Properties

Label 729.2.g.c.136.1
Level $729$
Weight $2$
Character 729.136
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 136.1
Character \(\chi\) \(=\) 729.136
Dual form 729.2.g.c.595.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.42780 - 0.575399i) q^{2} +(3.77586 + 1.89631i) q^{4} +(-0.840538 + 1.12904i) q^{5} +(2.66534 + 1.75302i) q^{7} +(-4.25325 - 3.56890i) q^{8} +(2.69030 - 2.25743i) q^{10} +(4.70499 - 0.549934i) q^{11} +(-0.611668 + 2.04311i) q^{13} +(-5.46222 - 5.78962i) q^{14} +(3.22615 + 4.33347i) q^{16} +(0.520249 + 2.95048i) q^{17} +(1.23380 - 6.99724i) q^{19} +(-5.31475 + 2.66917i) q^{20} +(-11.7392 - 1.37211i) q^{22} +(2.52656 - 1.66174i) q^{23} +(0.865793 + 2.89195i) q^{25} +(2.66061 - 4.60832i) q^{26} +(6.73968 + 11.6735i) q^{28} +(-1.51122 + 1.60180i) q^{29} +(0.218978 + 3.75972i) q^{31} +(-0.940724 - 2.18084i) q^{32} +(0.434642 - 7.46252i) q^{34} +(-4.21955 + 1.53579i) q^{35} +(-6.31317 - 2.29781i) q^{37} +(-7.02162 + 16.2780i) q^{38} +(7.60443 - 1.80228i) q^{40} +(-4.12091 + 0.976673i) q^{41} +(0.314456 - 0.728991i) q^{43} +(18.8082 + 6.84563i) q^{44} +(-7.09015 + 2.58060i) q^{46} +(0.336396 - 5.77569i) q^{47} +(1.25839 + 2.91728i) q^{49} +(-0.437946 - 7.51925i) q^{50} +(-6.18394 + 6.55460i) q^{52} +(4.83254 + 8.37020i) q^{53} +(-3.33382 + 5.77435i) q^{55} +(-5.07999 - 16.9684i) q^{56} +(4.59063 - 3.01930i) q^{58} +(1.59501 + 0.186430i) q^{59} +(-1.03722 + 0.520912i) q^{61} +(1.63170 - 9.25383i) q^{62} +(-0.847235 - 4.80491i) q^{64} +(-1.79262 - 2.40791i) q^{65} +(4.10492 + 4.35096i) q^{67} +(-3.63063 + 12.1271i) q^{68} +(11.1279 - 1.30066i) q^{70} +(2.74773 - 2.30562i) q^{71} +(8.55952 + 7.18229i) q^{73} +(14.0050 + 9.21120i) q^{74} +(17.9276 - 24.0809i) q^{76} +(13.5044 + 6.78218i) q^{77} +(4.56192 + 1.08119i) q^{79} -7.60435 q^{80} +10.5667 q^{82} +(14.5564 + 3.44993i) q^{83} +(-3.76849 - 1.89261i) q^{85} +(-1.18290 + 1.58891i) q^{86} +(-21.9741 - 14.4526i) q^{88} +(3.17449 + 2.66371i) q^{89} +(-5.21193 + 4.37333i) q^{91} +(12.6911 - 1.48338i) q^{92} +(-4.14003 + 13.8286i) q^{94} +(6.86309 + 7.27445i) q^{95} +(7.51692 + 10.0970i) q^{97} +(-1.37652 - 7.80666i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} - 63 q^{20} + 9 q^{22} + 36 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.42780 0.575399i −1.71671 0.406868i −0.749737 0.661736i \(-0.769820\pi\)
−0.966976 + 0.254868i \(0.917968\pi\)
\(3\) 0 0
\(4\) 3.77586 + 1.89631i 1.88793 + 0.948153i
\(5\) −0.840538 + 1.12904i −0.375900 + 0.504921i −0.949307 0.314349i \(-0.898214\pi\)
0.573408 + 0.819270i \(0.305621\pi\)
\(6\) 0 0
\(7\) 2.66534 + 1.75302i 1.00740 + 0.662580i 0.942116 0.335287i \(-0.108833\pi\)
0.0652876 + 0.997866i \(0.479204\pi\)
\(8\) −4.25325 3.56890i −1.50375 1.26180i
\(9\) 0 0
\(10\) 2.69030 2.25743i 0.850749 0.713863i
\(11\) 4.70499 0.549934i 1.41861 0.165811i 0.628037 0.778183i \(-0.283859\pi\)
0.790570 + 0.612372i \(0.209785\pi\)
\(12\) 0 0
\(13\) −0.611668 + 2.04311i −0.169646 + 0.566658i 0.830310 + 0.557302i \(0.188163\pi\)
−0.999956 + 0.00935611i \(0.997022\pi\)
\(14\) −5.46222 5.78962i −1.45984 1.54734i
\(15\) 0 0
\(16\) 3.22615 + 4.33347i 0.806537 + 1.08337i
\(17\) 0.520249 + 2.95048i 0.126179 + 0.715596i 0.980601 + 0.196016i \(0.0628004\pi\)
−0.854422 + 0.519580i \(0.826088\pi\)
\(18\) 0 0
\(19\) 1.23380 6.99724i 0.283053 1.60528i −0.429103 0.903255i \(-0.641170\pi\)
0.712157 0.702020i \(-0.247718\pi\)
\(20\) −5.31475 + 2.66917i −1.18841 + 0.596844i
\(21\) 0 0
\(22\) −11.7392 1.37211i −2.50280 0.292536i
\(23\) 2.52656 1.66174i 0.526824 0.346498i −0.258071 0.966126i \(-0.583087\pi\)
0.784896 + 0.619628i \(0.212717\pi\)
\(24\) 0 0
\(25\) 0.865793 + 2.89195i 0.173159 + 0.578390i
\(26\) 2.66061 4.60832i 0.521789 0.903765i
\(27\) 0 0
\(28\) 6.73968 + 11.6735i 1.27368 + 2.20608i
\(29\) −1.51122 + 1.60180i −0.280627 + 0.297448i −0.852320 0.523020i \(-0.824805\pi\)
0.571693 + 0.820468i \(0.306287\pi\)
\(30\) 0 0
\(31\) 0.218978 + 3.75972i 0.0393297 + 0.675265i 0.959145 + 0.282914i \(0.0913011\pi\)
−0.919816 + 0.392351i \(0.871662\pi\)
\(32\) −0.940724 2.18084i −0.166298 0.385522i
\(33\) 0 0
\(34\) 0.434642 7.46252i 0.0745405 1.27981i
\(35\) −4.21955 + 1.53579i −0.713233 + 0.259596i
\(36\) 0 0
\(37\) −6.31317 2.29781i −1.03788 0.377757i −0.233803 0.972284i \(-0.575117\pi\)
−0.804076 + 0.594527i \(0.797339\pi\)
\(38\) −7.02162 + 16.2780i −1.13906 + 2.64063i
\(39\) 0 0
\(40\) 7.60443 1.80228i 1.20237 0.284966i
\(41\) −4.12091 + 0.976673i −0.643578 + 0.152531i −0.539429 0.842031i \(-0.681360\pi\)
−0.104149 + 0.994562i \(0.533212\pi\)
\(42\) 0 0
\(43\) 0.314456 0.728991i 0.0479541 0.111170i −0.892555 0.450938i \(-0.851089\pi\)
0.940509 + 0.339768i \(0.110349\pi\)
\(44\) 18.8082 + 6.84563i 2.83544 + 1.03202i
\(45\) 0 0
\(46\) −7.09015 + 2.58060i −1.04538 + 0.380489i
\(47\) 0.336396 5.77569i 0.0490683 0.842471i −0.880551 0.473951i \(-0.842828\pi\)
0.929620 0.368520i \(-0.120135\pi\)
\(48\) 0 0
\(49\) 1.25839 + 2.91728i 0.179770 + 0.416755i
\(50\) −0.437946 7.51925i −0.0619350 1.06338i
\(51\) 0 0
\(52\) −6.18394 + 6.55460i −0.857559 + 0.908959i
\(53\) 4.83254 + 8.37020i 0.663800 + 1.14973i 0.979609 + 0.200912i \(0.0643906\pi\)
−0.315809 + 0.948823i \(0.602276\pi\)
\(54\) 0 0
\(55\) −3.33382 + 5.77435i −0.449532 + 0.778613i
\(56\) −5.07999 16.9684i −0.678843 2.26749i
\(57\) 0 0
\(58\) 4.59063 3.01930i 0.602779 0.396454i
\(59\) 1.59501 + 0.186430i 0.207653 + 0.0242712i 0.219284 0.975661i \(-0.429628\pi\)
−0.0116303 + 0.999932i \(0.503702\pi\)
\(60\) 0 0
\(61\) −1.03722 + 0.520912i −0.132803 + 0.0666959i −0.513960 0.857814i \(-0.671822\pi\)
0.381157 + 0.924510i \(0.375526\pi\)
\(62\) 1.63170 9.25383i 0.207226 1.17524i
\(63\) 0 0
\(64\) −0.847235 4.80491i −0.105904 0.600613i
\(65\) −1.79262 2.40791i −0.222348 0.298665i
\(66\) 0 0
\(67\) 4.10492 + 4.35096i 0.501496 + 0.531555i 0.927826 0.373013i \(-0.121675\pi\)
−0.426330 + 0.904568i \(0.640194\pi\)
\(68\) −3.63063 + 12.1271i −0.440278 + 1.47063i
\(69\) 0 0
\(70\) 11.1279 1.30066i 1.33004 0.155459i
\(71\) 2.74773 2.30562i 0.326095 0.273626i −0.465011 0.885305i \(-0.653950\pi\)
0.791107 + 0.611678i \(0.209505\pi\)
\(72\) 0 0
\(73\) 8.55952 + 7.18229i 1.00182 + 0.840623i 0.987235 0.159270i \(-0.0509141\pi\)
0.0145810 + 0.999894i \(0.495359\pi\)
\(74\) 14.0050 + 9.21120i 1.62804 + 1.07078i
\(75\) 0 0
