Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [25,6,Mod(24,25)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(25, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("25.24");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 25.b (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24.1 |
|
− | 10.2621i | − | 5.52417i | −73.3104 | 0 | −56.6896 | − | 68.9517i | 423.931i | 212.483 | 0 | |||||||||||||||||||||||||||
24.2 | − | 5.26209i | − | 25.5242i | 4.31044 | 0 | −134.310 | 131.048i | − | 191.069i | −408.483 | 0 | ||||||||||||||||||||||||||||
24.3 | 5.26209i | 25.5242i | 4.31044 | 0 | −134.310 | − | 131.048i | 191.069i | −408.483 | 0 | ||||||||||||||||||||||||||||||
24.4 | 10.2621i | 5.52417i | −73.3104 | 0 | −56.6896 | 68.9517i | − | 423.931i | 212.483 | 0 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 25.6.b.b | 4 | |
3.b | odd | 2 | 1 | 225.6.b.i | 4 | ||
4.b | odd | 2 | 1 | 400.6.c.n | 4 | ||
5.b | even | 2 | 1 | inner | 25.6.b.b | 4 | |
5.c | odd | 4 | 1 | 25.6.a.b | ✓ | 2 | |
5.c | odd | 4 | 1 | 25.6.a.d | yes | 2 | |
15.d | odd | 2 | 1 | 225.6.b.i | 4 | ||
15.e | even | 4 | 1 | 225.6.a.l | 2 | ||
15.e | even | 4 | 1 | 225.6.a.s | 2 | ||
20.d | odd | 2 | 1 | 400.6.c.n | 4 | ||
20.e | even | 4 | 1 | 400.6.a.o | 2 | ||
20.e | even | 4 | 1 | 400.6.a.w | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
25.6.a.b | ✓ | 2 | 5.c | odd | 4 | 1 | |
25.6.a.d | yes | 2 | 5.c | odd | 4 | 1 | |
25.6.b.b | 4 | 1.a | even | 1 | 1 | trivial | |
25.6.b.b | 4 | 5.b | even | 2 | 1 | inner | |
225.6.a.l | 2 | 15.e | even | 4 | 1 | ||
225.6.a.s | 2 | 15.e | even | 4 | 1 | ||
225.6.b.i | 4 | 3.b | odd | 2 | 1 | ||
225.6.b.i | 4 | 15.d | odd | 2 | 1 | ||
400.6.a.o | 2 | 20.e | even | 4 | 1 | ||
400.6.a.w | 2 | 20.e | even | 4 | 1 | ||
400.6.c.n | 4 | 4.b | odd | 2 | 1 | ||
400.6.c.n | 4 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .