Properties

Label 252.4.e.a.71.3
Level $252$
Weight $4$
Character 252.71
Analytic conductor $14.868$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,4,Mod(71,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.71");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8684813214\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.3
Character \(\chi\) \(=\) 252.71
Dual form 252.4.e.a.71.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.45159 - 1.41057i) q^{2} +(4.02056 + 6.91629i) q^{4} +16.9233i q^{5} -7.00000i q^{7} +(-0.100815 - 22.6272i) q^{8} +(23.8716 - 41.4889i) q^{10} +13.3747 q^{11} +76.5768 q^{13} +(-9.87402 + 17.1611i) q^{14} +(-31.6702 + 55.6147i) q^{16} +99.7168i q^{17} -121.074i q^{19} +(-117.046 + 68.0411i) q^{20} +(-32.7893 - 18.8660i) q^{22} -151.268 q^{23} -161.398 q^{25} +(-187.735 - 108.017i) q^{26} +(48.4140 - 28.1439i) q^{28} +197.277i q^{29} +268.595i q^{31} +(156.091 - 91.6713i) q^{32} +(140.658 - 244.464i) q^{34} +118.463 q^{35} +19.2350 q^{37} +(-170.784 + 296.823i) q^{38} +(382.926 - 1.70613i) q^{40} -129.537i q^{41} +490.774i q^{43} +(53.7739 + 92.5035i) q^{44} +(370.846 + 213.375i) q^{46} -160.864 q^{47} -49.0000 q^{49} +(395.680 + 227.663i) q^{50} +(307.882 + 529.627i) q^{52} +126.884i q^{53} +226.344i q^{55} +(-158.390 + 0.705707i) q^{56} +(278.274 - 483.643i) q^{58} +285.808 q^{59} -467.355 q^{61} +(378.873 - 658.484i) q^{62} +(-511.980 + 4.56233i) q^{64} +1295.93i q^{65} -323.876i q^{67} +(-689.670 + 400.917i) q^{68} +(-290.422 - 167.101i) q^{70} +673.944 q^{71} -338.197 q^{73} +(-47.1563 - 27.1324i) q^{74} +(837.383 - 486.785i) q^{76} -93.6231i q^{77} +869.368i q^{79} +(-941.184 - 535.963i) q^{80} +(-182.721 + 317.570i) q^{82} -532.510 q^{83} -1687.54 q^{85} +(692.274 - 1203.18i) q^{86} +(-1.34838 - 302.633i) q^{88} -140.339i q^{89} -536.037i q^{91} +(-608.182 - 1046.21i) q^{92} +(394.373 + 226.911i) q^{94} +2048.97 q^{95} +652.093 q^{97} +(120.128 + 69.1181i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 24 q^{4} + 264 q^{10} - 468 q^{16} + 444 q^{22} - 900 q^{25} - 84 q^{28} - 432 q^{34} - 264 q^{37} + 1416 q^{40} + 180 q^{46} - 1764 q^{49} + 2736 q^{52} + 636 q^{58} - 3960 q^{61} + 1392 q^{64}+ \cdots + 5496 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.45159 1.41057i −0.866767 0.498713i
\(3\) 0 0
\(4\) 4.02056 + 6.91629i 0.502570 + 0.864536i
\(5\) 16.9233i 1.51366i 0.653609 + 0.756832i \(0.273254\pi\)
−0.653609 + 0.756832i \(0.726746\pi\)
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) −0.100815 22.6272i −0.00445545 0.999990i
\(9\) 0 0
\(10\) 23.8716 41.4889i 0.754885 1.31199i
\(11\) 13.3747 0.366603 0.183301 0.983057i \(-0.441322\pi\)
0.183301 + 0.983057i \(0.441322\pi\)
\(12\) 0 0
\(13\) 76.5768 1.63374 0.816868 0.576824i \(-0.195708\pi\)
0.816868 + 0.576824i \(0.195708\pi\)
\(14\) −9.87402 + 17.1611i −0.188496 + 0.327607i
\(15\) 0 0
\(16\) −31.6702 + 55.6147i −0.494846 + 0.868980i
\(17\) 99.7168i 1.42264i 0.702868 + 0.711320i \(0.251902\pi\)
−0.702868 + 0.711320i \(0.748098\pi\)
\(18\) 0 0
\(19\) 121.074i 1.46191i −0.682426 0.730955i \(-0.739075\pi\)
0.682426 0.730955i \(-0.260925\pi\)
\(20\) −117.046 + 68.0411i −1.30862 + 0.760723i
\(21\) 0 0
\(22\) −32.7893 18.8660i −0.317759 0.182830i
\(23\) −151.268 −1.37137 −0.685685 0.727898i \(-0.740497\pi\)
−0.685685 + 0.727898i \(0.740497\pi\)
\(24\) 0 0
\(25\) −161.398 −1.29118
\(26\) −187.735 108.017i −1.41607 0.814766i
\(27\) 0 0
\(28\) 48.4140 28.1439i 0.326764 0.189954i
\(29\) 197.277i 1.26322i 0.775285 + 0.631612i \(0.217606\pi\)
−0.775285 + 0.631612i \(0.782394\pi\)
\(30\) 0 0
\(31\) 268.595i 1.55616i 0.628163 + 0.778082i \(0.283807\pi\)
−0.628163 + 0.778082i \(0.716193\pi\)
\(32\) 156.091 91.6713i 0.862289 0.506417i
\(33\) 0 0
\(34\) 140.658 244.464i 0.709489 1.23310i
\(35\) 118.463 0.572112
\(36\) 0 0
\(37\) 19.2350 0.0854652 0.0427326 0.999087i \(-0.486394\pi\)
0.0427326 + 0.999087i \(0.486394\pi\)
\(38\) −170.784 + 296.823i −0.729074 + 1.26713i
\(39\) 0 0
\(40\) 382.926 1.70613i 1.51365 0.00674406i
\(41\) 129.537i 0.493420i −0.969089 0.246710i \(-0.920651\pi\)
0.969089 0.246710i \(-0.0793495\pi\)
\(42\) 0 0
\(43\) 490.774i 1.74052i 0.492592 + 0.870261i \(0.336050\pi\)
−0.492592 + 0.870261i \(0.663950\pi\)
\(44\) 53.7739 + 92.5035i 0.184244 + 0.316942i
\(45\) 0 0
\(46\) 370.846 + 213.375i 1.18866 + 0.683921i
\(47\) −160.864 −0.499245 −0.249622 0.968343i \(-0.580306\pi\)
−0.249622 + 0.968343i \(0.580306\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 395.680 + 227.663i 1.11915 + 0.643929i
\(51\) 0 0
\(52\) 307.882 + 529.627i 0.821067 + 1.41242i
\(53\) 126.884i 0.328846i 0.986390 + 0.164423i \(0.0525763\pi\)
−0.986390 + 0.164423i \(0.947424\pi\)
\(54\) 0 0
\(55\) 226.344i 0.554914i
\(56\) −158.390 + 0.705707i −0.377961 + 0.00168400i
\(57\) 0 0
\(58\) 278.274 483.643i 0.629986 1.09492i
\(59\) 285.808 0.630662 0.315331 0.948982i \(-0.397885\pi\)
0.315331 + 0.948982i \(0.397885\pi\)
\(60\) 0 0
\(61\) −467.355 −0.980963 −0.490481 0.871452i \(-0.663179\pi\)
−0.490481 + 0.871452i \(0.663179\pi\)
\(62\) 378.873 658.484i 0.776079 1.34883i
\(63\) 0 0
\(64\) −511.980 + 4.56233i −0.999960 + 0.00891081i
\(65\) 1295.93i 2.47293i
\(66\) 0 0
\(67\) 323.876i 0.590563i −0.955410 0.295282i \(-0.904587\pi\)
0.955410 0.295282i \(-0.0954135\pi\)
\(68\) −689.670 + 400.917i −1.22992 + 0.714976i
\(69\) 0 0
\(70\) −290.422 167.101i −0.495887 0.285320i
\(71\) 673.944 1.12651 0.563257 0.826282i \(-0.309548\pi\)