\(76\) 17.9276 24.0809i 2.05643 2.76227i
\(77\) 13.5044 + 6.78218i 1.53897 + 0.772901i
\(78\) 0 0
\(79\) 4.56192 + 1.08119i 0.513256 + 0.121644i 0.479079 0.877772i \(-0.340971\pi\)
0.0341770 + 0.999416i \(0.489119\pi\)
\(80\) −7.60435 −0.850192
\(81\) 0 0
\(82\) 10.5667 1.16690
\(83\) 14.5564 + 3.44993i 1.59777 + 0.378679i 0.930545 0.366177i \(-0.119334\pi\)
0.667226 + 0.744856i \(0.267482\pi\)
\(84\) 0 0
\(85\) −3.76849 1.89261i −0.408750 0.205282i
\(86\) −1.18290 + 1.58891i −0.127555 + 0.171336i
\(87\) 0 0
\(88\) −21.9741 14.4526i −2.34245 1.54065i
\(89\) 3.17449 + 2.66371i 0.336495 + 0.282353i 0.795340 0.606164i \(-0.207292\pi\)
−0.458845 + 0.888516i \(0.651737\pi\)
\(90\) 0 0
\(91\) −5.21193 + 4.37333i −0.546358 + 0.458449i
\(92\) 12.6911 1.48338i 1.32314 0.154653i
\(93\) 0 0
\(94\) −4.14003 + 13.8286i −0.427011 + 1.42632i
\(95\) 6.86309 + 7.27445i 0.704138 + 0.746343i
\(96\) 0 0
\(97\) 7.51692 + 10.0970i 0.763227 + 1.02519i 0.998580 + 0.0532819i \(0.0169682\pi\)
−0.235352 + 0.971910i \(0.575624\pi\)
\(98\) −1.37652 7.80666i −0.139050 0.788591i
\(99\) 0 0
\(100\) −2.21491 + 12.5614i −0.221491 + 1.25614i
\(101\) −4.02581 + 2.02184i −0.400583 + 0.201180i −0.637673 0.770307i \(-0.720103\pi\)
0.237090 + 0.971488i \(0.423807\pi\)
\(102\) 0 0
\(103\) −13.8657 1.62067i −1.36623 0.159690i −0.598841 0.800868i \(-0.704372\pi\)
−0.767392 + 0.641179i \(0.778446\pi\)
\(104\) 9.89324 6.50689i 0.970112 0.638053i
\(105\) 0 0
\(106\) −6.91622 23.1018i −0.671763 2.24384i
\(107\) −2.27719 + 3.94420i −0.220144 + 0.381301i −0.954852 0.297083i \(-0.903986\pi\)
0.734708 + 0.678384i \(0.237319\pi\)
\(108\) 0 0
\(109\) −3.56879 6.18132i −0.341828 0.592063i 0.642944 0.765913i \(-0.277713\pi\)
−0.984772 + 0.173850i \(0.944379\pi\)
\(110\) 11.4164 12.1007i 1.08851 1.15375i
\(111\) 0 0
\(112\) 1.00212 + 17.2057i 0.0946911 + 1.62578i
\(113\) 3.10118 + 7.18935i 0.291735 + 0.676317i 0.999547 0.0300831i \(-0.00957719\pi\)
−0.707813 + 0.706400i \(0.750318\pi\)
\(114\) 0 0
\(115\) −0.247496 + 4.24934i −0.0230791 + 0.396253i
\(116\) −8.74368 + 3.18244i −0.811830 + 0.295482i
\(117\) 0 0
\(118\) −3.76510 1.37039i −0.346606 0.126154i
\(119\) −3.78561 + 8.77603i −0.347026 + 0.804498i
\(120\) 0 0
\(121\) 11.1310 2.63809i 1.01191 0.239826i
\(122\) 2.81790 0.667854i 0.255120 0.0604646i
\(123\) 0 0
\(124\) −6.30274 + 14.6114i −0.566003 + 1.31214i
\(125\) −10.6062 3.86035i −0.948650 0.345280i
\(126\) 0 0
\(127\) 9.61531 3.49969i 0.853220 0.310547i 0.121868 0.992546i \(-0.461112\pi\)
0.731353 + 0.681999i \(0.238889\pi\)
\(128\) −0.984021 + 16.8950i −0.0869760 + 1.49332i
\(129\) 0 0
\(130\) 2.96662 + 6.87740i 0.260190 + 0.603188i
\(131\) −0.500399 8.59153i −0.0437201 0.750645i −0.946929 0.321443i \(-0.895832\pi\)
0.903209 0.429202i \(-0.141205\pi\)
\(132\) 0 0
\(133\) 15.5548 16.4871i 1.34877 1.42962i
\(134\) −7.46238 12.9252i −0.644652 1.11657i
\(135\) 0 0
\(136\) 8.31720 14.4058i 0.713194 1.23529i
\(137\) −0.306497 1.02377i −0.0261858 0.0874668i 0.943898 0.330238i \(-0.107129\pi\)
−0.970084 + 0.242771i \(0.921944\pi\)
\(138\) 0 0
\(139\) 6.22270 4.09274i 0.527803 0.347141i −0.257475 0.966285i \(-0.582890\pi\)
0.785278 + 0.619144i \(0.212520\pi\)
\(140\) −18.8447 2.20263i −1.59267 0.186156i
\(141\) 0 0
\(142\) −7.99758 + 4.01653i −0.671142 + 0.337060i
\(143\) −1.75431 + 9.94920i −0.146703 + 0.831994i
\(144\) 0 0
\(145\) −0.538257 3.05261i −0.0446998 0.253505i
\(146\) −16.6481 22.3623i −1.37781 1.85072i
\(147\) 0 0
\(148\) −19.4803 20.6479i −1.60127 1.69725i
\(149\) 0.700209 2.33886i 0.0573634 0.191607i −0.924505 0.381169i \(-0.875522\pi\)
0.981869 + 0.189562i \(0.0607068\pi\)
\(150\) 0 0
\(151\) −21.2332 + 2.48181i −1.72794 + 0.201967i −0.921239 0.388997i \(-0.872822\pi\)
−0.806698 + 0.590964i \(0.798748\pi\)
\(152\) −30.2201 + 25.3577i −2.45117 + 2.05678i
\(153\) 0 0
\(154\) −28.8836 24.2362i −2.32751 1.95301i
\(155\) −4.42892 2.91295i −0.355740 0.233974i
\(156\) 0 0
\(157\) −3.85858 + 5.18298i −0.307949 + 0.413647i −0.928975 0.370143i \(-0.879309\pi\)
0.621026 + 0.783790i \(0.286716\pi\)
\(158\) −10.4533 5.24984i −0.831620 0.417655i
\(159\) 0 0
\(160\) 3.25297 + 0.770968i 0.257170 + 0.0609503i
\(161\) 9.64722 0.760307
\(162\) 0 0
\(163\) −6.49040 −0.508367 −0.254184 0.967156i \(-0.581807\pi\)
−0.254184 + 0.967156i \(0.581807\pi\)
\(164\) −17.4120 4.12673i −1.35965 0.322243i
\(165\) 0 0
\(166\) −33.3549 16.7515i −2.58884 1.30016i
\(167\) −2.33107 + 3.13117i −0.180384 + 0.242298i −0.883113 0.469159i \(-0.844557\pi\)
0.702730 + 0.711457i \(0.251964\pi\)
\(168\) 0 0
\(169\) 7.06116 + 4.64420i 0.543166 + 0.357246i
\(170\) 8.06013 + 6.76325i 0.618184 + 0.518718i
\(171\) 0 0
\(172\) 2.56973 2.15626i 0.195940 0.164413i
\(173\) −16.2203 + 1.89588i −1.23321 + 0.144141i −0.707617 0.706596i \(-0.750230\pi\)
−0.525591 + 0.850738i \(0.676156\pi\)
\(174\) 0 0
\(175\) −2.76202 + 9.22578i −0.208789 + 0.697404i
\(176\) 17.5621 + 18.6148i 1.32379 + 1.40314i
\(177\) 0 0
\(178\) −6.17432 8.29355i −0.462785 0.621628i
\(179\) −3.76729 21.3654i −0.281581 1.59692i −0.717250 0.696816i \(-0.754599\pi\)
0.435670 0.900107i \(-0.356512\pi\)
\(180\) 0 0
\(181\) −1.10326 + 6.25687i −0.0820043 + 0.465070i 0.915959 + 0.401273i \(0.131432\pi\)
−0.997963 + 0.0637968i \(0.979679\pi\)
\(182\) 15.1699 7.61862i 1.12447 0.564730i
\(183\) 0 0
\(184\) −16.6767 1.94922i −1.22942 0.143699i
\(185\) 7.90077 5.19642i 0.580876 0.382048i
\(186\) 0 0
\(187\) 4.07033 + 13.5959i 0.297652 + 0.994227i
\(188\) 12.2227 21.1703i 0.891429 1.54400i
\(189\) 0 0
\(190\) −12.4765 21.6099i −0.905139 1.56775i
\(191\) −9.47075 + 10.0384i −0.685279 + 0.726354i −0.972858 0.231403i \(-0.925668\pi\)
0.287579 + 0.957757i \(0.407150\pi\)
\(192\) 0 0
\(193\) −0.219597 3.77034i −0.0158069 0.271395i −0.996946 0.0780922i \(-0.975117\pi\)
0.981139 0.193303i \(-0.0619199\pi\)
\(194\) −12.4398 28.8386i −0.893124 2.07049i
\(195\) 0 0
\(196\) −0.780551 + 13.4015i −0.0557537 + 0.957253i
\(197\) −5.18414 + 1.88687i −0.369355 + 0.134434i −0.520027 0.854150i \(-0.674078\pi\)
0.150673 + 0.988584i \(0.451856\pi\)
\(198\) 0 0
\(199\) 15.9504 + 5.80546i 1.13069 + 0.411538i 0.838543 0.544835i \(-0.183408\pi\)
0.292148 + 0.956373i \(0.405630\pi\)
\(200\) 6.63864 15.3901i 0.469423 1.08824i
\(201\) 0 0
\(202\) 10.9372 2.59217i 0.769540 0.182384i
\(203\) −6.83592 + 1.62014i −0.479788 + 0.113712i
\(204\) 0 0
