Properties

Label 729.2.g.a.379.1
Level $729$
Weight $2$
Character 729.379
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 379.1
Character \(\chi\) \(=\) 729.379
Dual form 729.2.g.a.352.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.715589 - 2.39023i) q^{2} +(-3.53018 + 2.32184i) q^{4} +(0.557507 + 1.29245i) q^{5} +(0.185491 - 3.18476i) q^{7} +(4.25325 + 3.56890i) q^{8} +(2.69030 - 2.25743i) q^{10} +(2.82875 + 3.79967i) q^{11} +(-1.46355 - 1.55128i) q^{13} +(-7.74507 + 1.83561i) q^{14} +(2.13982 - 4.96066i) q^{16} +(-0.520249 - 2.95048i) q^{17} +(1.23380 - 6.99724i) q^{19} +(-4.96894 - 3.26813i) q^{20} +(7.05788 - 9.48038i) q^{22} +(-0.175833 - 3.01894i) q^{23} +(2.07161 - 2.19577i) q^{25} +(-2.66061 + 4.60832i) q^{26} +(6.73968 + 11.6735i) q^{28} +(-2.14282 - 0.507857i) q^{29} +(-3.36550 - 1.69022i) q^{31} +(-2.35903 - 0.275731i) q^{32} +(-6.68005 + 3.35485i) q^{34} +(4.21955 - 1.53579i) q^{35} +(-6.31317 - 2.29781i) q^{37} +(-17.6079 + 2.05807i) q^{38} +(-2.24139 + 7.48677i) q^{40} +(-1.21463 + 4.05715i) q^{41} +(-0.788553 + 0.0921686i) q^{43} +(-18.8082 - 6.84563i) q^{44} +(-7.09015 + 2.58060i) q^{46} +(5.17009 - 2.59652i) q^{47} +(-3.15564 - 0.368841i) q^{49} +(-6.73083 - 3.38035i) q^{50} +(8.76842 + 2.07815i) q^{52} +(-4.83254 - 8.37020i) q^{53} +(-3.33382 + 5.77435i) q^{55} +(12.1550 - 12.8836i) q^{56} +(0.319479 + 5.48525i) q^{58} +(0.958961 - 1.28811i) q^{59} +(0.969734 + 0.637804i) q^{61} +(-1.63170 + 9.25383i) q^{62} +(-0.847235 - 4.80491i) q^{64} +(1.18900 - 2.75641i) q^{65} +(-5.82050 + 1.37948i) q^{67} +(8.68709 + 9.20778i) q^{68} +(-6.69036 - 8.98671i) q^{70} +(-2.74773 + 2.30562i) q^{71} +(8.55952 + 7.18229i) q^{73} +(-0.974659 + 16.7342i) q^{74} +(11.8909 + 27.5662i) q^{76} +(12.6258 - 8.30409i) q^{77} +(-1.34462 - 4.49133i) q^{79} +7.60435 q^{80} +10.5667 q^{82} +(4.29047 + 14.3312i) q^{83} +(3.52329 - 2.31730i) q^{85} +(0.784584 + 1.81887i) q^{86} +(-1.52926 + 26.2565i) q^{88} +(-3.17449 - 2.66371i) q^{89} +(-5.21193 + 4.37333i) q^{91} +(7.63020 + 10.2491i) q^{92} +(-9.90595 - 10.4997i) q^{94} +(9.73140 - 2.30638i) q^{95} +(4.98577 - 11.5583i) q^{97} +(1.37652 + 7.80666i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.715589 2.39023i −0.505998 1.69015i −0.704210 0.709992i \(-0.748699\pi\)
0.198212 0.980159i \(-0.436487\pi\)
\(3\) 0 0
\(4\) −3.53018 + 2.32184i −1.76509 + 1.16092i
\(5\) 0.557507 + 1.29245i 0.249325 + 0.577999i 0.996213 0.0869504i \(-0.0277122\pi\)
−0.746888 + 0.664950i \(0.768453\pi\)
\(6\) 0 0
\(7\) 0.185491 3.18476i 0.0701091 1.20373i −0.761425 0.648253i \(-0.775500\pi\)
0.831534 0.555474i \(-0.187463\pi\)
\(8\) 4.25325 + 3.56890i 1.50375 + 1.26180i
\(9\) 0 0
\(10\) 2.69030 2.25743i 0.850749 0.713863i
\(11\) 2.82875 + 3.79967i 0.852900 + 1.14564i 0.987945 + 0.154804i \(0.0494748\pi\)
−0.135045 + 0.990839i \(0.543118\pi\)
\(12\) 0 0
\(13\) −1.46355 1.55128i −0.405917 0.430247i 0.491875 0.870666i \(-0.336312\pi\)
−0.897793 + 0.440419i \(0.854830\pi\)
\(14\) −7.74507 + 1.83561i −2.06996 + 0.490589i
\(15\) 0 0
\(16\) 2.13982 4.96066i 0.534955 1.24017i
\(17\) −0.520249 2.95048i −0.126179 0.715596i −0.980601 0.196016i \(-0.937200\pi\)
0.854422 0.519580i \(-0.173912\pi\)
\(18\) 0 0
\(19\) 1.23380 6.99724i 0.283053 1.60528i −0.429103 0.903255i \(-0.641170\pi\)
0.712157 0.702020i \(-0.247718\pi\)
\(20\) −4.96894 3.26813i −1.11109 0.730775i
\(21\) 0 0
\(22\) 7.05788 9.48038i 1.50475 2.02122i
\(23\) −0.175833 3.01894i −0.0366637 0.629492i −0.965725 0.259567i \(-0.916420\pi\)
0.929061 0.369925i \(-0.120617\pi\)
\(24\) 0 0
\(25\) 2.07161 2.19577i 0.414321 0.439155i
\(26\) −2.66061 + 4.60832i −0.521789 + 0.903765i
\(27\) 0 0
\(28\) 6.73968 + 11.6735i 1.27368 + 2.20608i
\(29\) −2.14282 0.507857i −0.397911 0.0943066i 0.0267883 0.999641i \(-0.491472\pi\)
−0.424699 + 0.905335i \(0.639620\pi\)
\(30\) 0 0
\(31\) −3.36550 1.69022i −0.604461 0.303572i 0.120122 0.992759i \(-0.461671\pi\)
−0.724583 + 0.689187i \(0.757968\pi\)
\(32\) −2.35903 0.275731i −0.417021 0.0487428i
\(33\) 0 0
\(34\) −6.68005 + 3.35485i −1.14562 + 0.575351i
\(35\) 4.21955 1.53579i 0.713233 0.259596i
\(36\) 0 0
\(37\) −6.31317 2.29781i −1.03788 0.377757i −0.233803 0.972284i \(-0.575117\pi\)
−0.804076 + 0.594527i \(0.797339\pi\)
\(38\) −17.6079 + 2.05807i −2.85638 + 0.333863i
\(39\) 0 0
\(40\) −2.24139 + 7.48677i −0.354395 + 1.18376i
\(41\) −1.21463 + 4.05715i −0.189693 + 0.633620i 0.809241 + 0.587476i \(0.199878\pi\)
−0.998935 + 0.0461439i \(0.985307\pi\)
\(42\) 0 0
\(43\) −0.788553 + 0.0921686i −0.120253 + 0.0140556i −0.176007 0.984389i \(-0.556318\pi\)
0.0557534 + 0.998445i \(0.482244\pi\)
\(44\) −18.8082 6.84563i −2.83544 1.03202i
\(45\) 0 0
\(46\) −7.09015 + 2.58060i −1.04538 + 0.380489i
\(47\) 5.17009 2.59652i 0.754135 0.378741i −0.0298224 0.999555i \(-0.509494\pi\)
0.783958 + 0.620814i \(0.213198\pi\)
\(48\) 0 0
\(49\) −3.15564 0.368841i −0.450805 0.0526916i
\(50\) −6.73083 3.38035i −0.951884 0.478054i
\(51\) 0 0
\(52\) 8.76842 + 2.07815i 1.21596 + 0.288188i
\(53\) −4.83254 8.37020i −0.663800 1.14973i −0.979609 0.200912i \(-0.935609\pi\)
0.315809 0.948823i \(-0.397724\pi\)
\(54\) 0 0
\(55\) −3.33382 + 5.77435i −0.449532 + 0.778613i
\(56\) 12.1550 12.8836i 1.62428 1.72164i
\(57\) 0 0
\(58\) 0.319479 + 5.48525i 0.0419497 + 0.720248i
\(59\) 0.958961 1.28811i 0.124846 0.167697i −0.735306 0.677736i \(-0.762961\pi\)
0.860152 + 0.510038i \(0.170369\pi\)
\(60\) 0 0
\(61\) 0.969734 + 0.637804i 0.124162 + 0.0816624i 0.610071 0.792347i \(-0.291141\pi\)
−0.485909 + 0.874009i \(0.661511\pi\)
\(62\) −1.63170 + 9.25383i −0.207226 + 1.17524i
\(63\) 0 0
\(64\) −0.847235 4.80491i −0.105904 0.600613i
\(65\) 1.18900 2.75641i 0.147477 0.341891i
\(66\) 0 0
\(67\) −5.82050 + 1.37948i −0.711088 + 0.168531i −0.570213 0.821497i \(-0.693139\pi\)
−0.140874 + 0.990027i \(0.544991\pi\)
\(68\) 8.68709 + 9.20778i 1.05346 + 1.11661i
\(69\) 0 0
\(70\) −6.69036 8.98671i −0.799651 1.07412i
\(71\) −2.74773 + 2.30562i −0.326095 + 0.273626i −0.791107 0.611678i \(-0.790495\pi\)
0.465011 + 0.885305i \(0.346050\pi\)
\(72\) 0 0
\(73\) 8.55952 + 7.18229i 1.00182 + 0.840623i 0.987235 0.159270i \(-0.0509141\pi\)
0.0145810 + 0.999894i \(0.495359\pi\)
\(74\) −0.974659 + 16.7342i −0.113302 + 1.94532i
\(75\) 0 0
\(76\) 11.8909 + 27.5662i 1.36398 + 3.16206i
\(77\) 12.6258 8.30409i 1.43884 0.946339i
