Properties

Label 252.4.e.a.71.33
Level $252$
Weight $4$
Character 252.71
Analytic conductor $14.868$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,4,Mod(71,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.71");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8684813214\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.33
Character \(\chi\) \(=\) 252.71
Dual form 252.4.e.a.71.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.45159 - 1.41057i) q^{2} +(4.02056 - 6.91629i) q^{4} +16.9233i q^{5} +7.00000i q^{7} +(0.100815 - 22.6272i) q^{8} +(23.8716 + 41.4889i) q^{10} -13.3747 q^{11} +76.5768 q^{13} +(9.87402 + 17.1611i) q^{14} +(-31.6702 - 55.6147i) q^{16} +99.7168i q^{17} +121.074i q^{19} +(117.046 + 68.0411i) q^{20} +(-32.7893 + 18.8660i) q^{22} +151.268 q^{23} -161.398 q^{25} +(187.735 - 108.017i) q^{26} +(48.4140 + 28.1439i) q^{28} +197.277i q^{29} -268.595i q^{31} +(-156.091 - 91.6713i) q^{32} +(140.658 + 244.464i) q^{34} -118.463 q^{35} +19.2350 q^{37} +(170.784 + 296.823i) q^{38} +(382.926 + 1.70613i) q^{40} -129.537i q^{41} -490.774i q^{43} +(-53.7739 + 92.5035i) q^{44} +(370.846 - 213.375i) q^{46} +160.864 q^{47} -49.0000 q^{49} +(-395.680 + 227.663i) q^{50} +(307.882 - 529.627i) q^{52} +126.884i q^{53} -226.344i q^{55} +(158.390 + 0.705707i) q^{56} +(278.274 + 483.643i) q^{58} -285.808 q^{59} -467.355 q^{61} +(-378.873 - 658.484i) q^{62} +(-511.980 - 4.56233i) q^{64} +1295.93i q^{65} +323.876i q^{67} +(689.670 + 400.917i) q^{68} +(-290.422 + 167.101i) q^{70} -673.944 q^{71} -338.197 q^{73} +(47.1563 - 27.1324i) q^{74} +(837.383 + 486.785i) q^{76} -93.6231i q^{77} -869.368i q^{79} +(941.184 - 535.963i) q^{80} +(-182.721 - 317.570i) q^{82} +532.510 q^{83} -1687.54 q^{85} +(-692.274 - 1203.18i) q^{86} +(-1.34838 + 302.633i) q^{88} -140.339i q^{89} +536.037i q^{91} +(608.182 - 1046.21i) q^{92} +(394.373 - 226.911i) q^{94} -2048.97 q^{95} +652.093 q^{97} +(-120.128 + 69.1181i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 24 q^{4} + 264 q^{10} - 468 q^{16} + 444 q^{22} - 900 q^{25} - 84 q^{28} - 432 q^{34} - 264 q^{37} + 1416 q^{40} + 180 q^{46} - 1764 q^{49} + 2736 q^{52} + 636 q^{58} - 3960 q^{61} + 1392 q^{64}+ \cdots + 5496 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45159 1.41057i 0.866767 0.498713i
\(3\) 0 0
\(4\) 4.02056 6.91629i 0.502570 0.864536i
\(5\) 16.9233i 1.51366i 0.653609 + 0.756832i \(0.273254\pi\)
−0.653609 + 0.756832i \(0.726746\pi\)
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0.100815 22.6272i 0.00445545 0.999990i
\(9\) 0 0
\(10\) 23.8716 + 41.4889i 0.754885 + 1.31199i
\(11\) −13.3747 −0.366603 −0.183301 0.983057i \(-0.558678\pi\)
−0.183301 + 0.983057i \(0.558678\pi\)
\(12\) 0 0
\(13\) 76.5768 1.63374 0.816868 0.576824i \(-0.195708\pi\)
0.816868 + 0.576824i \(0.195708\pi\)
\(14\) 9.87402 + 17.1611i 0.188496 + 0.327607i
\(15\) 0 0
\(16\) −31.6702 55.6147i −0.494846 0.868980i
\(17\) 99.7168i 1.42264i 0.702868 + 0.711320i \(0.251902\pi\)
−0.702868 + 0.711320i \(0.748098\pi\)
\(18\) 0 0
\(19\) 121.074i 1.46191i 0.682426 + 0.730955i \(0.260925\pi\)
−0.682426 + 0.730955i \(0.739075\pi\)
\(20\) 117.046 + 68.0411i 1.30862 + 0.760723i
\(21\) 0 0
\(22\) −32.7893 + 18.8660i −0.317759 + 0.182830i
\(23\) 151.268 1.37137 0.685685 0.727898i \(-0.259503\pi\)
0.685685 + 0.727898i \(0.259503\pi\)
\(24\) 0 0
\(25\) −161.398 −1.29118
\(26\) 187.735 108.017i 1.41607 0.814766i
\(27\) 0 0
\(28\) 48.4140 + 28.1439i 0.326764 + 0.189954i
\(29\) 197.277i 1.26322i 0.775285 + 0.631612i \(0.217606\pi\)
−0.775285 + 0.631612i \(0.782394\pi\)
\(30\) 0 0
\(31\) 268.595i 1.55616i −0.628163 0.778082i \(-0.716193\pi\)
0.628163 0.778082i \(-0.283807\pi\)
\(32\) −156.091 91.6713i −0.862289 0.506417i