\(205\) 2.36108 5.47359i 0.164905 0.382292i
\(206\) 32.7307 + 11.9130i 2.28046 + 0.830018i
\(207\) 0 0
\(208\) −10.8271 + 3.94075i −0.750725 + 0.273242i
\(209\) 1.95700 33.6004i 0.135369 2.32419i
\(210\) 0 0
\(211\) 7.64711 + 17.7280i 0.526449 + 1.22045i 0.949336 + 0.314263i \(0.101757\pi\)
−0.422887 + 0.906182i \(0.638983\pi\)
\(212\) 2.37450 + 40.7686i 0.163082 + 2.80000i
\(213\) 0 0
\(214\) 7.79804 8.26544i 0.533063 0.565014i
\(215\) 0.558746 + 0.967777i 0.0381062 + 0.0660018i
\(216\) 0 0
\(217\) −6.00721 + 10.4048i −0.407796 + 0.706323i
\(218\) 5.10757 + 17.0605i 0.345928 + 1.15548i
\(219\) 0 0
\(220\) −23.5380 + 15.4812i −1.58693 + 1.04374i
\(221\) −6.34638 0.741786i −0.426904 0.0498979i
\(222\) 0 0
\(223\) −13.5260 + 6.79302i −0.905769 + 0.454894i −0.839780 0.542926i \(-0.817316\pi\)
−0.0659882 + 0.997820i \(0.521020\pi\)
\(224\) 1.31572 7.46180i 0.0879100 0.498562i
\(225\) 0 0
\(226\) −3.39230 19.2387i −0.225653 1.27974i
\(227\) 3.76307 + 5.05467i 0.249763 + 0.335491i 0.909269 0.416209i \(-0.136642\pi\)
−0.659505 + 0.751700i \(0.729234\pi\)
\(228\) 0 0
\(229\) −6.39343 6.77664i −0.422489 0.447813i 0.480809 0.876825i \(-0.340343\pi\)
−0.903298 + 0.429013i \(0.858862\pi\)
\(230\) 3.04594 10.1741i 0.200843 0.670863i
\(231\) 0 0
\(232\) 12.1443 1.41946i 0.797311 0.0931923i
\(233\) −16.1221 + 13.5280i −1.05619 + 0.886251i −0.993731 0.111797i \(-0.964339\pi\)
−0.0624612 + 0.998047i \(0.519895\pi\)
\(234\) 0 0
\(235\) 6.23822 + 5.23449i 0.406937 + 0.341460i
\(236\) 5.66902 + 3.72857i 0.369022 + 0.242709i
\(237\) 0 0
\(238\) 14.2404 19.1282i 0.923069 1.23990i
\(239\) −14.6556 7.36034i −0.947995 0.476101i −0.0935336 0.995616i \(-0.529816\pi\)
−0.854461 + 0.519515i \(0.826113\pi\)
\(240\) 0 0
\(241\) 1.60772 + 0.381038i 0.103563 + 0.0245448i 0.282070 0.959394i \(-0.408979\pi\)
−0.178508 + 0.983939i \(0.557127\pi\)
\(242\) −28.5417 −1.83473
\(243\) 0 0
\(244\) −4.90421 −0.313960
\(245\) −4.35145 1.03131i −0.278004 0.0658882i
\(246\) 0 0
\(247\) 13.5415 + 6.80078i 0.861623 + 0.432724i
\(248\) 12.4867 16.7725i 0.792904 1.06506i
\(249\) 0 0
\(250\) 23.5285 + 15.4750i 1.48808 + 0.978723i
\(251\) −16.6349 13.9583i −1.04998 0.881040i −0.0568910 0.998380i \(-0.518119\pi\)
−0.993092 + 0.117340i \(0.962563\pi\)
\(252\) 0 0
\(253\) 10.9736 9.20793i 0.689903 0.578898i
\(254\) −25.3577 + 2.96390i −1.59109 + 0.185971i
\(255\) 0 0
\(256\) 9.31172 31.1033i 0.581982 1.94396i
\(257\) −4.22372 4.47688i −0.263468 0.279260i 0.582112 0.813109i \(-0.302227\pi\)
−0.845580 + 0.533849i \(0.820745\pi\)
\(258\) 0 0
\(259\) −12.7986 17.1916i −0.795269 1.06823i
\(260\) −2.20255 12.4913i −0.136596 0.774677i
\(261\) 0 0
\(262\) −3.72869 + 21.1464i −0.230359 + 1.30643i
\(263\) 22.8145 11.4579i 1.40680 0.706522i 0.426584 0.904448i \(-0.359717\pi\)
0.980217 + 0.197926i \(0.0634205\pi\)
\(264\) 0 0
\(265\) −13.5122 1.57935i −0.830048 0.0970187i
\(266\) −47.2506 + 31.0772i −2.89712 + 1.90547i
\(267\) 0 0
\(268\) 7.24884 + 24.2128i 0.442793 + 1.47903i
\(269\) 8.19176 14.1885i 0.499460 0.865091i −0.500539 0.865714i \(-0.666865\pi\)
1.00000 0.000622889i \(0.000198272\pi\)
\(270\) 0 0
\(271\) 13.6365 + 23.6192i 0.828361 + 1.43476i 0.899323 + 0.437284i \(0.144060\pi\)
−0.0709627 + 0.997479i \(0.522607\pi\)
\(272\) −11.1074 + 11.7732i −0.673485 + 0.713853i
\(273\) 0 0
\(274\) 0.155036 + 2.66187i 0.00936609 + 0.160809i
\(275\) 5.66393 + 13.1305i 0.341548 + 0.791796i
\(276\) 0 0
\(277\) 1.33171 22.8645i 0.0800145 1.37380i −0.684417 0.729091i \(-0.739943\pi\)
0.764432 0.644705i \(-0.223020\pi\)
\(278\) −17.4624 + 6.35580i −1.04733 + 0.381196i
\(279\) 0 0
\(280\) 23.4278 + 8.52704i 1.40008 + 0.509588i
\(281\) 11.8774 27.5349i 0.708545 1.64259i −0.0563292 0.998412i \(-0.517940\pi\)
0.764874 0.644180i \(-0.222801\pi\)
\(282\) 0 0
\(283\) 15.0986 3.57842i 0.897516 0.212715i 0.244132 0.969742i \(-0.421497\pi\)
0.653384 + 0.757027i \(0.273349\pi\)
\(284\) 14.7472 3.49515i 0.875084 0.207399i
\(285\) 0 0
\(286\) 9.98388 23.1452i 0.590359 1.36861i
\(287\) −12.6958 4.62088i −0.749407 0.272762i
\(288\) 0 0
\(289\) 7.54012 2.74438i 0.443536 0.161434i
\(290\) −0.449687 + 7.72083i −0.0264065 + 0.453383i
\(291\) 0 0
\(292\) 18.6997 + 43.3508i 1.09432 + 2.53691i
\(293\) 0.447663 + 7.68608i 0.0261527 + 0.449025i 0.985811 + 0.167857i \(0.0536848\pi\)
−0.959659 + 0.281168i \(0.909278\pi\)
\(294\) 0 0
\(295\) −1.55116 + 1.64413i −0.0903119 + 0.0957250i
\(296\) 18.6508 + 32.3042i 1.08406 + 1.87764i
\(297\) 0 0
\(298\) −3.04574 + 5.27538i −0.176435 + 0.305595i
\(299\) 1.84972 + 6.17849i 0.106972 + 0.357311i
\(300\) 0 0
\(301\) 2.11607 1.39176i 0.121968 0.0802197i
\(302\) 52.9781 + 6.19225i 3.04855 + 0.356324i
\(303\) 0 0
\(304\) 34.3027 17.2275i 1.96740 0.988064i
\(305\) 0.283694 1.60891i 0.0162443 0.0921258i
\(306\) 0 0
\(307\) 2.28454 + 12.9563i 0.130386 + 0.739454i 0.977962 + 0.208781i \(0.0669496\pi\)
−0.847577 + 0.530673i \(0.821939\pi\)
\(308\) 38.1297 + 51.2171i 2.17264 + 2.91837i
\(309\) 0 0
\(310\) 9.07642 + 9.62045i 0.515506 + 0.546405i
\(311\) 1.57181 5.25022i 0.0891293 0.297713i −0.901789 0.432176i \(-0.857746\pi\)
0.990919 + 0.134463i \(0.0429311\pi\)
\(312\) 0 0
\(313\) −24.0168 + 2.80716i −1.35751 + 0.158670i −0.763510 0.645796i \(-0.776526\pi\)
−0.593999 + 0.804466i \(0.702452\pi\)
\(314\) 12.3501 10.3630i 0.696959 0.584818i
\(315\) 0 0
\(316\) 15.1749 + 12.7332i 0.853653 + 0.716300i
\(317\) −8.64348 5.68491i −0.485466 0.319296i 0.283073 0.959098i \(-0.408646\pi\)
−0.768540 + 0.639802i \(0.779016\pi\)
\(318\) 0 0
\(319\) −6.22940 + 8.36754i −0.348780 + 0.468492i
\(320\) 6.13706 + 3.08215i 0.343072 + 0.172297i
\(321\) 0 0
\(322\) −23.4215 5.55100i −1.30523 0.309345i
\(323\) 21.2871 1.18444
\(324\) 0 0
\(325\) −6.43816 −0.357125
\(326\) 15.7574 + 3.73457i 0.872721 + 0.206839i
\(327\) 0 0
\(328\) 21.0129 + 10.5531i 1.16024 + 0.582696i
\(329\) 11.0215 14.8045i 0.607636 0.816197i
\(330\) 0 0
\(331\) 25.7030 + 16.9051i 1.41276 + 0.929188i 0.999830 + 0.0184267i \(0.00586572\pi\)
0.412932 + 0.910762i \(0.364505\pi\)
\(332\) 48.4207 + 40.6298i 2.65743 + 2.22985i
\(333\) 0 0
\(334\) 7.46105 6.26056i 0.408250 0.342563i
\(335\) −8.36274 + 0.977464i −0.456905 + 0.0534046i
\(336\) 0 0
\(337\) 9.44732 31.5562i 0.514628 1.71898i −0.165797 0.986160i \(-0.553020\pi\)
0.680425 0.732818i \(-0.261795\pi\)