0.563257 + 0.826282i \(0.309548\pi\)
\(72\) 0 0
\(73\) −338.197 −0.542232 −0.271116 0.962547i \(-0.587393\pi\)
−0.271116 + 0.962547i \(0.587393\pi\)
\(74\) −47.1563 27.1324i −0.0740784 0.0426226i
\(75\) 0 0
\(76\) 837.383 486.785i 1.26387 0.734712i
\(77\) 93.6231i 0.138563i
\(78\) 0 0
\(79\) 869.368i 1.23812i 0.785343 + 0.619060i \(0.212486\pi\)
−0.785343 + 0.619060i \(0.787514\pi\)
\(80\) −941.184 535.963i −1.31535 0.749032i
\(81\) 0 0
\(82\) −182.721 + 317.570i −0.246075 + 0.427680i
\(83\) −532.510 −0.704223 −0.352112 0.935958i \(-0.614536\pi\)
−0.352112 + 0.935958i \(0.614536\pi\)
\(84\) 0 0
\(85\) −1687.54 −2.15340
\(86\) 692.274 1203.18i 0.868021 1.50863i
\(87\) 0 0
\(88\) −1.34838 302.633i −0.00163338 0.366599i
\(89\) 140.339i 0.167145i −0.996502 0.0835725i \(-0.973367\pi\)
0.996502 0.0835725i \(-0.0266330\pi\)
\(90\) 0 0
\(91\) 536.037i 0.617494i
\(92\) −608.182 1046.21i −0.689210 1.18560i
\(93\) 0 0
\(94\) 394.373 + 226.911i 0.432729 + 0.248980i
\(95\) 2048.97 2.21284
\(96\) 0 0
\(97\) 652.093 0.682578 0.341289 0.939959i \(-0.389137\pi\)
0.341289 + 0.939959i \(0.389137\pi\)
\(98\) 120.128 + 69.1181i 0.123824 + 0.0712448i
\(99\) 0 0
\(100\) −648.909 1116.27i −0.648909 1.11627i
\(101\) 278.977i 0.274844i −0.990513 0.137422i \(-0.956118\pi\)
0.990513 0.137422i \(-0.0438817\pi\)
\(102\) 0 0
\(103\) 724.272i 0.692860i 0.938076 + 0.346430i \(0.112606\pi\)
−0.938076 + 0.346430i \(0.887394\pi\)
\(104\) −7.72011 1732.72i −0.00727903 1.63372i
\(105\) 0 0
\(106\) 178.979 311.067i 0.164000 0.285033i
\(107\) −1795.17 −1.62193 −0.810963 0.585097i \(-0.801056\pi\)
−0.810963 + 0.585097i \(0.801056\pi\)
\(108\) 0 0
\(109\) 875.769 0.769573 0.384786 0.923006i \(-0.374275\pi\)
0.384786 + 0.923006i \(0.374275\pi\)
\(110\) 319.275 554.903i 0.276743 0.480981i
\(111\) 0 0
\(112\) 389.303 + 221.691i 0.328444 + 0.187034i
\(113\) 124.673i 0.103790i 0.998653 + 0.0518948i \(0.0165261\pi\)
−0.998653 + 0.0518948i \(0.983474\pi\)
\(114\) 0 0
\(115\) 2559.95i 2.07580i
\(116\) −1364.43 + 793.166i −1.09210 + 0.634859i
\(117\) 0 0
\(118\) −700.683 403.153i −0.546637 0.314519i
\(119\) 698.018 0.537707
\(120\) 0 0
\(121\) −1152.12 −0.865602
\(122\) 1145.76 + 659.240i 0.850266 + 0.489219i
\(123\) 0 0
\(124\) −1857.68 + 1079.90i −1.34536 + 0.782081i
\(125\) 615.968i 0.440751i
\(126\) 0 0
\(127\) 307.355i 0.214751i −0.994219 0.107375i \(-0.965755\pi\)
0.994219 0.107375i \(-0.0342446\pi\)
\(128\) 1261.60 + 711.000i 0.871177 + 0.490970i
\(129\) 0 0
\(130\) 1828.01 3177.09i 1.23328 2.14345i
\(131\) 937.529 0.625285 0.312642 0.949871i \(-0.398786\pi\)
0.312642 + 0.949871i \(0.398786\pi\)
\(132\) 0 0
\(133\) −847.518 −0.552550
\(134\) −456.851 + 794.010i −0.294522 + 0.511881i
\(135\) 0 0
\(136\) 2256.31 10.0530i 1.42263 0.00633850i
\(137\) 2608.36i 1.62662i −0.581829 0.813311i \(-0.697663\pi\)
0.581829 0.813311i \(-0.302337\pi\)
\(138\) 0 0
\(139\) 1562.32i 0.953338i 0.879083 + 0.476669i \(0.158156\pi\)
−0.879083 + 0.476669i \(0.841844\pi\)
\(140\) 476.288 + 819.325i 0.287526 + 0.494611i
\(141\) 0 0
\(142\) −1652.23 950.648i −0.976425 0.561807i
\(143\) 1024.19 0.598933
\(144\) 0 0
\(145\) −3338.58 −1.91210
\(146\) 829.119 + 477.052i 0.469989 + 0.270418i
\(147\) 0 0
\(148\) 77.3354 + 133.035i 0.0429523 + 0.0738878i
\(149\) 973.569i 0.535288i 0.963518 + 0.267644i \(0.0862450\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(150\) 0 0
\(151\) 523.787i 0.282286i 0.989989 + 0.141143i \(0.0450777\pi\)
−0.989989 + 0.141143i \(0.954922\pi\)
\(152\) −2739.56 + 12.2061i −1.46189 + 0.00651346i
\(153\) 0 0
\(154\) −132.062 + 229.525i −0.0691031 + 0.120102i
\(155\) −4545.51 −2.35551
\(156\) 0 0
\(157\) −750.516 −0.381514 −0.190757 0.981637i \(-0.561094\pi\)
−0.190757 + 0.981637i \(0.561094\pi\)
\(158\) 1226.31 2131.33i 0.617467 1.07316i
\(159\) 0 0
\(160\) 1551.38 + 2641.57i 0.766546 + 1.30522i
\(161\) 1058.87i 0.518329i
\(162\) 0 0
\(163\) 854.952i 0.410828i −0.978675 0.205414i \(-0.934146\pi\)
0.978675 0.205414i \(-0.0658542\pi\)
\(164\) 895.912 520.810i 0.426579 0.247978i
\(165\) 0 0
\(166\) 1305.49 + 751.145i 0.610398 + 0.351206i
\(167\) −175.567 −0.0813520 −0.0406760 0.999172i \(-0.512951\pi\)
−0.0406760 + 0.999172i \(0.512951\pi\)
\(168\) 0 0
\(169\) 3667.00 1.66909
\(170\) 4137.14 + 2380.39i 1.86650 + 1.07393i
\(171\) 0 0
\(172\) −3394.34 + 1973.19i −1.50474 + 0.874734i
\(173\) 2213.84i 0.972922i −0.873702 0.486461i \(-0.838288\pi\)
0.873702 0.486461i \(-0.161712\pi\)
\(174\) 0 0
\(175\) 1129.78i 0.488021i
\(176\) −423.580 + 743.832i −0.181412 + 0.318571i
\(177\) 0 0
\(178\) −197.959 + 344.053i −0.0833575 + 0.144876i
\(179\) 375.089 0.156623 0.0783113 0.996929i \(-0.475047\pi\)
0.0783113 + 0.996929i \(0.475047\pi\)
\(180\) 0 0
\(181\) 4181.94 1.71735 0.858677 0.512518i \(-0.171287\pi\)
0.858677 + 0.512518i \(0.171287\pi\)
\(182\) −756.120 + 1314.14i −0.307953 + 0.535224i
\(183\) 0 0
\(184\) 15.2501 + 3422.77i 0.00611007 + 1.37136i
\(185\) 325.519i 0.129366i
\(186\) 0 0
\(187\) 1333.69i 0.521544i
\(188\) −646.766 1112.59i −0.250905 0.431615i
\(189\) 0 0
\(190\) −5023.23 2890.22i −1.91802 1.10357i
\(191\) 4838.11 1.83284 0.916422 0.400213i \(-0.131064\pi\)
0.916422 + 0.400213i \(0.131064\pi\)
\(192\) 0 0
\(193\) 3237.52 1.20747 0.603736 0.797185i \(-0.293678\pi\)
0.603736 + 0.797185i \(0.293678\pi\)
\(194\) −1598.66 919.826i −0.591636 0.340410i
\(195\) 0 0
\(196\) −197.008 338.898i −0.0717957 0.123505i
