0.962549i
\(248\) 20.7688 2.42752i 1.31882 0.154148i
\(249\) 0 0
\(250\) −25.1660 12.6388i −1.59164 0.799350i
\(251\) 16.6349 13.9583i 1.04998 0.881040i 0.0568910 0.998380i \(-0.481881\pi\)
0.993092 + 0.117340i \(0.0374368\pi\)
\(252\) 0 0
\(253\) 10.9736 + 9.20793i 0.689903 + 0.578898i
\(254\) −10.1121 23.4424i −0.634487 1.47091i
\(255\) 0 0
\(256\) −31.5921 7.48747i −1.97451 0.467967i
\(257\) 1.76523 + 5.89628i 0.110112 + 0.367800i 0.995229 0.0975692i \(-0.0311067\pi\)
−0.885117 + 0.465369i \(0.845922\pi\)
\(258\) 0 0
\(259\) 21.2876 + 2.48817i 1.32275 + 0.154607i
\(260\) 2.20255 12.4913i 0.136596 0.774677i
\(261\) 0 0
\(262\) −3.72869 21.1464i −0.230359 1.30643i
\(263\) 1.48444 + 25.4869i 0.0915345 + 1.57159i 0.661517 + 0.749930i \(0.269913\pi\)
−0.569983 + 0.821657i \(0.693050\pi\)
\(264\) 0 0
\(265\) 5.38834 12.4916i 0.331003 0.767352i
\(266\) −50.5390 + 25.3816i −3.09874 + 1.55625i
\(267\) 0 0
\(268\) −24.5933 + 5.82872i −1.50228 + 0.356046i
\(269\) −8.19176 14.1885i −0.499460 0.865091i 0.500539 0.865714i \(-0.333135\pi\)
−1.00000 0.000622889i \(0.999802\pi\)
\(270\) 0 0
\(271\) 13.6365 23.6192i 0.828361 1.43476i −0.0709627 0.997479i \(-0.522607\pi\)
0.899323 0.437284i \(-0.144060\pi\)
\(272\) 4.64215 15.5059i 0.281472 0.940182i
\(273\) 0 0
\(274\) 2.22773 + 1.46520i 0.134582 + 0.0885160i
\(275\) −8.53935 11.4703i −0.514942 0.691687i
\(276\) 0 0
\(277\) 19.1354 12.5855i 1.14973 0.756192i 0.176115 0.984370i \(-0.443647\pi\)
0.973620 + 0.228177i \(0.0732766\pi\)
\(278\) 17.4624 + 6.35580i 1.04733 + 0.381196i
\(279\) 0 0
\(280\) 23.4278 8.52704i 1.40008 0.509588i
\(281\) −17.9072 + 24.0535i −1.06825 + 1.43491i −0.175439 + 0.984490i \(0.556134\pi\)
−0.892815 + 0.450424i \(0.851273\pi\)
\(282\) 0 0
\(283\) −10.6483 + 11.2865i −0.632975 + 0.670914i −0.961887 0.273446i \(-0.911836\pi\)
0.328912 + 0.944360i \(0.393318\pi\)
\(284\) 10.4005 11.0239i 0.617155 0.654146i
\(285\) 0 0
\(286\) 15.0524 20.2189i 0.890068 1.19557i
\(287\) 12.6958 4.62088i 0.749407 0.272762i
\(288\) 0 0
\(289\) 7.54012 + 2.74438i 0.443536 + 0.161434i
\(290\) 6.46159 4.24985i 0.379438 0.249560i
\(291\) 0 0
\(292\) 28.1930 + 37.8698i 1.64987 + 2.21616i
\(293\) −6.43251 4.23073i −0.375791 0.247162i 0.347537 0.937666i \(-0.387018\pi\)
−0.723328 + 0.690505i \(0.757388\pi\)
\(294\) 0 0
\(295\) −0.648280 + 2.16541i −0.0377443 + 0.126075i
\(296\) −18.6508 + 32.3042i −1.08406 + 1.87764i
\(297\) 0 0
\(298\) −3.04574 5.27538i −0.176435 0.305595i
\(299\) 6.27559 1.48734i 0.362927 0.0860152i
\(300\) 0 0
\(301\) −2.26333 + 1.13669i −0.130456 + 0.0655177i
\(302\) 21.1264 48.9765i 1.21569 2.81828i
\(303\) 0 0
\(304\) −2.23193 38.3208i −0.128010 2.19785i
\(305\) −0.283694 1.60891i −0.0162443 0.0921258i
\(306\) 0 0
\(307\) 2.28454 12.9563i 0.130386 0.739454i −0.847577 0.530673i \(-0.821939\pi\)
0.977962 0.208781i \(-0.0669496\pi\)
\(308\) 63.4202 + 7.41276i 3.61370 + 0.422381i
\(309\) 0 0
\(310\) 3.79334 + 12.6706i 0.215447 + 0.719644i
\(311\) 5.33273 + 1.26388i 0.302391 + 0.0716681i 0.379011 0.925392i \(-0.376264\pi\)
−0.0766191 + 0.997060i \(0.524413\pi\)
\(312\) 0 0
\(313\) 9.57732 + 22.2027i 0.541342 + 1.25497i 0.941031 + 0.338321i \(0.109859\pi\)
−0.399688 + 0.916651i \(0.630882\pi\)
\(314\) −12.3501 10.3630i −0.696959 0.584818i
\(315\) 0 0
\(316\) 15.1749 12.7332i 0.853653 0.716300i
\(317\) −9.24502 4.64302i −0.519252 0.260778i 0.169815 0.985476i \(-0.445683\pi\)
−0.689067 + 0.724698i \(0.741979\pi\)
\(318\) 0 0
\(319\) 10.3612 1.21105i 0.580116 0.0678059i
\(320\) 0.399312 6.85592i 0.0223222 0.383258i
\(321\) 0 0
\(322\) 16.5181 + 17.5081i 0.920515 + 0.975689i
\(323\) −21.2871 −1.18444
\(324\) 0 0
\(325\) −6.43816 −0.357125
\(326\) 11.1129 + 11.7790i 0.615488 + 0.652379i
\(327\) 0 0
\(328\) −1.36722 + 23.4742i −0.0754920 + 1.29615i
\(329\) 18.3318 2.14268i 1.01066 0.118130i
\(330\) 0 0
\(331\) −27.4917 13.8069i −1.51108 0.758894i −0.515873 0.856665i \(-0.672532\pi\)
−0.995209 + 0.0977711i \(0.968829\pi\)
\(332\) −48.4207 + 40.6298i −2.65743 + 2.22985i
\(333\) 0 0
\(334\) 7.46105 + 6.26056i 0.408250 + 0.342563i
\(335\) −3.33486 7.73108i −0.182203 0.422394i
\(336\) 0 0
\(337\) −32.0522 7.59650i −1.74599 0.413808i −0.771141 0.636664i \(-0.780314\pi\)
−0.974851 + 0.222856i \(0.928462\pi\)
\(338\) 6.04784 + 20.2012i 0.328959 + 1.09880i
\(339\) 0 0
\(340\) 17.6978 + 2.06857i 0.959796 + 0.112184i
\(341\) −3.09789 + 17.5690i −0.167760 + 0.951414i
\(342\) 0 0
\(343\) 2.11774 + 12.0103i 0.114347 + 0.648496i