\(338\) −14.4708 15.3382i −0.787109 0.834286i
\(339\) 0 0
\(340\) −10.6403 14.2924i −0.577052 0.775116i
\(341\) 3.09789 + 17.5690i 0.167760 + 0.951414i
\(342\) 0 0
\(343\) 2.11774 12.0103i 0.114347 0.648496i
\(344\) −3.93915 + 1.97832i −0.212385 + 0.106664i
\(345\) 0 0
\(346\) 40.4705 + 4.73033i 2.17571 + 0.254304i
\(347\) 21.6672 14.2507i 1.16316 0.765019i 0.187057 0.982349i \(-0.440105\pi\)
0.976098 + 0.217330i \(0.0697347\pi\)
\(348\) 0 0
\(349\) −4.23854 14.1577i −0.226884 0.757845i −0.993307 0.115508i \(-0.963150\pi\)
0.766423 0.642337i \(-0.222035\pi\)
\(350\) 12.0141 20.8091i 0.642182 1.11229i
\(351\) 0 0
\(352\) −5.62541 9.74350i −0.299836 0.519330i
\(353\) −4.75868 + 5.04391i −0.253279 + 0.268460i −0.841520 0.540225i \(-0.818339\pi\)
0.588241 + 0.808685i \(0.299820\pi\)
\(354\) 0 0
\(355\) 0.293561 + 5.04025i 0.0155806 + 0.267508i
\(356\) 6.93519 + 16.0776i 0.367565 + 0.852110i
\(357\) 0 0
\(358\) −3.14738 + 54.0385i −0.166344 + 2.85602i
\(359\) 28.2850 10.2949i 1.49283 0.543344i 0.538634 0.842540i \(-0.318940\pi\)
0.954192 + 0.299195i \(0.0967182\pi\)
\(360\) 0 0
\(361\) −29.5849 10.7680i −1.55710 0.566738i
\(362\) 6.27868 14.5556i 0.330000 0.765026i
\(363\) 0 0
\(364\) −27.9727 + 6.62964i −1.46617 + 0.347488i
\(365\) −15.3037 + 3.62704i −0.801031 + 0.189848i
\(366\) 0 0
\(367\) −9.11370 + 21.1279i −0.475731 + 1.10287i 0.496328 + 0.868135i \(0.334681\pi\)
−0.972060 + 0.234734i \(0.924578\pi\)
\(368\) 15.3522 + 5.58774i 0.800288 + 0.291281i
\(369\) 0 0
\(370\) −22.1715 + 8.06976i −1.15264 + 0.419527i
\(371\) −1.79279 + 30.7810i −0.0930768 + 1.59807i
\(372\) 0 0
\(373\) −12.4804 28.9329i −0.646212 1.49809i −0.854194 0.519955i \(-0.825949\pi\)
0.207982 0.978133i \(-0.433310\pi\)
\(374\) −2.05891 35.3501i −0.106464 1.82791i
\(375\) 0 0
\(376\) −22.0436 + 23.3649i −1.13681 + 1.20495i
\(377\) −2.34830 4.06738i −0.120944 0.209481i
\(378\) 0 0
\(379\) 9.45804 16.3818i 0.485827 0.841477i −0.514040 0.857766i \(-0.671852\pi\)
0.999867 + 0.0162889i \(0.00518516\pi\)
\(380\) 12.1195 + 40.4818i 0.621715 + 2.07667i
\(381\) 0 0
\(382\) 28.7692 18.9218i 1.47196 0.968122i
\(383\) −29.6105 3.46097i −1.51302 0.176847i −0.681287 0.732017i \(-0.738579\pi\)
−0.831737 + 0.555169i \(0.812653\pi\)
\(384\) 0 0
\(385\) −19.0083 + 9.54634i −0.968754 + 0.486527i
\(386\) −1.63631 + 9.27997i −0.0832859 + 0.472338i
\(387\) 0 0
\(388\) 9.23585 + 52.3791i 0.468879 + 2.65915i
\(389\) 3.48266 + 4.67803i 0.176578 + 0.237186i 0.881597 0.472003i \(-0.156469\pi\)
−0.705019 + 0.709189i \(0.749061\pi\)
\(390\) 0 0
\(391\) 6.21738 + 6.59004i 0.314426 + 0.333273i
\(392\) 5.05923 16.8990i 0.255530 0.853528i
\(393\) 0 0
\(394\) 13.6717 1.59800i 0.688773 0.0805060i
\(395\) −5.05517 + 4.24179i −0.254353 + 0.213428i
\(396\) 0 0
\(397\) 4.50462 + 3.77983i 0.226081 + 0.189704i 0.748791 0.662806i \(-0.230635\pi\)
−0.522710 + 0.852510i \(0.675079\pi\)
\(398\) −35.3838 23.2723i −1.77363 1.16654i
\(399\) 0 0
\(400\) −9.73900 + 13.0817i −0.486950 + 0.654087i
\(401\) 9.58879 + 4.81567i 0.478841 + 0.240483i 0.671812 0.740721i \(-0.265516\pi\)
−0.192971 + 0.981204i \(0.561812\pi\)
\(402\) 0 0
\(403\) −7.81547 1.85230i −0.389316 0.0922697i
\(404\) −19.0349 −0.947023
\(405\) 0 0
\(406\) 17.5285 0.869924
\(407\) −30.9670 7.33932i −1.53498 0.363797i
\(408\) 0 0
\(409\) 2.97505 + 1.49413i 0.147107 + 0.0738798i 0.520830 0.853661i \(-0.325623\pi\)
−0.373723 + 0.927540i \(0.621919\pi\)
\(410\) −8.88172 + 11.9302i −0.438637 + 0.589192i
\(411\) 0 0
\(412\) −49.2818 32.4131i −2.42794 1.59688i
\(413\) 3.92444 + 3.29300i 0.193109 + 0.162038i
\(414\) 0 0
\(415\) −16.1303 + 13.5349i −0.791805 + 0.664403i
\(416\) 5.03112 0.588054i 0.246671 0.0288317i
\(417\) 0 0
\(418\) −24.0848 + 80.4490i −1.17803 + 3.93489i
\(419\) −1.96238 2.08000i −0.0958684 0.101615i 0.677663 0.735373i \(-0.262993\pi\)
−0.773531 + 0.633758i \(0.781511\pi\)
\(420\) 0 0
\(421\) −3.75394 5.04242i −0.182956 0.245752i 0.701178 0.712986i \(-0.252658\pi\)
−0.884134 + 0.467234i \(0.845251\pi\)
\(422\) −8.36498 47.4401i −0.407201 2.30935i
\(423\) 0 0
\(424\) 9.31841 52.8473i 0.452542 2.56649i
\(425\) −8.08220 + 4.05904i −0.392045 + 0.196892i
\(426\) 0 0
\(427\) −3.67772 0.429863i −0.177977 0.0208025i
\(428\) −16.0778 + 10.5745i −0.777148 + 0.511138i
\(429\) 0 0
\(430\) −0.799666 2.67107i −0.0385633 0.128810i
\(431\) −8.66111 + 15.0015i −0.417191 + 0.722596i −0.995656 0.0931115i \(-0.970319\pi\)
0.578465 + 0.815707i \(0.303652\pi\)
\(432\) 0 0
\(433\) −6.83316 11.8354i −0.328381 0.568772i 0.653810 0.756659i \(-0.273170\pi\)
−0.982191 + 0.187887i \(0.939836\pi\)
\(434\) 20.5712 21.8042i 0.987449 1.04664i
\(435\) 0 0
\(436\) −1.75355 30.1073i −0.0839798 1.44188i
\(437\) −8.51035 19.7292i −0.407105 0.943776i
\(438\) 0 0
\(439\) 2.16809 37.2247i 0.103477 1.77664i −0.403791 0.914851i \(-0.632308\pi\)
0.507269 0.861788i \(-0.330655\pi\)
\(440\) 34.7876 12.6617i 1.65843 0.603621i
\(441\) 0 0
\(442\) 14.9809 + 5.45261i 0.712570 + 0.259354i
\(443\) −1.76851 + 4.09987i −0.0840246 + 0.194791i −0.955048 0.296450i \(-0.904197\pi\)
0.871024 + 0.491241i \(0.163456\pi\)
\(444\) 0 0
\(445\) −5.67570 + 1.34517i −0.269054 + 0.0637670i
\(446\) 36.7471 8.70923i 1.74003 0.412394i
\(447\) 0 0
\(448\) 6.16494 14.2919i 0.291266 0.675230i
\(449\) −3.44438 1.25365i −0.162550 0.0591635i 0.259463 0.965753i \(-0.416454\pi\)
−0.422014 + 0.906589i \(0.638677\pi\)
\(450\) 0 0
\(451\) −18.8517 + 6.86146i −0.887693 + 0.323094i
\(452\) −1.92359 + 33.0268i −0.0904780 + 1.55345i
\(453\) 0 0
\(454\) −6.22751 14.4370i −0.292272 0.677562i
\(455\) −0.556830 9.56041i −0.0261046 0.448199i
\(456\) 0 0
\(457\) 12.6070 13.3626i 0.589729 0.625076i −0.361940 0.932201i \(-0.617886\pi\)
0.951669 + 0.307125i \(0.0993670\pi\)
\(458\) 11.6227 + 20.1311i 0.543092 + 0.940664i
\(459\) 0 0
\(460\) −8.99256 + 15.5756i −0.419280 + 0.726215i
\(461\) 3.45976 + 11.5564i 0.161137 + 0.538235i 0.999981 0.00613654i \(-0.00195333\pi\)
−0.838844 + 0.544372i \(0.816768\pi\)
\(462\) 0 0
\(463\) −2.30037 + 1.51298i −0.106907 + 0.0703141i −0.601837 0.798619i \(-0.705564\pi\)
0.494929 + 0.868933i \(0.335194\pi\)
\(464\) −11.8168 1.38119i −0.548581 0.0641200i
\(465\) 0 0
\(466\) 46.9252 23.5667i 2.17377 1.09171i
\(467\) 5.46587 30.9985i 0.252930 1.43444i −0.548399 0.836216i \(-0.684763\pi\)
0.801330 0.598223i \(-0.204126\pi\)
\(468\) 0 0