\(33\) 0 0
\(34\) 140.658 + 244.464i 0.709489 + 1.23310i
\(35\) −118.463 −0.572112
\(36\) 0 0
\(37\) 19.2350 0.0854652 0.0427326 0.999087i \(-0.486394\pi\)
0.0427326 + 0.999087i \(0.486394\pi\)
\(38\) 170.784 + 296.823i 0.729074 + 1.26713i
\(39\) 0 0
\(40\) 382.926 + 1.70613i 1.51365 + 0.00674406i
\(41\) 129.537i 0.493420i −0.969089 0.246710i \(-0.920651\pi\)
0.969089 0.246710i \(-0.0793495\pi\)
\(42\) 0 0
\(43\) 490.774i 1.74052i −0.492592 0.870261i \(-0.663950\pi\)
0.492592 0.870261i \(-0.336050\pi\)
\(44\) −53.7739 + 92.5035i −0.184244 + 0.316942i
\(45\) 0 0
\(46\) 370.846 213.375i 1.18866 0.683921i
\(47\) 160.864 0.499245 0.249622 0.968343i \(-0.419694\pi\)
0.249622 + 0.968343i \(0.419694\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) −395.680 + 227.663i −1.11915 + 0.643929i
\(51\) 0 0
\(52\) 307.882 529.627i 0.821067 1.41242i
\(53\) 126.884i 0.328846i 0.986390 + 0.164423i \(0.0525763\pi\)
−0.986390 + 0.164423i \(0.947424\pi\)
\(54\) 0 0
\(55\) 226.344i 0.554914i
\(56\) 158.390 + 0.705707i 0.377961 + 0.00168400i
\(57\) 0 0
\(58\) 278.274 + 483.643i 0.629986 + 1.09492i
\(59\) −285.808 −0.630662 −0.315331 0.948982i \(-0.602115\pi\)
−0.315331 + 0.948982i \(0.602115\pi\)
\(60\) 0 0
\(61\) −467.355 −0.980963 −0.490481 0.871452i \(-0.663179\pi\)
−0.490481 + 0.871452i \(0.663179\pi\)
\(62\) −378.873 658.484i −0.776079 1.34883i
\(63\) 0 0
\(64\) −511.980 4.56233i −0.999960 0.00891081i
\(65\) 1295.93i 2.47293i
\(66\) 0 0
\(67\) 323.876i 0.590563i 0.955410 + 0.295282i \(0.0954135\pi\)
−0.955410 + 0.295282i \(0.904587\pi\)
\(68\) 689.670 + 400.917i 1.22992 + 0.714976i
\(69\) 0 0
\(70\) −290.422 + 167.101i −0.495887 + 0.285320i
\(71\) −673.944 −1.12651 −0.563257 0.826282i \(-0.690452\pi\)
−0.563257 + 0.826282i \(0.690452\pi\)
\(72\) 0 0
\(73\) −338.197 −0.542232 −0.271116 0.962547i \(-0.587393\pi\)
−0.271116 + 0.962547i \(0.587393\pi\)
\(74\) 47.1563 27.1324i 0.0740784 0.0426226i
\(75\) 0 0
\(76\) 837.383 + 486.785i 1.26387 + 0.734712i
\(77\) 93.6231i 0.138563i
\(78\) 0 0
\(79\) 869.368i 1.23812i −0.785343 0.619060i \(-0.787514\pi\)
0.785343 0.619060i \(-0.212486\pi\)
\(80\) 941.184 535.963i 1.31535 0.749032i
\(81\) 0 0
\(82\) −182.721 317.570i −0.246075 0.427680i
\(83\) 532.510 0.704223 0.352112 0.935958i \(-0.385464\pi\)
0.352112 + 0.935958i \(0.385464\pi\)
\(84\) 0 0
\(85\) −1687.54 −2.15340
\(86\) −692.274 1203.18i −0.868021 1.50863i
\(87\) 0 0
\(88\) −1.34838 + 302.633i −0.00163338 + 0.366599i
\(89\) 140.339i 0.167145i −0.996502 0.0835725i \(-0.973367\pi\)
0.996502 0.0835725i \(-0.0266330\pi\)
\(90\) 0 0
\(91\) 536.037i 0.617494i
\(92\) 608.182 1046.21i 0.689210 1.18560i
\(93\) 0 0
\(94\) 394.373 226.911i 0.432729 0.248980i
\(95\) −2048.97 −2.21284
\(96\) 0 0
\(97\) 652.093 0.682578 0.341289 0.939959i \(-0.389137\pi\)
0.341289 + 0.939959i \(0.389137\pi\)
\(98\) −120.128 + 69.1181i −0.123824 + 0.0712448i
\(99\) 0 0
\(100\) −648.909 + 1116.27i −0.648909 + 1.11627i
\(101\) 278.977i 0.274844i −0.990513 0.137422i \(-0.956118\pi\)
0.990513 0.137422i \(-0.0438817\pi\)
\(102\) 0 0
\(103\) 724.272i 0.692860i −0.938076 0.346430i \(-0.887394\pi\)
0.938076 0.346430i \(-0.112606\pi\)
\(104\) 7.72011 1732.72i 0.00727903 1.63372i
\(105\) 0 0
\(106\) 178.979 + 311.067i 0.164000 + 0.285033i
\(107\) 1795.17 1.62193 0.810963 0.585097i \(-0.198944\pi\)
0.810963 + 0.585097i \(0.198944\pi\)
\(108\) 0 0
\(109\) 875.769 0.769573 0.384786 0.923006i \(-0.374275\pi\)
0.384786 + 0.923006i \(0.374275\pi\)
\(110\) −319.275 554.903i −0.276743 0.480981i
\(111\) 0 0
\(112\) 389.303 221.691i 0.328444 0.187034i
\(113\) 124.673i 0.103790i 0.998653 + 0.0518948i \(0.0165261\pi\)
−0.998653 + 0.0518948i \(0.983474\pi\)
\(114\) 0 0
