Properties

Label 25.6.a.d
Level $25$
Weight $6$
Character orbit 25.a
Self dual yes
Analytic conductor $4.010$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,6,Mod(1,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.00959549532\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{241}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{241})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{2} + (2 \beta + 9) q^{3} + ( - 5 \beta + 37) q^{4} + ( - 5 \beta - 93) q^{6} + (4 \beta + 98) q^{7} + ( - 15 \beta + 315) q^{8} + (40 \beta + 78) q^{9} + (50 \beta - 123) q^{11} + (19 \beta - 267) q^{12}+ \cdots + (980 \beta + 110406) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 20 q^{3} + 69 q^{4} - 191 q^{6} + 200 q^{7} + 615 q^{8} + 196 q^{9} - 196 q^{11} - 515 q^{12} - 360 q^{13} + 18 q^{14} + 1137 q^{16} + 1490 q^{17} - 4330 q^{18} - 3180 q^{19} + 2964 q^{21}+ \cdots + 221792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.26209
−7.26209
−5.26209 25.5242 −4.31044 0 −134.310 131.048 191.069 408.483 0
1.2 10.2621 −5.52417 73.3104 0 −56.6896 68.9517 423.931 −212.483 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.6.a.d yes 2
3.b odd 2 1 225.6.a.l 2
4.b odd 2 1 400.6.a.o 2
5.b even 2 1 25.6.a.b 2
5.c odd 4 2 25.6.b.b 4
15.d odd 2 1 225.6.a.s 2
15.e even 4 2 225.6.b.i 4
20.d odd 2 1 400.6.a.w 2
20.e even 4 2 400.6.c.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.6.a.b 2 5.b even 2 1
25.6.a.d yes 2 1.a even 1 1 trivial
25.6.b.b 4 5.c odd 4 2
225.6.a.l 2 3.b odd 2 1
225.6.a.s 2 15.d odd 2 1
225.6.b.i 4 15.e even 4 2
400.6.a.o 2 4.b odd 2 1
400.6.a.w 2 20.d odd 2 1
400.6.c.n 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 5T_{2} - 54 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(25))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5T - 54 \) Copy content Toggle raw display
$3$ \( T^{2} - 20T - 141 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 200T + 9036 \) Copy content Toggle raw display
$11$ \( T^{2} + 196T - 141021 \) Copy content Toggle raw display
$13$ \( T^{2} + 360T - 29296 \) Copy content Toggle raw display
$17$ \( T^{2} - 1490 T - 559359 \) Copy content Toggle raw display
$19$ \( T^{2} + 3180 T + 2232875 \) Copy content Toggle raw display
$23$ \( T^{2} - 1560 T + 599724 \) Copy content Toggle raw display
$29$ \( T^{2} + 3920 T + 3456000 \) Copy content Toggle raw display
$31$ \( T^{2} + 1096 T - 72602196 \) Copy content Toggle raw display
$37$ \( T^{2} - 2020 T - 7864124 \) Copy content Toggle raw display
$41$ \( T^{2} - 27754 T + 182931129 \) Copy content Toggle raw display
$43$ \( T^{2} + 3000 T - 270585136 \) Copy content Toggle raw display
$47$ \( T^{2} - 25760 T + 22262256 \) Copy content Toggle raw display
$53$ \( T^{2} + 26980 T + 147908484 \) Copy content Toggle raw display
$59$ \( T^{2} - 11960 T - 195696000 \) Copy content Toggle raw display
$61$ \( T^{2} + 24396 T - 92208796 \) Copy content Toggle raw display
$67$ \( T^{2} + 40060 T + 249648291 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1844897904 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1160669249 \) Copy content Toggle raw display
$79$ \( T^{2} - 65480 T - 446416500 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 2098410219 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 5241540375 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 3238386044 \) Copy content Toggle raw display
show more
show less