\(197\) 1230.62i 0.445065i −0.974925 0.222533i \(-0.928568\pi\)
0.974925 0.222533i \(-0.0714324\pi\)
\(198\) 0 0
\(199\) 3859.75i 1.37493i −0.726219 0.687463i \(-0.758724\pi\)
0.726219 0.687463i \(-0.241276\pi\)
\(200\) 16.2713 + 3651.98i 0.00575279 + 1.29117i
\(201\) 0 0
\(202\) −393.518 + 683.937i −0.137068 + 0.238226i
\(203\) 1380.94 0.477454
\(204\) 0 0
\(205\) 2192.18 0.746872
\(206\) 1021.64 1775.62i 0.345539 0.600548i
\(207\) 0 0
\(208\) −2425.20 + 4258.80i −0.808449 + 1.41968i
\(209\) 1619.33i 0.535940i
\(210\) 0 0
\(211\) 4289.47i 1.39952i 0.714377 + 0.699762i \(0.246710\pi\)
−0.714377 + 0.699762i \(0.753290\pi\)
\(212\) −877.567 + 510.145i −0.284300 + 0.165268i
\(213\) 0 0
\(214\) 4401.03 + 2532.23i 1.40583 + 0.808876i
\(215\) −8305.52 −2.63457
\(216\) 0 0
\(217\) 1880.16 0.588175
\(218\) −2147.02 1235.34i −0.667040 0.383796i
\(219\) 0 0
\(220\) −1565.46 + 910.031i −0.479743 + 0.278883i
\(221\) 7635.99i 2.32422i
\(222\) 0 0
\(223\) 300.813i 0.0903315i 0.998980 + 0.0451657i \(0.0143816\pi\)
−0.998980 + 0.0451657i \(0.985618\pi\)
\(224\) −641.699 1092.64i −0.191408 0.325914i
\(225\) 0 0
\(226\) 175.860 305.646i 0.0517613 0.0899615i
\(227\) −1494.92 −0.437099 −0.218550 0.975826i \(-0.570133\pi\)
−0.218550 + 0.975826i \(0.570133\pi\)
\(228\) 0 0
\(229\) 2307.12 0.665760 0.332880 0.942969i \(-0.391980\pi\)
0.332880 + 0.942969i \(0.391980\pi\)
\(230\) −3611.00 + 6275.94i −1.03523 + 1.79923i
\(231\) 0 0
\(232\) 4463.83 19.8886i 1.26321 0.00562823i
\(233\) 2528.85i 0.711033i 0.934670 + 0.355517i \(0.115695\pi\)
−0.934670 + 0.355517i \(0.884305\pi\)
\(234\) 0 0
\(235\) 2722.36i 0.755689i
\(236\) 1149.11 + 1976.73i 0.316952 + 0.545230i
\(237\) 0 0
\(238\) −1711.25 984.606i −0.466067 0.268162i
\(239\) 1297.89 0.351270 0.175635 0.984455i \(-0.443802\pi\)
0.175635 + 0.984455i \(0.443802\pi\)
\(240\) 0 0
\(241\) 4570.84 1.22172 0.610858 0.791740i \(-0.290825\pi\)
0.610858 + 0.791740i \(0.290825\pi\)
\(242\) 2824.51 + 1625.15i 0.750276 + 0.431687i
\(243\) 0 0
\(244\) −1879.03 3232.37i −0.493003 0.848078i
\(245\) 829.241i 0.216238i
\(246\) 0 0
\(247\) 9271.45i 2.38837i
\(248\) 6077.55 27.0785i 1.55615 0.00693341i
\(249\) 0 0
\(250\) −868.868 + 1510.10i −0.219808 + 0.382028i
\(251\) −1024.67 −0.257676 −0.128838 0.991666i \(-0.541125\pi\)
−0.128838 + 0.991666i \(0.541125\pi\)
\(252\) 0 0
\(253\) −2023.17 −0.502749
\(254\) −433.547 + 753.507i −0.107099 + 0.186139i
\(255\) 0 0
\(256\) −2090.00 3522.66i −0.510254 0.860024i
\(257\) 1741.37i 0.422660i −0.977415 0.211330i \(-0.932221\pi\)
0.977415 0.211330i \(-0.0677794\pi\)
\(258\) 0 0
\(259\) 134.645i 0.0323028i
\(260\) −8963.03 + 5210.37i −2.13794 + 1.24282i
\(261\) 0 0
\(262\) −2298.43 1322.45i −0.541976 0.311838i
\(263\) −301.560 −0.0707033 −0.0353516 0.999375i \(-0.511255\pi\)
−0.0353516 + 0.999375i \(0.511255\pi\)
\(264\) 0 0
\(265\) −2147.29 −0.497763
\(266\) 2077.76 + 1195.49i 0.478932 + 0.275564i
\(267\) 0 0
\(268\) 2240.02 1302.16i 0.510563 0.296799i
\(269\) 1908.34i 0.432540i 0.976334 + 0.216270i \(0.0693892\pi\)
−0.976334 + 0.216270i \(0.930611\pi\)
\(270\) 0 0
\(271\) 1389.99i 0.311572i −0.987791 0.155786i \(-0.950209\pi\)
0.987791 0.155786i \(-0.0497910\pi\)
\(272\) −5545.72 3158.05i −1.23625 0.703988i
\(273\) 0 0
\(274\) −3679.29 + 6394.62i −0.811218 + 1.40990i
\(275\) −2158.65 −0.473351
\(276\) 0 0
\(277\) 5153.77 1.11791 0.558953 0.829199i \(-0.311203\pi\)
0.558953 + 0.829199i \(0.311203\pi\)
\(278\) 2203.76 3830.16i 0.475442 0.826322i
\(279\) 0 0
\(280\) −11.9429 2680.49i −0.00254901 0.572106i
\(281\) 4591.56i 0.974767i −0.873188 0.487384i \(-0.837951\pi\)
0.873188 0.487384i \(-0.162049\pi\)
\(282\) 0 0
\(283\) 2376.27i 0.499134i −0.968358 0.249567i \(-0.919712\pi\)
0.968358 0.249567i \(-0.0802882\pi\)
\(284\) 2709.63 + 4661.19i 0.566152 + 0.973912i
\(285\) 0 0
\(286\) −2510.90 1444.70i −0.519135 0.298696i
\(287\) −906.756 −0.186495
\(288\) 0 0
\(289\) −5030.44 −1.02390
\(290\) 8184.82 + 4709.32i 1.65734 + 0.953588i
\(291\) 0 0
\(292\) −1359.74 2339.07i −0.272510 0.468779i
\(293\) 7879.34i 1.57104i −0.618834 0.785522i \(-0.712395\pi\)
0.618834 0.785522i \(-0.287605\pi\)
\(294\) 0 0
\(295\) 4836.81i 0.954610i
\(296\) −1.93918 435.234i −0.000380786 0.0854644i
\(297\) 0 0
\(298\) 1373.29 2386.79i 0.266955 0.463970i
\(299\) −11583.6 −2.24046
\(300\) 0 0
\(301\) 3435.42 0.657855
\(302\) 738.840 1284.11i 0.140780 0.244676i
\(303\) 0 0
\(304\) 6733.50 + 3834.43i 1.27037 + 0.723421i
\(305\) 7909.19i 1.48485i
\(306\) 0 0
\(307\) 5548.95i 1.03158i 0.856715 + 0.515790i \(0.172502\pi\)
−0.856715 + 0.515790i \(0.827498\pi\)
\(308\) 647.525 376.417i 0.119793 0.0696376i
\(309\) 0 0
\(310\) 11143.7 + 6411.78i 2.04168 + 1.17472i
\(311\) −5674.92 −1.03471 −0.517356 0.855771i \(-0.673084\pi\)
−0.517356 + 0.855771i \(0.673084\pi\)
\(312\) 0 0
\(313\) 1268.28 0.229033 0.114516 0.993421i \(-0.463468\pi\)
0.114516 + 0.993421i \(0.463468\pi\)
\(314\) 1839.96 + 1058.66i 0.330684 + 0.190266i
\(315\) 0 0
\(316\) −6012.80 + 3495.35i −1.07040 + 0.622243i
\(317\) 7346.90i 1.30171i −0.759201 0.650857i \(-0.774410\pi\)
0.759201 0.650857i \(-0.225590\pi\)
\(318\) 0 0
\(319\) 2638.53i 0.463102i
\(320\) −77.2097 8664.38i −0.0134880 1.51360i
\(321\) 0 0
\(322\) 1493.62 2595.92i 0.258498 0.449271i
\(323\) 12073.1 2.07977
\(324\) 0 0
\(325\) −12359.3 −2.10945
\(326\) −1205.97 + 2095.99i −0.204886 + 0.356093i
\(327\) 0 0
\(328\) −2931.05 + 13.0593i −0.493415 + 0.00219841i
\(329\) 1126.05i 0.188697i