\(78\) 0 0
\(79\) −1.34462 4.49133i −0.151281 0.505314i 0.848431 0.529306i \(-0.177548\pi\)
−0.999712 + 0.0239917i \(0.992362\pi\)
\(80\) 7.60435 0.850192
\(81\) 0 0
\(82\) 10.5667 1.16690
\(83\) 4.29047 + 14.3312i 0.470940 + 1.57305i 0.782391 + 0.622787i \(0.214000\pi\)
−0.311451 + 0.950262i \(0.600815\pi\)
\(84\) 0 0
\(85\) 3.52329 2.31730i 0.382154 0.251347i
\(86\) 0.784584 + 1.81887i 0.0846039 + 0.196134i
\(87\) 0 0
\(88\) −1.52926 + 26.2565i −0.163020 + 2.79895i
\(89\) −3.17449 2.66371i −0.336495 0.282353i 0.458845 0.888516i \(-0.348263\pi\)
−0.795340 + 0.606164i \(0.792708\pi\)
\(90\) 0 0
\(91\) −5.21193 + 4.37333i −0.546358 + 0.458449i
\(92\) 7.63020 + 10.2491i 0.795503 + 1.06855i
\(93\) 0 0
\(94\) −9.90595 10.4997i −1.02172 1.08296i
\(95\) 9.73140 2.30638i 0.998421 0.236630i
\(96\) 0 0
\(97\) 4.98577 11.5583i 0.506229 1.17357i −0.453146 0.891436i \(-0.649698\pi\)
0.959375 0.282134i \(-0.0910423\pi\)
\(98\) 1.37652 + 7.80666i 0.139050 + 0.788591i
\(99\) 0 0
\(100\) −2.21491 + 12.5614i −0.221491 + 1.25614i
\(101\) −3.76387 2.47554i −0.374519 0.246325i 0.348269 0.937395i \(-0.386769\pi\)
−0.722788 + 0.691070i \(0.757140\pi\)
\(102\) 0 0
\(103\) 8.33642 11.1978i 0.821412 1.10335i −0.171581 0.985170i \(-0.554888\pi\)
0.992993 0.118177i \(-0.0377051\pi\)
\(104\) −0.688509 11.8212i −0.0675139 1.15917i
\(105\) 0 0
\(106\) −16.5486 + 17.5405i −1.60734 + 1.70369i
\(107\) 2.27719 3.94420i 0.220144 0.381301i −0.734708 0.678384i \(-0.762681\pi\)
0.954852 + 0.297083i \(0.0960139\pi\)
\(108\) 0 0
\(109\) −3.56879 6.18132i −0.341828 0.592063i 0.642944 0.765913i \(-0.277713\pi\)
−0.984772 + 0.173850i \(0.944379\pi\)
\(110\) 16.1877 + 3.83655i 1.54344 + 0.365801i
\(111\) 0 0
\(112\) −15.4016 7.73498i −1.45532 0.730887i
\(113\) 7.77675 + 0.908972i 0.731575 + 0.0855089i 0.473721 0.880675i \(-0.342911\pi\)
0.257854 + 0.966184i \(0.416985\pi\)
\(114\) 0 0
\(115\) 3.80379 1.91033i 0.354705 0.178139i
\(116\) 8.74368 3.18244i 0.811830 0.295482i
\(117\) 0 0
\(118\) −3.76510 1.37039i −0.346606 0.126154i
\(119\) −9.49307 + 1.10958i −0.870228 + 0.101715i
\(120\) 0 0
\(121\) −3.28084 + 10.9588i −0.298258 + 0.996251i
\(122\) 0.830570 2.77430i 0.0751963 0.251173i
\(123\) 0 0
\(124\) 15.8052 1.84736i 1.41935 0.165898i
\(125\) 10.6062 + 3.86035i 0.948650 + 0.345280i
\(126\) 0 0
\(127\) 9.61531 3.49969i 0.853220 0.310547i 0.121868 0.992546i \(-0.461112\pi\)
0.731353 + 0.681999i \(0.238889\pi\)
\(128\) −15.1235 + 7.59530i −1.33674 + 0.671336i
\(129\) 0 0
\(130\) −7.43931 0.869531i −0.652471 0.0762629i
\(131\) −7.69068 3.86240i −0.671938 0.337460i 0.0799048 0.996802i \(-0.474538\pi\)
−0.751843 + 0.659343i \(0.770835\pi\)
\(132\) 0 0
\(133\) −22.0557 5.22729i −1.91247 0.453264i
\(134\) 7.46238 + 12.9252i 0.644652 + 1.11657i
\(135\) 0 0
\(136\) 8.31720 14.4058i 0.713194 1.23529i
\(137\) 0.733364 0.777320i 0.0626555 0.0664110i −0.695288 0.718732i \(-0.744723\pi\)
0.757943 + 0.652321i \(0.226204\pi\)
\(138\) 0 0
\(139\) 0.433062 + 7.43539i 0.0367318 + 0.630661i 0.965565 + 0.260163i \(0.0837762\pi\)
−0.928833 + 0.370499i \(0.879187\pi\)
\(140\) −11.3299 + 15.2187i −0.957552 + 1.28621i
\(141\) 0 0
\(142\) 7.47721 + 4.91784i 0.627474 + 0.412696i
\(143\) 1.75431 9.94920i 0.146703 0.831994i
\(144\) 0 0
\(145\) −0.538257 3.05261i −0.0446998 0.253505i
\(146\) 11.0423 25.5988i 0.913864 2.11857i
\(147\) 0 0
\(148\) 27.6218 6.54648i 2.27049 0.538117i
\(149\) −1.67541 1.77583i −0.137255 0.145482i 0.655100 0.755542i \(-0.272627\pi\)
−0.792355 + 0.610061i \(0.791145\pi\)
\(150\) 0 0
\(151\) 12.7659 + 17.1476i 1.03888 + 1.39545i 0.915139 + 0.403139i \(0.132081\pi\)
0.123739 + 0.992315i \(0.460512\pi\)
\(152\) 30.2201 25.3577i 2.45117 2.05678i
\(153\) 0 0
\(154\) −28.8836 24.2362i −2.32751 1.95301i
\(155\) 0.308226 5.29203i 0.0247573 0.425066i
\(156\) 0 0
\(157\) −2.55930 5.93312i −0.204254 0.473515i 0.785041 0.619444i \(-0.212642\pi\)
−0.989295 + 0.145930i \(0.953383\pi\)
\(158\) −9.77315 + 6.42790i −0.777510 + 0.511376i
\(159\) 0 0
\(160\) −0.958807 3.20264i −0.0758003 0.253191i
\(161\) −9.64722 −0.760307
\(162\) 0 0
\(163\) −6.49040 −0.508367 −0.254184 0.967156i \(-0.581807\pi\)
−0.254184 + 0.967156i \(0.581807\pi\)
\(164\) −5.13217 17.1426i −0.400755 1.33861i
\(165\) 0 0
\(166\) 31.1846 20.5105i 2.42040 1.59192i
\(167\) 1.54614 + 3.58435i 0.119644 + 0.277366i 0.967505 0.252853i \(-0.0813690\pi\)
−0.847861 + 0.530219i \(0.822110\pi\)
\(168\) 0 0
\(169\) 0.491414 8.43725i 0.0378011 0.649019i
\(170\) −8.06013 6.76325i −0.618184 0.518718i
\(171\) 0 0
\(172\) 2.56973 2.15626i 0.195940 0.164413i
\(173\) −9.75204 13.0993i −0.741434 0.995918i −0.999556 0.0298060i \(-0.990511\pi\)
0.258122 0.966112i \(-0.416896\pi\)
\(174\) 0 0
\(175\) −6.60875 7.00487i −0.499575 0.529518i
\(176\) 24.9019 5.90186i 1.87705 0.444869i
\(177\) 0 0
\(178\) −4.09526 + 9.49389i −0.306953 + 0.711597i
\(179\) 3.76729 + 21.3654i 0.281581 + 1.59692i 0.717250 + 0.696816i \(0.245401\pi\)
−0.435670 + 0.900107i \(0.643488\pi\)
\(180\) 0 0
\(181\) −1.10326 + 6.25687i −0.0820043 + 0.465070i 0.915959 + 0.401273i \(0.131432\pi\)
−0.997963 + 0.0637968i \(0.979679\pi\)
\(182\) 14.1829 + 9.32822i 1.05130 + 0.691454i
\(183\) 0 0
\(184\) 10.0264 13.4678i 0.739157 0.992861i
\(185\) −0.549845 9.44047i −0.0404254 0.694078i
\(186\) 0 0
\(187\) 9.73919 10.3229i 0.712200 0.754888i
\(188\) −12.2227 + 21.1703i −0.891429 + 1.54400i
\(189\) 0 0
\(190\) −12.4765 21.6099i −0.905139 1.56775i
\(191\) −13.4289 3.18271i −0.971680 0.230292i −0.286028 0.958221i \(-0.592335\pi\)
−0.685653 + 0.727929i \(0.740483\pi\)
\(192\) 0 0
\(193\) 3.37500 + 1.69499i 0.242938 + 0.122008i 0.566103 0.824335i \(-0.308450\pi\)
−0.323165 + 0.946343i \(0.604747\pi\)
\(194\) −31.1949 3.64616i −2.23966 0.261779i
\(195\) 0 0
\(196\) 11.9964 6.02480i 0.856883 0.430343i
\(197\) 5.18414 1.88687i 0.369355 0.134434i −0.150673 0.988584i \(-0.548144\pi\)
0.520027 + 0.854150i \(0.325922\pi\)
\(198\) 0 0
\(199\) 15.9504 + 5.80546i 1.13069 + 0.411538i 0.838543 0.544835i \(-0.183408\pi\)
0.292148 + 0.956373i \(0.405630\pi\)
\(200\) 16.6475 1.94582i 1.17716 0.137590i
\(201\) 0 0
\(202\) −3.22373 + 10.7680i −0.226821 + 0.757634i
\(203\) −2.01488 + 6.73016i −0.141417 + 0.472364i
\(204\) 0 0
\(205\) −5.92081 + 0.692043i −0.413527 + 0.0483344i
\(206\) −32.7307 11.9130i −2.28046 0.830018i
\(207\) 0 0