\(115\) 2559.95i 2.07580i
\(116\) 1364.43 + 793.166i 1.09210 + 0.634859i
\(117\) 0 0
\(118\) −700.683 + 403.153i −0.546637 + 0.314519i
\(119\) −698.018 −0.537707
\(120\) 0 0
\(121\) −1152.12 −0.865602
\(122\) −1145.76 + 659.240i −0.850266 + 0.489219i
\(123\) 0 0
\(124\) −1857.68 1079.90i −1.34536 0.782081i
\(125\) 615.968i 0.440751i
\(126\) 0 0
\(127\) 307.355i 0.214751i 0.994219 + 0.107375i \(0.0342446\pi\)
−0.994219 + 0.107375i \(0.965755\pi\)
\(128\) −1261.60 + 711.000i −0.871177 + 0.490970i
\(129\) 0 0
\(130\) 1828.01 + 3177.09i 1.23328 + 2.14345i
\(131\) −937.529 −0.625285 −0.312642 0.949871i \(-0.601214\pi\)
−0.312642 + 0.949871i \(0.601214\pi\)
\(132\) 0 0
\(133\) −847.518 −0.552550
\(134\) 456.851 + 794.010i 0.294522 + 0.511881i
\(135\) 0 0
\(136\) 2256.31 + 10.0530i 1.42263 + 0.00633850i
\(137\) 2608.36i 1.62662i −0.581829 0.813311i \(-0.697663\pi\)
0.581829 0.813311i \(-0.302337\pi\)
\(138\) 0 0
\(139\) 1562.32i 0.953338i −0.879083 0.476669i \(-0.841844\pi\)
0.879083 0.476669i \(-0.158156\pi\)
\(140\) −476.288 + 819.325i −0.287526 + 0.494611i
\(141\) 0 0
\(142\) −1652.23 + 950.648i −0.976425 + 0.561807i
\(143\) −1024.19 −0.598933
\(144\) 0 0
\(145\) −3338.58 −1.91210
\(146\) −829.119 + 477.052i −0.469989 + 0.270418i
\(147\) 0 0
\(148\) 77.3354 133.035i 0.0429523 0.0738878i
\(149\) 973.569i 0.535288i 0.963518 + 0.267644i \(0.0862450\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(150\) 0 0
\(151\) 523.787i 0.282286i −0.989989 0.141143i \(-0.954922\pi\)
0.989989 0.141143i \(-0.0450777\pi\)
\(152\) 2739.56 + 12.2061i 1.46189 + 0.00651346i
\(153\) 0 0
\(154\) −132.062 229.525i −0.0691031 0.120102i
\(155\) 4545.51 2.35551
\(156\) 0 0
\(157\) −750.516 −0.381514 −0.190757 0.981637i \(-0.561094\pi\)
−0.190757 + 0.981637i \(0.561094\pi\)
\(158\) −1226.31 2131.33i −0.617467 1.07316i
\(159\) 0 0
\(160\) 1551.38 2641.57i 0.766546 1.30522i
\(161\) 1058.87i 0.518329i
\(162\) 0 0
\(163\) 854.952i 0.410828i 0.978675 + 0.205414i \(0.0658542\pi\)
−0.978675 + 0.205414i \(0.934146\pi\)
\(164\) −895.912 520.810i −0.426579 0.247978i
\(165\) 0 0
\(166\) 1305.49 751.145i 0.610398 0.351206i
\(167\) 175.567 0.0813520 0.0406760 0.999172i \(-0.487049\pi\)
0.0406760 + 0.999172i \(0.487049\pi\)
\(168\) 0 0
\(169\) 3667.00 1.66909
\(170\) −4137.14 + 2380.39i −1.86650 + 1.07393i
\(171\) 0 0
\(172\) −3394.34 1973.19i −1.50474 0.874734i
\(173\) 2213.84i 0.972922i −0.873702 0.486461i \(-0.838288\pi\)
0.873702 0.486461i \(-0.161712\pi\)
\(174\) 0 0
\(175\) 1129.78i 0.488021i
\(176\) 423.580 + 743.832i 0.181412 + 0.318571i
\(177\) 0 0
\(178\) −197.959 344.053i −0.0833575 0.144876i
\(179\) −375.089 −0.156623 −0.0783113 0.996929i \(-0.524953\pi\)
−0.0783113 + 0.996929i \(0.524953\pi\)
\(180\) 0 0
\(181\) 4181.94 1.71735 0.858677 0.512518i \(-0.171287\pi\)
0.858677 + 0.512518i \(0.171287\pi\)
\(182\) 756.120 + 1314.14i 0.307953 + 0.535224i
\(183\) 0 0
\(184\) 15.2501 3422.77i 0.00611007 1.37136i
\(185\) 325.519i 0.129366i
\(186\) 0 0
\(187\) 1333.69i 0.521544i
\(188\) 646.766 1112.59i 0.250905 0.431615i
\(189\) 0 0
\(190\) −5023.23 + 2890.22i −1.91802 + 1.10357i
\(191\) −4838.11 −1.83284 −0.916422 0.400213i \(-0.868936\pi\)
−0.916422 + 0.400213i \(0.868936\pi\)
\(192\) 0 0
\(193\) 3237.52 1.20747 0.603736 0.797185i \(-0.293678\pi\)
0.603736 + 0.797185i \(0.293678\pi\)
\(194\) 1598.66 919.826i 0.591636 0.340410i
\(195\) 0 0
\(196\) −197.008 + 338.898i −0.0717957 + 0.123505i
\(197\) 1230.62i 0.445065i −0.974925 0.222533i \(-0.928568\pi\)
0.974925 0.222533i \(-0.0714324\pi\)
\(198\) 0 0
\(199\) 3859.75i 1.37493i 0.726219 + 0.687463i \(0.241276\pi\)
−0.726219 + 0.687463i \(0.758724\pi\)
\(200\) −16.2713 + 3651.98i −0.00575279 + 1.29117i
\(201\) 0 0