\(344\) −0.256304 4.40056i −0.0138190 0.237263i
\(345\) 0 0
\(346\) −16.1387 + 37.4137i −0.867621 + 2.01137i
\(347\) 23.1751 11.6390i 1.24410 0.624812i 0.299836 0.953991i \(-0.403068\pi\)
0.944268 + 0.329178i \(0.106772\pi\)
\(348\) 0 0
\(349\) 14.3802 3.40817i 0.769755 0.182435i 0.173069 0.984910i \(-0.444632\pi\)
0.596686 + 0.802475i \(0.296484\pi\)
\(350\) −12.0141 20.8091i −0.642182 1.11229i
\(351\) 0 0
\(352\) −5.62541 + 9.74350i −0.299836 + 0.519330i
\(353\) 1.98881 6.64309i 0.105854 0.353576i −0.888609 0.458665i \(-0.848328\pi\)
0.994463 + 0.105089i \(0.0335128\pi\)
\(354\) 0 0
\(355\) 4.21820 + 2.77435i 0.223879 + 0.147247i
\(356\) −10.4560 14.0448i −0.554167 0.744375i
\(357\) 0 0
\(358\) −45.2250 + 29.7450i −2.39022 + 1.57207i
\(359\) −28.2850 10.2949i −1.49283 0.543344i −0.538634 0.842540i \(-0.681060\pi\)
−0.954192 + 0.299195i \(0.903282\pi\)
\(360\) 0 0
\(361\) −29.5849 + 10.7680i −1.55710 + 0.566738i
\(362\) −9.46619 + 12.7153i −0.497532 + 0.668301i
\(363\) 0 0
\(364\) 19.7278 20.9102i 1.03402 1.09599i
\(365\) −10.7929 + 11.4399i −0.564929 + 0.598789i
\(366\) 0 0
\(367\) −13.7405 + 18.4567i −0.717247 + 0.963430i 0.282744 + 0.959195i \(0.408755\pi\)
−0.999991 + 0.00423434i \(0.998652\pi\)
\(368\) −15.3522 + 5.58774i −0.800288 + 0.291281i
\(369\) 0 0
\(370\) −22.1715 8.06976i −1.15264 0.419527i
\(371\) 25.7607 16.9431i 1.33743 0.879641i
\(372\) 0 0
\(373\) −18.8164 25.2748i −0.974276 1.30868i −0.951079 0.308949i \(-0.900023\pi\)
−0.0231970 0.999731i \(-0.507385\pi\)
\(374\) 29.5846 + 19.4581i 1.52978 + 1.00615i
\(375\) 0 0
\(376\) −9.21276 + 30.7728i −0.475112 + 1.58698i
\(377\) 2.34830 4.06738i 0.120944 0.209481i
\(378\) 0 0
\(379\) 9.45804 + 16.3818i 0.485827 + 0.841477i 0.999867 0.0162889i \(-0.00518516\pi\)
−0.514040 + 0.857766i \(0.671852\pi\)
\(380\) 41.1180 9.74514i 2.10931 0.499915i
\(381\) 0 0
\(382\) −30.7713 + 15.4539i −1.57440 + 0.790692i
\(383\) −11.8079 + 27.3739i −0.603358 + 1.39874i 0.293302 + 0.956020i \(0.405246\pi\)
−0.896659 + 0.442721i \(0.854013\pi\)
\(384\) 0 0
\(385\) 1.23679 + 21.2349i 0.0630327 + 1.08223i
\(386\) 1.63631 + 9.27997i 0.0832859 + 0.472338i
\(387\) 0 0
\(388\) 9.23585 52.3791i 0.468879 2.65915i
\(389\) 5.79263 + 0.677061i 0.293698 + 0.0343283i 0.261666 0.965159i \(-0.415728\pi\)
0.0320318 + 0.999487i \(0.489802\pi\)
\(390\) 0 0
\(391\) 2.59845 + 8.67943i 0.131409 + 0.438938i
\(392\) 17.1646 + 4.06808i 0.866942 + 0.205469i
\(393\) 0 0
\(394\) −5.45197 12.6391i −0.274666 0.636748i
\(395\) 5.05517 + 4.24179i 0.254353 + 0.213428i
\(396\) 0 0
\(397\) 4.50462 3.77983i 0.226081 0.189704i −0.522710 0.852510i \(-0.675079\pi\)
0.748791 + 0.662806i \(0.230635\pi\)
\(398\) −37.8463 19.0071i −1.89706 0.952742i
\(399\) 0 0
\(400\) 16.1986 1.89335i 0.809931 0.0946674i
\(401\) 0.623901 10.7120i 0.0311561 0.534930i −0.946234 0.323484i \(-0.895146\pi\)
0.977390 0.211446i \(-0.0678172\pi\)
\(402\) 0 0
\(403\) 5.51187 + 5.84225i 0.274566 + 0.291023i
\(404\) 19.0349 0.947023
\(405\) 0 0
\(406\) 17.5285 0.869924
\(407\) −21.8396 23.1486i −1.08255 1.14743i
\(408\) 0 0
\(409\) −0.193574 + 3.32353i −0.00957161 + 0.164338i 0.990135 + 0.140117i \(0.0447478\pi\)
−0.999707 + 0.0242216i \(0.992289\pi\)
\(410\) −14.7727 + 1.72669i −0.729573 + 0.0852749i
\(411\) 0 0
\(412\) 52.7115 + 26.4727i 2.59691 + 1.30422i
\(413\) −3.92444 + 3.29300i −0.193109 + 0.162038i
\(414\) 0 0
\(415\) −16.1303 13.5349i −0.791805 0.664403i
\(416\) 2.00629 + 4.65111i 0.0983665 + 0.228039i
\(417\) 0 0
\(418\) 81.7133 + 19.3664i 3.99673 + 0.947242i
\(419\) 0.820143 + 2.73947i 0.0400666 + 0.133832i 0.975683 0.219187i \(-0.0703404\pi\)
−0.935616 + 0.353019i \(0.885155\pi\)
\(420\) 0 0
\(421\) 6.24383 + 0.729799i 0.304306 + 0.0355682i 0.266875 0.963731i \(-0.414009\pi\)
0.0374302 + 0.999299i \(0.488083\pi\)
\(422\) 8.36498 47.4401i 0.407201 2.30935i
\(423\) 0 0
\(424\) 9.31841 + 52.8473i 0.452542 + 2.56649i
\(425\) −0.525874 9.02891i −0.0255086 0.437967i
\(426\) 0 0
\(427\) 1.46659 3.39993i 0.0709731 0.164534i
\(428\) −17.1967 + 8.63649i −0.831233 + 0.417461i
\(429\) 0 0
\(430\) 2.71305 0.643004i 0.130835 0.0310084i
\(431\) 8.66111 + 15.0015i 0.417191 + 0.722596i 0.995656 0.0931115i \(-0.0296813\pi\)
−0.578465 + 0.815707i \(0.696348\pi\)
\(432\) 0 0
\(433\) −6.83316 + 11.8354i −0.328381 + 0.568772i −0.982191 0.187887i \(-0.939836\pi\)
0.653810 + 0.756659i \(0.273170\pi\)
\(434\) −8.59739 + 28.7173i −0.412688 + 1.37847i
\(435\) 0 0
\(436\) −25.1969 16.5723i −1.20671 0.793668i