\(208\) −10.8271 + 3.94075i −0.750725 + 0.273242i
\(209\) 30.0773 15.1054i 2.08049 1.04486i
\(210\) 0 0
\(211\) −19.1764 2.24141i −1.32016 0.154305i −0.573333 0.819322i \(-0.694350\pi\)
−0.746828 + 0.665017i \(0.768424\pi\)
\(212\) 36.4939 + 18.3279i 2.50641 + 1.25877i
\(213\) 0 0
\(214\) −11.0571 2.62058i −0.755848 0.179139i
\(215\) −0.558746 0.967777i −0.0381062 0.0660018i
\(216\) 0 0
\(217\) −6.00721 + 10.4048i −0.407796 + 0.706323i
\(218\) −12.2210 + 12.9535i −0.827712 + 0.877323i
\(219\) 0 0
\(220\) −1.63810 28.1251i −0.110441 1.89619i
\(221\) −3.81560 + 5.12524i −0.256665 + 0.344761i
\(222\) 0 0
\(223\) 12.6459 + 8.31736i 0.846834 + 0.556972i 0.897132 0.441763i \(-0.145647\pi\)
−0.0502979 + 0.998734i \(0.516017\pi\)
\(224\) −1.31572 + 7.46180i −0.0879100 + 0.498562i
\(225\) 0 0
\(226\) −3.39230 19.2387i −0.225653 1.27974i
\(227\) −2.49594 + 5.78625i −0.165662 + 0.384047i −0.980744 0.195298i \(-0.937432\pi\)
0.815082 + 0.579345i \(0.196692\pi\)
\(228\) 0 0
\(229\) 9.06545 2.14855i 0.599062 0.141980i 0.0801134 0.996786i \(-0.474472\pi\)
0.518949 + 0.854805i \(0.326324\pi\)
\(230\) −7.28809 7.72493i −0.480563 0.509367i
\(231\) 0 0
\(232\) −7.30143 9.80753i −0.479363 0.643896i
\(233\) 16.1221 13.5280i 1.05619 0.886251i 0.0624612 0.998047i \(-0.480105\pi\)
0.993731 + 0.111797i \(0.0356606\pi\)
\(234\) 0 0
\(235\) 6.23822 + 5.23449i 0.406937 + 0.341460i
\(236\) −0.394529 + 6.77380i −0.0256816 + 0.440937i
\(237\) 0 0
\(238\) 9.44530 + 21.8967i 0.612248 + 1.41935i
\(239\) −13.7021 + 9.01199i −0.886313 + 0.582937i −0.908996 0.416806i \(-0.863150\pi\)
0.0226828 + 0.999743i \(0.492779\pi\)
\(240\) 0 0
\(241\) −0.473874 1.58285i −0.0305249 0.101960i 0.941370 0.337377i \(-0.109540\pi\)
−0.971895 + 0.235417i \(0.924355\pi\)
\(242\) 28.5417 1.83473
\(243\) 0 0
\(244\) −4.90421 −0.313960
\(245\) −1.28258 4.28412i −0.0819412 0.273703i
\(246\) 0 0
\(247\) −12.6604 + 8.32687i −0.805561 + 0.529826i
\(248\) −8.28208 19.2000i −0.525913 1.21920i
\(249\) 0 0
\(250\) 1.63744 28.1138i 0.103561 1.77807i
\(251\) 16.6349 + 13.9583i 1.04998 + 0.881040i 0.993092 0.117340i \(-0.0374368\pi\)
0.0568910 + 0.998380i \(0.481881\pi\)
\(252\) 0 0
\(253\) 10.9736 9.20793i 0.689903 0.578898i
\(254\) −15.2457 20.4785i −0.956599 1.28494i
\(255\) 0 0
\(256\) 22.2804 + 23.6158i 1.39252 + 1.47599i
\(257\) −5.98895 + 1.41941i −0.373580 + 0.0885402i −0.413117 0.910678i \(-0.635560\pi\)
0.0395367 + 0.999218i \(0.487412\pi\)
\(258\) 0 0
\(259\) −8.48901 + 19.6797i −0.527481 + 1.22284i
\(260\) 2.20255 + 12.4913i 0.136596 + 0.774677i
\(261\) 0 0
\(262\) −3.72869 + 21.1464i −0.230359 + 1.30643i
\(263\) 21.3300 + 14.0290i 1.31527 + 0.865065i 0.996567 0.0827912i \(-0.0263835\pi\)
0.318700 + 0.947856i \(0.396754\pi\)
\(264\) 0 0
\(265\) 8.12385 10.9122i 0.499044 0.670333i
\(266\) 3.28835 + 56.4588i 0.201622 + 3.46171i
\(267\) 0 0
\(268\) 17.3445 18.3841i 1.05948 1.12299i
\(269\) −8.19176 + 14.1885i −0.499460 + 0.865091i −1.00000 0.000622889i \(-0.999802\pi\)
0.500539 + 0.865714i \(0.333135\pi\)
\(270\) 0 0
\(271\) 13.6365 + 23.6192i 0.828361 + 1.43476i 0.899323 + 0.437284i \(0.144060\pi\)
−0.0709627 + 0.997479i \(0.522607\pi\)
\(272\) −15.7496 3.73271i −0.954957 0.226329i
\(273\) 0 0
\(274\) −2.38277 1.19667i −0.143948 0.0722935i
\(275\) 14.2033 + 1.66012i 0.856490 + 0.100109i
\(276\) 0 0
\(277\) −20.4671 + 10.2790i −1.22975 + 0.617603i −0.940547 0.339665i \(-0.889686\pi\)
−0.289202 + 0.957268i \(0.593390\pi\)
\(278\) 17.4624 6.35580i 1.04733 0.381196i
\(279\) 0 0
\(280\) 23.4278 + 8.52704i 1.40008 + 0.509588i
\(281\) 29.7846 3.48132i 1.77680 0.207678i 0.836486 0.547989i \(-0.184606\pi\)
0.940313 + 0.340311i \(0.110532\pi\)
\(282\) 0 0
\(283\) −4.45027 + 14.8649i −0.264541 + 0.883630i 0.717755 + 0.696296i \(0.245170\pi\)
−0.982296 + 0.187334i \(0.940015\pi\)
\(284\) 4.34671 14.5190i 0.257930 0.861545i
\(285\) 0 0
\(286\) −25.0363 + 2.92632i −1.48043 + 0.173037i
\(287\) 12.6958 + 4.62088i 0.749407 + 0.272762i
\(288\) 0 0
\(289\) 7.54012 2.74438i 0.443536 0.161434i
\(290\) −6.91128 + 3.47097i −0.405844 + 0.203823i
\(291\) 0 0
\(292\) −46.8927 5.48097i −2.74419 0.320750i
\(293\) 6.88017 + 3.45535i 0.401944 + 0.201864i 0.638274 0.769809i \(-0.279649\pi\)
−0.236331 + 0.971673i \(0.575945\pi\)
\(294\) 0 0
\(295\) 2.19944 + 0.521276i 0.128056 + 0.0303499i
\(296\) −18.6508 32.3042i −1.08406 1.87764i
\(297\) 0 0
\(298\) −3.04574 + 5.27538i −0.176435 + 0.305595i
\(299\) −4.42587 + 4.69115i −0.255955 + 0.271296i
\(300\) 0 0
\(301\) 0.147265 + 2.52845i 0.00848824 + 0.145737i
\(302\) 31.8517 42.7842i 1.83286 2.46196i
\(303\) 0 0
\(304\) −32.0708 21.0933i −1.83939 1.20978i
\(305\) −0.283694 + 1.60891i −0.0162443 + 0.0921258i
\(306\) 0 0
\(307\) 2.28454 + 12.9563i 0.130386 + 0.739454i 0.977962 + 0.208781i \(0.0669496\pi\)
−0.847577 + 0.530673i \(0.821939\pi\)
\(308\) −25.2905 + 58.6299i −1.44106 + 3.34075i
\(309\) 0 0
\(310\) −12.8698 + 3.05019i −0.730953 + 0.173239i
\(311\) −3.76092 3.98634i −0.213262 0.226045i 0.611908 0.790929i \(-0.290402\pi\)
−0.825170 + 0.564884i \(0.808921\pi\)
\(312\) 0 0
\(313\) 14.4395 + 19.3956i 0.816167 + 1.09630i 0.993687 + 0.112185i \(0.0357850\pi\)
−0.177520 + 0.984117i \(0.556808\pi\)
\(314\) −12.3501 + 10.3630i −0.696959 + 0.584818i
\(315\) 0 0
\(316\) 15.1749 + 12.7332i 0.853653 + 0.716300i
\(317\) 0.601533 10.3279i 0.0337855 0.580074i −0.938355 0.345674i \(-0.887650\pi\)
0.972140 0.234400i \(-0.0753126\pi\)
\(318\) 0 0
\(319\) −4.13180 9.57859i −0.231337 0.536298i
\(320\) 5.73774 3.77377i 0.320750 0.210960i
\(321\) 0 0
\(322\) 6.90344 + 23.0591i 0.384714 + 1.28503i
\(323\) −21.2871 −1.18444
\(324\) 0 0
\(325\) −6.43816 −0.357125
\(326\) 4.64446 + 15.5136i 0.257233 + 0.859217i
\(327\) 0 0
\(328\) −19.6457 + 12.9212i −1.08475 + 0.713452i
\(329\) −7.31028 16.9471i −0.403029 0.934326i
\(330\) 0 0
\(331\) 1.78877 30.7120i 0.0983196 1.68808i −0.483957 0.875092i \(-0.660801\pi\)
0.582277 0.812991i \(-0.302162\pi\)
\(332\) −48.4207 40.6298i −2.65743 2.22985i
\(333\) 0 0
\(334\) 7.46105 6.26056i 0.408250 0.342563i
\(335\) −5.02788 6.75361i −0.274702 0.368989i
\(336\) 0 0
\(337\) 22.6048 + 23.9597i 1.23136 + 1.30517i 0.936938 + 0.349496i \(0.113647\pi\)
0.294427 + 0.955674i \(0.404871\pi\)
\(338\) −20.5187 + 4.86301i −1.11607 + 0.264513i
\(339\) 0 0
\(340\) −7.05745 + 16.3610i −0.382744 + 0.887300i