\(202\) −393.518 683.937i −0.137068 0.238226i
\(203\) −1380.94 −0.477454
\(204\) 0 0
\(205\) 2192.18 0.746872
\(206\) −1021.64 1775.62i −0.345539 0.600548i
\(207\) 0 0
\(208\) −2425.20 4258.80i −0.808449 1.41968i
\(209\) 1619.33i 0.535940i
\(210\) 0 0
\(211\) 4289.47i 1.39952i −0.714377 0.699762i \(-0.753290\pi\)
0.714377 0.699762i \(-0.246710\pi\)
\(212\) 877.567 + 510.145i 0.284300 + 0.165268i
\(213\) 0 0
\(214\) 4401.03 2532.23i 1.40583 0.808876i
\(215\) 8305.52 2.63457
\(216\) 0 0
\(217\) 1880.16 0.588175
\(218\) 2147.02 1235.34i 0.667040 0.383796i
\(219\) 0 0
\(220\) −1565.46 910.031i −0.479743 0.278883i
\(221\) 7635.99i 2.32422i
\(222\) 0 0
\(223\) 300.813i 0.0903315i −0.998980 0.0451657i \(-0.985618\pi\)
0.998980 0.0451657i \(-0.0143816\pi\)
\(224\) 641.699 1092.64i 0.191408 0.325914i
\(225\) 0 0
\(226\) 175.860 + 305.646i 0.0517613 + 0.0899615i
\(227\) 1494.92 0.437099 0.218550 0.975826i \(-0.429867\pi\)
0.218550 + 0.975826i \(0.429867\pi\)
\(228\) 0 0
\(229\) 2307.12 0.665760 0.332880 0.942969i \(-0.391980\pi\)
0.332880 + 0.942969i \(0.391980\pi\)
\(230\) 3611.00 + 6275.94i 1.03523 + 1.79923i
\(231\) 0 0
\(232\) 4463.83 + 19.8886i 1.26321 + 0.00562823i
\(233\) 2528.85i 0.711033i 0.934670 + 0.355517i \(0.115695\pi\)
−0.934670 + 0.355517i \(0.884305\pi\)
\(234\) 0 0
\(235\) 2722.36i 0.755689i
\(236\) −1149.11 + 1976.73i −0.316952 + 0.545230i
\(237\) 0 0
\(238\) −1711.25 + 984.606i −0.466067 + 0.268162i
\(239\) −1297.89 −0.351270 −0.175635 0.984455i \(-0.556198\pi\)
−0.175635 + 0.984455i \(0.556198\pi\)
\(240\) 0 0
\(241\) 4570.84 1.22172 0.610858 0.791740i \(-0.290825\pi\)
0.610858 + 0.791740i \(0.290825\pi\)
\(242\) −2824.51 + 1625.15i −0.750276 + 0.431687i
\(243\) 0 0
\(244\) −1879.03 + 3232.37i −0.493003 + 0.848078i
\(245\) 829.241i 0.216238i
\(246\) 0 0
\(247\) 9271.45i 2.38837i
\(248\) −6077.55 27.0785i −1.55615 0.00693341i
\(249\) 0 0
\(250\) −868.868 1510.10i −0.219808 0.382028i
\(251\) 1024.67 0.257676 0.128838 0.991666i \(-0.458875\pi\)
0.128838 + 0.991666i \(0.458875\pi\)
\(252\) 0 0
\(253\) −2023.17 −0.502749
\(254\) 433.547 + 753.507i 0.107099 + 0.186139i
\(255\) 0 0
\(256\) −2090.00 + 3522.66i −0.510254 + 0.860024i
\(257\) 1741.37i 0.422660i −0.977415 0.211330i \(-0.932221\pi\)
0.977415 0.211330i \(-0.0677794\pi\)
\(258\) 0 0
\(259\) 134.645i 0.0323028i
\(260\) 8963.03 + 5210.37i 2.13794 + 1.24282i
\(261\) 0 0
\(262\) −2298.43 + 1322.45i −0.541976 + 0.311838i
\(263\) 301.560 0.0707033 0.0353516 0.999375i \(-0.488745\pi\)
0.0353516 + 0.999375i \(0.488745\pi\)
\(264\) 0 0
\(265\) −2147.29 −0.497763
\(266\) −2077.76 + 1195.49i −0.478932 + 0.275564i
\(267\) 0 0
\(268\) 2240.02 + 1302.16i 0.510563 + 0.296799i
\(269\) 1908.34i 0.432540i 0.976334 + 0.216270i \(0.0693892\pi\)
−0.976334 + 0.216270i \(0.930611\pi\)
\(270\) 0 0
\(271\) 1389.99i 0.311572i 0.987791 + 0.155786i \(0.0497910\pi\)
−0.987791 + 0.155786i \(0.950209\pi\)
\(272\) 5545.72 3158.05i 1.23625 0.703988i
\(273\) 0 0
\(274\) −3679.29 6394.62i −0.811218 1.40990i
\(275\) 2158.65 0.473351
\(276\) 0 0
\(277\) 5153.77 1.11791 0.558953 0.829199i \(-0.311203\pi\)
0.558953 + 0.829199i \(0.311203\pi\)
\(278\) −2203.76 3830.16i −0.475442 0.826322i
\(279\) 0 0
\(280\) −11.9429 + 2680.49i −0.00254901 + 0.572106i
\(281\) 4591.56i 0.974767i −0.873188 0.487384i \(-0.837951\pi\)
0.873188 0.487384i \(-0.162049\pi\)
\(282\) 0 0
\(283\) 2376.27i 0.499134i 0.968358 + 0.249567i \(0.0802882\pi\)
−0.968358 + 0.249567i \(0.919712\pi\)
\(284\) −2709.63 + 4661.19i −0.566152 + 0.973912i
\(285\) 0 0
\(286\) −2510.90 + 1444.70i −0.519135 + 0.298696i
\(287\) 906.756 0.186495
\(288\) 0 0
\(289\) −5030.44 −1.02390
\(290\) −8184.82 + 4709.32i −1.65734 + 0.953588i