\(469\) 3.31368 + 18.7928i 0.153011 + 0.867771i
\(470\) −12.1332 16.2977i −0.559664 0.751759i
\(471\) 0 0
\(472\) −6.11864 6.48538i −0.281633 0.298514i
\(473\) 1.07861 3.60282i 0.0495947 0.165658i
\(474\) 0 0
\(475\) 21.3039 2.49007i 0.977489 0.114252i
\(476\) −30.9360 + 25.9584i −1.41795 + 1.18980i
\(477\) 0 0
\(478\) 31.3458 + 26.3023i 1.43372 + 1.20304i
\(479\) −2.32908 1.53186i −0.106418 0.0699925i 0.495184 0.868788i \(-0.335101\pi\)
−0.601603 + 0.798795i \(0.705471\pi\)
\(480\) 0 0
\(481\) 8.55625 11.4930i 0.390131 0.524037i
\(482\) −3.68398 1.85017i −0.167801 0.0842727i
\(483\) 0 0
\(484\) 47.0316 + 11.1467i 2.13780 + 0.506668i
\(485\) −17.7181 −0.804538
\(486\) 0 0
\(487\) −31.6987 −1.43640 −0.718202 0.695835i \(-0.755035\pi\)
−0.718202 + 0.695835i \(0.755035\pi\)
\(488\) 6.27064 + 1.48617i 0.283858 + 0.0672757i
\(489\) 0 0
\(490\) 9.97103 + 5.00764i 0.450445 + 0.226222i
\(491\) −21.0164 + 28.2299i −0.948455 + 1.27400i 0.0132501 + 0.999912i \(0.495782\pi\)
−0.961706 + 0.274085i \(0.911625\pi\)
\(492\) 0 0
\(493\) −5.51230 3.62550i −0.248262 0.163284i
\(494\) −28.9628 24.3027i −1.30310 1.09343i
\(495\) 0 0
\(496\) −15.5862 + 13.0783i −0.699839 + 0.587235i
\(497\) 11.3654 1.32843i 0.509809 0.0595881i
\(498\) 0 0
\(499\) 2.29147 7.65404i 0.102580 0.342642i −0.891256 0.453501i \(-0.850175\pi\)
0.993836 + 0.110859i \(0.0353601\pi\)
\(500\) −32.7272 34.6888i −1.46360 1.55133i
\(501\) 0 0
\(502\) 32.3545 + 43.4596i 1.44405 + 1.93970i
\(503\) −2.70376 15.3338i −0.120555 0.683700i −0.983849 0.178999i \(-0.942714\pi\)
0.863294 0.504701i \(-0.168397\pi\)
\(504\) 0 0
\(505\) 1.10111 6.24473i 0.0489989 0.277887i
\(506\) −31.9399 + 16.0408i −1.41990 + 0.713101i
\(507\) 0 0
\(508\) 42.9425 + 5.01926i 1.90527 + 0.222694i
\(509\) 14.4368 9.49526i 0.639901 0.420870i −0.187669 0.982232i \(-0.560093\pi\)
0.827570 + 0.561363i \(0.189723\pi\)
\(510\) 0 0
\(511\) 10.2233 + 34.1483i 0.452253 + 1.51063i
\(512\) −23.5802 + 40.8420i −1.04211 + 1.80498i
\(513\) 0 0
\(514\) 7.67834 + 13.2993i 0.338677 + 0.586606i
\(515\) 13.4845 14.2927i 0.594197 0.629812i
\(516\) 0 0
\(517\) −1.59351 27.3595i −0.0700826 1.20327i
\(518\) 21.1805 + 49.1020i 0.930619 + 2.15742i
\(519\) 0 0
\(520\) −0.969119 + 16.6391i −0.0424987 + 0.729674i
\(521\) −33.0219 + 12.0190i −1.44672 + 0.526562i −0.941672 0.336531i \(-0.890746\pi\)
−0.505045 + 0.863093i \(0.668524\pi\)
\(522\) 0 0
\(523\) 2.55225 + 0.928943i 0.111602 + 0.0406198i 0.397218 0.917724i \(-0.369976\pi\)
−0.285616 + 0.958344i \(0.592198\pi\)
\(524\) 14.4027 33.3893i 0.629186 1.45862i
\(525\) 0 0
\(526\) −61.9818 + 14.6900i −2.70254 + 0.640513i
\(527\) −10.9790 + 2.60208i −0.478254 + 0.113348i
\(528\) 0 0
\(529\) −5.48772 + 12.7220i −0.238597 + 0.553129i
\(530\) 31.8961 + 11.6092i 1.38548 + 0.504273i
\(531\) 0 0
\(532\) 89.9974 32.7564i 3.90188 1.42017i
\(533\) 0.525174 9.01689i 0.0227478 0.390565i
\(534\) 0 0
\(535\) −2.53909 5.88628i −0.109775 0.254486i
\(536\) −1.93110 33.1558i −0.0834109 1.43211i
\(537\) 0 0
\(538\) −28.0520 + 29.7334i −1.20941 + 1.28190i
\(539\) 7.52504 + 13.0337i 0.324126 + 0.561403i
\(540\) 0 0
\(541\) 19.9581 34.5684i 0.858065 1.48621i −0.0157071 0.999877i \(-0.505000\pi\)
0.873772 0.486336i \(-0.161667\pi\)
\(542\) −19.5163 65.1891i −0.838298 2.80011i
\(543\) 0 0
\(544\) 5.94512 3.91017i 0.254895 0.167647i
\(545\) 9.97864 + 1.16634i 0.427438 + 0.0499604i
\(546\) 0 0
\(547\) −8.30462 + 4.17074i −0.355080 + 0.178328i −0.617393 0.786655i \(-0.711811\pi\)
0.262313 + 0.964983i \(0.415515\pi\)
\(548\) 0.784096 4.44683i 0.0334949 0.189959i
\(549\) 0 0
\(550\) −6.19562 35.1371i −0.264182 1.49825i
\(551\) 9.34365 + 12.5507i 0.398053 + 0.534678i
\(552\) 0 0
\(553\) 10.2637 + 10.8789i 0.436457 + 0.462617i
\(554\) −16.3893 + 54.7442i −0.696316 + 2.32586i
\(555\) 0 0
\(556\) 31.2571 3.65343i 1.32560 0.154940i
\(557\) 28.8895 24.2411i 1.22409 1.02713i 0.225485 0.974247i \(-0.427603\pi\)
0.998601 0.0528835i \(-0.0168412\pi\)
\(558\) 0 0
\(559\) 1.29707 + 1.08837i 0.0548602 + 0.0460332i
\(560\) −20.2682 13.3306i −0.856487 0.563320i
\(561\) 0 0
\(562\) −44.6794 + 60.0149i −1.88469 + 2.53157i
\(563\) −35.6493 17.9037i −1.50244 0.754553i −0.508149 0.861269i \(-0.669670\pi\)
−0.994290 + 0.106716i \(0.965966\pi\)
\(564\) 0 0
\(565\) −10.7237 2.54157i −0.451150 0.106924i
\(566\) −38.7153 −1.62732
\(567\) 0 0
\(568\) −19.9153 −0.835626
\(569\) 30.3673 + 7.19719i 1.27306 + 0.301722i 0.810959 0.585103i \(-0.198946\pi\)
0.462106 + 0.886825i \(0.347094\pi\)
\(570\) 0 0
\(571\) −19.2217 9.65350i −0.804403 0.403986i −0.00142790 0.999999i \(-0.500455\pi\)
−0.802975 + 0.596013i \(0.796751\pi\)
\(572\) −25.4908 + 34.2401i −1.06582 + 1.43165i
\(573\) 0 0
\(574\) 28.1639 + 18.5237i 1.17554 + 0.773163i
\(575\) 6.99316 + 5.86796i 0.291635 + 0.244711i
\(576\) 0 0
\(577\) 1.05985 0.889324i 0.0441223 0.0370230i −0.620460 0.784238i \(-0.713054\pi\)
0.664582 + 0.747215i \(0.268610\pi\)
\(578\) −19.8850 + 2.32422i −0.827107 + 0.0966749i
\(579\) 0 0
\(580\) 3.75630 12.5469i 0.155972 0.520982i
\(581\) 32.7499 + 34.7129i 1.35870 + 1.44013i
\(582\) 0 0
\(583\) 27.3401 + 36.7241i 1.13231 + 1.52096i
\(584\) −10.7729 61.0961i −0.445785 2.52817i
\(585\) 0 0
\(586\) 3.33572 18.9178i 0.137797 0.781488i
\(587\) −7.16312 + 3.59745i −0.295654 + 0.148483i −0.590443 0.807079i \(-0.701047\pi\)
0.294789 + 0.955562i \(0.404751\pi\)
\(588\) 0 0
\(589\) 26.5778 + 3.10650i 1.09512 + 0.128001i
\(590\) 4.71193 3.09908i 0.193987 0.127587i
\(591\) 0 0
\(592\) −10.4098 34.7710i −0.427838 1.42908i
\(593\) −10.7066 + 18.5444i −0.439668 + 0.761527i −0.997664 0.0683166i \(-0.978237\pi\)
0.557996 + 0.829844i \(0.311571\pi\)
\(594\) 0 0
\(595\) −6.72652 11.6507i −0.275761 0.477631i
\(596\) 7.07909 7.50339i 0.289971 0.307351i
\(597\) 0 0
\(598\) −0.935648 16.0645i −0.0382615 0.656924i
\(599\) −9.21537 21.3636i −0.376530 0.872894i −0.996123 0.0879711i \(-0.971962\pi\)
0.619593 0.784923i \(-0.287298\pi\)
\(600\) 0 0
\(601\) 1.83568 31.5174i 0.0748790 1.28562i −0.726375 0.687298i \(-0.758797\pi\)
0.801254 0.598324i \(-0.204166\pi\)
\(602\) −5.93821 + 2.16133i −0.242023 + 0.0880893i
\(603\) 0 0
\(604\) −84.8800 30.8938i −3.45372 1.25705i
\(605\) −6.37750 + 14.7847i −0.259282 + 0.601084i
\(606\) 0 0
\(607\) −4.58040 + 1.08557i −0.185913 + 0.0440621i −0.322517 0.946564i \(-0.604529\pi\)
0.136605 + 0.990626i \(0.456381\pi\)