\(330\) 0 0
\(331\) 7290.12i 1.21058i −0.796006 0.605289i \(-0.793058\pi\)
0.796006 0.605289i \(-0.206942\pi\)
\(332\) −2140.99 3682.99i −0.353922 0.608827i
\(333\) 0 0
\(334\) 430.418 + 247.650i 0.0705132 + 0.0405713i
\(335\) 5481.05 0.893915
\(336\) 0 0
\(337\) 1542.25 0.249292 0.124646 0.992201i \(-0.460220\pi\)
0.124646 + 0.992201i \(0.460220\pi\)
\(338\) −8989.97 5172.58i −1.44672 0.832400i
\(339\) 0 0
\(340\) −6784.84 11671.5i −1.08223 1.86169i
\(341\) 3592.38i 0.570494i
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 11104.8 49.4776i 1.74050 0.00775480i
\(345\) 0 0
\(346\) −3122.79 + 5427.43i −0.485209 + 0.843296i
\(347\) 11622.0 1.79798 0.898991 0.437967i \(-0.144301\pi\)
0.898991 + 0.437967i \(0.144301\pi\)
\(348\) 0 0
\(349\) −6684.51 −1.02525 −0.512627 0.858612i \(-0.671328\pi\)
−0.512627 + 0.858612i \(0.671328\pi\)
\(350\) 1593.64 2769.76i 0.243382 0.423000i
\(351\) 0 0
\(352\) 2087.67 1226.08i 0.316118 0.185654i
\(353\) 12023.6i 1.81290i 0.422318 + 0.906448i \(0.361217\pi\)
−0.422318 + 0.906448i \(0.638783\pi\)
\(354\) 0 0
\(355\) 11405.3i 1.70516i
\(356\) 970.626 564.242i 0.144503 0.0840021i
\(357\) 0 0
\(358\) −919.563 529.091i −0.135755 0.0781098i
\(359\) 12797.3 1.88139 0.940693 0.339259i \(-0.110176\pi\)
0.940693 + 0.339259i \(0.110176\pi\)
\(360\) 0 0
\(361\) −7799.91 −1.13718
\(362\) −10252.4 5898.93i −1.48855 0.856467i
\(363\) 0 0
\(364\) 3707.39 2155.17i 0.533846 0.310334i
\(365\) 5723.40i 0.820757i
\(366\) 0 0
\(367\) 8198.88i 1.16615i −0.812417 0.583077i \(-0.801849\pi\)
0.812417 0.583077i \(-0.198151\pi\)
\(368\) 4790.68 8412.72i 0.678618 1.19169i
\(369\) 0 0
\(370\) 459.169 798.039i 0.0645164 0.112130i
\(371\) 888.188 0.124292
\(372\) 0 0
\(373\) 9525.95 1.32235 0.661173 0.750233i \(-0.270059\pi\)
0.661173 + 0.750233i \(0.270059\pi\)
\(374\) 1881.26 3269.65i 0.260101 0.452057i
\(375\) 0 0
\(376\) 16.2176 + 3639.91i 0.00222436 + 0.499240i
\(377\) 15106.9i 2.06377i
\(378\) 0 0
\(379\) 6367.72i 0.863029i 0.902106 + 0.431514i \(0.142021\pi\)
−0.902106 + 0.431514i \(0.857979\pi\)
\(380\) 8238.01 + 14171.3i 1.11211 + 1.91308i
\(381\) 0 0
\(382\) −11861.0 6824.51i −1.58865 0.914064i
\(383\) 3297.28 0.439904 0.219952 0.975511i \(-0.429410\pi\)
0.219952 + 0.975511i \(0.429410\pi\)
\(384\) 0 0
\(385\) 1584.41 0.209738
\(386\) −7937.07 4566.76i −1.04660 0.602182i
\(387\) 0 0
\(388\) 2621.78 + 4510.07i 0.343043 + 0.590113i
\(389\) 5144.42i 0.670521i 0.942126 + 0.335260i \(0.108824\pi\)
−0.942126 + 0.335260i \(0.891176\pi\)
\(390\) 0 0
\(391\) 15083.9i 1.95097i
\(392\) 4.93995 + 1108.73i 0.000636493 + 0.142856i
\(393\) 0 0
\(394\) −1735.88 + 3016.96i −0.221960 + 0.385768i
\(395\) −14712.6 −1.87410
\(396\) 0 0
\(397\) −8910.58 −1.12647 −0.563236 0.826296i \(-0.690444\pi\)
−0.563236 + 0.826296i \(0.690444\pi\)
\(398\) −5444.46 + 9462.51i −0.685694 + 1.19174i
\(399\) 0 0
\(400\) 5111.49 8976.09i 0.638936 1.12201i
\(401\) 604.478i 0.0752772i −0.999291 0.0376386i \(-0.988016\pi\)
0.999291 0.0376386i \(-0.0119836\pi\)
\(402\) 0 0
\(403\) 20568.1i 2.54236i
\(404\) 1929.49 1121.65i 0.237613 0.138129i
\(405\) 0 0
\(406\) −3385.50 1947.92i −0.413841 0.238113i
\(407\) 257.263 0.0313318
\(408\) 0 0
\(409\) −907.703 −0.109738 −0.0548692 0.998494i \(-0.517474\pi\)
−0.0548692 + 0.998494i \(0.517474\pi\)
\(410\) −5374.33 3092.24i −0.647364 0.372475i
\(411\) 0 0
\(412\) −5009.27 + 2911.98i −0.599003 + 0.348211i
\(413\) 2000.66i 0.238368i
\(414\) 0 0
\(415\) 9011.82i 1.06596i
\(416\) 11952.9 7019.89i 1.40875 0.827352i
\(417\) 0 0
\(418\) −2284.19 + 3969.93i −0.267280 + 0.464535i
\(419\) 3033.81 0.353726 0.176863 0.984235i \(-0.443405\pi\)
0.176863 + 0.984235i \(0.443405\pi\)
\(420\) 0 0
\(421\) 4435.93 0.513525 0.256762 0.966475i \(-0.417344\pi\)
0.256762 + 0.966475i \(0.417344\pi\)
\(422\) 6050.62 10516.0i 0.697961 1.21306i
\(423\) 0 0
\(424\) 2871.03 12.7918i 0.328843 0.00146516i
\(425\) 16094.1i 1.83689i
\(426\) 0 0
\(427\) 3271.49i 0.370769i
\(428\) −7217.61 12416.0i −0.815132 1.40221i
\(429\) 0 0
\(430\) 20361.7 + 11715.5i 2.28355 + 1.31389i
\(431\) 13504.0 1.50919 0.754597 0.656189i \(-0.227832\pi\)
0.754597 + 0.656189i \(0.227832\pi\)
\(432\) 0 0
\(433\) −10790.3 −1.19757 −0.598785 0.800909i \(-0.704350\pi\)
−0.598785 + 0.800909i \(0.704350\pi\)
\(434\) −4609.39 2652.11i −0.509810 0.293330i
\(435\) 0 0
\(436\) 3521.08 + 6057.07i 0.386764 + 0.665324i
\(437\) 18314.6i 2.00482i
\(438\) 0 0
\(439\) 106.231i 0.0115493i −0.999983 0.00577465i \(-0.998162\pi\)
0.999983 0.00577465i \(-0.00183814\pi\)
\(440\) 5121.54 22.8190i 0.554908 0.00247239i
\(441\) 0 0
\(442\) 10771.1 18720.3i 1.15912 2.01456i
\(443\) −3711.65 −0.398072 −0.199036 0.979992i \(-0.563781\pi\)
−0.199036 + 0.979992i \(0.563781\pi\)
\(444\) 0 0
\(445\) 2375.00 0.253002
\(446\) 424.319 737.469i 0.0450495 0.0782963i
\(447\) 0 0
\(448\) 31.9363 + 3583.86i 0.00336797 + 0.377949i
\(449\) 1890.30i 0.198683i −0.995053 0.0993416i \(-0.968326\pi\)
0.995053 0.0993416i \(-0.0316737\pi\)
\(450\) 0 0
\(451\) 1732.52i 0.180889i
\(452\) −862.273 + 501.255i −0.0897299 + 0.0521616i
\(453\) 0 0
\(454\) 3664.93 + 2108.70i 0.378863 + 0.217987i
\(455\) 9071.51 0.934679
\(456\) 0 0
\(457\) −13254.0 −1.35667 −0.678335 0.734753i \(-0.737298\pi\)
−0.678335 + 0.734753i \(0.737298\pi\)
\(458\) −5656.12 3254.37i −0.577059 0.332023i
\(459\) 0 0
\(460\) 17705.4 10292.4i 1.79460 1.04323i
\(461\) 8351.60i 0.843758i −0.906652 0.421879i \(-0.861371\pi\)