\(437\) 12.8308 + 17.2348i 0.613781 + 0.824451i
\(438\) 0 0
\(439\) 31.1535 20.4900i 1.48688 0.977934i 0.492696 0.870202i \(-0.336012\pi\)
0.994180 0.107732i \(-0.0343588\pi\)
\(440\) −34.7876 12.6617i −1.65843 0.603621i
\(441\) 0 0
\(442\) 14.9809 5.45261i 0.712570 0.259354i
\(443\) 2.66634 3.58151i 0.126682 0.170163i −0.734257 0.678871i \(-0.762469\pi\)
0.860939 + 0.508708i \(0.169877\pi\)
\(444\) 0 0
\(445\) 4.00280 4.24272i 0.189751 0.201124i
\(446\) 25.9160 27.4693i 1.22716 1.30071i
\(447\) 0 0
\(448\) 9.29471 12.4850i 0.439134 0.589859i
\(449\) 3.44438 1.25365i 0.162550 0.0591635i −0.259463 0.965753i \(-0.583546\pi\)
0.422014 + 0.906589i \(0.361323\pi\)
\(450\) 0 0
\(451\) −18.8517 6.86146i −0.887693 0.323094i
\(452\) 27.6402 18.1793i 1.30009 0.855080i
\(453\) 0 0
\(454\) −9.38905 12.6117i −0.440650 0.591896i
\(455\) 8.00114 + 5.26243i 0.375099 + 0.246707i
\(456\) 0 0
\(457\) 5.26887 17.5993i 0.246467 0.823259i −0.741813 0.670607i \(-0.766034\pi\)
0.988280 0.152651i \(-0.0487812\pi\)
\(458\) −11.6227 + 20.1311i −0.543092 + 0.940664i
\(459\) 0 0
\(460\) −8.99256 15.5756i −0.419280 0.726215i
\(461\) 11.7380 2.78196i 0.546694 0.129569i 0.0520176 0.998646i \(-0.483435\pi\)
0.494676 + 0.869077i \(0.335287\pi\)
\(462\) 0 0
\(463\) 2.46047 1.23569i 0.114348 0.0574275i −0.390706 0.920516i \(-0.627769\pi\)
0.505053 + 0.863088i \(0.331473\pi\)
\(464\) −4.71226 + 10.9242i −0.218761 + 0.507145i
\(465\) 0 0
\(466\) −3.05322 52.4217i −0.141438 2.42839i
\(467\) −5.46587 30.9985i −0.252930 1.43444i −0.801330 0.598223i \(-0.795874\pi\)
0.548399 0.836216i \(-0.315237\pi\)
\(468\) 0 0
\(469\) 3.31368 18.7928i 0.153011 0.867771i
\(470\) −20.1809 2.35881i −0.930874 0.108804i
\(471\) 0 0
\(472\) −2.55718 8.54159i −0.117704 0.393158i
\(473\) 3.65944 + 0.867304i 0.168261 + 0.0398787i
\(474\) 0 0
\(475\) −8.49548 19.6947i −0.389799 0.903656i
\(476\) 30.9360 + 25.9584i 1.41795 + 1.18980i
\(477\) 0 0
\(478\) 31.3458 26.3023i 1.43372 1.20304i
\(479\) −2.49117 1.25111i −0.113825 0.0571648i 0.390976 0.920401i \(-0.372138\pi\)
−0.504800 + 0.863236i \(0.668434\pi\)
\(480\) 0 0
\(481\) −14.2314 + 1.66341i −0.648895 + 0.0758450i
\(482\) −0.239701 + 4.11551i −0.0109181 + 0.187456i
\(483\) 0 0
\(484\) −33.1691 35.1572i −1.50769 1.59806i
\(485\) 17.7181 0.804538
\(486\) 0 0
\(487\) −31.6987 −1.43640 −0.718202 0.695835i \(-0.755035\pi\)
−0.718202 + 0.695835i \(0.755035\pi\)
\(488\) 4.42238 + 4.68745i 0.200192 + 0.212191i
\(489\) 0 0
\(490\) −0.648772 + 11.1390i −0.0293085 + 0.503208i
\(491\) −34.9560 + 4.08577i −1.57754 + 0.184388i −0.859324 0.511431i \(-0.829116\pi\)
−0.718217 + 0.695819i \(0.755041\pi\)
\(492\) 0 0
\(493\) 5.89592 + 2.96104i 0.265539 + 0.133359i
\(494\) 28.9628 24.3027i 1.30310 1.09343i
\(495\) 0 0
\(496\) −15.5862 13.0783i −0.699839 0.587235i
\(497\) 4.53226 + 10.5070i 0.203300 + 0.471302i
\(498\) 0 0
\(499\) −7.77433 1.84255i −0.348027 0.0824838i 0.0528848 0.998601i \(-0.483158\pi\)
−0.400912 + 0.916117i \(0.631307\pi\)
\(500\) 13.6778 + 45.6870i 0.611689 + 2.04318i
\(501\) 0 0
\(502\) −53.8144 6.29000i −2.40185 0.280736i
\(503\) 2.70376 15.3338i 0.120555 0.683700i −0.863294 0.504701i \(-0.831603\pi\)
0.983849 0.178999i \(-0.0572860\pi\)
\(504\) 0 0
\(505\) 1.10111 + 6.24473i 0.0489989 + 0.277887i
\(506\) −2.07819 35.6812i −0.0923868 1.58622i
\(507\) 0 0
\(508\) −17.1244 + 39.6989i −0.759774 + 1.76136i
\(509\) 15.4415 7.75504i 0.684435 0.343736i −0.0723693 0.997378i \(-0.523056\pi\)
0.756804 + 0.653642i \(0.226760\pi\)
\(510\) 0 0
\(511\) −34.6849 + 8.22048i −1.53437 + 0.363653i
\(512\) 23.5802 + 40.8420i 1.04211 + 1.80498i
\(513\) 0 0
\(514\) 7.67834 13.2993i 0.338677 0.586606i
\(515\) −5.63561 + 18.8243i −0.248335 + 0.829496i
\(516\) 0 0
\(517\) −22.8973 15.0598i −1.00702 0.662329i
\(518\) −31.9333 42.8939i −1.40307 1.88465i
\(519\) 0 0
\(520\) −13.9253 + 9.15885i −0.610667 + 0.401642i
\(521\) 33.0219 + 12.0190i 1.44672 + 0.526562i 0.941672 0.336531i \(-0.109254\pi\)
0.505045 + 0.863093i \(0.331476\pi\)
\(522\) 0 0
\(523\) 2.55225 0.928943i 0.111602 0.0406198i −0.285616 0.958344i \(-0.592198\pi\)
0.397218 + 0.917724i \(0.369976\pi\)
\(524\) −21.7146 + 29.1678i −0.948607 + 1.27420i
\(525\) 0 0
\(526\) 43.7128 46.3328i 1.90597 2.02021i
\(527\) −7.74298 + 8.20708i −0.337290 + 0.357506i
\(528\) 0 0
\(529\) −8.27369 + 11.1135i −0.359726 + 0.483195i
\(530\) −31.8961 + 11.6092i −1.38548 + 0.504273i
\(531\) 0 0
\(532\) 89.9974 + 32.7564i 3.90188 + 1.42017i
\(533\) −7.54627 + 4.96326i −0.326865 + 0.214983i