\(341\) −3.09789 17.5690i −0.167760 0.951414i
\(342\) 0 0
\(343\) 2.11774 12.0103i 0.114347 0.648496i
\(344\) −3.68285 2.42225i −0.198566 0.130599i
\(345\) 0 0
\(346\) −24.3319 + 32.6834i −1.30809 + 1.75707i
\(347\) −1.50790 25.8897i −0.0809485 1.38983i −0.757211 0.653171i \(-0.773438\pi\)
0.676262 0.736661i \(-0.263599\pi\)
\(348\) 0 0
\(349\) −10.1417 + 10.7495i −0.542871 + 0.575410i −0.939491 0.342573i \(-0.888702\pi\)
0.396620 + 0.917983i \(0.370183\pi\)
\(350\) −12.0141 + 20.8091i −0.642182 + 1.11229i
\(351\) 0 0
\(352\) −5.62541 9.74350i −0.299836 0.519330i
\(353\) −6.74749 1.59918i −0.359133 0.0851160i 0.0470887 0.998891i \(-0.485006\pi\)
−0.406221 + 0.913775i \(0.633154\pi\)
\(354\) 0 0
\(355\) −4.51176 2.26589i −0.239459 0.120261i
\(356\) 17.3912 + 2.03274i 0.921731 + 0.107735i
\(357\) 0 0
\(358\) 48.3724 24.2935i 2.55656 1.28395i
\(359\) −28.2850 + 10.2949i −1.49283 + 0.543344i −0.954192 0.299195i \(-0.903282\pi\)
−0.538634 + 0.842540i \(0.681060\pi\)
\(360\) 0 0
\(361\) −29.5849 10.7680i −1.55710 0.566738i
\(362\) 15.7449 1.84031i 0.827532 0.0967246i
\(363\) 0 0
\(364\) 8.24489 27.5399i 0.432150 1.44348i
\(365\) −4.51073 + 15.0669i −0.236102 + 0.788637i
\(366\) 0 0
\(367\) 22.8542 2.67127i 1.19298 0.139439i 0.503663 0.863900i \(-0.331985\pi\)
0.689315 + 0.724461i \(0.257911\pi\)
\(368\) −15.3522 5.58774i −0.800288 0.291281i
\(369\) 0 0
\(370\) −22.1715 + 8.06976i −1.15264 + 0.419527i
\(371\) −27.5535 + 13.8379i −1.43051 + 0.718427i
\(372\) 0 0
\(373\) 31.2968 + 3.65807i 1.62049 + 0.189408i 0.877391 0.479776i \(-0.159282\pi\)
0.743097 + 0.669184i \(0.233356\pi\)
\(374\) −31.6435 15.8920i −1.63625 0.821754i
\(375\) 0 0
\(376\) 31.2564 + 7.40790i 1.61192 + 0.382033i
\(377\) 2.34830 + 4.06738i 0.120944 + 0.209481i
\(378\) 0 0
\(379\) 9.45804 16.3818i 0.485827 0.841477i −0.514040 0.857766i \(-0.671852\pi\)
0.999867 + 0.0162889i \(0.00518516\pi\)
\(380\) −28.9985 + 30.7367i −1.48759 + 1.57676i
\(381\) 0 0
\(382\) 2.00216 + 34.3757i 0.102439 + 1.75881i
\(383\) −17.8025 + 23.9129i −0.909666 + 1.22189i 0.0649222 + 0.997890i \(0.479320\pi\)
−0.974588 + 0.224003i \(0.928087\pi\)
\(384\) 0 0
\(385\) 17.7715 + 11.6885i 0.905721 + 0.595702i
\(386\) 1.63631 9.27997i 0.0832859 0.472338i
\(387\) 0 0
\(388\) 9.23585 + 52.3791i 0.468879 + 2.65915i
\(389\) −2.30996 + 5.35509i −0.117120 + 0.271514i −0.966685 0.255970i \(-0.917605\pi\)
0.849565 + 0.527484i \(0.176864\pi\)
\(390\) 0 0
\(391\) −8.81583 + 2.08939i −0.445836 + 0.105665i
\(392\) −12.1054 12.8309i −0.611413 0.648059i
\(393\) 0 0
\(394\) −8.21978 11.0411i −0.414107 0.556242i
\(395\) 5.05517 4.24179i 0.254353 0.213428i
\(396\) 0 0
\(397\) 4.50462 + 3.77983i 0.226081 + 0.189704i 0.748791 0.662806i \(-0.230635\pi\)
−0.522710 + 0.852510i \(0.675079\pi\)
\(398\) 2.46250 42.2794i 0.123434 2.11928i
\(399\) 0 0
\(400\) −6.45963 14.9751i −0.322981 0.748755i
\(401\) 8.96488 5.89630i 0.447685 0.294447i −0.305577 0.952167i \(-0.598849\pi\)
0.753262 + 0.657720i \(0.228479\pi\)
\(402\) 0 0
\(403\) 2.30360 + 7.69455i 0.114750 + 0.383293i
\(404\) 19.0349 0.947023
\(405\) 0 0
\(406\) 17.5285 0.869924
\(407\) −9.12748 30.4879i −0.452432 1.51123i
\(408\) 0 0
\(409\) −2.78148 + 1.82941i −0.137535 + 0.0904584i −0.616412 0.787424i \(-0.711414\pi\)
0.478877 + 0.877882i \(0.341044\pi\)
\(410\) 5.89101 + 13.6569i 0.290936 + 0.674467i
\(411\) 0 0
\(412\) −3.42971 + 58.8858i −0.168970 + 2.90110i
\(413\) −3.92444 3.29300i −0.193109 0.162038i
\(414\) 0 0
\(415\) −16.1303 + 13.5349i −0.791805 + 0.664403i
\(416\) 3.02483 + 4.06305i 0.148305 + 0.199208i
\(417\) 0 0
\(418\) −57.6284 61.0826i −2.81870 2.98765i
\(419\) −2.78252 + 0.659469i −0.135935 + 0.0322172i −0.298020 0.954560i \(-0.596326\pi\)
0.162085 + 0.986777i \(0.448178\pi\)
\(420\) 0 0
\(421\) −2.48989 + 5.77221i −0.121350 + 0.281321i −0.968053 0.250745i \(-0.919325\pi\)
0.846703 + 0.532065i \(0.178584\pi\)
\(422\) 8.36498 + 47.4401i 0.407201 + 2.30935i
\(423\) 0 0
\(424\) 9.31841 52.8473i 0.452542 2.56649i
\(425\) −7.55633 4.96988i −0.366536 0.241074i
\(426\) 0 0
\(427\) 2.21113 2.97006i 0.107004 0.143731i
\(428\) 1.11891 + 19.2110i 0.0540847 + 0.928599i
\(429\) 0 0
\(430\) −1.91338 + 2.02807i −0.0922715 + 0.0978020i
\(431\) 8.66111 15.0015i 0.417191 0.722596i −0.578465 0.815707i \(-0.696348\pi\)
0.995656 + 0.0931115i \(0.0296813\pi\)
\(432\) 0 0
\(433\) −6.83316 11.8354i −0.328381 0.568772i 0.653810 0.756659i \(-0.273170\pi\)
−0.982191 + 0.187887i \(0.939836\pi\)
\(434\) 29.1686 + 6.91308i 1.40014 + 0.331839i
\(435\) 0 0
\(436\) 26.9505 + 13.5350i 1.29069 + 0.648210i
\(437\) −21.3412 2.49442i −1.02089 0.119324i
\(438\) 0 0
\(439\) −33.3216 + 16.7347i −1.59035 + 0.798705i −0.999965 0.00841378i \(-0.997322\pi\)
−0.590389 + 0.807119i \(0.701025\pi\)
\(440\) −34.7876 + 12.6617i −1.65843 + 0.603621i
\(441\) 0 0
\(442\) 14.9809 + 5.45261i 0.712570 + 0.259354i
\(443\) −4.43485 + 0.518360i −0.210706 + 0.0246280i −0.220791 0.975321i \(-0.570864\pi\)
0.0100849 + 0.999949i \(0.496790\pi\)
\(444\) 0 0
\(445\) 1.67290 5.58789i 0.0793032 0.264891i
\(446\) 10.8311 36.1786i 0.512870 1.71310i
\(447\) 0 0
\(448\) −15.4596 + 1.80697i −0.730400 + 0.0853715i
\(449\) 3.44438 + 1.25365i 0.162550 + 0.0591635i 0.422014 0.906589i \(-0.361323\pi\)
−0.259463 + 0.965753i \(0.583546\pi\)
\(450\) 0 0
\(451\) −18.8517 + 6.86146i −0.887693 + 0.323094i
\(452\) −29.5638 + 14.8475i −1.39056 + 0.698368i
\(453\) 0 0
\(454\) 15.6166 + 1.82531i 0.732922 + 0.0856662i
\(455\) −8.55797 4.29798i −0.401204 0.201492i
\(456\) 0 0
\(457\) −17.8758 4.23665i −0.836197 0.198182i −0.209856 0.977732i \(-0.567300\pi\)
−0.626340 + 0.779550i \(0.715448\pi\)
\(458\) −11.6227 20.1311i −0.543092 0.940664i
\(459\) 0 0
\(460\) −8.99256 + 15.5756i −0.419280 + 0.726215i
\(461\) −8.27825 + 8.77444i −0.385557 + 0.408666i −0.890862 0.454275i \(-0.849899\pi\)
0.505305 + 0.862941i \(0.331380\pi\)
\(462\) 0 0
\(463\) −0.160092 2.74867i −0.00744010 0.127742i −0.999983 0.00584512i \(-0.998139\pi\)
0.992543 0.121897i \(-0.0388976\pi\)
\(464\) −7.10455 + 9.54306i −0.329820 + 0.443025i
\(465\) 0 0
\(466\) −43.8719 28.8550i −2.03233 1.33668i
\(467\) −5.46587 + 30.9985i −0.252930 + 1.43444i 0.548399 + 0.836216i \(0.315237\pi\)
−0.801330 + 0.598223i \(0.795874\pi\)
\(468\) 0 0
\(469\) 3.31368 + 18.7928i 0.153011 + 0.867771i
\(470\) 8.04765 18.6566i 0.371210 0.860563i