0.906652 0.421879i \(-0.138629\pi\)
\(462\) 0 0
\(463\) 3464.82i 0.347783i 0.984765 + 0.173892i \(0.0556343\pi\)
−0.984765 + 0.173892i \(0.944366\pi\)
\(464\) −10971.5 6247.81i −1.09772 0.625102i
\(465\) 0 0
\(466\) 3567.14 6199.71i 0.354602 0.616300i
\(467\) −11041.6 −1.09410 −0.547050 0.837100i \(-0.684249\pi\)
−0.547050 + 0.837100i \(0.684249\pi\)
\(468\) 0 0
\(469\) −2267.13 −0.223212
\(470\) −3840.08 + 6674.09i −0.376872 + 0.655006i
\(471\) 0 0
\(472\) −28.8138 6467.03i −0.00280988 0.630655i
\(473\) 6563.97i 0.638080i
\(474\) 0 0
\(475\) 19541.1i 1.88759i
\(476\) 2806.42 + 4827.69i 0.270236 + 0.464868i
\(477\) 0 0
\(478\) −3181.89 1830.77i −0.304469 0.175183i
\(479\) −9513.02 −0.907434 −0.453717 0.891146i \(-0.649902\pi\)
−0.453717 + 0.891146i \(0.649902\pi\)
\(480\) 0 0
\(481\) 1472.95 0.139628
\(482\) −11205.8 6447.50i −1.05894 0.609286i
\(483\) 0 0
\(484\) −4632.16 7968.37i −0.435026 0.748345i
\(485\) 11035.6i 1.03319i
\(486\) 0 0
\(487\) 13942.4i 1.29731i −0.761083 0.648654i \(-0.775332\pi\)
0.761083 0.648654i \(-0.224668\pi\)
\(488\) 47.1166 + 10574.9i 0.00437063 + 0.980953i
\(489\) 0 0
\(490\) −1169.71 + 2032.96i −0.107841 + 0.187428i
\(491\) −14369.5 −1.32075 −0.660374 0.750937i \(-0.729602\pi\)
−0.660374 + 0.750937i \(0.729602\pi\)
\(492\) 0 0
\(493\) −19671.9 −1.79711
\(494\) −13078.1 + 22729.8i −1.19111 + 2.07016i
\(495\) 0 0
\(496\) −14937.8 8506.45i −1.35228 0.770062i
\(497\) 4717.61i 0.425782i
\(498\) 0 0
\(499\) 19456.7i 1.74550i 0.488170 + 0.872748i \(0.337664\pi\)
−0.488170 + 0.872748i \(0.662336\pi\)
\(500\) 4260.21 2476.54i 0.381045 0.221508i
\(501\) 0 0
\(502\) 2512.07 + 1445.37i 0.223345 + 0.128506i
\(503\) 10617.9 0.941212 0.470606 0.882344i \(-0.344035\pi\)
0.470606 + 0.882344i \(0.344035\pi\)
\(504\) 0 0
\(505\) 4721.21 0.416022
\(506\) 4959.97 + 2853.83i 0.435766 + 0.250727i
\(507\) 0 0
\(508\) 2125.75 1235.74i 0.185660 0.107927i
\(509\) 21010.6i 1.82963i 0.403878 + 0.914813i \(0.367662\pi\)
−0.403878 + 0.914813i \(0.632338\pi\)
\(510\) 0 0
\(511\) 2367.38i 0.204944i
\(512\) 154.848 + 11584.2i 0.0133660 + 0.999911i
\(513\) 0 0
\(514\) −2456.33 + 4269.12i −0.210786 + 0.366348i
\(515\) −12257.1 −1.04876
\(516\) 0 0
\(517\) −2151.52 −0.183025
\(518\) −189.927 + 330.094i −0.0161098 + 0.0279990i
\(519\) 0 0
\(520\) 29323.3 130.650i 2.47290 0.0110180i
\(521\) 12216.7i 1.02730i −0.857999 0.513652i \(-0.828292\pi\)
0.857999 0.513652i \(-0.171708\pi\)
\(522\) 0 0
\(523\) 18459.0i 1.54332i −0.636035 0.771660i \(-0.719427\pi\)
0.636035 0.771660i \(-0.280573\pi\)
\(524\) 3769.39 + 6484.22i 0.314249 + 0.540581i
\(525\) 0 0
\(526\) 739.300 + 425.372i 0.0612833 + 0.0352607i
\(527\) −26783.4 −2.21386
\(528\) 0 0
\(529\) 10715.0 0.880658
\(530\) 5264.28 + 3028.92i 0.431445 + 0.248241i
\(531\) 0 0
\(532\) −3407.50 5861.68i −0.277695 0.477699i
\(533\) 9919.49i 0.806118i
\(534\) 0 0
\(535\) 30380.3i 2.45505i
\(536\) −7328.40 + 32.6516i −0.590557 + 0.00263122i
\(537\) 0 0
\(538\) 2691.85 4678.46i 0.215714 0.374912i
\(539\) −655.362 −0.0523718
\(540\) 0 0
\(541\) −741.269 −0.0589088 −0.0294544 0.999566i \(-0.509377\pi\)
−0.0294544 + 0.999566i \(0.509377\pi\)
\(542\) −1960.69 + 3407.68i −0.155385 + 0.270060i
\(543\) 0 0
\(544\) 9141.17 + 15564.9i 0.720449 + 1.22673i
\(545\) 14820.9i 1.16487i
\(546\) 0 0
\(547\) 1919.59i 0.150047i 0.997182 + 0.0750236i \(0.0239032\pi\)
−0.997182 + 0.0750236i \(0.976097\pi\)
\(548\) 18040.2 10487.1i 1.40627 0.817492i
\(549\) 0 0
\(550\) 5292.12 + 3044.94i 0.410285 + 0.236066i
\(551\) 23885.2 1.84672
\(552\) 0 0
\(553\) 6085.58 0.467966
\(554\) −12634.9 7269.78i −0.968964 0.557515i
\(555\) 0 0
\(556\) −10805.4 + 6281.39i −0.824195 + 0.479119i
\(557\) 2495.97i 0.189870i −0.995483 0.0949351i \(-0.969736\pi\)
0.995483 0.0949351i \(-0.0302644\pi\)
\(558\) 0 0
\(559\) 37581.9i 2.84355i
\(560\) −3751.74 + 6588.29i −0.283107 + 0.497154i
\(561\) 0 0
\(562\) −6476.74 + 11256.6i −0.486129 + 0.844896i
\(563\) 8882.93 0.664957 0.332478 0.943111i \(-0.392115\pi\)
0.332478 + 0.943111i \(0.392115\pi\)
\(564\) 0 0
\(565\) −2109.87 −0.157103
\(566\) −3351.91 + 5825.64i −0.248925 + 0.432633i
\(567\) 0 0
\(568\) −67.9439 15249.5i −0.00501912 1.12650i
\(569\) 21303.1i 1.56955i 0.619782 + 0.784774i \(0.287221\pi\)
−0.619782 + 0.784774i \(0.712779\pi\)
\(570\) 0 0
\(571\) 8887.19i 0.651344i 0.945483 + 0.325672i \(0.105590\pi\)
−0.945483 + 0.325672i \(0.894410\pi\)
\(572\) 4117.83 + 7083.62i 0.301006 + 0.517799i
\(573\) 0 0
\(574\) 2222.99 + 1279.05i 0.161648 + 0.0930076i
\(575\) 24414.3 1.77069
\(576\) 0 0
\(577\) 11307.3 0.815821 0.407911 0.913022i \(-0.366258\pi\)
0.407911 + 0.913022i \(0.366258\pi\)
\(578\) 12332.6 + 7095.81i 0.887486 + 0.510634i
\(579\) 0 0
\(580\) −13423.0 23090.6i −0.960963 1.65308i
\(581\) 3727.57i 0.266171i
\(582\) 0 0
\(583\) 1697.04i 0.120556i
\(584\) 34.0954 + 7652.44i 0.00241589 + 0.542227i
\(585\) 0 0
\(586\) −11114.4 + 19316.9i −0.783500 + 1.36173i
\(587\) −9103.44 −0.640101 −0.320051 0.947400i \(-0.603700\pi\)
−0.320051 + 0.947400i \(0.603700\pi\)
\(588\) 0 0
\(589\) 32519.9 2.27497
\(590\) 6822.68 11857.9i 0.476077 0.827425i
\(591\) 0 0
\(592\) −609.175 + 1069.75i −0.0422922 + 0.0742676i
\(593\) 15942.3i 1.10400i 0.833843 + 0.552001i \(0.186136\pi\)
−0.833843 + 0.552001i \(0.813864\pi\)
\(594\) 0 0
\(595\) 11812.8i 0.813909i
\(596\) −6733.48 + 3914.29i −0.462776 + 0.269020i
\(597\) 0 0
\(598\) 28398.2 + 16339.5i 1.94196 + 1.11735i