\(534\) 0 0
\(535\) −3.82812 5.14206i −0.165504 0.222311i
\(536\) 27.7482 + 18.2503i 1.19854 + 0.788291i
\(537\) 0 0
\(538\) −11.7239 + 39.1605i −0.505452 + 1.68833i
\(539\) −7.52504 + 13.0337i −0.324126 + 0.561403i
\(540\) 0 0
\(541\) 19.9581 + 34.5684i 0.858065 + 1.48621i 0.873772 + 0.486336i \(0.161667\pi\)
−0.0157071 + 0.999877i \(0.505000\pi\)
\(542\) −66.2135 + 15.6929i −2.84412 + 0.674068i
\(543\) 0 0
\(544\) −6.35886 + 3.19354i −0.272634 + 0.136922i
\(545\) 3.97924 9.22493i 0.170452 0.395152i
\(546\) 0 0
\(547\) 0.540346 + 9.27738i 0.0231035 + 0.396672i 0.989960 + 0.141350i \(0.0451444\pi\)
−0.966856 + 0.255322i \(0.917819\pi\)
\(548\) −0.784096 4.44683i −0.0334949 0.189959i
\(549\) 0 0
\(550\) −6.19562 + 35.1371i −0.264182 + 1.49825i
\(551\) 15.5411 + 1.81649i 0.662071 + 0.0773850i
\(552\) 0 0
\(553\) 4.28954 + 14.3281i 0.182410 + 0.609292i
\(554\) −55.6045 13.1785i −2.36241 0.559901i
\(555\) 0 0
\(556\) −12.4646 28.8962i −0.528617 1.22547i
\(557\) −28.8895 24.2411i −1.22409 1.02713i −0.998601 0.0528835i \(-0.983159\pi\)
−0.225485 0.974247i \(-0.572397\pi\)
\(558\) 0 0
\(559\) 1.29707 1.08837i 0.0548602 0.0460332i
\(560\) −21.6787 10.8875i −0.916093 0.460079i
\(561\) 0 0
\(562\) 74.3141 8.68607i 3.13475 0.366400i
\(563\) −2.31955 + 39.8251i −0.0977572 + 1.67843i 0.491806 + 0.870705i \(0.336337\pi\)
−0.589564 + 0.807722i \(0.700700\pi\)
\(564\) 0 0
\(565\) 7.56291 + 8.01622i 0.318174 + 0.337245i
\(566\) 38.7153 1.62732
\(567\) 0 0
\(568\) −19.9153 −0.835626
\(569\) 21.4166 + 22.7003i 0.897831 + 0.951646i 0.999066 0.0432171i \(-0.0137607\pi\)
−0.101234 + 0.994863i \(0.532279\pi\)
\(570\) 0 0
\(571\) 1.25067 21.4732i 0.0523390 0.898627i −0.865311 0.501236i \(-0.832879\pi\)
0.917650 0.397390i \(-0.130084\pi\)
\(572\) −42.3982 + 4.95563i −1.77276 + 0.207205i
\(573\) 0 0
\(574\) −30.1239 15.1288i −1.25735 0.631464i
\(575\) −6.99316 + 5.86796i −0.291635 + 0.244711i
\(576\) 0 0
\(577\) 1.05985 + 0.889324i 0.0441223 + 0.0370230i 0.664582 0.747215i \(-0.268610\pi\)
−0.620460 + 0.784238i \(0.713054\pi\)
\(578\) −7.92966 18.3830i −0.329831 0.764633i
\(579\) 0 0
\(580\) −12.7441 3.02040i −0.529170 0.125415i
\(581\) −13.6873 45.7187i −0.567844 1.89673i
\(582\) 0 0
\(583\) −45.4740 5.31515i −1.88334 0.220131i
\(584\) 10.7729 61.0961i 0.445785 2.52817i
\(585\) 0 0
\(586\) 3.33572 + 18.9178i 0.137797 + 0.781488i
\(587\) −0.466073 8.00217i −0.0192369 0.330285i −0.994173 0.107799i \(-0.965620\pi\)
0.974936 0.222486i \(-0.0714172\pi\)
\(588\) 0 0
\(589\) −10.5986 + 24.5703i −0.436707 + 1.01240i
\(590\) 5.03985 2.53111i 0.207487 0.104204i
\(591\) 0 0
\(592\) 35.3175 8.37039i 1.45154 0.344021i
\(593\) 10.7066 + 18.5444i 0.439668 + 0.761527i 0.997664 0.0683166i \(-0.0217628\pi\)
−0.557996 + 0.829844i \(0.688429\pi\)
\(594\) 0 0
\(595\) −6.72652 + 11.6507i −0.275761 + 0.477631i
\(596\) −2.95859 + 9.88237i −0.121188 + 0.404798i
\(597\) 0 0
\(598\) −13.4444 8.84252i −0.549782 0.361598i
\(599\) 13.8938 + 18.6626i 0.567684 + 0.762531i 0.989560 0.144122i \(-0.0460357\pi\)
−0.421876 + 0.906653i \(0.638628\pi\)
\(600\) 0 0
\(601\) 26.3770 17.3485i 1.07594 0.707658i 0.117537 0.993069i \(-0.462500\pi\)
0.958405 + 0.285410i \(0.0921298\pi\)
\(602\) 5.93821 + 2.16133i 0.242023 + 0.0880893i
\(603\) 0 0
\(604\) −84.8800 + 30.8938i −3.45372 + 1.25705i
\(605\) 9.61519 12.9154i 0.390913 0.525087i
\(606\) 0 0
\(607\) 3.23033 3.42395i 0.131115 0.138974i −0.658489 0.752590i \(-0.728804\pi\)
0.789605 + 0.613616i \(0.210286\pi\)
\(608\) −11.5806 + 12.2747i −0.469656 + 0.497806i
\(609\) 0 0
\(610\) −2.43416 + 3.26965i −0.0985563 + 0.132384i
\(611\) −11.5946 + 4.22010i −0.469069 + 0.170727i
\(612\) 0 0
\(613\) 41.2145 + 15.0009i 1.66464 + 0.605879i 0.991082 0.133255i \(-0.0425429\pi\)
0.673558 + 0.739134i \(0.264765\pi\)
\(614\) −27.4251 + 18.0378i −1.10679 + 0.727946i
\(615\) 0 0
\(616\) −50.1041 67.3015i −2.01875 2.71166i
\(617\) −14.8817 9.78784i −0.599114 0.394044i 0.213417 0.976961i \(-0.431541\pi\)
−0.812531 + 0.582918i \(0.801911\pi\)
\(618\) 0 0
\(619\) −1.60750 + 5.36943i −0.0646109 + 0.215816i −0.984198 0.177070i \(-0.943338\pi\)
0.919587 + 0.392886i \(0.128523\pi\)
\(620\) 11.1991 19.3975i 0.449768 0.779021i
\(621\) 0 0
\(622\) −6.83702 11.8421i −0.274139 0.474823i
\(623\) 12.8637 3.04874i 0.515372 0.122145i
\(624\) 0 0
\(625\) −0.708810 + 0.355978i −0.0283524 + 0.0142391i
\(626\) 23.8959 55.3970i 0.955074 2.21411i
\(627\) 0 0
\(628\) 1.58747 + 27.2558i 0.0633470 + 1.08763i