\(471\) 0 0
\(472\) 8.67582 2.05621i 0.399337 0.0946446i
\(473\) −2.58083 2.73552i −0.118667 0.125779i
\(474\) 0 0
\(475\) −12.8084 17.2047i −0.587689 0.789404i
\(476\) 30.9360 25.9584i 1.41795 1.18980i
\(477\) 0 0
\(478\) 31.3458 + 26.3023i 1.43372 + 1.20304i
\(479\) 0.162090 2.78298i 0.00740607 0.127157i −0.992579 0.121605i \(-0.961196\pi\)
0.999985 0.00555190i \(-0.00176723\pi\)
\(480\) 0 0
\(481\) 5.67514 + 13.1564i 0.258764 + 0.599882i
\(482\) −3.44428 + 2.26534i −0.156883 + 0.103183i
\(483\) 0 0
\(484\) −13.8625 46.3039i −0.630113 2.10472i
\(485\) 17.7181 0.804538
\(486\) 0 0
\(487\) −31.6987 −1.43640 −0.718202 0.695835i \(-0.755035\pi\)
−0.718202 + 0.695835i \(0.755035\pi\)
\(488\) 1.84826 + 6.17362i 0.0836668 + 0.279466i
\(489\) 0 0
\(490\) −9.32226 + 6.13135i −0.421137 + 0.276986i
\(491\) 13.9396 + 32.3157i 0.629086 + 1.45838i 0.872574 + 0.488481i \(0.162449\pi\)
−0.243489 + 0.969904i \(0.578292\pi\)
\(492\) 0 0
\(493\) −0.383622 + 6.58654i −0.0172775 + 0.296643i
\(494\) 28.9628 + 24.3027i 1.30310 + 1.09343i
\(495\) 0 0
\(496\) −15.5862 + 13.0783i −0.699839 + 0.587235i
\(497\) 6.83316 + 9.17853i 0.306509 + 0.411713i
\(498\) 0 0
\(499\) 5.48286 + 5.81149i 0.245446 + 0.260158i 0.838371 0.545100i \(-0.183508\pi\)
−0.592925 + 0.805258i \(0.702027\pi\)
\(500\) −46.4050 + 10.9982i −2.07529 + 0.491854i
\(501\) 0 0
\(502\) 21.4599 49.7496i 0.957802 2.22043i
\(503\) 2.70376 + 15.3338i 0.120555 + 0.683700i 0.983849 + 0.178999i \(0.0572860\pi\)
−0.863294 + 0.504701i \(0.831603\pi\)
\(504\) 0 0
\(505\) 1.10111 6.24473i 0.0489989 0.277887i
\(506\) −29.8617 19.6403i −1.32751 0.873120i
\(507\) 0 0
\(508\) −25.8181 + 34.6797i −1.14549 + 1.53866i
\(509\) −1.00472 17.2503i −0.0445332 0.764606i −0.944472 0.328591i \(-0.893426\pi\)
0.899939 0.436015i \(-0.143611\pi\)
\(510\) 0 0
\(511\) 24.4616 25.9278i 1.08212 1.14698i
\(512\) 23.5802 40.8420i 1.04211 1.80498i
\(513\) 0 0
\(514\) 7.67834 + 13.2993i 0.338677 + 0.586606i
\(515\) 19.1201 + 4.53155i 0.842532 + 0.199684i
\(516\) 0 0
\(517\) 24.4908 + 12.2997i 1.07710 + 0.540942i
\(518\) 53.1138 + 6.20812i 2.33369 + 0.272769i
\(519\) 0 0
\(520\) 14.8945 7.48028i 0.653166 0.328032i
\(521\) 33.0219 12.0190i 1.44672 0.526562i 0.505045 0.863093i \(-0.331476\pi\)
0.941672 + 0.336531i \(0.109254\pi\)
\(522\) 0 0
\(523\) 2.55225 + 0.928943i 0.111602 + 0.0406198i 0.397218 0.917724i \(-0.369976\pi\)
−0.285616 + 0.958344i \(0.592198\pi\)
\(524\) 36.1173 4.22151i 1.57779 0.184418i
\(525\) 0 0
\(526\) 18.2690 61.0228i 0.796567 2.66072i
\(527\) −3.23605 + 10.8092i −0.140965 + 0.470854i
\(528\) 0 0
\(529\) 13.7614 1.60848i 0.598322 0.0699339i
\(530\) −31.8961 11.6092i −1.38548 0.504273i
\(531\) 0 0
\(532\) 89.9974 32.7564i 3.90188 1.42017i
\(533\) 8.07144 4.05363i 0.349613 0.175582i
\(534\) 0 0
\(535\) 6.36722 + 0.744221i 0.275279 + 0.0321755i
\(536\) −29.6793 14.9055i −1.28195 0.643819i
\(537\) 0 0
\(538\) 39.7759 + 9.42706i 1.71486 + 0.406429i
\(539\) −7.52504 13.0337i −0.324126 0.561403i
\(540\) 0 0
\(541\) 19.9581 34.5684i 0.858065 1.48621i −0.0157071 0.999877i \(-0.505000\pi\)
0.873772 0.486336i \(-0.161667\pi\)
\(542\) 46.6972 49.4962i 2.00582 2.12604i
\(543\) 0 0
\(544\) 0.413744 + 7.10371i 0.0177391 + 0.304569i
\(545\) 5.99940 8.05859i 0.256986 0.345192i
\(546\) 0 0
\(547\) 7.76427 + 5.10664i 0.331976 + 0.218344i 0.704543 0.709661i \(-0.251152\pi\)
−0.372567 + 0.928005i \(0.621522\pi\)
\(548\) −0.784096 + 4.44683i −0.0334949 + 0.189959i
\(549\) 0 0
\(550\) −6.19562 35.1371i −0.264182 1.49825i
\(551\) −6.19740 + 14.3672i −0.264018 + 0.612063i
\(552\) 0 0
\(553\) −14.5532 + 3.44918i −0.618867 + 0.146674i
\(554\) 39.2152 + 41.5657i 1.66609 + 1.76596i
\(555\) 0 0
\(556\) −18.7925 25.2428i −0.796981 1.07053i
\(557\) −28.8895 + 24.2411i −1.22409 + 1.02713i −0.225485 + 0.974247i \(0.572397\pi\)
−0.998601 + 0.0528835i \(0.983159\pi\)
\(558\) 0 0
\(559\) 1.29707 + 1.08837i 0.0548602 + 0.0460332i
\(560\) 1.41054 24.2181i 0.0596062 1.02340i
\(561\) 0 0
\(562\) −29.6347 68.7009i −1.25006 2.89797i
\(563\) −33.3297 + 21.9213i −1.40468 + 0.923873i −0.404726 + 0.914438i \(0.632633\pi\)
−0.999955 + 0.00943546i \(0.996997\pi\)
\(564\) 0 0
\(565\) 3.16079 + 10.5578i 0.132976 + 0.444169i
\(566\) 38.7153 1.62732
\(567\) 0 0
\(568\) −19.9153 −0.835626
\(569\) 8.95072 + 29.8975i 0.375234 + 1.25337i 0.912194 + 0.409760i \(0.134387\pi\)
−0.536960 + 0.843608i \(0.680427\pi\)
\(570\) 0 0
\(571\) 17.9710 11.8197i 0.752064 0.494640i −0.114675 0.993403i \(-0.536583\pi\)
0.866738 + 0.498763i \(0.166212\pi\)
\(572\) 16.9074 + 39.1957i 0.706933 + 1.63885i
\(573\) 0 0
\(574\) 1.96003 33.6525i 0.0818102 1.40463i
\(575\) −6.99316 5.86796i −0.291635 0.244711i
\(576\) 0 0
\(577\) 1.05985 0.889324i 0.0441223 0.0370230i −0.620460 0.784238i \(-0.713054\pi\)
0.664582 + 0.747215i \(0.268610\pi\)
\(578\) −11.9553 16.0588i −0.497276 0.667958i
\(579\) 0 0
\(580\) 8.98779 + 9.52650i 0.373198 + 0.395567i
\(581\) 46.4372 11.0058i 1.92654 0.456598i
\(582\) 0 0
\(583\) 18.1340 42.0392i 0.751032 1.74109i
\(584\) 10.7729 + 61.0961i 0.445785 + 2.52817i
\(585\) 0 0
\(586\) 3.33572 18.9178i 0.137797 0.781488i
\(587\) −6.69705 4.40472i −0.276417 0.181802i 0.403730 0.914878i \(-0.367714\pi\)
−0.680147 + 0.733076i \(0.738084\pi\)
\(588\) 0 0
\(589\) −15.9792 + 21.4638i −0.658412 + 0.884400i
\(590\) −0.327921 5.63019i −0.0135003 0.231791i
\(591\) 0 0
\(592\) −24.9077 + 26.4006i −1.02370 + 1.08506i
\(593\) 10.7066 18.5444i 0.439668 0.761527i −0.557996 0.829844i \(-0.688429\pi\)
0.997664 + 0.0683166i \(0.0217628\pi\)
\(594\) 0 0
\(595\) −6.72652 11.6507i −0.275761 0.477631i
\(596\) 10.0377 + 2.37897i 0.411159 + 0.0974465i
\(597\) 0 0
\(598\) 14.3800 + 7.22193i 0.588044 + 0.295327i
\(599\) −23.1091 2.70107i −0.944213 0.110363i −0.369967 0.929045i \(-0.620631\pi\)
−0.574247 + 0.818682i \(0.694705\pi\)
\(600\) 0 0
\(601\) −28.2127 + 14.1690i −1.15082 + 0.577964i −0.918791 0.394744i \(-0.870833\pi\)
−0.232030 + 0.972709i \(0.574537\pi\)
\(602\) 5.93821 2.16133i 0.242023 0.0880893i
\(603\) 0 0
\(604\) −84.8800 30.8938i −3.45372 1.25705i
\(605\) −15.9927 + 1.86928i −0.650195 + 0.0759969i
\(606\) 0 0
\(607\) 1.35006 4.50953i 0.0547974 0.183036i −0.926209 0.377010i \(-0.876952\pi\)
0.981007 + 0.193973i \(0.0621376\pi\)
\(608\) −4.83992 + 16.1665i −0.196285 + 0.655637i
\(609\) 0 0