\(599\) 3596.97 0.245356 0.122678 0.992447i \(-0.460852\pi\)
0.122678 + 0.992447i \(0.460852\pi\)
\(600\) 0 0
\(601\) 26215.0 1.77926 0.889628 0.456685i \(-0.150963\pi\)
0.889628 + 0.456685i \(0.150963\pi\)
\(602\) −8422.24 4845.92i −0.570207 0.328081i
\(603\) 0 0
\(604\) −3622.66 + 2105.92i −0.244046 + 0.141868i
\(605\) 19497.6i 1.31023i
\(606\) 0 0
\(607\) 6327.71i 0.423120i −0.977365 0.211560i \(-0.932146\pi\)
0.977365 0.211560i \(-0.0678543\pi\)
\(608\) −11099.0 18898.5i −0.740336 1.26059i
\(609\) 0 0
\(610\) −11156.5 + 19390.1i −0.740514 + 1.28702i
\(611\) −12318.5 −0.815634
\(612\) 0 0
\(613\) −10716.6 −0.706097 −0.353049 0.935605i \(-0.614855\pi\)
−0.353049 + 0.935605i \(0.614855\pi\)
\(614\) 7827.20 13603.7i 0.514463 0.894140i
\(615\) 0 0
\(616\) −2118.43 + 9.43864i −0.138562 + 0.000617360i
\(617\) 16029.5i 1.04591i 0.852362 + 0.522953i \(0.175170\pi\)
−0.852362 + 0.522953i \(0.824830\pi\)
\(618\) 0 0
\(619\) 25672.9i 1.66701i −0.552508 0.833507i \(-0.686329\pi\)
0.552508 0.833507i \(-0.313671\pi\)
\(620\) −18275.5 31438.1i −1.18381 2.03642i
\(621\) 0 0
\(622\) 13912.6 + 8004.89i 0.896854 + 0.516024i
\(623\) −982.373 −0.0631749
\(624\) 0 0
\(625\) −9750.51 −0.624033
\(626\) −3109.29 1789.00i −0.198518 0.114222i
\(627\) 0 0
\(628\) −3017.50 5190.79i −0.191738 0.329833i
\(629\) 1918.05i 0.121586i
\(630\) 0 0
\(631\) 18266.6i 1.15243i 0.817299 + 0.576214i \(0.195471\pi\)
−0.817299 + 0.576214i \(0.804529\pi\)
\(632\) 19671.4 87.6456i 1.23811 0.00551638i
\(633\) 0 0
\(634\) −10363.4 + 18011.6i −0.649182 + 1.12828i
\(635\) 5201.45 0.325060
\(636\) 0 0
\(637\) −3752.26 −0.233391
\(638\) 3721.84 6468.59i 0.230955 0.401401i
\(639\) 0 0
\(640\) −12032.5 + 21350.4i −0.743164 + 1.31867i
\(641\) 27067.8i 1.66788i −0.551853 0.833941i \(-0.686079\pi\)
0.551853 0.833941i \(-0.313921\pi\)
\(642\) 0 0
\(643\) 15727.5i 0.964589i −0.876009 0.482294i \(-0.839804\pi\)
0.876009 0.482294i \(-0.160196\pi\)
\(644\) −7323.49 + 4257.27i −0.448115 + 0.260497i
\(645\) 0 0
\(646\) −29598.3 17030.0i −1.80268 1.03721i
\(647\) 14394.0 0.874631 0.437315 0.899308i \(-0.355929\pi\)
0.437315 + 0.899308i \(0.355929\pi\)
\(648\) 0 0
\(649\) 3822.60 0.231202
\(650\) 30299.9 + 17433.7i 1.82840 + 1.05201i
\(651\) 0 0
\(652\) 5913.10 3437.39i 0.355176 0.206470i
\(653\) 14934.3i 0.894984i −0.894288 0.447492i \(-0.852317\pi\)
0.894288 0.447492i \(-0.147683\pi\)
\(654\) 0 0
\(655\) 15866.1i 0.946471i
\(656\) 7204.14 + 4102.45i 0.428772 + 0.244167i
\(657\) 0 0
\(658\) 1588.38 2760.61i 0.0941056 0.163556i
\(659\) 5165.25 0.305325 0.152663 0.988278i \(-0.451215\pi\)
0.152663 + 0.988278i \(0.451215\pi\)
\(660\) 0 0
\(661\) −30379.4 −1.78763 −0.893814 0.448438i \(-0.851981\pi\)
−0.893814 + 0.448438i \(0.851981\pi\)
\(662\) −10283.3 + 17872.4i −0.603731 + 1.04929i
\(663\) 0 0
\(664\) 53.6851 + 12049.2i 0.00313763 + 0.704216i
\(665\) 14342.8i 0.836375i
\(666\) 0 0
\(667\) 29841.7i 1.73235i
\(668\) −705.878 1214.27i −0.0408851 0.0703317i
\(669\) 0 0
\(670\) −13437.3 7731.42i −0.774816 0.445807i
\(671\) −6250.75 −0.359624
\(672\) 0 0
\(673\) −27648.0 −1.58358 −0.791791 0.610792i \(-0.790851\pi\)
−0.791791 + 0.610792i \(0.790851\pi\)
\(674\) −3780.95 2175.45i −0.216078 0.124325i
\(675\) 0 0
\(676\) 14743.4 + 25362.0i 0.838837 + 1.44299i
\(677\) 23696.2i 1.34523i −0.739994 0.672614i \(-0.765172\pi\)
0.739994 0.672614i \(-0.234828\pi\)
\(678\) 0 0
\(679\) 4564.65i 0.257990i
\(680\) 170.129 + 38184.2i 0.00959436 + 2.15338i
\(681\) 0 0
\(682\) 5067.32 8807.04i 0.284513 0.494485i
\(683\) −13246.1 −0.742092 −0.371046 0.928615i \(-0.621001\pi\)
−0.371046 + 0.928615i \(0.621001\pi\)
\(684\) 0 0
\(685\) 44142.0 2.46216
\(686\) 483.827 840.894i 0.0269280 0.0468010i
\(687\) 0 0
\(688\) −27294.3 15542.9i −1.51248 0.861291i
\(689\) 9716.37i 0.537248i
\(690\) 0 0
\(691\) 19929.8i 1.09720i −0.836084 0.548601i \(-0.815161\pi\)
0.836084 0.548601i \(-0.184839\pi\)
\(692\) 15311.6 8900.90i 0.841126 0.488961i
\(693\) 0 0
\(694\) −28492.3 16393.6i −1.55843 0.896678i
\(695\) −26439.5 −1.44303
\(696\) 0 0
\(697\) 12917.0 0.701959
\(698\) 16387.7 + 9428.99i 0.888656 + 0.511308i
\(699\) 0 0
\(700\) −7813.91 + 4542.36i −0.421912 + 0.245265i
\(701\) 11158.7i 0.601226i 0.953746 + 0.300613i \(0.0971913\pi\)
−0.953746 + 0.300613i \(0.902809\pi\)
\(702\) 0 0
\(703\) 2328.86i 0.124942i
\(704\) −6847.59 + 61.0200i −0.366588 + 0.00326673i
\(705\) 0 0
\(706\) 16960.2 29476.9i 0.904115 1.57136i
\(707\) −1952.84 −0.103881
\(708\) 0 0
\(709\) 31413.7 1.66399 0.831994 0.554784i \(-0.187199\pi\)
0.831994 + 0.554784i \(0.187199\pi\)
\(710\) 16088.1 27961.2i 0.850388 1.47798i
\(711\) 0 0
\(712\) −3175.48 + 14.1483i −0.167143 + 0.000744706i
\(713\) 40629.8i 2.13408i
\(714\) 0 0
\(715\) 17332.7i 0.906583i
\(716\) 1508.07 + 2594.22i 0.0787139 + 0.135406i
\(717\) 0 0
\(718\) −31373.8 18051.6i −1.63072 0.938272i
\(719\) 26970.8 1.39894 0.699472 0.714660i \(-0.253419\pi\)
0.699472 + 0.714660i \(0.253419\pi\)
\(720\) 0 0
\(721\) 5069.90 0.261877
\(722\) 19122.2 + 11002.4i 0.985669 + 0.567126i
\(723\) 0 0
\(724\) 16813.7 + 28923.5i 0.863090 + 1.48471i
\(725\) 31840.1i 1.63105i
\(726\) 0 0
\(727\) 30262.1i 1.54382i −0.635732 0.771910i \(-0.719301\pi\)
0.635732 0.771910i \(-0.280699\pi\)
\(728\) −12129.0 + 54.0408i −0.617488 + 0.00275121i
\(729\) 0 0
\(730\) −8073.28 + 14031.4i −0.409323 + 0.711405i
\(731\) −48938.5 −2.47613
\(732\) 0 0
\(733\) −24635.9 −1.24140 −0.620702 0.784047i \(-0.713152\pi\)