\(629\) −3.49521 19.8223i −0.139363 0.790367i
\(630\) 0 0
\(631\) −2.84022 + 16.1077i −0.113067 + 0.641237i 0.874622 + 0.484806i \(0.161110\pi\)
−0.987689 + 0.156431i \(0.950001\pi\)
\(632\) −25.8544 3.02195i −1.02843 0.120207i
\(633\) 0 0
\(634\) 7.40308 + 24.7280i 0.294014 + 0.982075i
\(635\) −14.0145 3.32150i −0.556149 0.131810i
\(636\) 0 0
\(637\) 2.68379 + 6.22172i 0.106336 + 0.246514i
\(638\) −19.9384 16.7303i −0.789369 0.662360i
\(639\) 0 0
\(640\) −18.2480 + 15.3119i −0.721314 + 0.605255i
\(641\) −20.8476 10.4700i −0.823429 0.413541i −0.0133847 0.999910i \(-0.504261\pi\)
−0.810044 + 0.586369i \(0.800557\pi\)
\(642\) 0 0
\(643\) 14.4953 1.69426i 0.571638 0.0668149i 0.174637 0.984633i \(-0.444125\pi\)
0.397002 + 0.917818i \(0.370051\pi\)
\(644\) 2.37012 40.6933i 0.0933957 1.60354i
\(645\) 0 0
\(646\) 36.4479 + 38.6325i 1.43402 + 1.51998i
\(647\) −1.33592 −0.0525205 −0.0262602 0.999655i \(-0.508360\pi\)
−0.0262602 + 0.999655i \(0.508360\pi\)
\(648\) 0 0
\(649\) 7.60705 0.298603
\(650\) 11.0235 + 11.6842i 0.432377 + 0.458292i
\(651\) 0 0
\(652\) 1.59455 27.3774i 0.0624475 1.07218i
\(653\) 16.3676 1.91310i 0.640514 0.0748654i 0.210365 0.977623i \(-0.432535\pi\)
0.430150 + 0.902758i \(0.358461\pi\)
\(654\) 0 0
\(655\) −10.8251 5.43657i −0.422972 0.212424i
\(656\) 17.5271 14.7069i 0.684316 0.574210i
\(657\) 0 0
\(658\) −35.2765 29.6005i −1.37522 1.15395i
\(659\) 17.8283 + 41.3307i 0.694493 + 1.61002i 0.788929 + 0.614484i \(0.210636\pi\)
−0.0944361 + 0.995531i \(0.530105\pi\)
\(660\) 0 0
\(661\) 24.2010 + 5.73574i 0.941310 + 0.223094i 0.672499 0.740098i \(-0.265221\pi\)
0.268811 + 0.963193i \(0.413369\pi\)
\(662\) 22.0144 + 73.5332i 0.855614 + 2.85795i
\(663\) 0 0
\(664\) 82.4975 + 9.64257i 3.20152 + 0.374204i
\(665\) −5.54020 + 31.4200i −0.214840 + 1.21842i
\(666\) 0 0
\(667\) −1.15641 6.55832i −0.0447764 0.253939i
\(668\) −0.959034 16.4660i −0.0371061 0.637087i
\(669\) 0 0
\(670\) −8.32066 + 19.2895i −0.321455 + 0.745217i
\(671\) −4.91333 + 2.46757i −0.189677 + 0.0952594i
\(672\) 0 0
\(673\) 1.92706 0.456722i 0.0742827 0.0176053i −0.193306 0.981138i \(-0.561921\pi\)
0.267589 + 0.963533i \(0.413773\pi\)
\(674\) 41.0936 + 71.1762i 1.58287 + 2.74161i
\(675\) 0 0
\(676\) 17.8551 30.9260i 0.686735 1.18946i
\(677\) 8.17155 27.2949i 0.314058 1.04903i −0.644613 0.764509i \(-0.722981\pi\)
0.958671 0.284518i \(-0.0918335\pi\)
\(678\) 0 0
\(679\) 33.5508 + 22.0667i 1.28756 + 0.846842i
\(680\) −13.9818 18.7809i −0.536179 0.720214i
\(681\) 0 0
\(682\) 37.1891 24.4596i 1.42404 0.936608i
\(683\) −27.6811 10.0751i −1.05919 0.385512i −0.247064 0.968999i \(-0.579466\pi\)
−0.812123 + 0.583487i \(0.801688\pi\)
\(684\) 0 0
\(685\) 1.41350 0.514472i 0.0540071 0.0196570i
\(686\) 18.1707 24.4075i 0.693762 0.931884i
\(687\) 0 0
\(688\) −2.94340 + 3.11982i −0.112216 + 0.118942i
\(689\) −14.1454 + 14.9932i −0.538895 + 0.571196i
\(690\) 0 0
\(691\) 29.0246 38.9868i 1.10415 1.48313i 0.246320 0.969189i \(-0.420779\pi\)
0.857827 0.513938i \(-0.171814\pi\)
\(692\) 64.8408 23.6001i 2.46488 0.897141i
\(693\) 0 0
\(694\) −60.8034 22.1306i −2.30807 0.840067i
\(695\) 8.75884 5.76078i 0.332242 0.218519i
\(696\) 0 0
\(697\) −7.57688 10.1775i −0.286995 0.385501i
\(698\) −30.8072 20.2622i −1.16607 0.766936i
\(699\) 0 0
\(700\) −11.6703 + 38.9816i −0.441097 + 1.47337i
\(701\) −3.03784 + 5.26170i −0.114738 + 0.198732i −0.917675 0.397332i \(-0.869936\pi\)
0.802937 + 0.596064i \(0.203269\pi\)
\(702\) 0 0
\(703\) −23.8675 41.3397i −0.900179 1.55916i
\(704\) −22.4891 + 5.33001i −0.847589 + 0.200882i
\(705\) 0 0
\(706\) −15.4614 + 7.76500i −0.581897 + 0.292240i
\(707\) −5.69232 + 13.1963i −0.214082 + 0.496297i
\(708\) 0 0
\(709\) 1.26191 + 21.6661i 0.0473919 + 0.813688i 0.935341 + 0.353747i \(0.115092\pi\)
−0.887949 + 0.459941i \(0.847871\pi\)
\(710\) −2.18745 12.4056i −0.0820934 0.465575i
\(711\) 0 0
\(712\) −3.99536 + 22.6588i −0.149733 + 0.849175i
\(713\) 11.3118 + 1.32216i 0.423632 + 0.0495155i
\(714\) 0 0
\(715\) −4.07839 13.6228i −0.152523 0.509462i
\(716\) 89.1966 + 21.1400i 3.33343 + 0.790038i
\(717\) 0 0
\(718\) 29.7463 + 68.9597i 1.11012 + 2.57355i
\(719\) 11.8323 + 9.92847i 0.441270 + 0.370269i 0.836184 0.548449i \(-0.184781\pi\)
−0.394915 + 0.918718i \(0.629226\pi\)
\(720\) 0 0
\(721\) −34.1158 + 28.6266i −1.27054 + 1.06611i
\(722\) 70.1977 + 35.2546i 2.61249 + 1.31204i
\(723\) 0 0
\(724\) 26.6634 3.11651i 0.990938 0.115824i
\(725\) −0.386539 + 6.63661i −0.0143557 + 0.246478i
\(726\) 0 0