\(608\) −16.4205 + 3.89174i −0.665941 + 0.157831i
\(609\) 0 0
\(610\) −1.61452 + 3.74287i −0.0653698 + 0.151544i
\(611\) 11.5946 + 4.22010i 0.469069 + 0.170727i
\(612\) 0 0
\(613\) 41.2145 15.0009i 1.66464 0.605879i 0.673558 0.739134i \(-0.264765\pi\)
0.991082 + 0.133255i \(0.0425429\pi\)
\(614\) 1.90862 32.7698i 0.0770257 1.32248i
\(615\) 0 0
\(616\) −33.2328 77.0422i −1.33899 3.10412i
\(617\) 1.03567 + 17.7818i 0.0416947 + 0.715870i 0.952782 + 0.303656i \(0.0982074\pi\)
−0.911087 + 0.412214i \(0.864756\pi\)
\(618\) 0 0
\(619\) −3.84631 + 4.07685i −0.154596 + 0.163862i −0.800043 0.599943i \(-0.795190\pi\)
0.645446 + 0.763806i \(0.276671\pi\)
\(620\) −11.1991 19.3975i −0.449768 0.779021i
\(621\) 0 0
\(622\) −6.83702 + 11.8421i −0.274139 + 0.474823i
\(623\) 3.79154 + 12.6646i 0.151905 + 0.507398i
\(624\) 0 0
\(625\) 0.662691 0.435859i 0.0265076 0.0174344i
\(626\) 59.9232 + 7.00401i 2.39501 + 0.279937i
\(627\) 0 0
\(628\) −24.3980 + 12.2531i −0.973585 + 0.488953i
\(629\) 3.49521 19.8223i 0.139363 0.790367i
\(630\) 0 0
\(631\) −2.84022 16.1077i −0.113067 0.641237i −0.987689 0.156431i \(-0.950001\pi\)
0.874622 0.484806i \(-0.161110\pi\)
\(632\) −15.5443 20.8796i −0.618318 0.830546i
\(633\) 0 0
\(634\) 17.7135 + 18.7753i 0.703495 + 0.745661i
\(635\) −4.13075 + 13.7977i −0.163924 + 0.547544i
\(636\) 0 0
\(637\) −6.73006 + 0.786632i −0.266655 + 0.0311675i
\(638\) 19.9384 16.7303i 0.789369 0.662360i
\(639\) 0 0
\(640\) −18.2480 15.3119i −0.721314 0.605255i
\(641\) −19.4911 12.8195i −0.769852 0.506340i 0.102788 0.994703i \(-0.467224\pi\)
−0.872640 + 0.488364i \(0.837594\pi\)
\(642\) 0 0
\(643\) −8.71491 + 11.7062i −0.343683 + 0.461646i −0.940036 0.341076i \(-0.889208\pi\)
0.596353 + 0.802722i \(0.296616\pi\)
\(644\) 36.4265 + 18.2941i 1.43541 + 0.720888i
\(645\) 0 0
\(646\) −51.6807 12.2486i −2.03335 0.481913i
\(647\) 1.33592 0.0525205 0.0262602 0.999655i \(-0.491640\pi\)
0.0262602 + 0.999655i \(0.491640\pi\)
\(648\) 0 0
\(649\) 7.60705 0.298603
\(650\) 15.6306 + 3.70451i 0.613081 + 0.145303i
\(651\) 0 0
\(652\) −24.5068 12.3078i −0.959761 0.482010i
\(653\) 9.84060 13.2182i 0.385092 0.517269i −0.566736 0.823899i \(-0.691794\pi\)
0.951829 + 0.306630i \(0.0992016\pi\)
\(654\) 0 0
\(655\) 10.1208 + 6.65653i 0.395451 + 0.260092i
\(656\) −17.5271 14.7069i −0.684316 0.574210i
\(657\) 0 0
\(658\) −35.2765 + 29.6005i −1.37522 + 1.15395i
\(659\) 44.7076 5.22557i 1.74156 0.203559i 0.814937 0.579550i \(-0.196771\pi\)
0.926624 + 0.375990i \(0.122697\pi\)
\(660\) 0 0
\(661\) −7.13320 + 23.8265i −0.277449 + 0.926745i 0.699744 + 0.714394i \(0.253297\pi\)
−0.977193 + 0.212352i \(0.931888\pi\)
\(662\) −52.6744 55.8316i −2.04725 2.16996i
\(663\) 0 0
\(664\) −49.5995 66.6236i −1.92483 2.58550i
\(665\) 5.54020 + 31.4200i 0.214840 + 1.21842i
\(666\) 0 0
\(667\) −1.15641 + 6.55832i −0.0447764 + 0.253939i
\(668\) −14.7395 + 7.40244i −0.570287 + 0.286409i
\(669\) 0 0
\(670\) 20.8655 + 2.43883i 0.806104 + 0.0942200i
\(671\) −4.59364 + 3.02129i −0.177336 + 0.116636i
\(672\) 0 0
\(673\) −0.567997 1.89724i −0.0218947 0.0731334i 0.946344 0.323161i \(-0.104746\pi\)
−0.968239 + 0.250028i \(0.919560\pi\)
\(674\) −41.0936 + 71.1762i −1.58287 + 2.74161i
\(675\) 0 0
\(676\) 17.8551 + 30.9260i 0.686735 + 1.18946i
\(677\) −19.5523 + 20.7242i −0.751455 + 0.796496i −0.984391 0.175996i \(-0.943685\pi\)
0.232936 + 0.972492i \(0.425167\pi\)
\(678\) 0 0
\(679\) 2.33493 + 40.0892i 0.0896063 + 1.53848i
\(680\) 9.27379 + 21.4991i 0.355634 + 0.824452i
\(681\) 0 0
\(682\) 2.58813 44.4365i 0.0991047 1.70156i
\(683\) 27.6811 10.0751i 1.05919 0.385512i 0.247064 0.968999i \(-0.420534\pi\)
0.812123 + 0.583487i \(0.198312\pi\)
\(684\) 0 0
\(685\) 1.41350 + 0.514472i 0.0540071 + 0.0196570i
\(686\) −12.0522 + 27.9401i −0.460154 + 1.06676i
\(687\) 0 0
\(688\) 4.17354 0.989148i 0.159115 0.0377109i
\(689\) −20.0572 + 4.75364i −0.764118 + 0.181099i
\(690\) 0 0
\(691\) 19.2512 44.6294i 0.732352 1.69778i 0.0161701 0.999869i \(-0.494853\pi\)
0.716182 0.697914i \(-0.245888\pi\)
\(692\) −64.8408 23.6001i −2.46488 0.897141i
\(693\) 0 0
\(694\) −60.8034 + 22.1306i −2.30807 + 0.840067i
\(695\) −0.609562 + 10.4658i −0.0231220 + 0.396989i
\(696\) 0 0
\(697\) −5.02555 11.6505i −0.190356 0.441296i
\(698\) 2.14399 + 36.8109i 0.0811513 + 1.39331i
\(699\) 0 0
\(700\) −27.9239 + 29.5976i −1.05542 + 1.11868i
\(701\) 3.03784 + 5.26170i 0.114738 + 0.198732i 0.917675 0.397332i \(-0.130064\pi\)
−0.802937 + 0.596064i \(0.796731\pi\)
\(702\) 0 0
\(703\) −23.8675 + 41.3397i −0.900179 + 1.55916i
\(704\) −6.62861 22.1411i −0.249825 0.834474i
\(705\) 0 0
\(706\) 14.4554 9.50745i 0.544035 0.357818i
\(707\) −14.2745 1.66845i −0.536847 0.0627484i
\(708\) 0 0
\(709\) −19.3944 + 9.74021i −0.728370 + 0.365801i −0.774024 0.633156i \(-0.781759\pi\)
0.0456540 + 0.998957i \(0.485463\pi\)
\(710\) 2.18745 12.4056i 0.0820934 0.465575i
\(711\) 0 0
\(712\) −3.99536 22.6588i −0.149733 0.849175i
\(713\) 6.80095 + 9.13526i 0.254698 + 0.342118i
\(714\) 0 0
\(715\) −9.75846 10.3434i −0.364946 0.386820i
\(716\) 26.2905 87.8165i 0.982524 3.28186i
\(717\) 0 0
\(718\) −74.5940 + 8.71879i −2.78382 + 0.325382i
\(719\) −11.8323 + 9.92847i −0.441270 + 0.370269i −0.836184 0.548449i \(-0.815219\pi\)
0.394915 + 0.918718i \(0.370774\pi\)
\(720\) 0 0
\(721\) −34.1158 28.6266i −1.27054 1.06611i
\(722\) 65.6302 + 43.1657i 2.44250 + 1.60646i
\(723\) 0 0
\(724\) −16.0307 + 21.5329i −0.595776 + 0.800266i
\(725\) −5.94075 2.98355i −0.220634 0.110806i
\(726\) 0 0
\(727\) −25.0624 5.93991i −0.929514 0.220299i −0.262147 0.965028i \(-0.584431\pi\)
−0.667367 + 0.744729i \(0.732579\pi\)
\(728\) 37.7756 1.40006
\(729\) 0 0
\(730\) 39.2412 1.45238
\(731\) 2.31447 + 0.548539i 0.0856036 + 0.0202884i
\(732\) 0 0
\(733\) 26.0836 + 13.0997i 0.963421 + 0.483848i 0.859723 0.510761i \(-0.170636\pi\)
0.103698 + 0.994609i \(0.466932\pi\)
\(734\) 34.2832 46.0503i 1.26542 1.69975i
\(735\) 0 0
\(736\) −6.00080 3.94679i −0.221192 0.145481i
\(737\) 21.7063 + 18.2138i 0.799563 + 0.670913i
\(738\) 0 0
\(739\) 15.6599 13.1402i 0.576058 0.483370i −0.307592 0.951518i \(-0.599523\pi\)
0.883650 + 0.468148i \(0.155079\pi\)
\(740\) 39.6862 4.63865i 1.45889 0.170520i
\(741\) 0 0
\(742\) 22.0639 73.6984i 0.809989 2.70555i
\(743\) 16.1251 + 17.0916i 0.591573 + 0.627031i 0.952125 0.305708i \(-0.0988933\pi\)