\(610\) 4.04868 0.473222i 0.163926 0.0191602i
\(611\) −11.5946 4.22010i −0.469069 0.170727i
\(612\) 0 0
\(613\) 41.2145 15.0009i 1.66464 0.605879i 0.673558 0.739134i \(-0.264765\pi\)
0.991082 + 0.133255i \(0.0425429\pi\)
\(614\) 29.3338 14.7320i 1.18381 0.594534i
\(615\) 0 0
\(616\) 83.3369 + 9.74069i 3.35774 + 0.392464i
\(617\) 15.9174 + 7.99400i 0.640809 + 0.321826i 0.739365 0.673305i \(-0.235126\pi\)
−0.0985557 + 0.995132i \(0.531422\pi\)
\(618\) 0 0
\(619\) 5.45381 + 1.29258i 0.219207 + 0.0519531i 0.338752 0.940876i \(-0.389995\pi\)
−0.119545 + 0.992829i \(0.538143\pi\)
\(620\) 11.1991 + 19.3975i 0.449768 + 0.779021i
\(621\) 0 0
\(622\) −6.83702 + 11.8421i −0.274139 + 0.474823i
\(623\) −9.07212 + 9.61589i −0.363467 + 0.385252i
\(624\) 0 0
\(625\) 0.0461192 + 0.791837i 0.00184477 + 0.0316735i
\(626\) 36.0272 48.3930i 1.43994 1.93417i
\(627\) 0 0
\(628\) 22.8105 + 15.0027i 0.910238 + 0.598673i
\(629\) −3.49521 + 19.8223i −0.139363 + 0.790367i
\(630\) 0 0
\(631\) −2.84022 16.1077i −0.113067 0.641237i −0.987689 0.156431i \(-0.950001\pi\)
0.874622 0.484806i \(-0.161110\pi\)
\(632\) 10.3101 23.9015i 0.410115 0.950752i
\(633\) 0 0
\(634\) −25.1166 + 5.95275i −0.997509 + 0.236414i
\(635\) 9.88375 + 10.4762i 0.392225 + 0.415734i
\(636\) 0 0
\(637\) 4.04627 + 5.43509i 0.160319 + 0.215346i
\(638\) −19.9384 + 16.7303i −0.789369 + 0.662360i
\(639\) 0 0
\(640\) −18.2480 15.3119i −0.721314 0.605255i
\(641\) 1.35646 23.2895i 0.0535770 0.919881i −0.859255 0.511547i \(-0.829073\pi\)
0.912832 0.408334i \(-0.133890\pi\)
\(642\) 0 0
\(643\) −5.78038 13.4004i −0.227956 0.528461i 0.765399 0.643556i \(-0.222542\pi\)
−0.993354 + 0.115096i \(0.963283\pi\)
\(644\) 34.0564 22.3992i 1.34201 0.882654i
\(645\) 0 0
\(646\) 15.2328 + 50.8811i 0.599326 + 2.00189i
\(647\) −1.33592 −0.0525205 −0.0262602 0.999655i \(-0.508360\pi\)
−0.0262602 + 0.999655i \(0.508360\pi\)
\(648\) 0 0
\(649\) 7.60705 0.298603
\(650\) 4.60708 + 15.3887i 0.180705 + 0.603595i
\(651\) 0 0
\(652\) 22.9123 15.0696i 0.897314 0.590172i
\(653\) −6.52701 15.1313i −0.255422 0.592134i 0.741464 0.670993i \(-0.234132\pi\)
−0.996886 + 0.0788584i \(0.974873\pi\)
\(654\) 0 0
\(655\) 0.704343 12.0931i 0.0275210 0.472517i
\(656\) 17.5271 + 14.7069i 0.684316 + 0.574210i
\(657\) 0 0
\(658\) −35.2765 + 29.6005i −1.37522 + 1.15395i
\(659\) 26.8793 + 36.1051i 1.04707 + 1.40646i 0.909373 + 0.415981i \(0.136562\pi\)
0.137695 + 0.990475i \(0.456031\pi\)
\(660\) 0 0
\(661\) −17.0678 18.0908i −0.663860 0.703651i 0.304695 0.952450i \(-0.401446\pi\)
−0.968555 + 0.248799i \(0.919964\pi\)
\(662\) −74.6888 + 17.7016i −2.90286 + 0.687991i
\(663\) 0 0
\(664\) −32.8980 + 76.2662i −1.27669 + 2.95970i
\(665\) −5.54020 31.4200i −0.214840 1.21842i
\(666\) 0 0
\(667\) −1.15641 + 6.55832i −0.0447764 + 0.253939i
\(668\) −13.7804 9.06353i −0.533181 0.350679i
\(669\) 0 0
\(670\) −12.5448 + 16.8506i −0.484649 + 0.650996i
\(671\) 0.319689 + 5.48886i 0.0123415 + 0.211895i
\(672\) 0 0
\(673\) −1.35906 + 1.44052i −0.0523880 + 0.0555280i −0.753038 0.657978i \(-0.771412\pi\)
0.700650 + 0.713506i \(0.252894\pi\)
\(674\) 41.0936 71.1762i 1.58287 2.74161i
\(675\) 0 0
\(676\) 17.8551 + 30.9260i 0.686735 + 1.18946i
\(677\) −27.7238 6.57067i −1.06551 0.252531i −0.339778 0.940506i \(-0.610352\pi\)
−0.725735 + 0.687974i \(0.758500\pi\)
\(678\) 0 0
\(679\) −35.8857 18.0225i −1.37717 0.691639i
\(680\) 23.2556 + 2.71819i 0.891813 + 0.104238i
\(681\) 0 0
\(682\) −39.7772 + 19.9769i −1.52315 + 0.764953i
\(683\) −27.6811 + 10.0751i −1.05919 + 0.385512i −0.812123 0.583487i \(-0.801688\pi\)
−0.247064 + 0.968999i \(0.579466\pi\)
\(684\) 0 0
\(685\) 1.41350 + 0.514472i 0.0540071 + 0.0196570i
\(686\) −30.2229 + 3.53255i −1.15392 + 0.134873i
\(687\) 0 0
\(688\) −1.23014 + 4.10897i −0.0468988 + 0.156653i
\(689\) −5.91182 + 19.7468i −0.225222 + 0.752295i
\(690\) 0 0
\(691\) −48.2758 + 5.64264i −1.83650 + 0.214656i −0.962502 0.271275i \(-0.912555\pi\)
−0.873997 + 0.485931i \(0.838481\pi\)
\(692\) 64.8408 + 23.6001i 2.46488 + 0.897141i
\(693\) 0 0
\(694\) −60.8034 + 22.1306i −2.30807 + 0.840067i
\(695\) −9.36840 + 4.70499i −0.355364 + 0.178470i
\(696\) 0 0
\(697\) 12.6024 + 1.47301i 0.477351 + 0.0557944i
\(698\) 32.9512 + 16.5487i 1.24722 + 0.626378i
\(699\) 0 0
\(700\) 39.5942 + 9.38401i 1.49652 + 0.354682i
\(701\) −3.03784 5.26170i −0.114738 0.198732i 0.802937 0.596064i \(-0.203269\pi\)
−0.917675 + 0.397332i \(0.869936\pi\)
\(702\) 0 0
\(703\) −23.8675 + 41.3397i −0.900179 + 1.55916i
\(704\) 15.8605 16.8111i 0.597763 0.633592i
\(705\) 0 0
\(706\) 1.00601 + 17.2724i 0.0378615 + 0.650057i
\(707\) −8.58216 + 11.5278i −0.322765 + 0.433549i
\(708\) 0 0
\(709\) 18.1324 + 11.9259i 0.680978 + 0.447886i 0.842295 0.539016i \(-0.181204\pi\)
−0.161317 + 0.986903i \(0.551574\pi\)
\(710\) −2.18745 + 12.4056i −0.0820934 + 0.465575i
\(711\) 0 0
\(712\) −3.99536 22.6588i −0.149733 0.849175i
\(713\) −4.51089 + 10.4574i −0.168934 + 0.391634i
\(714\) 0 0
\(715\) 13.8368 3.27939i 0.517469 0.122642i
\(716\) −62.9061 66.6765i −2.35091 2.49182i
\(717\) 0 0
\(718\) 44.8477 + 60.2409i 1.67370 + 2.24817i
\(719\) 11.8323 9.92847i 0.441270 0.370269i −0.394915 0.918718i \(-0.629226\pi\)
0.836184 + 0.548449i \(0.184781\pi\)
\(720\) 0 0
\(721\) −34.1158 28.6266i −1.27054 1.06611i
\(722\) −4.56746 + 78.4203i −0.169983 + 2.91850i
\(723\) 0 0
\(724\) −10.6327 24.6495i −0.395162 0.916090i
\(725\) −5.55421 + 3.65306i −0.206278 + 0.135671i
\(726\) 0 0
\(727\) 7.38711 + 24.6747i 0.273973 + 0.915132i 0.978638 + 0.205592i \(0.0659121\pi\)
−0.704665 + 0.709540i \(0.748903\pi\)
\(728\) −37.7756 −1.40006
\(729\) 0 0
\(730\) 39.2412 1.45238
\(731\) 0.682185 + 2.27866i 0.0252315 + 0.0842791i
\(732\) 0 0
\(733\) −24.3865 + 16.0392i −0.900735 + 0.592423i −0.913206 0.407499i \(-0.866401\pi\)
0.0124701 + 0.999922i \(0.496031\pi\)
\(734\) −22.7392 52.7153i −0.839318 1.94576i
\(735\) 0 0
\(736\) −0.417619 + 7.17024i −0.0153936 + 0.264299i
\(737\) −21.7063 18.2138i −0.799563 0.670913i
\(738\) 0 0
\(739\) 15.6599 13.1402i 0.576058 0.483370i −0.307592 0.951518i \(-0.599523\pi\)
0.883650 + 0.468148i \(0.155079\pi\)
\(740\) 23.8603 + 32.0499i 0.877121 + 1.17818i
\(741\) 0 0
\(742\) 52.7928 + 55.9571i 1.93808 + 2.05425i
\(743\) 22.8643 5.41895i 0.838811 0.198802i 0.211311 0.977419i \(-0.432227\pi\)
0.627500 + 0.778617i \(0.284078\pi\)