\(727\) 17.6753 + 18.7348i 0.655542 + 0.694833i 0.966812 0.255488i \(-0.0822361\pi\)
−0.311271 + 0.950321i \(0.600755\pi\)
\(728\) −37.7756 −1.40006
\(729\) 0 0
\(730\) 39.2412 1.45238
\(731\) 1.63228 + 1.73012i 0.0603721 + 0.0639907i
\(732\) 0 0
\(733\) −1.69715 + 29.1389i −0.0626857 + 1.07627i 0.809507 + 0.587110i \(0.199734\pi\)
−0.872193 + 0.489162i \(0.837303\pi\)
\(734\) 57.0224 6.66496i 2.10473 0.246008i
\(735\) 0 0
\(736\) 6.41842 + 3.22345i 0.236586 + 0.118818i
\(737\) −21.7063 + 18.2138i −0.799563 + 0.670913i
\(738\) 0 0
\(739\) 15.6599 + 13.1402i 0.576058 + 0.483370i 0.883650 0.468148i \(-0.155079\pi\)
−0.307592 + 0.951518i \(0.599523\pi\)
\(740\) 15.8259 + 36.6886i 0.581772 + 1.34870i
\(741\) 0 0
\(742\) −74.8566 17.7413i −2.74807 0.651305i
\(743\) −6.73922 22.5106i −0.247238 0.825832i −0.988052 0.154122i \(-0.950745\pi\)
0.740814 0.671710i \(-0.234440\pi\)
\(744\) 0 0
\(745\) −3.41322 0.398948i −0.125051 0.0146163i
\(746\) −13.6520 + 77.4244i −0.499836 + 2.83471i
\(747\) 0 0
\(748\) −10.4129 59.0546i −0.380734 2.15925i
\(749\) −0.844797 14.5046i −0.0308682 0.529987i
\(750\) 0 0
\(751\) 13.9011 32.2264i 0.507259 1.17596i −0.451637 0.892202i \(-0.649160\pi\)
0.958896 0.283757i \(-0.0915810\pi\)
\(752\) 27.9314 14.0277i 1.01855 0.511537i
\(753\) 0 0
\(754\) −11.4024 + 2.70242i −0.415251 + 0.0984163i
\(755\) −15.0453 26.0592i −0.547554 0.948391i
\(756\) 0 0
\(757\) −23.1445 + 40.0875i −0.841202 + 1.45701i 0.0476764 + 0.998863i \(0.484818\pi\)
−0.888879 + 0.458142i \(0.848515\pi\)
\(758\) 13.5361 45.2139i 0.491655 1.64224i
\(759\) 0 0
\(760\) −46.3926 30.5129i −1.68284 1.10682i
\(761\) −4.23035 5.68235i −0.153350 0.205985i 0.718809 0.695208i \(-0.244688\pi\)
−0.872159 + 0.489223i \(0.837280\pi\)
\(762\) 0 0
\(763\) 19.0241 12.5123i 0.688717 0.452976i
\(764\) 54.7961 + 19.9441i 1.98245 + 0.721554i
\(765\) 0 0
\(766\) 69.8968 25.4404i 2.52547 0.919198i
\(767\) 2.04519 2.74716i 0.0738474 0.0991943i
\(768\) 0 0
\(769\) 29.7305 31.5125i 1.07211 1.13637i 0.0819197 0.996639i \(-0.473895\pi\)
0.990190 0.139731i \(-0.0446236\pi\)
\(770\) 36.4202 38.6031i 1.31249 1.39116i
\(771\) 0 0
\(772\) 9.52931 12.8001i 0.342967 0.460685i
\(773\) −33.8164 + 12.3082i −1.21629 + 0.442694i −0.868881 0.495020i \(-0.835161\pi\)
−0.347409 + 0.937714i \(0.612938\pi\)
\(774\) 0 0
\(775\) −10.6833 3.88841i −0.383756 0.139676i
\(776\) −58.3924 + 38.4053i −2.09617 + 1.37867i
\(777\) 0 0
\(778\) −8.68943 11.6719i −0.311531 0.418459i
\(779\) −25.1406 16.5352i −0.900755 0.592436i
\(780\) 0 0
\(781\) 4.87314 16.2774i 0.174375 0.582452i
\(782\) 11.3026 19.5768i 0.404182 0.700063i
\(783\) 0 0
\(784\) −8.58220 14.8648i −0.306507 0.530886i
\(785\) −8.84990 + 2.09747i −0.315867 + 0.0748618i
\(786\) 0 0
\(787\) 18.7666 9.42494i 0.668957 0.335963i −0.0816980 0.996657i \(-0.526034\pi\)
0.750655 + 0.660694i \(0.229738\pi\)
\(788\) −9.23273 + 21.4039i −0.328902 + 0.762481i
\(789\) 0 0
\(790\) −0.957355 16.4371i −0.0340611 0.584807i
\(791\) 4.33738 + 24.5985i 0.154219 + 0.874622i
\(792\) 0 0
\(793\) −0.429848 + 2.43779i −0.0152643 + 0.0865683i
\(794\) −14.5726 1.70330i −0.517163 0.0604477i
\(795\) 0 0
\(796\) 20.5696 + 68.7072i 0.729070 + 2.43526i
\(797\) 41.0669 + 9.73304i 1.45467 + 0.344762i 0.880527 0.473996i \(-0.157189\pi\)
0.574139 + 0.818758i \(0.305337\pi\)
\(798\) 0 0
\(799\) −6.86535 15.9157i −0.242879 0.563056i
\(800\) −5.49242 4.60868i −0.194186 0.162942i
\(801\) 0 0
\(802\) −20.5087 + 17.2089i −0.724188 + 0.607666i
\(803\) 47.2998 + 23.7549i 1.66917 + 0.838291i
\(804\) 0 0
\(805\) 13.4872 1.57643i 0.475363 0.0555619i
\(806\) 1.16523 20.0063i 0.0410436 0.704692i
\(807\) 0 0
\(808\) −17.1648 18.1936i −0.603855 0.640048i
\(809\) −15.1427 −0.532390 −0.266195 0.963919i \(-0.585767\pi\)
−0.266195 + 0.963919i \(0.585767\pi\)
\(810\) 0 0
\(811\) 30.4862 1.07051 0.535257 0.844689i \(-0.320215\pi\)
0.535257 + 0.844689i \(0.320215\pi\)
\(812\) −20.3703 21.5913i −0.714858 0.757706i
\(813\) 0 0
\(814\) −4.61698 + 79.2704i −0.161825 + 2.77843i
\(815\) 9.07386 1.06058i 0.317844 0.0371506i
\(816\) 0 0
\(817\) 5.04094 + 2.53165i 0.176360 + 0.0885714i
\(818\) 6.36311 5.33928i 0.222481 0.186684i
\(819\) 0 0
\(820\) 19.2947 + 16.1902i 0.673800 + 0.565386i
\(821\) 17.6031 + 40.8085i 0.614352 + 1.42423i 0.886844 + 0.462070i \(0.152893\pi\)
−0.272492 + 0.962158i \(0.587848\pi\)
\(822\) 0 0
\(823\) −23.0619 5.46577i −0.803888 0.190525i −0.191923 0.981410i \(-0.561472\pi\)
−0.611965 + 0.790885i \(0.709621\pi\)
\(824\) −22.2300 74.2535i −0.774420 2.58674i