\(291\) 0 0
\(292\) −1359.74 + 2339.07i −0.272510 + 0.468779i
\(293\) 7879.34i 1.57104i −0.618834 0.785522i \(-0.712395\pi\)
0.618834 0.785522i \(-0.287605\pi\)
\(294\) 0 0
\(295\) 4836.81i 0.954610i
\(296\) 1.93918 435.234i 0.000380786 0.0854644i
\(297\) 0 0
\(298\) 1373.29 + 2386.79i 0.266955 + 0.463970i
\(299\) 11583.6 2.24046
\(300\) 0 0
\(301\) 3435.42 0.657855
\(302\) −738.840 1284.11i −0.140780 0.244676i
\(303\) 0 0
\(304\) 6733.50 3834.43i 1.27037 0.723421i
\(305\) 7909.19i 1.48485i
\(306\) 0 0
\(307\) 5548.95i 1.03158i −0.856715 0.515790i \(-0.827498\pi\)
0.856715 0.515790i \(-0.172502\pi\)
\(308\) −647.525 376.417i −0.119793 0.0696376i
\(309\) 0 0
\(310\) 11143.7 6411.78i 2.04168 1.17472i
\(311\) 5674.92 1.03471 0.517356 0.855771i \(-0.326916\pi\)
0.517356 + 0.855771i \(0.326916\pi\)
\(312\) 0 0
\(313\) 1268.28 0.229033 0.114516 0.993421i \(-0.463468\pi\)
0.114516 + 0.993421i \(0.463468\pi\)
\(314\) −1839.96 + 1058.66i −0.330684 + 0.190266i
\(315\) 0 0
\(316\) −6012.80 3495.35i −1.07040 0.622243i
\(317\) 7346.90i 1.30171i −0.759201 0.650857i \(-0.774410\pi\)
0.759201 0.650857i \(-0.225590\pi\)
\(318\) 0 0
\(319\) 2638.53i 0.463102i
\(320\) 77.2097 8664.38i 0.0134880 1.51360i
\(321\) 0 0
\(322\) 1493.62 + 2595.92i 0.258498 + 0.449271i
\(323\) −12073.1 −2.07977
\(324\) 0 0
\(325\) −12359.3 −2.10945
\(326\) 1205.97 + 2095.99i 0.204886 + 0.356093i
\(327\) 0 0
\(328\) −2931.05 13.0593i −0.493415 0.00219841i
\(329\) 1126.05i 0.188697i
\(330\) 0 0
\(331\) 7290.12i 1.21058i 0.796006 + 0.605289i \(0.206942\pi\)
−0.796006 + 0.605289i \(0.793058\pi\)
\(332\) 2140.99 3682.99i 0.353922 0.608827i
\(333\) 0 0
\(334\) 430.418 247.650i 0.0705132 0.0405713i
\(335\) −5481.05 −0.893915
\(336\) 0 0
\(337\) 1542.25 0.249292 0.124646 0.992201i \(-0.460220\pi\)
0.124646 + 0.992201i \(0.460220\pi\)
\(338\) 8989.97 5172.58i 1.44672 0.832400i
\(339\) 0 0
\(340\) −6784.84 + 11671.5i −1.08223 + 1.86169i
\(341\) 3592.38i 0.570494i
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) −11104.8 49.4776i −1.74050 0.00775480i
\(345\) 0 0
\(346\) −3122.79 5427.43i −0.485209 0.843296i
\(347\) −11622.0 −1.79798 −0.898991 0.437967i \(-0.855699\pi\)
−0.898991 + 0.437967i \(0.855699\pi\)
\(348\) 0 0
\(349\) −6684.51 −1.02525 −0.512627 0.858612i \(-0.671328\pi\)
−0.512627 + 0.858612i \(0.671328\pi\)
\(350\) −1593.64 2769.76i −0.243382 0.423000i
\(351\) 0 0
\(352\) 2087.67 + 1226.08i 0.316118 + 0.185654i
\(353\) 12023.6i 1.81290i 0.422318 + 0.906448i \(0.361217\pi\)
−0.422318 + 0.906448i \(0.638783\pi\)
\(354\) 0 0
\(355\) 11405.3i 1.70516i
\(356\) −970.626 564.242i −0.144503 0.0840021i
\(357\) 0 0
\(358\) −919.563 + 529.091i −0.135755 + 0.0781098i
\(359\) −12797.3 −1.88139 −0.940693 0.339259i \(-0.889824\pi\)
−0.940693 + 0.339259i \(0.889824\pi\)
\(360\) 0 0
\(361\) −7799.91 −1.13718
\(362\) 10252.4 5898.93i 1.48855 0.856467i
\(363\) 0 0
\(364\) 3707.39 + 2155.17i 0.533846 + 0.310334i
\(365\) 5723.40i 0.820757i
\(366\) 0 0
\(367\) 8198.88i 1.16615i 0.812417 + 0.583077i \(0.198151\pi\)
−0.812417 + 0.583077i \(0.801849\pi\)
\(368\) −4790.68 8412.72i −0.678618 1.19169i
\(369\) 0 0
\(370\) 459.169 + 798.039i 0.0645164 + 0.112130i
\(371\) −888.188 −0.124292
\(372\) 0 0
\(373\) 9525.95 1.32235 0.661173 0.750233i \(-0.270059\pi\)
0.661173 + 0.750233i \(0.270059\pi\)
\(374\) −1881.26 3269.65i −0.260101 0.452057i
\(375\) 0 0
\(376\) 16.2176 3639.91i 0.00222436 0.499240i
\(377\) 15106.9i 2.06377i
\(378\) 0 0
\(379\) 6367.72i 0.863029i −0.902106 0.431514i \(-0.857979\pi\)
0.902106 0.431514i \(-0.142021\pi\)
\(380\) −8238.01 + 14171.3i −1.11211 + 1.91308i
\(381\) 0 0
\(382\) −11861.0 + 6824.51i −1.58865 + 0.914064i
\(383\) −3297.28 −0.439904 −0.219952 0.975511i \(-0.570590\pi\)