−0.360552 + 0.932739i \(0.617412\pi\)
\(744\) 0 0
\(745\) 2.05211 + 2.75646i 0.0751835 + 0.100989i
\(746\) 13.6520 + 77.4244i 0.499836 + 2.83471i
\(747\) 0 0
\(748\) −10.4129 + 59.0546i −0.380734 + 2.15925i
\(749\) −12.9838 + 6.52069i −0.474416 + 0.238261i
\(750\) 0 0
\(751\) −34.8595 4.07449i −1.27204 0.148680i −0.546851 0.837230i \(-0.684174\pi\)
−0.725189 + 0.688550i \(0.758248\pi\)
\(752\) 26.1140 17.1755i 0.952281 0.626325i
\(753\) 0 0
\(754\) 3.36084 + 11.2260i 0.122395 + 0.408826i
\(755\) 15.0453 26.0592i 0.547554 0.948391i
\(756\) 0 0
\(757\) −23.1445 40.0875i −0.841202 1.45701i −0.888879 0.458142i \(-0.848515\pi\)
0.0476764 0.998863i \(-0.484818\pi\)
\(758\) −32.3883 + 34.3296i −1.17640 + 1.24691i
\(759\) 0 0
\(760\) −3.22864 55.4337i −0.117115 2.01079i
\(761\) 2.80588 + 6.50477i 0.101713 + 0.235798i 0.961472 0.274902i \(-0.0886455\pi\)
−0.859759 + 0.510700i \(0.829386\pi\)
\(762\) 0 0
\(763\) 1.32396 22.7315i 0.0479305 0.822935i
\(764\) −54.7961 + 19.9441i −1.98245 + 0.721554i
\(765\) 0 0
\(766\) 69.8968 + 25.4404i 2.52547 + 0.919198i
\(767\) −1.35652 + 3.14476i −0.0489811 + 0.113551i
\(768\) 0 0
\(769\) −42.1559 + 9.99112i −1.52018 + 0.360289i −0.904075 0.427375i \(-0.859438\pi\)
−0.616105 + 0.787664i \(0.711290\pi\)
\(770\) 51.6413 12.2392i 1.86102 0.441071i
\(771\) 0 0
\(772\) 6.32055 14.6527i 0.227481 0.527361i
\(773\) 33.8164 + 12.3082i 1.21629 + 0.442694i 0.868881 0.495020i \(-0.164839\pi\)
0.347409 + 0.937714i \(0.387062\pi\)
\(774\) 0 0
\(775\) −10.6833 + 3.88841i −0.383756 + 0.139676i
\(776\) 4.06376 69.7720i 0.145880 2.50467i
\(777\) 0 0
\(778\) −5.76348 13.3612i −0.206631 0.479024i
\(779\) 1.74963 + 30.0400i 0.0626870 + 1.07629i
\(780\) 0 0
\(781\) 11.6601 12.3590i 0.417231 0.442239i
\(782\) −11.3026 19.5768i −0.404182 0.700063i
\(783\) 0 0
\(784\) −8.58220 + 14.8648i −0.306507 + 0.530886i
\(785\) −2.60849 8.71297i −0.0931011 0.310979i
\(786\) 0 0
\(787\) −17.5455 + 11.5399i −0.625431 + 0.411352i −0.822281 0.569081i \(-0.807299\pi\)
0.196850 + 0.980434i \(0.436929\pi\)
\(788\) −23.1527 2.70616i −0.824779 0.0964029i
\(789\) 0 0
\(790\) 14.7137 7.38948i 0.523489 0.262906i
\(791\) −4.33738 + 24.5985i −0.154219 + 0.874622i
\(792\) 0 0
\(793\) −0.429848 2.43779i −0.0152643 0.0865683i
\(794\) −8.76141 11.7686i −0.310931 0.417653i
\(795\) 0 0
\(796\) 49.2174 + 52.1674i 1.74446 + 1.84902i
\(797\) 12.1044 40.4315i 0.428760 1.43216i −0.421996 0.906598i \(-0.638670\pi\)
0.850756 0.525561i \(-0.176144\pi\)
\(798\) 0 0
\(799\) 17.2160 2.01227i 0.609060 0.0711889i
\(800\) 5.49242 4.60868i 0.194186 0.162942i
\(801\) 0 0
\(802\) −20.5087 17.2089i −0.724188 0.607666i
\(803\) 44.2222 + 29.0854i 1.56057 + 1.02640i
\(804\) 0 0
\(805\) −8.10885 + 10.8921i −0.285799 + 0.383895i
\(806\) 17.9086 + 8.99403i 0.630803 + 0.316801i
\(807\) 0 0
\(808\) 24.3385 + 5.76833i 0.856225 + 0.202929i
\(809\) 15.1427 0.532390 0.266195 0.963919i \(-0.414233\pi\)
0.266195 + 0.963919i \(0.414233\pi\)
\(810\) 0 0
\(811\) 30.4862 1.07051 0.535257 0.844689i \(-0.320215\pi\)
0.535257 + 0.844689i \(0.320215\pi\)
\(812\) −28.8838 6.84558i −1.01362 0.240233i
\(813\) 0 0
\(814\) 70.9587 + 35.6368i 2.48710 + 1.24907i
\(815\) 5.45542 7.32791i 0.191095 0.256685i
\(816\) 0 0
\(817\) −4.71294 3.09975i −0.164885 0.108447i
\(818\) −6.36311 5.33928i −0.222481 0.186684i
\(819\) 0 0
\(820\) 19.2947 16.1902i 0.673800 0.565386i
\(821\) 44.1428 5.15955i 1.54059 0.180070i 0.697008 0.717064i \(-0.254514\pi\)
0.843586 + 0.536994i \(0.180440\pi\)
\(822\) 0 0
\(823\) 6.79746 22.7051i 0.236944 0.791450i −0.753964 0.656915i \(-0.771861\pi\)
0.990909 0.134534i \(-0.0429539\pi\)
\(824\) 53.1904 + 56.3785i 1.85298 + 1.96404i
\(825\) 0 0
\(826\) −7.63296 10.2528i −0.265585 0.356742i
\(827\) 0.904516 + 5.12977i 0.0314531 + 0.178379i 0.996487 0.0837448i \(-0.0266881\pi\)
−0.965034 + 0.262124i \(0.915577\pi\)
\(828\) 0 0
\(829\) 1.35636 7.69231i 0.0471084 0.267165i −0.952152 0.305626i \(-0.901134\pi\)
0.999260 + 0.0384608i \(0.0122455\pi\)
\(830\) 46.9491 23.5787i 1.62963 0.818429i
\(831\) 0 0
\(832\) 10.3352 + 1.20801i 0.358309 + 0.0418803i
\(833\) −7.95270 + 5.23057i −0.275545 + 0.181229i
\(834\) 0 0
\(835\) −1.57586 5.26374i −0.0545349 0.182159i
\(836\) 71.1060 123.159i 2.45925 4.25955i
\(837\) 0 0
\(838\) 3.56743 + 6.17897i 0.123235 + 0.213449i
\(839\) 20.6517 21.8896i 0.712977 0.755712i −0.265040 0.964238i \(-0.585385\pi\)
0.978017 + 0.208526i \(0.0668665\pi\)
\(840\) 0 0
\(841\) 1.40422 + 24.1096i 0.0484215 + 0.831364i
\(842\) 6.21241 + 14.4020i 0.214094 + 0.496325i
\(843\) 0 0
\(844\) −4.74332 + 81.4396i −0.163272 + 2.80327i
\(845\) −11.1787 + 4.06870i −0.384557 + 0.139967i
\(846\) 0 0
\(847\) 34.2925 + 12.4814i 1.17830 + 0.428867i
\(848\) −20.6815 + 47.9451i −0.710206 + 1.64644i
\(849\) 0 0
\(850\) 21.9575 5.20403i 0.753137 0.178497i
\(851\) −19.7690 + 4.68533i −0.677672 + 0.160611i
\(852\) 0 0
\(853\) 2.20744 5.11743i 0.0755814 0.175217i −0.876236 0.481882i \(-0.839954\pi\)
0.951818 + 0.306664i \(0.0992128\pi\)
\(854\) 8.68141 + 3.15978i 0.297072 + 0.108125i
\(855\) 0 0
\(856\) 23.7619 8.64862i 0.812165 0.295604i
\(857\) −1.01822 + 17.4822i −0.0347818 + 0.597180i 0.935218 + 0.354073i \(0.115204\pi\)
−0.970000 + 0.243107i \(0.921833\pi\)
\(858\) 0 0
\(859\) −13.2998 30.8323i −0.453782 1.05198i −0.979522 0.201339i \(-0.935471\pi\)
0.525740 0.850645i \(-0.323788\pi\)
\(860\) 0.274544 + 4.71374i 0.00936188 + 0.160737i
\(861\) 0 0
\(862\) 29.6593 31.4370i 1.01020 1.07075i
\(863\) −5.63576 9.76143i −0.191844 0.332283i 0.754018 0.656854i \(-0.228113\pi\)
−0.945861 + 0.324571i \(0.894780\pi\)
\(864\) 0 0
\(865\) 11.4933 19.9069i 0.390782 0.676855i
\(866\) 9.77948 + 32.6657i 0.332320 + 1.11003i
\(867\) 0 0
\(868\) −42.4131 + 27.8955i −1.43959 + 0.946835i
\(869\) 22.0583 + 2.57825i 0.748278 + 0.0874612i
\(870\) 0 0
\(871\) −11.4004 + 5.72548i −0.386287 + 0.194000i
\(872\) −6.88157 + 39.0273i −0.233039 + 1.32163i
\(873\) 0 0
\(874\) 9.30925 + 52.7954i 0.314890 + 1.78583i
\(875\) −21.5019 28.8821i −0.726898 0.976393i
\(876\) 0 0
\(877\) −25.2546 26.7683i −0.852786 0.903901i 0.143531 0.989646i \(-0.454154\pi\)
−0.996317 + 0.0857451i \(0.972673\pi\)
\(878\) −26.6828 + 89.1266i −0.900499 + 3.00788i
\(879\) 0 0
\(880\) −35.7784 + 4.18189i −1.20609 + 0.140972i
\(881\) −10.8033 + 9.06508i −0.363974 + 0.305410i −0.806372 0.591408i \(-0.798572\pi\)