\(825\) 0 0
\(826\) 12.6957 + 1.48392i 0.441740 + 0.0516320i
\(827\) −0.904516 + 5.12977i −0.0314531 + 0.178379i −0.996487 0.0837448i \(-0.973312\pi\)
0.965034 + 0.262124i \(0.0844230\pi\)
\(828\) 0 0
\(829\) 1.35636 + 7.69231i 0.0471084 + 0.267165i 0.999260 0.0384608i \(-0.0122455\pi\)
−0.952152 + 0.305626i \(0.901134\pi\)
\(830\) 3.05477 + 52.4484i 0.106033 + 1.82051i
\(831\) 0 0
\(832\) −4.12143 + 9.55455i −0.142885 + 0.331245i
\(833\) −8.50616 + 4.27195i −0.294721 + 0.148014i
\(834\) 0 0
\(835\) 5.34646 1.26713i 0.185022 0.0438510i
\(836\) −71.1060 123.159i −2.45925 4.25955i
\(837\) 0 0
\(838\) 3.56743 6.17897i 0.123235 0.213449i
\(839\) −8.63105 + 28.8297i −0.297977 + 0.995312i 0.669597 + 0.742725i \(0.266467\pi\)
−0.967574 + 0.252588i \(0.918718\pi\)
\(840\) 0 0
\(841\) 20.1774 + 13.2709i 0.695772 + 0.457616i
\(842\) −9.36628 12.5811i −0.322783 0.433573i
\(843\) 0 0
\(844\) −68.1571 + 44.8277i −2.34607 + 1.54303i
\(845\) 11.1787 + 4.06870i 0.384557 + 0.139967i
\(846\) 0 0
\(847\) 34.2925 12.4814i 1.17830 0.428867i
\(848\) 31.1810 41.8833i 1.07076 1.43828i
\(849\) 0 0
\(850\) −15.4856 + 16.4138i −0.531151 + 0.562987i
\(851\) −13.9421 + 14.7778i −0.477929 + 0.506575i
\(852\) 0 0
\(853\) 3.32810 4.47042i 0.113952 0.153064i −0.741488 0.670966i \(-0.765879\pi\)
0.855440 + 0.517902i \(0.173287\pi\)
\(854\) −8.68141 + 3.15978i −0.297072 + 0.108125i
\(855\) 0 0
\(856\) 23.7619 + 8.64862i 0.812165 + 0.295604i
\(857\) 14.6309 9.62290i 0.499782 0.328712i −0.274463 0.961598i \(-0.588500\pi\)
0.774245 + 0.632886i \(0.218130\pi\)
\(858\) 0 0
\(859\) −20.0517 26.9341i −0.684154 0.918978i 0.315396 0.948960i \(-0.397863\pi\)
−0.999550 + 0.0299816i \(0.990455\pi\)
\(860\) −3.94495 2.59463i −0.134522 0.0884763i
\(861\) 0 0
\(862\) 12.3956 41.4042i 0.422196 1.41023i
\(863\) 5.63576 9.76143i 0.191844 0.332283i −0.754018 0.656854i \(-0.771887\pi\)
0.945861 + 0.324571i \(0.105220\pi\)
\(864\) 0 0
\(865\) 11.4933 + 19.9069i 0.390782 + 0.676855i
\(866\) 33.1791 7.86359i 1.12747 0.267216i
\(867\) 0 0
\(868\) 45.3647 22.7830i 1.53978 0.773306i
\(869\) 8.79634 20.3922i 0.298395 0.691758i
\(870\) 0 0
\(871\) 0.741772 + 12.7357i 0.0251340 + 0.431534i
\(872\) 6.88157 + 39.0273i 0.233039 + 1.32163i
\(873\) 0 0
\(874\) 9.30925 52.7954i 0.314890 1.78583i
\(875\) −35.7636 4.18016i −1.20903 0.141315i
\(876\) 0 0
\(877\) −10.5547 35.2552i −0.356408 1.19049i −0.928824 0.370522i \(-0.879179\pi\)
0.572416 0.819963i \(-0.306006\pi\)
\(878\) −90.5273 21.4554i −3.05515 0.724083i
\(879\) 0 0
\(880\) 14.2676 + 33.0759i 0.480959 + 1.11499i
\(881\) 10.8033 + 9.06508i 0.363974 + 0.305410i 0.806372 0.591408i \(-0.201428\pi\)
−0.442398 + 0.896819i \(0.645872\pi\)
\(882\) 0 0
\(883\) −26.7963 + 22.4847i −0.901767 + 0.756672i −0.970535 0.240961i \(-0.922538\pi\)
0.0687683 + 0.997633i \(0.478093\pi\)
\(884\) −24.1262 12.1166i −0.811451 0.407526i
\(885\) 0 0
\(886\) −11.0652 + 1.29334i −0.371742 + 0.0434504i
\(887\) 2.54514 43.6983i 0.0854573 1.46725i −0.634336 0.773057i \(-0.718727\pi\)
0.719794 0.694188i \(-0.244236\pi\)
\(888\) 0 0
\(889\) −22.4010 23.7436i −0.751304 0.796336i
\(890\) −14.5535 −0.487833
\(891\) 0 0
\(892\) −63.9539 −2.14134
\(893\) −28.2092 29.9000i −0.943986 1.00057i
\(894\) 0 0
\(895\) −1.77557 + 30.4853i −0.0593507 + 1.01901i
\(896\) −53.6240 + 6.26775i −1.79145 + 0.209391i
\(897\) 0 0
\(898\) −8.17267 4.10447i −0.272726 0.136968i
\(899\) 6.35325 5.33101i 0.211893 0.177799i
\(900\) 0 0
\(901\) −22.1820 18.6129i −0.738988 0.620085i
\(902\) 19.8257 + 45.9610i 0.660122 + 1.53034i
\(903\) 0 0
\(904\) −42.3004 10.0254i −1.40689 0.333439i
\(905\) 2.56482 + 8.56710i 0.0852576 + 0.284780i
\(906\) 0 0
\(907\) 16.6087 + 1.94128i 0.551482 + 0.0644590i 0.387270 0.921966i \(-0.373418\pi\)
0.164212 + 0.986425i \(0.447492\pi\)
\(908\) −4.62359 + 26.2217i −0.153439 + 0.870196i
\(909\) 0 0
\(910\) −4.14918 23.5311i −0.137544 0.780050i
\(911\) −1.11002 19.0583i −0.0367765 0.631429i −0.965459 0.260554i \(-0.916095\pi\)
0.928683 0.370875i \(-0.120942\pi\)
\(912\) 0 0
\(913\) −28.0678 + 65.0685i −0.928908 + 2.15345i
\(914\) −40.9612 + 20.5715i −1.35488 + 0.680444i
\(915\) 0 0
\(916\) 38.3042 9.07825i 1.26561 0.299954i
\(917\) −13.7274 23.7765i −0.453319 0.785171i
\(918\) 0 0
\(919\) −2.23912 + 3.87828i −0.0738619 + 0.127933i −0.900591 0.434668i \(-0.856866\pi\)
0.826729 + 0.562600i \(0.190199\pi\)
\(920\) −6.77809 + 22.6404i −0.223467 + 0.746432i
\(921\) 0 0
\(922\) −25.1467 16.5393i −0.828164 0.544692i