−0.219952 + 0.975511i \(0.570590\pi\)
\(384\) 0 0
\(385\) 1584.41 0.209738
\(386\) 7937.07 4566.76i 1.04660 0.602182i
\(387\) 0 0
\(388\) 2621.78 4510.07i 0.343043 0.590113i
\(389\) 5144.42i 0.670521i 0.942126 + 0.335260i \(0.108824\pi\)
−0.942126 + 0.335260i \(0.891176\pi\)
\(390\) 0 0
\(391\) 15083.9i 1.95097i
\(392\) −4.93995 + 1108.73i −0.000636493 + 0.142856i
\(393\) 0 0
\(394\) −1735.88 3016.96i −0.221960 0.385768i
\(395\) 14712.6 1.87410
\(396\) 0 0
\(397\) −8910.58 −1.12647 −0.563236 0.826296i \(-0.690444\pi\)
−0.563236 + 0.826296i \(0.690444\pi\)
\(398\) 5444.46 + 9462.51i 0.685694 + 1.19174i
\(399\) 0 0
\(400\) 5111.49 + 8976.09i 0.638936 + 1.12201i
\(401\) 604.478i 0.0752772i −0.999291 0.0376386i \(-0.988016\pi\)
0.999291 0.0376386i \(-0.0119836\pi\)
\(402\) 0 0
\(403\) 20568.1i 2.54236i
\(404\) −1929.49 1121.65i −0.237613 0.138129i
\(405\) 0 0
\(406\) −3385.50 + 1947.92i −0.413841 + 0.238113i
\(407\) −257.263 −0.0313318
\(408\) 0 0
\(409\) −907.703 −0.109738 −0.0548692 0.998494i \(-0.517474\pi\)
−0.0548692 + 0.998494i \(0.517474\pi\)
\(410\) 5374.33 3092.24i 0.647364 0.372475i
\(411\) 0 0
\(412\) −5009.27 2911.98i −0.599003 0.348211i
\(413\) 2000.66i 0.238368i
\(414\) 0 0
\(415\) 9011.82i 1.06596i
\(416\) −11952.9 7019.89i −1.40875 0.827352i
\(417\) 0 0
\(418\) −2284.19 3969.93i −0.267280 0.464535i
\(419\) −3033.81 −0.353726 −0.176863 0.984235i \(-0.556595\pi\)
−0.176863 + 0.984235i \(0.556595\pi\)
\(420\) 0 0
\(421\) 4435.93 0.513525 0.256762 0.966475i \(-0.417344\pi\)
0.256762 + 0.966475i \(0.417344\pi\)
\(422\) −6050.62 10516.0i −0.697961 1.21306i
\(423\) 0 0
\(424\) 2871.03 + 12.7918i 0.328843 + 0.00146516i
\(425\) 16094.1i 1.83689i
\(426\) 0 0
\(427\) 3271.49i 0.370769i
\(428\) 7217.61 12416.0i 0.815132 1.40221i
\(429\) 0 0
\(430\) 20361.7 11715.5i 2.28355 1.31389i
\(431\) −13504.0 −1.50919 −0.754597 0.656189i \(-0.772168\pi\)
−0.754597 + 0.656189i \(0.772168\pi\)
\(432\) 0 0
\(433\) −10790.3 −1.19757 −0.598785 0.800909i \(-0.704350\pi\)
−0.598785 + 0.800909i \(0.704350\pi\)
\(434\) 4609.39 2652.11i 0.509810 0.293330i
\(435\) 0 0
\(436\) 3521.08 6057.07i 0.386764 0.665324i
\(437\) 18314.6i 2.00482i
\(438\) 0 0
\(439\) 106.231i 0.0115493i 0.999983 + 0.00577465i \(0.00183814\pi\)
−0.999983 + 0.00577465i \(0.998162\pi\)
\(440\) −5121.54 22.8190i −0.554908 0.00247239i
\(441\) 0 0
\(442\) 10771.1 + 18720.3i 1.15912 + 2.01456i
\(443\) 3711.65 0.398072 0.199036 0.979992i \(-0.436219\pi\)
0.199036 + 0.979992i \(0.436219\pi\)
\(444\) 0 0
\(445\) 2375.00 0.253002
\(446\) −424.319 737.469i −0.0450495 0.0782963i
\(447\) 0 0
\(448\) 31.9363 3583.86i 0.00336797 0.377949i
\(449\) 1890.30i 0.198683i −0.995053 0.0993416i \(-0.968326\pi\)
0.995053 0.0993416i \(-0.0316737\pi\)
\(450\) 0 0
\(451\) 1732.52i 0.180889i
\(452\) 862.273 + 501.255i 0.0897299 + 0.0521616i
\(453\) 0 0
\(454\) 3664.93 2108.70i 0.378863 0.217987i
\(455\) −9071.51 −0.934679
\(456\) 0 0
\(457\) −13254.0 −1.35667 −0.678335 0.734753i \(-0.737298\pi\)
−0.678335 + 0.734753i \(0.737298\pi\)
\(458\) 5656.12 3254.37i 0.577059 0.332023i
\(459\) 0 0
\(460\) 17705.4 + 10292.4i 1.79460 + 1.04323i
\(461\) 8351.60i 0.843758i −0.906652 0.421879i \(-0.861371\pi\)
0.906652 0.421879i \(-0.138629\pi\)
\(462\) 0 0
\(463\) 3464.82i 0.347783i −0.984765 0.173892i \(-0.944366\pi\)
0.984765 0.173892i \(-0.0556343\pi\)
\(464\) 10971.5 6247.81i 1.09772 0.625102i
\(465\) 0 0
\(466\) 3567.14 + 6199.71i 0.354602 + 0.616300i
\(467\) 11041.6 1.09410 0.547050 0.837100i \(-0.315751\pi\)
0.547050 + 0.837100i \(0.315751\pi\)
\(468\) 0 0
\(469\) −2267.13 −0.223212
\(470\) 3840.08 + 6674.09i 0.376872 + 0.655006i
\(471\) 0 0
\(472\) −28.8138 + 6467.03i −0.00280988 + 0.630655i