0.442398 + 0.896819i \(0.354128\pi\)
\(882\) 0 0
\(883\) −26.7963 22.4847i −0.901767 0.756672i 0.0687683 0.997633i \(-0.478093\pi\)
−0.970535 + 0.240961i \(0.922538\pi\)
\(884\) −22.5564 14.8356i −0.758653 0.498974i
\(885\) 0 0
\(886\) 6.65266 8.93607i 0.223500 0.300213i
\(887\) 39.1164 + 19.6450i 1.31340 + 0.659614i 0.961081 0.276266i \(-0.0890970\pi\)
0.352319 + 0.935880i \(0.385393\pi\)
\(888\) 0 0
\(889\) 31.7631 + 7.52799i 1.06530 + 0.252481i
\(890\) 14.5535 0.487833
\(891\) 0 0
\(892\) −63.9539 −2.14134
\(893\) −39.9988 9.47989i −1.33851 0.317232i
\(894\) 0 0
\(895\) 27.2889 + 13.7050i 0.912166 + 0.458107i
\(896\) −32.2400 + 43.3059i −1.07706 + 1.44675i
\(897\) 0 0
\(898\) 7.64091 + 5.02550i 0.254980 + 0.167703i
\(899\) −6.35325 5.33101i −0.211893 0.177799i
\(900\) 0 0
\(901\) −22.1820 + 18.6129i −0.738988 + 0.620085i
\(902\) 49.7163 5.81100i 1.65537 0.193485i
\(903\) 0 0
\(904\) 12.4680 41.6459i 0.414678 1.38512i
\(905\) −6.13692 6.50475i −0.203998 0.216225i
\(906\) 0 0
\(907\) −9.98553 13.4129i −0.331564 0.445368i 0.604811 0.796369i \(-0.293249\pi\)
−0.936375 + 0.351001i \(0.885841\pi\)
\(908\) 4.62359 + 26.2217i 0.153439 + 0.870196i
\(909\) 0 0
\(910\) −4.14918 + 23.5311i −0.137544 + 0.780050i
\(911\) −17.0600 + 8.56784i −0.565222 + 0.283865i −0.708376 0.705835i \(-0.750572\pi\)
0.143154 + 0.989700i \(0.454276\pi\)
\(912\) 0 0
\(913\) 70.3848 + 8.22681i 2.32940 + 0.272268i
\(914\) −38.2960 + 25.1877i −1.26672 + 0.833134i
\(915\) 0 0
\(916\) −11.2901 37.7115i −0.373035 1.24602i
\(917\) 13.7274 23.7765i 0.453319 0.785171i
\(918\) 0 0
\(919\) −2.23912 3.87828i −0.0738619 0.127933i 0.826729 0.562600i \(-0.190199\pi\)
−0.900591 + 0.434668i \(0.856866\pi\)
\(920\) 16.2181 17.1902i 0.534696 0.566744i
\(921\) 0 0
\(922\) −1.75006 30.0473i −0.0576351 0.989557i
\(923\) 3.02994 + 7.02419i 0.0997317 + 0.231204i
\(924\) 0 0
\(925\) 1.17924 20.2468i 0.0387732 0.665711i
\(926\) 6.45541 2.34958i 0.212138 0.0772119i
\(927\) 0 0
\(928\) 4.91493 + 1.78889i 0.161340 + 0.0587231i
\(929\) −16.1432 + 37.4242i −0.529642 + 1.22785i 0.417981 + 0.908456i \(0.362738\pi\)
−0.947623 + 0.319392i \(0.896521\pi\)
\(930\) 0 0
\(931\) 21.9655 5.20593i 0.719891 0.170617i
\(932\) −86.5280 + 20.5075i −2.83432 + 0.671746i
\(933\) 0 0
\(934\) −31.1065 + 72.1131i −1.01784 + 2.35961i
\(935\) −18.7715 6.83227i −0.613894 0.223439i
\(936\) 0 0
\(937\) −25.7954 + 9.38877i −0.842700 + 0.306718i −0.727060 0.686574i \(-0.759114\pi\)
−0.115640 + 0.993291i \(0.536892\pi\)
\(938\) 2.76841 47.5318i 0.0903919 1.55197i
\(939\) 0 0
\(940\) 13.6284 + 31.5943i 0.444510 + 1.03049i
\(941\) 0.146957 + 2.52316i 0.00479067 + 0.0822526i 0.999856 0.0169692i \(-0.00540172\pi\)
−0.995065 + 0.0992217i \(0.968365\pi\)
\(942\) 0 0
\(943\) −8.78874 + 9.31552i −0.286201 + 0.303355i
\(944\) 4.33786 + 7.51340i 0.141185 + 0.244540i
\(945\) 0 0
\(946\) −4.69172 + 8.12630i −0.152541 + 0.264209i
\(947\) 3.66188 + 12.2315i 0.118995 + 0.397472i 0.996646 0.0818282i \(-0.0260759\pi\)
−0.877651 + 0.479300i \(0.840891\pi\)
\(948\) 0 0
\(949\) −19.9098 + 13.0949i −0.646300 + 0.425078i
\(950\) −53.1543 6.21285i −1.72455 0.201571i
\(951\) 0 0
\(952\) 47.4219 23.8162i 1.53695 0.771886i
\(953\) 1.62376 9.20879i 0.0525987 0.298302i −0.947148 0.320796i \(-0.896050\pi\)
0.999747 + 0.0224940i \(0.00716067\pi\)
\(954\) 0 0
\(955\) −3.37322 19.1305i −0.109155 0.619048i
\(956\) −41.3802 55.5832i −1.33833 1.79769i
\(957\) 0 0
\(958\) 4.77311 + 5.05920i 0.154212 + 0.163455i
\(959\) 0.977775 3.26600i 0.0315740 0.105465i
\(960\) 0 0
\(961\) 16.7029 1.95229i 0.538803 0.0629770i
\(962\) −27.3859 + 22.9795i −0.882958 + 0.740890i
\(963\) 0 0
\(964\) 5.34797 + 4.48748i 0.172247 + 0.144532i
\(965\) 4.44143 + 2.92117i 0.142975 + 0.0940359i
\(966\) 0 0
\(967\) −1.28161 + 1.72150i −0.0412139 + 0.0553599i −0.822252 0.569123i \(-0.807283\pi\)
0.781039 + 0.624483i \(0.214690\pi\)
\(968\) −56.7579 28.5049i −1.82427 0.916181i
\(969\) 0 0
\(970\) 43.0160 + 10.1950i 1.38116 + 0.327341i
\(971\) −18.8603 −0.605255 −0.302627 0.953109i \(-0.597864\pi\)
−0.302627 + 0.953109i \(0.597864\pi\)
\(972\) 0 0
\(973\) 23.7603 0.761719
\(974\) 76.9580 + 18.2394i 2.46589 + 0.584427i
\(975\) 0 0
\(976\) −5.60359 2.81423i −0.179366 0.0900812i
\(977\) 35.8982 48.2196i 1.14848 1.54268i 0.354165 0.935183i \(-0.384765\pi\)
0.794320 0.607500i \(-0.207827\pi\)
\(978\) 0 0
\(979\) 16.4008 + 10.7870i 0.524171 + 0.344753i
\(980\) −14.4748 12.1458i −0.462380 0.387983i
\(981\) 0 0
\(982\) 67.2670 56.4437i 2.14657 1.80119i
\(983\) −31.9073 + 3.72943i −1.01769 + 0.118950i −0.608544 0.793520i \(-0.708246\pi\)
−0.409142 + 0.912471i \(0.634172\pi\)
\(984\) 0 0
\(985\) 2.22711 7.43907i 0.0709617 0.237029i
\(986\) 11.2966 + 11.9737i 0.359759 + 0.381322i
\(987\) 0 0
\(988\) 38.2343 + 51.3576i 1.21640 + 1.63390i
\(989\) −0.416905 2.36439i −0.0132568 0.0751831i
\(990\) 0 0
\(991\) −2.05455 + 11.6519i −0.0652648 + 0.370135i 0.934630 + 0.355622i \(0.115731\pi\)
−0.999895 + 0.0145131i \(0.995380\pi\)
\(992\) 7.99335 4.01441i 0.253789 0.127458i
\(993\) 0 0
\(994\) −28.3573 3.31450i −0.899440 0.105129i
\(995\) −19.9615 + 13.1289i −0.632821 + 0.416213i
\(996\) 0 0
\(997\) 12.1837 + 40.6963i 0.385861 + 1.28886i 0.901768 + 0.432220i \(0.142270\pi\)
−0.515908 + 0.856644i \(0.672545\pi\)
\(998\) −9.96735 + 17.2640i −0.315511 + 0.546481i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.c.136.1 144
3.2 odd 2 729.2.g.b.136.8 144
9.2 odd 6 729.2.g.a.379.1 144
9.4 even 3 81.2.g.a.70.8 yes 144
9.5 odd 6 243.2.g.a.127.1 144
9.7 even 3 729.2.g.d.379.8 144
81.5 odd 54 729.2.g.b.595.8 144
81.20 odd 54 6561.2.a.d.1.67 72
81.22 even 27 729.2.g.d.352.8 144
81.32 odd 54 243.2.g.a.199.1 144
81.49 even 27 81.2.g.a.22.8 144
81.59 odd 54 729.2.g.a.352.1 144
81.61 even 27 6561.2.a.c.1.6 72
81.76 even 27 inner 729.2.g.c.595.1 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.8 144 81.49 even 27
81.2.g.a.70.8 yes 144 9.4 even 3
243.2.g.a.127.1 144 9.5 odd 6
243.2.g.a.199.1 144 81.32 odd 54
729.2.g.a.352.1 144 81.59 odd 54
729.2.g.a.379.1 144 9.2 odd 6
729.2.g.b.136.8 144 3.2 odd 2
729.2.g.b.595.8 144 81.5 odd 54
729.2.g.c.136.1 144 1.1 even 1 trivial
729.2.g.c.595.1 144 81.76 even 27 inner
729.2.g.d.352.8 144 81.22 even 27
729.2.g.d.379.8 144 9.7 even 3
6561.2.a.c.1.6 72 81.61 even 27
6561.2.a.d.1.67 72 81.20 odd 54