−0.620702 + 0.784047i \(0.713152\pi\)
\(734\) −11565.1 + 20100.3i −0.581576 + 1.01078i
\(735\) 0 0
\(736\) −23611.5 + 13866.9i −1.18252 + 0.694486i
\(737\) 4331.75i 0.216502i
\(738\) 0 0
\(739\) 3397.12i 0.169100i 0.996419 + 0.0845501i \(0.0269453\pi\)
−0.996419 + 0.0845501i \(0.973055\pi\)
\(740\) −2251.39 + 1308.77i −0.111841 + 0.0650153i
\(741\) 0 0
\(742\) −2177.47 1252.86i −0.107732 0.0619862i
\(743\) 23215.4 1.14629 0.573143 0.819455i \(-0.305724\pi\)
0.573143 + 0.819455i \(0.305724\pi\)
\(744\) 0 0
\(745\) −16476.0 −0.810246
\(746\) −23353.7 13437.1i −1.14617 0.659472i
\(747\) 0 0
\(748\) −9224.15 + 5362.16i −0.450894 + 0.262112i
\(749\) 12566.2i 0.613030i
\(750\) 0 0
\(751\) 18025.4i 0.875840i 0.899014 + 0.437920i \(0.144285\pi\)
−0.899014 + 0.437920i \(0.855715\pi\)
\(752\) 5094.61 8946.44i 0.247049 0.433834i
\(753\) 0 0
\(754\) 21309.4 37035.8i 1.02923 1.78881i
\(755\) −8864.19 −0.427286
\(756\) 0 0
\(757\) 14686.1 0.705121 0.352561 0.935789i \(-0.385311\pi\)
0.352561 + 0.935789i \(0.385311\pi\)
\(758\) 8982.15 15611.0i 0.430404 0.748045i
\(759\) 0 0
\(760\) −206.567 46362.4i −0.00985920 2.21282i
\(761\) 16534.6i 0.787618i −0.919192 0.393809i \(-0.871157\pi\)
0.919192 0.393809i \(-0.128843\pi\)
\(762\) 0 0
\(763\) 6130.38i 0.290871i
\(764\) 19451.9 + 33461.8i 0.921133 + 1.58456i
\(765\) 0 0
\(766\) −8083.58 4651.06i −0.381294 0.219386i
\(767\) 21886.3 1.03033
\(768\) 0 0
\(769\) −12385.9 −0.580816 −0.290408 0.956903i \(-0.593791\pi\)
−0.290408 + 0.956903i \(0.593791\pi\)
\(770\) −3884.32 2234.93i −0.181794 0.104599i
\(771\) 0 0
\(772\) 13016.7 + 22391.6i 0.606839 + 1.04390i
\(773\) 5344.00i 0.248655i 0.992241 + 0.124328i \(0.0396774\pi\)
−0.992241 + 0.124328i \(0.960323\pi\)
\(774\) 0 0
\(775\) 43350.6i 2.00929i
\(776\) −65.7409 14755.0i −0.00304119 0.682571i
\(777\) 0 0
\(778\) 7256.59 12612.0i 0.334397 0.581185i
\(779\) −15683.5 −0.721335
\(780\) 0 0
\(781\) 9013.82 0.412983
\(782\) −21277.0 + 36979.6i −0.972973 + 1.69103i
\(783\) 0 0
\(784\) 1551.84 2725.12i 0.0706924 0.124140i
\(785\) 12701.2i 0.577485i
\(786\) 0 0
\(787\) 1893.32i 0.0857554i 0.999080 + 0.0428777i \(0.0136526\pi\)
−0.999080 + 0.0428777i \(0.986347\pi\)
\(788\) 8511.30 4947.77i 0.384775 0.223676i
\(789\) 0 0
\(790\) 36069.1 + 20753.2i 1.62441 + 0.934638i
\(791\) 872.710 0.0392288
\(792\) 0 0
\(793\) −35788.6 −1.60263
\(794\) 21845.1 + 12569.0i 0.976389 + 0.561786i
\(795\) 0 0
\(796\) 26695.1 15518.4i 1.18867 0.690997i
\(797\) 11076.9i 0.492301i −0.969232 0.246151i \(-0.920834\pi\)
0.969232 0.246151i \(-0.0791658\pi\)
\(798\) 0 0
\(799\) 16040.9i 0.710245i
\(800\) −25192.7 + 14795.5i −1.11337 + 0.653876i
\(801\) 0 0
\(802\) −852.660 + 1481.93i −0.0375418 + 0.0652478i
\(803\) −4523.29 −0.198784
\(804\) 0 0
\(805\) −17919.6 −0.784577
\(806\) 29012.9 50424.6i 1.26791 2.20363i
\(807\) 0 0
\(808\) −6312.47 + 28.1252i −0.274842 + 0.00122455i
\(809\) 2577.82i 0.112029i −0.998430 0.0560144i \(-0.982161\pi\)
0.998430 0.0560144i \(-0.0178393\pi\)
\(810\) 0 0
\(811\) 1314.23i 0.0569038i −0.999595 0.0284519i \(-0.990942\pi\)
0.999595 0.0284519i \(-0.00905774\pi\)
\(812\) 5552.16 + 9551.00i 0.239954 + 0.412776i
\(813\) 0 0
\(814\) −630.702 362.888i −0.0271574 0.0156256i
\(815\) 14468.6 0.621857
\(816\) 0 0
\(817\) 59420.0 2.54448
\(818\) 2225.31 + 1280.38i 0.0951177 + 0.0547280i
\(819\) 0 0
\(820\) 8813.81 + 15161.8i 0.375356 + 0.645698i
\(821\) 23769.1i 1.01041i −0.862999 0.505206i \(-0.831416\pi\)
0.862999 0.505206i \(-0.168584\pi\)
\(822\) 0 0
\(823\) 26175.8i 1.10866i 0.832296 + 0.554332i \(0.187026\pi\)
−0.832296 + 0.554332i \(0.812974\pi\)
\(824\) 16388.2 73.0177i 0.692853 0.00308700i
\(825\) 0 0
\(826\) −2822.07 + 4904.78i −0.118877 + 0.206609i
\(827\) −23138.9 −0.972935 −0.486468 0.873699i \(-0.661715\pi\)
−0.486468 + 0.873699i \(0.661715\pi\)
\(828\) 0 0
\(829\) 35835.2 1.50133 0.750667 0.660680i \(-0.229732\pi\)
0.750667 + 0.660680i \(0.229732\pi\)
\(830\) −12711.8 + 22093.3i −0.531608 + 0.923937i
\(831\) 0 0
\(832\) −39205.7 + 349.369i −1.63367 + 0.0145579i
\(833\) 4886.12i 0.203234i
\(834\) 0 0
\(835\) 2971.17i 0.123140i
\(836\) 11199.8 6510.62i 0.463340 0.269348i
\(837\) 0 0
\(838\) −7437.64 4279.41i −0.306598 0.176408i
\(839\) 14944.9 0.614964 0.307482 0.951554i \(-0.400514\pi\)
0.307482 + 0.951554i \(0.400514\pi\)
\(840\) 0 0
\(841\) −14529.4 −0.595734
\(842\) −10875.1 6257.21i −0.445106 0.256102i
\(843\) 0 0
\(844\) −29667.2 + 17246.1i −1.20994 + 0.703358i
\(845\) 62057.7i 2.52645i
\(846\) 0 0
\(847\) 8064.82i 0.327167i
\(848\) −7056.62 4018.44i −0.285761 0.162729i
\(849\) 0 0
\(850\) −22701.9 + 39456.0i −0.916079 + 1.59215i
\(851\) −2909.64 −0.117204
\(852\) 0 0
\(853\) 9080.88 0.364506 0.182253 0.983252i \(-0.441661\pi\)
0.182253 + 0.983252i \(0.441661\pi\)
\(854\) 4614.68 8020.34i 0.184907 0.321370i
\(855\) 0 0
\(856\) 180.981 + 40619.8i 0.00722641 + 1.62191i
\(857\) 22288.3i 0.888393i −0.895929 0.444197i \(-0.853489\pi\)
0.895929 0.444197i \(-0.146511\pi\)
\(858\) 0 0
\(859\) 4362.16i 0.173266i −0.996240 0.0866328i \(-0.972389\pi\)
0.996240 0.0866328i \(-0.0276107\pi\)
\(860\) −33392.8 57443.4i −1.32405 2.27768i
\(861\) 0 0
\(862\) −33106.1 19048.3i −1.30812 0.752655i
\(863\) 15689.4 0.618858 0.309429 0.950923i \(-0.399862\pi\)
0.309429 + 0.950923i \(0.399862\pi\)
\(864\) 0 0
\(865\) 37465.5 1.47268
\(866\) 26453.3 + 15220.5i 1.03802 + 0.597245i
\(867\) 0 0
\(868\) 7559.32 + 13003.8i 0.295599 + 0.508498i
\(869\) 11627.6i 0.453899i