\(473\) 6563.97i 0.638080i
\(474\) 0 0
\(475\) 19541.1i 1.88759i
\(476\) −2806.42 + 4827.69i −0.270236 + 0.464868i
\(477\) 0 0
\(478\) −3181.89 + 1830.77i −0.304469 + 0.175183i
\(479\) 9513.02 0.907434 0.453717 0.891146i \(-0.350098\pi\)
0.453717 + 0.891146i \(0.350098\pi\)
\(480\) 0 0
\(481\) 1472.95 0.139628
\(482\) 11205.8 6447.50i 1.05894 0.609286i
\(483\) 0 0
\(484\) −4632.16 + 7968.37i −0.435026 + 0.748345i
\(485\) 11035.6i 1.03319i
\(486\) 0 0
\(487\) 13942.4i 1.29731i 0.761083 + 0.648654i \(0.224668\pi\)
−0.761083 + 0.648654i \(0.775332\pi\)
\(488\) −47.1166 + 10574.9i −0.00437063 + 0.980953i
\(489\) 0 0
\(490\) −1169.71 2032.96i −0.107841 0.187428i
\(491\) 14369.5 1.32075 0.660374 0.750937i \(-0.270398\pi\)
0.660374 + 0.750937i \(0.270398\pi\)
\(492\) 0 0
\(493\) −19671.9 −1.79711
\(494\) 13078.1 + 22729.8i 1.19111 + 2.07016i
\(495\) 0 0
\(496\) −14937.8 + 8506.45i −1.35228 + 0.770062i
\(497\) 4717.61i 0.425782i
\(498\) 0 0
\(499\) 19456.7i 1.74550i −0.488170 0.872748i \(-0.662336\pi\)
0.488170 0.872748i \(-0.337664\pi\)
\(500\) −4260.21 2476.54i −0.381045 0.221508i
\(501\) 0 0
\(502\) 2512.07 1445.37i 0.223345 0.128506i
\(503\) −10617.9 −0.941212 −0.470606 0.882344i \(-0.655965\pi\)
−0.470606 + 0.882344i \(0.655965\pi\)
\(504\) 0 0
\(505\) 4721.21 0.416022
\(506\) −4959.97 + 2853.83i −0.435766 + 0.250727i
\(507\) 0 0
\(508\) 2125.75 + 1235.74i 0.185660 + 0.107927i
\(509\) 21010.6i 1.82963i 0.403878 + 0.914813i \(0.367662\pi\)
−0.403878 + 0.914813i \(0.632338\pi\)
\(510\) 0 0
\(511\) 2367.38i 0.204944i
\(512\) −154.848 + 11584.2i −0.0133660 + 0.999911i
\(513\) 0 0
\(514\) −2456.33 4269.12i −0.210786 0.366348i
\(515\) 12257.1 1.04876
\(516\) 0 0
\(517\) −2151.52 −0.183025
\(518\) 189.927 + 330.094i 0.0161098 + 0.0279990i
\(519\) 0 0
\(520\) 29323.3 + 130.650i 2.47290 + 0.0110180i
\(521\) 12216.7i 1.02730i −0.857999 0.513652i \(-0.828292\pi\)
0.857999 0.513652i \(-0.171708\pi\)
\(522\) 0 0
\(523\) 18459.0i 1.54332i 0.636035 + 0.771660i \(0.280573\pi\)
−0.636035 + 0.771660i \(0.719427\pi\)
\(524\) −3769.39 + 6484.22i −0.314249 + 0.540581i
\(525\) 0 0
\(526\) 739.300 425.372i 0.0612833 0.0352607i
\(527\) 26783.4 2.21386
\(528\) 0 0
\(529\) 10715.0 0.880658
\(530\) −5264.28 + 3028.92i −0.431445 + 0.248241i
\(531\) 0 0
\(532\) −3407.50 + 5861.68i −0.277695 + 0.477699i
\(533\) 9919.49i 0.806118i
\(534\) 0 0
\(535\) 30380.3i 2.45505i
\(536\) 7328.40 + 32.6516i 0.590557 + 0.00263122i
\(537\) 0 0
\(538\) 2691.85 + 4678.46i 0.215714 + 0.374912i
\(539\) 655.362 0.0523718
\(540\) 0 0
\(541\) −741.269 −0.0589088 −0.0294544 0.999566i \(-0.509377\pi\)
−0.0294544 + 0.999566i \(0.509377\pi\)
\(542\) 1960.69 + 3407.68i 0.155385 + 0.270060i
\(543\) 0 0
\(544\) 9141.17 15564.9i 0.720449 1.22673i
\(545\) 14820.9i 1.16487i
\(546\) 0 0
\(547\) 1919.59i 0.150047i −0.997182 0.0750236i \(-0.976097\pi\)
0.997182 0.0750236i \(-0.0239032\pi\)
\(548\) −18040.2 10487.1i −1.40627 0.817492i
\(549\) 0 0
\(550\) 5292.12 3044.94i 0.410285 0.236066i
\(551\) −23885.2 −1.84672
\(552\) 0 0
\(553\) 6085.58 0.467966
\(554\) 12634.9 7269.78i 0.968964 0.557515i
\(555\) 0 0
\(556\) −10805.4 6281.39i −0.824195 0.479119i
\(557\) 2495.97i 0.189870i −0.995483 0.0949351i \(-0.969736\pi\)
0.995483 0.0949351i \(-0.0302644\pi\)
\(558\) 0 0
\(559\) 37581.9i 2.84355i
\(560\) 3751.74 + 6588.29i 0.283107 + 0.497154i
\(561\) 0 0
\(562\) −6476.74 11256.6i −0.486129 0.844896i
\(563\) −8882.93 −0.664957 −0.332478 0.943111i \(-0.607885\pi\)
−0.332478 + 0.943111i \(0.607885\pi\)
\(564\) 0 0
\(565\) −2109.87 −0.157103
\(566\) 3351.91 + 5825.64i 0.248925 + 0.432633i
\(567\) 0 0
\(568\) −67.9439 + 15249.5i −0.00501912 + 1.12650i
\(569\) 21303.1i 1.56955i 0.619782 + 0.784774i \(0.287221\pi\)