\(923\) −4.56816 6.13610i −0.150363 0.201972i
\(924\) 0 0
\(925\) 16.9446 11.1447i 0.557136 0.366434i
\(926\) −6.45541 2.34958i −0.212138 0.0772119i
\(927\) 0 0
\(928\) 4.91493 1.78889i 0.161340 0.0587231i
\(929\) 24.3387 32.6925i 0.798526 1.07261i −0.197210 0.980361i \(-0.563188\pi\)
0.995736 0.0922458i \(-0.0294046\pi\)
\(930\) 0 0
\(931\) −15.4912 + 16.4197i −0.507704 + 0.538135i
\(932\) −61.0240 + 64.6817i −1.99891 + 2.11872i
\(933\) 0 0
\(934\) −46.8985 + 62.9956i −1.53456 + 2.06128i
\(935\) 18.7715 6.83227i 0.613894 0.223439i
\(936\) 0 0
\(937\) −25.7954 9.38877i −0.842700 0.306718i −0.115640 0.993291i \(-0.536892\pi\)
−0.727060 + 0.686574i \(0.759114\pi\)
\(938\) −39.7796 + 26.1634i −1.29885 + 0.854266i
\(939\) 0 0
\(940\) 20.5472 + 27.5997i 0.670176 + 0.900203i
\(941\) −2.11164 1.38885i −0.0688375 0.0452751i 0.514624 0.857416i \(-0.327932\pi\)
−0.583461 + 0.812141i \(0.698302\pi\)
\(942\) 0 0
\(943\) −3.67311 + 12.2690i −0.119613 + 0.399535i
\(944\) −4.33786 + 7.51340i −0.141185 + 0.244540i
\(945\) 0 0
\(946\) −4.69172 8.12630i −0.152541 0.264209i
\(947\) 12.4238 2.94449i 0.403718 0.0956829i −0.0237399 0.999718i \(-0.507557\pi\)
0.427458 + 0.904035i \(0.359409\pi\)
\(948\) 0 0
\(949\) 21.2954 10.6950i 0.691279 0.347173i
\(950\) −21.1967 + 49.1394i −0.687711 + 1.59429i
\(951\) 0 0
\(952\) −3.08554 52.9766i −0.100003 1.71698i
\(953\) −1.62376 9.20879i −0.0525987 0.298302i 0.947148 0.320796i \(-0.103950\pi\)
−0.999747 + 0.0224940i \(0.992839\pi\)
\(954\) 0 0
\(955\) −3.37322 + 19.1305i −0.109155 + 0.619048i
\(956\) −68.8265 8.04467i −2.22601 0.260183i
\(957\) 0 0
\(958\) 1.99484 + 6.66324i 0.0644504 + 0.215279i
\(959\) 3.31732 + 0.786220i 0.107122 + 0.0253884i
\(960\) 0 0
\(961\) −6.66071 15.4413i −0.214862 0.498105i
\(962\) 27.3859 + 22.9795i 0.882958 + 0.740890i
\(963\) 0 0
\(964\) 5.34797 4.48748i 0.172247 0.144532i
\(965\) 4.75053 + 2.38580i 0.152925 + 0.0768018i
\(966\) 0 0
\(967\) 2.13167 0.249157i 0.0685500 0.00801235i −0.0817488 0.996653i \(-0.526051\pi\)
0.150299 + 0.988641i \(0.451976\pi\)
\(968\) −3.69299 + 63.4062i −0.118697 + 2.03795i
\(969\) 0 0
\(970\) −30.3371 32.1555i −0.974066 1.03245i
\(971\) 18.8603 0.605255 0.302627 0.953109i \(-0.402136\pi\)
0.302627 + 0.953109i \(0.402136\pi\)
\(972\) 0 0
\(973\) 23.7603 0.761719
\(974\) 54.2748 + 57.5279i 1.73908 + 1.84331i
\(975\) 0 0
\(976\) 0.364601 6.25996i 0.0116706 0.200376i
\(977\) 59.7085 6.97892i 1.91024 0.223276i 0.923270 0.384151i \(-0.125506\pi\)
0.986975 + 0.160876i \(0.0514319\pi\)
\(978\) 0 0
\(979\) −17.5422 8.81001i −0.560650 0.281569i
\(980\) 14.4748 12.1458i 0.462380 0.387983i
\(981\) 0 0
\(982\) 67.2670 + 56.4437i 2.14657 + 1.80119i
\(983\) −12.7239 29.4973i −0.405829 0.940817i −0.991481 0.130254i \(-0.958421\pi\)
0.585652 0.810563i \(-0.300839\pi\)
\(984\) 0 0
\(985\) −7.55598 1.79080i −0.240754 0.0570597i
\(986\) −4.72125 15.7701i −0.150355 0.502221i
\(987\) 0 0
\(988\) −63.5941 7.43309i −2.02320 0.236478i
\(989\) 0.416905 2.36439i 0.0132568 0.0751831i
\(990\) 0 0
\(991\) −2.05455 11.6519i −0.0652648 0.370135i −0.999895 0.0145131i \(-0.995380\pi\)
0.934630 0.355622i \(-0.115731\pi\)
\(992\) 0.520093 + 8.92965i 0.0165130 + 0.283517i
\(993\) 0 0
\(994\) 11.3082 26.2154i 0.358675 0.831503i
\(995\) −21.3507 + 10.7227i −0.676861 + 0.339933i
\(996\) 0 0
\(997\) −41.3358 + 9.79677i −1.30912 + 0.310267i −0.825198 0.564844i \(-0.808936\pi\)
−0.483922 + 0.875111i \(0.660788\pi\)
\(998\) 9.96735 + 17.2640i 0.315511 + 0.546481i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.199.1 144
3.2 odd 2 81.2.g.a.22.8 144
9.2 odd 6 729.2.g.d.352.8 144
9.4 even 3 729.2.g.b.595.8 144
9.5 odd 6 729.2.g.c.595.1 144
9.7 even 3 729.2.g.a.352.1 144
81.11 odd 54 81.2.g.a.70.8 yes 144
81.16 even 27 729.2.g.a.379.1 144
81.31 even 27 6561.2.a.d.1.67 72
81.38 odd 54 729.2.g.c.136.1 144
81.43 even 27 729.2.g.b.136.8 144
81.50 odd 54 6561.2.a.c.1.6 72
81.65 odd 54 729.2.g.d.379.8 144
81.70 even 27 inner 243.2.g.a.127.1 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.8 144 3.2 odd 2
81.2.g.a.70.8 yes 144 81.11 odd 54
243.2.g.a.127.1 144 81.70 even 27 inner
243.2.g.a.199.1 144 1.1 even 1 trivial
729.2.g.a.352.1 144 9.7 even 3
729.2.g.a.379.1 144 81.16 even 27
729.2.g.b.136.8 144 81.43 even 27
729.2.g.b.595.8 144 9.4 even 3
729.2.g.c.136.1 144 81.38 odd 54
729.2.g.c.595.1 144 9.5 odd 6
729.2.g.d.352.8 144 9.2 odd 6
729.2.g.d.379.8 144 81.65 odd 54
6561.2.a.c.1.6 72 81.50 odd 54
6561.2.a.d.1.67 72 81.31 even 27