\(744\) 0 0
\(745\) 1.36111 3.15541i 0.0498673 0.115605i
\(746\) −13.6520 77.4244i −0.499836 2.83471i
\(747\) 0 0
\(748\) −10.4129 + 59.0546i −0.380734 + 2.15925i
\(749\) −12.1390 7.98392i −0.443548 0.291726i
\(750\) 0 0
\(751\) 20.9583 28.1519i 0.764781 1.02728i −0.233707 0.972307i \(-0.575086\pi\)
0.998488 0.0549718i \(-0.0175069\pi\)
\(752\) −1.81738 31.2032i −0.0662729 1.13786i
\(753\) 0 0
\(754\) 8.04157 8.52356i 0.292857 0.310410i
\(755\) −15.0453 + 26.0592i −0.547554 + 0.948391i
\(756\) 0 0
\(757\) −23.1445 40.0875i −0.841202 1.45701i −0.888879 0.458142i \(-0.848515\pi\)
0.0476764 0.998863i \(-0.484818\pi\)
\(758\) −45.9244 10.8843i −1.66805 0.395335i
\(759\) 0 0
\(760\) 49.6213 + 24.9207i 1.79995 + 0.903971i
\(761\) 7.03624 + 0.822418i 0.255063 + 0.0298126i 0.242664 0.970110i \(-0.421979\pi\)
0.0123997 + 0.999923i \(0.496053\pi\)
\(762\) 0 0
\(763\) −20.3480 + 10.2192i −0.736648 + 0.369958i
\(764\) 54.7961 19.9441i 1.98245 0.721554i
\(765\) 0 0
\(766\) 69.8968 + 25.4404i 2.52547 + 0.919198i
\(767\) −3.40170 + 0.397602i −0.122828 + 0.0143566i
\(768\) 0 0
\(769\) 12.4254 41.5036i 0.448070 1.49666i −0.374085 0.927395i \(-0.622043\pi\)
0.822155 0.569264i \(-0.192772\pi\)
\(770\) 15.2212 50.8423i 0.548534 1.83223i
\(771\) 0 0
\(772\) −15.8499 + 1.85258i −0.570449 + 0.0666759i
\(773\) −33.8164 12.3082i −1.21629 0.442694i −0.347409 0.937714i \(-0.612938\pi\)
−0.868881 + 0.495020i \(0.835161\pi\)
\(774\) 0 0
\(775\) −10.6833 + 3.88841i −0.383756 + 0.139676i
\(776\) 62.4562 31.3667i 2.24205 1.12600i
\(777\) 0 0
\(778\) 14.4529 + 1.68930i 0.518162 + 0.0605644i
\(779\) 26.8902 + 13.5048i 0.963442 + 0.483859i
\(780\) 0 0
\(781\) −16.5332 3.91845i −0.591605 0.140213i
\(782\) 11.3026 + 19.5768i 0.404182 + 0.700063i
\(783\) 0 0
\(784\) −8.58220 + 14.8648i −0.306507 + 0.530886i
\(785\) 6.24141 6.61551i 0.222765 0.236118i
\(786\) 0 0
\(787\) −1.22106 20.9648i −0.0435262 0.747315i −0.947506 0.319739i \(-0.896405\pi\)
0.903979 0.427576i \(-0.140632\pi\)
\(788\) −13.9199 + 18.6977i −0.495877 + 0.666078i
\(789\) 0 0
\(790\) −13.7563 9.04767i −0.489427 0.321901i
\(791\) 4.33738 24.5985i 0.154219 0.874622i
\(792\) 0 0
\(793\) −0.429848 2.43779i −0.0152643 0.0865683i
\(794\) 5.81122 13.4719i 0.206232 0.478100i
\(795\) 0 0
\(796\) −69.7870 + 16.5398i −2.47353 + 0.586238i
\(797\) −28.9625 30.6985i −1.02591 1.08740i −0.996135 0.0878396i \(-0.972004\pi\)
−0.0297709 0.999557i \(-0.509478\pi\)
\(798\) 0 0
\(799\) −10.3507 13.9034i −0.366181 0.491867i
\(800\) −5.49242 + 4.60868i −0.194186 + 0.162942i
\(801\) 0 0
\(802\) −20.5087 17.2089i −0.724188 0.607666i
\(803\) −3.07760 + 52.8403i −0.108606 + 1.86469i
\(804\) 0 0
\(805\) −5.37839 12.4685i −0.189563 0.439457i
\(806\) 16.7433 11.0123i 0.589759 0.387891i
\(807\) 0 0
\(808\) −7.17373 23.9619i −0.252371 0.842978i
\(809\) −15.1427 −0.532390 −0.266195 0.963919i \(-0.585767\pi\)
−0.266195 + 0.963919i \(0.585767\pi\)
\(810\) 0 0
\(811\) 30.4862 1.07051 0.535257 0.844689i \(-0.320215\pi\)
0.535257 + 0.844689i \(0.320215\pi\)
\(812\) −8.51344 28.4369i −0.298763 0.997938i
\(813\) 0 0
\(814\) −66.3417 + 43.6336i −2.32528 + 1.52936i
\(815\) −3.61844 8.38849i −0.126748 0.293836i
\(816\) 0 0
\(817\) −0.327992 + 5.63141i −0.0114750 + 0.197018i
\(818\) 6.36311 + 5.33928i 0.222481 + 0.186684i
\(819\) 0 0
\(820\) 19.2947 16.1902i 0.673800 0.565386i
\(821\) 26.5397 + 35.6490i 0.926242 + 1.24416i 0.969499 + 0.245095i \(0.0788190\pi\)
−0.0432575 + 0.999064i \(0.513774\pi\)
\(822\) 0 0
\(823\) 16.2645 + 17.2393i 0.566943 + 0.600925i 0.945887 0.324495i \(-0.105194\pi\)
−0.378944 + 0.925419i \(0.623713\pi\)
\(824\) 75.4205 17.8750i 2.62740 0.622704i
\(825\) 0 0
\(826\) −5.06275 + 11.7368i −0.176155 + 0.408374i
\(827\) −0.904516 5.12977i −0.0314531 0.178379i 0.965034 0.262124i \(-0.0844230\pi\)
−0.996487 + 0.0837448i \(0.973312\pi\)
\(828\) 0 0
\(829\) 1.35636 7.69231i 0.0471084 0.267165i −0.952152 0.305626i \(-0.901134\pi\)
0.999260 + 0.0384608i \(0.0122455\pi\)
\(830\) 43.8943 + 28.8697i 1.52359 + 1.00208i
\(831\) 0 0
\(832\) −6.21377 + 8.34654i −0.215424 + 0.289364i
\(833\) 0.553459 + 9.50253i 0.0191762 + 0.329243i
\(834\) 0 0
\(835\) −3.77060 + 3.99660i −0.130487 + 0.138308i
\(836\) −71.1060 + 123.159i −2.45925 + 4.25955i
\(837\) 0 0
\(838\) 3.56743 + 6.17897i 0.123235 + 0.213449i
\(839\) 29.2828 + 6.94015i 1.01095 + 0.239601i 0.702534 0.711650i \(-0.252052\pi\)
0.308420 + 0.951250i \(0.400200\pi\)
\(840\) 0 0
\(841\) −21.5816 10.8387i −0.744193 0.373748i
\(842\) 15.5787 + 1.82089i 0.536877 + 0.0627519i
\(843\) 0 0
\(844\) 72.9005 36.6120i 2.50934 1.26024i
\(845\) 11.1787 4.06870i 0.384557 0.139967i
\(846\) 0 0
\(847\) 34.2925 + 12.4814i 1.17830 + 0.428867i
\(848\) −51.8625 + 6.06185i −1.78096 + 0.208165i
\(849\) 0 0
\(850\) −6.47194 + 21.6178i −0.221986 + 0.741484i
\(851\) −5.82687 + 19.4631i −0.199743 + 0.667187i
\(852\) 0 0
\(853\) −5.53554 + 0.647012i −0.189533 + 0.0221533i −0.210330 0.977630i \(-0.567454\pi\)
0.0207966 + 0.999784i \(0.493380\pi\)
\(854\) −8.68141 3.15978i −0.297072 0.108125i
\(855\) 0 0
\(856\) 23.7619 8.64862i 0.812165 0.295604i
\(857\) −15.6491 + 7.85928i −0.534564 + 0.268468i −0.695536 0.718491i \(-0.744833\pi\)
0.160973 + 0.986959i \(0.448537\pi\)
\(858\) 0 0
\(859\) 33.3514 + 3.89822i 1.13794 + 0.133006i 0.664125 0.747621i \(-0.268804\pi\)
0.473810 + 0.880627i \(0.342878\pi\)
\(860\) 4.21949 + 2.11911i 0.143884 + 0.0722610i
\(861\) 0 0
\(862\) −42.0549 9.96718i −1.43239 0.339484i
\(863\) 5.63576 + 9.76143i 0.191844 + 0.332283i 0.945861 0.324571i \(-0.105220\pi\)
−0.754018 + 0.656854i \(0.771887\pi\)
\(864\) 0 0
\(865\) 11.4933 19.9069i 0.390782 0.676855i
\(866\) −23.3996 + 24.8021i −0.795151 + 0.842811i
\(867\) 0 0
\(868\) −2.95169 50.6785i −0.100187 1.72014i
\(869\) 13.2620 17.8140i 0.449883 0.604297i
\(870\) 0 0
\(871\) 10.6586 + 7.01026i 0.361153 + 0.237534i
\(872\) 6.88157 39.0273i 0.233039 1.32163i
\(873\) 0 0
\(874\) 9.30925 + 52.7954i 0.314890 + 1.78583i
\(875\) 14.2617 33.0623i 0.482132 1.11771i
\(876\) 0 0
\(877\) 35.8093 8.48696i 1.20919 0.286584i 0.423901 0.905708i \(-0.360660\pi\)
0.785293 + 0.619124i \(0.212512\pi\)
\(878\) 63.8445 + 67.6712i 2.15465 + 2.28379i
\(879\) 0 0
\(880\) 21.5108 + 28.8940i 0.725129 + 0.974018i
\(881\) 10.8033 9.06508i 0.363974 0.305410i −0.442398 0.896819i \(-0.645872\pi\)
