Properties

Label 25.6.b.b
Level 2525
Weight 66
Character orbit 25.b
Analytic conductor 4.0104.010
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,6,Mod(24,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.24");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 25=52 25 = 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 25.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.009595495324.00959549532
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,241)\Q(i, \sqrt{241})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+121x2+3600 x^{4} + 121x^{2} + 3600 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 52 5^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2β1)q2+(β22β1)q3+(β335)q4+(β395)q6+(18β2+4β1)q7+(69β2+15β1)q8+(8β394)q9++(196β3110798)q99+O(q100) q + (\beta_{2} - \beta_1) q^{2} + ( - \beta_{2} - 2 \beta_1) q^{3} + (\beta_{3} - 35) q^{4} + ( - \beta_{3} - 95) q^{6} + (18 \beta_{2} + 4 \beta_1) q^{7} + ( - 69 \beta_{2} + 15 \beta_1) q^{8} + ( - 8 \beta_{3} - 94) q^{9}+ \cdots + ( - 196 \beta_{3} - 110798) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q138q4382q6392q9392q1136q14+2274q16+6360q19+5928q215070q249512q26+7840q292192q3140226q3434676q368224q39+443584q99+O(q100) 4 q - 138 q^{4} - 382 q^{6} - 392 q^{9} - 392 q^{11} - 36 q^{14} + 2274 q^{16} + 6360 q^{19} + 5928 q^{21} - 5070 q^{24} - 9512 q^{26} + 7840 q^{29} - 2192 q^{31} - 40226 q^{34} - 34676 q^{36} - 8224 q^{39}+ \cdots - 443584 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+121x2+3600 x^{4} + 121x^{2} + 3600 : Copy content Toggle raw display

β1\beta_{1}== (ν381ν)/20 ( -\nu^{3} - 81\nu ) / 20 Copy content Toggle raw display
β2\beta_{2}== (ν361ν)/12 ( -\nu^{3} - 61\nu ) / 12 Copy content Toggle raw display
β3\beta_{3}== 5ν2+303 5\nu^{2} + 303 Copy content Toggle raw display
ν\nu== (3β25β1)/5 ( 3\beta_{2} - 5\beta_1 ) / 5 Copy content Toggle raw display
ν2\nu^{2}== (β3303)/5 ( \beta_{3} - 303 ) / 5 Copy content Toggle raw display
ν3\nu^{3}== (243β2+305β1)/5 ( -243\beta_{2} + 305\beta_1 ) / 5 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/25Z)×\left(\mathbb{Z}/25\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
24.1
8.26209i
7.26209i
7.26209i
8.26209i
10.2621i 5.52417i −73.3104 0 −56.6896 68.9517i 423.931i 212.483 0
24.2 5.26209i 25.5242i 4.31044 0 −134.310 131.048i 191.069i −408.483 0
24.3 5.26209i 25.5242i 4.31044 0 −134.310 131.048i 191.069i −408.483 0
24.4 10.2621i 5.52417i −73.3104 0 −56.6896 68.9517i 423.931i 212.483 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.6.b.b 4
3.b odd 2 1 225.6.b.i 4
4.b odd 2 1 400.6.c.n 4
5.b even 2 1 inner 25.6.b.b 4
5.c odd 4 1 25.6.a.b 2
5.c odd 4 1 25.6.a.d yes 2
15.d odd 2 1 225.6.b.i 4
15.e even 4 1 225.6.a.l 2
15.e even 4 1 225.6.a.s 2
20.d odd 2 1 400.6.c.n 4
20.e even 4 1 400.6.a.o 2
20.e even 4 1 400.6.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.6.a.b 2 5.c odd 4 1
25.6.a.d yes 2 5.c odd 4 1
25.6.b.b 4 1.a even 1 1 trivial
25.6.b.b 4 5.b even 2 1 inner
225.6.a.l 2 15.e even 4 1
225.6.a.s 2 15.e even 4 1
225.6.b.i 4 3.b odd 2 1
225.6.b.i 4 15.d odd 2 1
400.6.a.o 2 20.e even 4 1
400.6.a.w 2 20.e even 4 1
400.6.c.n 4 4.b odd 2 1
400.6.c.n 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+133T22+2916 T_{2}^{4} + 133T_{2}^{2} + 2916 acting on S6new(25,[χ])S_{6}^{\mathrm{new}}(25, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+133T2+2916 T^{4} + 133T^{2} + 2916 Copy content Toggle raw display
33 T4+682T2+19881 T^{4} + 682 T^{2} + 19881 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+21928T2+81649296 T^{4} + 21928 T^{2} + 81649296 Copy content Toggle raw display
1111 (T2+196T141021)2 (T^{2} + 196 T - 141021)^{2} Copy content Toggle raw display
1313 T4+188192T2+858255616 T^{4} + 188192 T^{2} + 858255616 Copy content Toggle raw display
1717 T4++312882490881 T^{4} + \cdots + 312882490881 Copy content Toggle raw display
1919 (T23180T+2232875)2 (T^{2} - 3180 T + 2232875)^{2} Copy content Toggle raw display
2323 T4++359668876176 T^{4} + \cdots + 359668876176 Copy content Toggle raw display
2929 (T23920T+3456000)2 (T^{2} - 3920 T + 3456000)^{2} Copy content Toggle raw display
3131 (T2+1096T72602196)2 (T^{2} + 1096 T - 72602196)^{2} Copy content Toggle raw display
3737 T4++61844446287376 T^{4} + \cdots + 61844446287376 Copy content Toggle raw display
4141 (T227754T+182931129)2 (T^{2} - 27754 T + 182931129)^{2} Copy content Toggle raw display
4343 T4++73 ⁣ ⁣96 T^{4} + \cdots + 73\!\cdots\!96 Copy content Toggle raw display
4747 T4++495608042209536 T^{4} + \cdots + 495608042209536 Copy content Toggle raw display
5353 T4++21 ⁣ ⁣56 T^{4} + \cdots + 21\!\cdots\!56 Copy content Toggle raw display
5959 (T2+11960T195696000)2 (T^{2} + 11960 T - 195696000)^{2} Copy content Toggle raw display
6161 (T2+24396T92208796)2 (T^{2} + 24396 T - 92208796)^{2} Copy content Toggle raw display
6767 T4++62 ⁣ ⁣81 T^{4} + \cdots + 62\!\cdots\!81 Copy content Toggle raw display
7171 (T2+87296T+1844897904)2 (T^{2} + 87296 T + 1844897904)^{2} Copy content Toggle raw display
7373 T4++13 ⁣ ⁣01 T^{4} + \cdots + 13\!\cdots\!01 Copy content Toggle raw display
7979 (T2+65480T446416500)2 (T^{2} + 65480 T - 446416500)^{2} Copy content Toggle raw display
8383 T4++44 ⁣ ⁣61 T^{4} + \cdots + 44\!\cdots\!61 Copy content Toggle raw display
8989 (T272810T5241540375)2 (T^{2} - 72810 T - 5241540375)^{2} Copy content Toggle raw display
9797 T4++10 ⁣ ⁣36 T^{4} + \cdots + 10\!\cdots\!36 Copy content Toggle raw display
show more
show less