\(870\) 0 0
\(871\) 24801.4i 0.964825i
\(872\) −88.2909 19816.2i −0.00342879 0.769565i
\(873\) 0 0
\(874\) 25834.1 44899.8i 0.999830 1.73771i
\(875\) −4311.77 −0.166588
\(876\) 0 0
\(877\) −27444.7 −1.05672 −0.528358 0.849021i \(-0.677192\pi\)
−0.528358 + 0.849021i \(0.677192\pi\)
\(878\) −149.847 + 260.435i −0.00575979 + 0.0100106i
\(879\) 0 0
\(880\) −12588.1 7168.37i −0.482209 0.274597i
\(881\) 16731.3i 0.639832i −0.947446 0.319916i \(-0.896345\pi\)
0.947446 0.319916i \(-0.103655\pi\)
\(882\) 0 0
\(883\) 8681.97i 0.330885i −0.986219 0.165443i \(-0.947095\pi\)
0.986219 0.165443i \(-0.0529053\pi\)
\(884\) −52812.7 + 30701.0i −2.00937 + 1.16808i
\(885\) 0 0
\(886\) 9099.44 + 5235.56i 0.345036 + 0.198524i
\(887\) 7585.42 0.287140 0.143570 0.989640i \(-0.454142\pi\)
0.143570 + 0.989640i \(0.454142\pi\)
\(888\) 0 0
\(889\) −2151.48 −0.0811681
\(890\) −5822.52 3350.11i −0.219293 0.126175i
\(891\) 0 0
\(892\) −2080.51 + 1209.44i −0.0780948 + 0.0453979i
\(893\) 19476.5i 0.729850i
\(894\) 0 0
\(895\) 6347.74i 0.237074i
\(896\) 4977.00 8831.19i 0.185569 0.329274i
\(897\) 0 0
\(898\) −2666.41 + 4634.24i −0.0990860 + 0.172212i
\(899\) −52987.7 −1.96578
\(900\) 0 0
\(901\) −12652.5 −0.467830
\(902\) −2443.84 + 4247.41i −0.0902118 + 0.156789i
\(903\) 0 0
\(904\) 2821.00 12.5689i 0.103789 0.000462429i
\(905\) 70772.1i 2.59950i
\(906\) 0 0
\(907\) 50795.8i 1.85959i 0.368080 + 0.929794i \(0.380015\pi\)
−0.368080 + 0.929794i \(0.619985\pi\)
\(908\) −6010.43 10339.3i −0.219673 0.377888i
\(909\) 0 0
\(910\) −22239.6 12796.0i −0.810149 0.466137i
\(911\) 23040.6 0.837947 0.418973 0.907999i \(-0.362390\pi\)
0.418973 + 0.907999i \(0.362390\pi\)
\(912\) 0 0
\(913\) −7122.17 −0.258170
\(914\) 32493.4 + 18695.8i 1.17592 + 0.676589i
\(915\) 0 0
\(916\) 9275.93 + 15956.7i 0.334591 + 0.575574i
\(917\) 6562.70i 0.236335i
\(918\) 0 0
\(919\) 3161.63i 0.113485i 0.998389 + 0.0567424i \(0.0180714\pi\)
−0.998389 + 0.0567424i \(0.981929\pi\)
\(920\) −57924.5 + 258.082i −2.07578 + 0.00924860i
\(921\) 0 0
\(922\) −11780.5 + 20474.7i −0.420794 + 0.731342i
\(923\) 51608.5 1.84043
\(924\) 0 0
\(925\) −3104.48 −0.110351
\(926\) 4887.38 8494.30i 0.173444 0.301447i
\(927\) 0 0
\(928\) 18084.7 + 30793.2i 0.639718 + 1.08926i
\(929\) 22607.2i 0.798403i 0.916863 + 0.399202i \(0.130713\pi\)
−0.916863 + 0.399202i \(0.869287\pi\)
\(930\) 0 0
\(931\) 5932.63i 0.208844i
\(932\) −17490.3 + 10167.4i −0.614714 + 0.357344i
\(933\) 0 0
\(934\) 27069.5 + 15575.0i 0.948330 + 0.545642i
\(935\) −22570.3 −0.789443
\(936\) 0 0
\(937\) 10752.2 0.374878 0.187439 0.982276i \(-0.439981\pi\)
0.187439 + 0.982276i \(0.439981\pi\)
\(938\) 5558.07 + 3197.96i 0.193473 + 0.111319i
\(939\) 0 0
\(940\) 18828.6 10945.4i 0.653321 0.379787i
\(941\) 33974.1i 1.17697i 0.808510 + 0.588483i \(0.200275\pi\)
−0.808510 + 0.588483i \(0.799725\pi\)
\(942\) 0 0
\(943\) 19594.7i 0.676661i
\(944\) −9051.59 + 15895.1i −0.312081 + 0.548033i
\(945\) 0 0
\(946\) 9258.97 16092.2i 0.318219 0.553067i
\(947\) 6432.76 0.220736 0.110368 0.993891i \(-0.464797\pi\)
0.110368 + 0.993891i \(0.464797\pi\)
\(948\) 0 0
\(949\) −25898.0 −0.885864
\(950\) 27564.1 47906.6i 0.941366 1.63610i
\(951\) 0 0
\(952\) −70.3708 15794.2i −0.00239573 0.537702i
\(953\) 25913.1i 0.880805i 0.897801 + 0.440402i \(0.145164\pi\)
−0.897801 + 0.440402i \(0.854836\pi\)
\(954\) 0 0
\(955\) 81876.7i 2.77431i
\(956\) 5218.24 + 8976.58i 0.176538 + 0.303686i
\(957\) 0 0
\(958\) 23322.0 + 13418.8i 0.786534 + 0.452549i
\(959\) −18258.5 −0.614806
\(960\) 0 0
\(961\) −42352.2 −1.42165
\(962\) −3611.07 2077.71i −0.121025 0.0696341i
\(963\) 0 0
\(964\) 18377.3 + 31613.2i 0.613998 + 1.05622i
\(965\) 54789.5i 1.82771i
\(966\) 0 0
\(967\) 37738.1i 1.25499i −0.778621 0.627494i \(-0.784081\pi\)
0.778621 0.627494i \(-0.215919\pi\)
\(968\) 116.151 + 26069.2i 0.00385665 + 0.865594i
\(969\) 0 0
\(970\) 15566.5 27054.6i 0.515267 0.895538i
\(971\) 21658.2 0.715801 0.357901 0.933760i \(-0.383493\pi\)
0.357901 + 0.933760i \(0.383493\pi\)
\(972\) 0 0
\(973\) 10936.2 0.360328
\(974\) −19666.7 + 34180.9i −0.646985 + 1.12446i
\(975\) 0 0
\(976\) 14801.2 25991.9i 0.485426 0.852438i
\(977\) 7552.74i 0.247322i 0.992325 + 0.123661i \(0.0394635\pi\)
−0.992325 + 0.123661i \(0.960536\pi\)
\(978\) 0 0
\(979\) 1877.00i 0.0612759i
\(980\) 5735.27 3334.01i 0.186945 0.108675i
\(981\) 0 0
\(982\) 35228.1 + 20269.3i 1.14478 + 0.658674i
\(983\) −31253.8 −1.01408 −0.507041 0.861922i \(-0.669261\pi\)
−0.507041 + 0.861922i \(0.669261\pi\)
\(984\) 0 0
\(985\) 20826.1 0.673679
\(986\) 48227.3 + 27748.6i 1.55768 + 0.896244i
\(987\) 0 0
\(988\) 64124.1 37276.4i 2.06484 1.20033i
\(989\) 74238.4i 2.38690i
\(990\) 0 0
\(991\) 50695.5i 1.62502i −0.582946 0.812511i \(-0.698100\pi\)
0.582946 0.812511i \(-0.301900\pi\)
\(992\) 24622.4 + 41925.2i 0.788068 + 1.34186i
\(993\) 0 0
\(994\) −6654.54 + 11565.6i −0.212343 + 0.369054i
\(995\) 65319.6 2.08118
\(996\) 0 0
\(997\) 7967.10 0.253080 0.126540 0.991962i \(-0.459613\pi\)
0.126540 + 0.991962i \(0.459613\pi\)
\(998\) 27445.2 47699.9i 0.870502 1.51294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.4.e.a.71.3 36
3.2 odd 2 inner 252.4.e.a.71.34 yes 36
4.3 odd 2 inner 252.4.e.a.71.33 yes 36
12.11 even 2 inner 252.4.e.a.71.4 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.e.a.71.3 36 1.1 even 1 trivial
252.4.e.a.71.4 yes 36 12.11 even 2 inner
252.4.e.a.71.33 yes 36 4.3 odd 2 inner
252.4.e.a.71.34 yes 36 3.2 odd 2 inner