0.806372 + 0.591408i \(0.201428\pi\)
\(882\) 0 0
\(883\) −26.7963 22.4847i −0.901767 0.756672i 0.0687683 0.997633i \(-0.478093\pi\)
−0.970535 + 0.240961i \(0.922538\pi\)
\(884\) 1.56979 26.9522i 0.0527976 0.906500i
\(885\) 0 0
\(886\) 4.41253 + 10.2294i 0.148242 + 0.343664i
\(887\) 36.5713 24.0533i 1.22794 0.807631i 0.241288 0.970454i \(-0.422430\pi\)
0.986655 + 0.162823i \(0.0520599\pi\)
\(888\) 0 0
\(889\) −9.36211 31.2716i −0.313995 1.04882i
\(890\) −14.5535 −0.487833
\(891\) 0 0
\(892\) −63.9539 −2.14134
\(893\) −11.7896 39.3799i −0.394523 1.31780i
\(894\) 0 0
\(895\) −25.5133 + 16.7804i −0.852815 + 0.560905i
\(896\) 21.3840 + 49.5736i 0.714388 + 1.65614i
\(897\) 0 0
\(898\) 0.531760 9.12997i 0.0177451 0.304671i
\(899\) 6.35325 + 5.33101i 0.211893 + 0.177799i
\(900\) 0 0
\(901\) −22.1820 + 18.6129i −0.738988 + 0.620085i
\(902\) 29.8906 + 40.1500i 0.995248 + 1.33685i
\(903\) 0 0
\(904\) 29.8324 + 31.6205i 0.992211 + 1.05168i
\(905\) −8.70174 + 2.06235i −0.289256 + 0.0685548i
\(906\) 0 0
\(907\) −6.62314 + 15.3542i −0.219918 + 0.509827i −0.992081 0.125597i \(-0.959915\pi\)
0.772163 + 0.635424i \(0.219175\pi\)
\(908\) −4.62359 26.2217i −0.153439 0.870196i
\(909\) 0 0
\(910\) −4.14918 + 23.5311i −0.137544 + 0.780050i
\(911\) −15.9499 10.4904i −0.528445 0.347564i 0.257083 0.966389i \(-0.417238\pi\)
−0.785529 + 0.618825i \(0.787609\pi\)
\(912\) 0 0
\(913\) −42.3170 + 56.8416i −1.40049 + 1.88118i
\(914\) 2.66517 + 45.7592i 0.0881559 + 1.51358i
\(915\) 0 0
\(916\) −27.0141 + 28.6333i −0.892570 + 0.946069i
\(917\) −13.7274 + 23.7765i −0.453319 + 0.785171i
\(918\) 0 0
\(919\) −2.23912 3.87828i −0.0738619 0.127933i 0.826729 0.562600i \(-0.190199\pi\)
−0.900591 + 0.434668i \(0.856866\pi\)
\(920\) 22.9962 + 5.45020i 0.758163 + 0.179688i
\(921\) 0 0
\(922\) 26.8968 + 13.5081i 0.885799 + 0.444865i
\(923\) 7.59810 + 0.888091i 0.250095 + 0.0292319i
\(924\) 0 0
\(925\) −18.1239 + 9.10215i −0.595909 + 0.299277i
\(926\) −6.45541 + 2.34958i −0.212138 + 0.0772119i
\(927\) 0 0
\(928\) 4.91493 + 1.78889i 0.161340 + 0.0587231i
\(929\) −40.4819 + 4.73166i −1.32817 + 0.155241i −0.750413 0.660969i \(-0.770145\pi\)
−0.577755 + 0.816210i \(0.696071\pi\)
\(930\) 0 0
\(931\) −6.47430 + 21.6257i −0.212187 + 0.708753i
\(932\) −25.5040 + 85.1892i −0.835410 + 2.79046i
\(933\) 0 0
\(934\) 78.0050 9.11748i 2.55240 0.298333i
\(935\) 18.7715 + 6.83227i 0.613894 + 0.223439i
\(936\) 0 0
\(937\) −25.7954 + 9.38877i −0.842700 + 0.306718i −0.727060 0.686574i \(-0.759114\pi\)
−0.115640 + 0.993291i \(0.536892\pi\)
\(938\) 42.5480 21.3684i 1.38924 0.697703i
\(939\) 0 0
\(940\) −34.1756 3.99456i −1.11469 0.130288i
\(941\) 2.25860 + 1.13431i 0.0736281 + 0.0369774i 0.485232 0.874385i \(-0.338735\pi\)
−0.411604 + 0.911363i \(0.635031\pi\)
\(942\) 0 0
\(943\) 12.4619 + 2.95351i 0.405814 + 0.0961796i
\(944\) −4.33786 7.51340i −0.141185 0.244540i
\(945\) 0 0
\(946\) −4.69172 + 8.12630i −0.152541 + 0.264209i
\(947\) −8.76188 + 9.28705i −0.284723 + 0.301789i −0.853911 0.520418i \(-0.825776\pi\)
0.569188 + 0.822207i \(0.307257\pi\)
\(948\) 0 0
\(949\) −1.38560 23.7899i −0.0449785 0.772252i
\(950\) −31.9576 + 42.9265i −1.03684 + 1.39272i
\(951\) 0 0
\(952\) −44.3364 29.1605i −1.43695 0.945096i
\(953\) −1.62376 + 9.20879i −0.0525987 + 0.298302i −0.999747 0.0224940i \(-0.992839\pi\)
0.947148 + 0.320796i \(0.103950\pi\)
\(954\) 0 0
\(955\) −3.37322 19.1305i −0.109155 0.619048i
\(956\) 27.4464 63.6279i 0.887679 2.05787i
\(957\) 0 0
\(958\) −6.76795 + 1.60403i −0.218663 + 0.0518240i
\(959\) −2.33955 2.47978i −0.0755480 0.0800762i
\(960\) 0 0
\(961\) −10.0422 13.4890i −0.323941 0.435128i
\(962\) 27.3859 22.9795i 0.882958 0.740890i
\(963\) 0 0
\(964\) 5.34797 + 4.48748i 0.172247 + 0.144532i
\(965\) −0.309096 + 5.30698i −0.00995016 + 0.170838i
\(966\) 0 0
\(967\) −0.850061 1.97066i −0.0273361 0.0633722i 0.904001 0.427530i \(-0.140616\pi\)
−0.931337 + 0.364158i \(0.881357\pi\)
\(968\) −53.0649 + 34.9013i −1.70557 + 1.12177i
\(969\) 0 0
\(970\) −12.6789 42.3505i −0.407095 1.35979i
\(971\) 18.8603 0.605255 0.302627 0.953109i \(-0.402136\pi\)
0.302627 + 0.953109i \(0.402136\pi\)
\(972\) 0 0
\(973\) 23.7603 0.761719
\(974\) 22.6832 + 75.7673i 0.726818 + 2.42774i
\(975\) 0 0
\(976\) 5.23898 3.44573i 0.167696 0.110295i
\(977\) −23.8103 55.1986i −0.761760 1.76596i −0.632810 0.774307i \(-0.718099\pi\)
−0.128950 0.991651i \(-0.541161\pi\)
\(978\) 0 0
\(979\) 1.14139 19.5970i 0.0364791 0.626322i
\(980\) 14.4748 + 12.1458i 0.462380 + 0.387983i
\(981\) 0 0
\(982\) 67.2670 56.4437i 2.14657 1.80119i
\(983\) −19.1834 25.7678i −0.611857 0.821866i 0.382937 0.923774i \(-0.374913\pi\)
−0.994794 + 0.101908i \(0.967505\pi\)
\(984\) 0 0
\(985\) 5.32887 + 5.64827i 0.169792 + 0.179969i
\(986\) 16.0179 3.79631i 0.510114 0.120899i
\(987\) 0 0
\(988\) 25.3598 58.7907i 0.806803 1.87038i
\(989\) 0.416905 + 2.36439i 0.0132568 + 0.0751831i
\(990\) 0 0
\(991\) −2.05455 + 11.6519i −0.0652648 + 0.370135i 0.934630 + 0.355622i \(0.115731\pi\)
−0.999895 + 0.0145131i \(0.995380\pi\)
\(992\) 7.47326 + 4.91524i 0.237276 + 0.156059i
\(993\) 0 0
\(994\) 17.0491 22.9009i 0.540765 0.726373i
\(995\) 1.38920 + 23.8516i 0.0440405 + 0.756146i
\(996\) 0 0
\(997\) 29.1522 30.8995i 0.923259 0.978597i −0.0765708 0.997064i \(-0.524397\pi\)
0.999829 + 0.0184671i \(0.00587859\pi\)
\(998\) 9.96735 17.2640i 0.315511 0.546481i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.379.1 144
3.2 odd 2 729.2.g.d.379.8 144
9.2 odd 6 81.2.g.a.70.8 yes 144
9.4 even 3 729.2.g.b.136.8 144
9.5 odd 6 729.2.g.c.136.1 144
9.7 even 3 243.2.g.a.127.1 144
81.5 odd 54 81.2.g.a.22.8 144
81.7 even 27 6561.2.a.d.1.67 72
81.22 even 27 729.2.g.b.595.8 144
81.32 odd 54 729.2.g.d.352.8 144
81.49 even 27 inner 729.2.g.a.352.1 144
81.59 odd 54 729.2.g.c.595.1 144
81.74 odd 54 6561.2.a.c.1.6 72
81.76 even 27 243.2.g.a.199.1 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.8 144 81.5 odd 54
81.2.g.a.70.8 yes 144 9.2 odd 6
243.2.g.a.127.1 144 9.7 even 3
243.2.g.a.199.1 144 81.76 even 27
729.2.g.a.352.1 144 81.49 even 27 inner
729.2.g.a.379.1 144 1.1 even 1 trivial
729.2.g.b.136.8 144 9.4 even 3
729.2.g.b.595.8 144 81.22 even 27
729.2.g.c.136.1 144 9.5 odd 6
729.2.g.c.595.1 144 81.59 odd 54
729.2.g.d.352.8 144 81.32 odd 54
729.2.g.d.379.8 144 3.2 odd 2
6561.2.a.c.1.6 72 81.74 odd 54
6561.2.a.d.1.67 72 81.7 even 27