Properties

Label 400.6.a.o
Level 400400
Weight 66
Character orbit 400.a
Self dual yes
Analytic conductor 64.15464.154
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(1,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 64.153527925264.1535279252
Analytic rank: 11
Dimension: 22
Coefficient field: Q(241)\Q(\sqrt{241})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x60 x^{2} - x - 60 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 25)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=241\beta = \sqrt{241}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β10)q3+(2β100)q7+(20β+98)q9+(25β+98)q11+(16β180)q13+(68β+745)q17+(35β+1590)q19+(120β+1482)q21++(490β110896)q99+O(q100) q + ( - \beta - 10) q^{3} + ( - 2 \beta - 100) q^{7} + (20 \beta + 98) q^{9} + ( - 25 \beta + 98) q^{11} + (16 \beta - 180) q^{13} + ( - 68 \beta + 745) q^{17} + (35 \beta + 1590) q^{19} + (120 \beta + 1482) q^{21}+ \cdots + ( - 490 \beta - 110896) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q20q3200q7+196q9+196q11360q13+1490q17+3180q19+2964q211560q236740q273920q29+1096q31+10090q33+2020q374112q39+221792q99+O(q100) 2 q - 20 q^{3} - 200 q^{7} + 196 q^{9} + 196 q^{11} - 360 q^{13} + 1490 q^{17} + 3180 q^{19} + 2964 q^{21} - 1560 q^{23} - 6740 q^{27} - 3920 q^{29} + 1096 q^{31} + 10090 q^{33} + 2020 q^{37} - 4112 q^{39}+ \cdots - 221792 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
8.26209
−7.26209
0 −25.5242 0 0 0 −131.048 0 408.483 0
1.2 0 5.52417 0 0 0 −68.9517 0 −212.483 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.a.o 2
4.b odd 2 1 25.6.a.d yes 2
5.b even 2 1 400.6.a.w 2
5.c odd 4 2 400.6.c.n 4
12.b even 2 1 225.6.a.l 2
20.d odd 2 1 25.6.a.b 2
20.e even 4 2 25.6.b.b 4
60.h even 2 1 225.6.a.s 2
60.l odd 4 2 225.6.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.6.a.b 2 20.d odd 2 1
25.6.a.d yes 2 4.b odd 2 1
25.6.b.b 4 20.e even 4 2
225.6.a.l 2 12.b even 2 1
225.6.a.s 2 60.h even 2 1
225.6.b.i 4 60.l odd 4 2
400.6.a.o 2 1.a even 1 1 trivial
400.6.a.w 2 5.b even 2 1
400.6.c.n 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+20T3141 T_{3}^{2} + 20T_{3} - 141 acting on S6new(Γ0(400))S_{6}^{\mathrm{new}}(\Gamma_0(400)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+20T141 T^{2} + 20T - 141 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+200T+9036 T^{2} + 200T + 9036 Copy content Toggle raw display
1111 T2196T141021 T^{2} - 196T - 141021 Copy content Toggle raw display
1313 T2+360T29296 T^{2} + 360T - 29296 Copy content Toggle raw display
1717 T21490T559359 T^{2} - 1490 T - 559359 Copy content Toggle raw display
1919 T23180T+2232875 T^{2} - 3180 T + 2232875 Copy content Toggle raw display
2323 T2+1560T+599724 T^{2} + 1560 T + 599724 Copy content Toggle raw display
2929 T2+3920T+3456000 T^{2} + 3920 T + 3456000 Copy content Toggle raw display
3131 T21096T72602196 T^{2} - 1096 T - 72602196 Copy content Toggle raw display
3737 T22020T7864124 T^{2} - 2020 T - 7864124 Copy content Toggle raw display
4141 T227754T+182931129 T^{2} - 27754 T + 182931129 Copy content Toggle raw display
4343 T23000T270585136 T^{2} - 3000 T - 270585136 Copy content Toggle raw display
4747 T2+25760T+22262256 T^{2} + 25760 T + 22262256 Copy content Toggle raw display
5353 T2+26980T+147908484 T^{2} + 26980 T + 147908484 Copy content Toggle raw display
5959 T2+11960T195696000 T^{2} + 11960 T - 195696000 Copy content Toggle raw display
6161 T2+24396T92208796 T^{2} + 24396 T - 92208796 Copy content Toggle raw display
6767 T240060T+249648291 T^{2} - 40060 T + 249648291 Copy content Toggle raw display
7171 T2++1844897904 T^{2} + \cdots + 1844897904 Copy content Toggle raw display
7373 T2++1160669249 T^{2} + \cdots + 1160669249 Copy content Toggle raw display
7979 T2+65480T446416500 T^{2} + 65480 T - 446416500 Copy content Toggle raw display
8383 T2++2098410219 T^{2} + \cdots + 2098410219 Copy content Toggle raw display
8989 T2+5241540375 T^{2} + \cdots - 5241540375 Copy content Toggle raw display
9797 T2+3238386044 T^{2} + \cdots - 3238386044 Copy content Toggle raw display
show more
show less