−0.619782 + 0.784774i \(0.712779\pi\)
\(570\) 0 0
\(571\) 8887.19i 0.651344i −0.945483 0.325672i \(-0.894410\pi\)
0.945483 0.325672i \(-0.105590\pi\)
\(572\) −4117.83 + 7083.62i −0.301006 + 0.517799i
\(573\) 0 0
\(574\) 2222.99 1279.05i 0.161648 0.0930076i
\(575\) −24414.3 −1.77069
\(576\) 0 0
\(577\) 11307.3 0.815821 0.407911 0.913022i \(-0.366258\pi\)
0.407911 + 0.913022i \(0.366258\pi\)
\(578\) −12332.6 + 7095.81i −0.887486 + 0.510634i
\(579\) 0 0
\(580\) −13423.0 + 23090.6i −0.960963 + 1.65308i
\(581\) 3727.57i 0.266171i
\(582\) 0 0
\(583\) 1697.04i 0.120556i
\(584\) −34.0954 + 7652.44i −0.00241589 + 0.542227i
\(585\) 0 0
\(586\) −11114.4 19316.9i −0.783500 1.36173i
\(587\) 9103.44 0.640101 0.320051 0.947400i \(-0.396300\pi\)
0.320051 + 0.947400i \(0.396300\pi\)
\(588\) 0 0
\(589\) 32519.9 2.27497
\(590\) −6822.68 11857.9i −0.476077 0.827425i
\(591\) 0 0
\(592\) −609.175 1069.75i −0.0422922 0.0742676i
\(593\) 15942.3i 1.10400i 0.833843 + 0.552001i \(0.186136\pi\)
−0.833843 + 0.552001i \(0.813864\pi\)
\(594\) 0 0
\(595\) 11812.8i 0.813909i
\(596\) 6733.48 + 3914.29i 0.462776 + 0.269020i
\(597\) 0 0
\(598\) 28398.2 16339.5i 1.94196 1.11735i
\(599\) −3596.97 −0.245356 −0.122678 0.992447i \(-0.539148\pi\)
−0.122678 + 0.992447i \(0.539148\pi\)
\(600\) 0 0
\(601\) 26215.0 1.77926 0.889628 0.456685i \(-0.150963\pi\)
0.889628 + 0.456685i \(0.150963\pi\)
\(602\) 8422.24 4845.92i 0.570207 0.328081i
\(603\) 0 0
\(604\) −3622.66 2105.92i −0.244046 0.141868i
\(605\) 19497.6i 1.31023i
\(606\) 0 0
\(607\) 6327.71i 0.423120i 0.977365 + 0.211560i \(0.0678543\pi\)
−0.977365 + 0.211560i \(0.932146\pi\)
\(608\) 11099.0 18898.5i 0.740336 1.26059i
\(609\) 0 0
\(610\) −11156.5 19390.1i −0.740514 1.28702i
\(611\) 12318.5 0.815634
\(612\) 0 0
\(613\) −10716.6 −0.706097 −0.353049 0.935605i \(-0.614855\pi\)
−0.353049 + 0.935605i \(0.614855\pi\)
\(614\) −7827.20 13603.7i −0.514463 0.894140i
\(615\) 0 0
\(616\) −2118.43 9.43864i −0.138562 0.000617360i
\(617\) 16029.5i 1.04591i 0.852362 + 0.522953i \(0.175170\pi\)
−0.852362 + 0.522953i \(0.824830\pi\)
\(618\) 0 0
\(619\) 25672.9i 1.66701i 0.552508 + 0.833507i \(0.313671\pi\)
−0.552508 + 0.833507i \(0.686329\pi\)
\(620\) 18275.5 31438.1i 1.18381 2.03642i
\(621\) 0 0
\(622\) 13912.6 8004.89i 0.896854 0.516024i
\(623\) 982.373 0.0631749
\(624\) 0 0
\(625\) −9750.51 −0.624033
\(626\) 3109.29 1789.00i 0.198518 0.114222i
\(627\) 0 0
\(628\) −3017.50 + 5190.79i −0.191738 + 0.329833i
\(629\) 1918.05i 0.121586i
\(630\) 0 0
\(631\) 18266.6i 1.15243i −0.817299 0.576214i \(-0.804529\pi\)
0.817299 0.576214i \(-0.195471\pi\)
\(632\) −19671.4 87.6456i −1.23811 0.00551638i
\(633\) 0 0
\(634\) −10363.4 18011.6i −0.649182 1.12828i
\(635\) −5201.45 −0.325060
\(636\) 0 0
\(637\) −3752.26 −0.233391
\(638\) −3721.84 6468.59i −0.230955 0.401401i
\(639\) 0 0
\(640\) −12032.5 21350.4i −0.743164 1.31867i
\(641\) 27067.8i 1.66788i −0.551853 0.833941i \(-0.686079\pi\)
0.551853 0.833941i \(-0.313921\pi\)
\(642\) 0 0
\(643\) 15727.5i 0.964589i 0.876009 + 0.482294i \(0.160196\pi\)
−0.876009 + 0.482294i \(0.839804\pi\)
\(644\) 7323.49 + 4257.27i 0.448115 + 0.260497i
\(645\) 0 0
\(646\) −29598.3 + 17030.0i −1.80268 + 1.03721i
\(647\) −14394.0 −0.874631 −0.437315 0.899308i \(-0.644071\pi\)
−0.437315 + 0.899308i \(0.644071\pi\)
\(648\) 0 0
\(649\) 3822.60 0.231202
\(650\) −30299.9 + 17433.7i −1.82840 + 1.05201i
\(651\) 0 0
\(652\) 5913.10 + 3437.39i 0.355176 + 0.206470i
\(653\) 14934.3i 0.894984i −0.894288 0.447492i \(-0.852317\pi\)
0.894288 0.447492i \(-0.147683\pi\)
\(654\) 0 0
\(655\) 15866.1i 0.946471i
\(656\) −7204.14 + 4102.45i −0.428772 + 0.244167i
\(657\) 0 0
\(658\) 1588.38 + 2760.61i 0.0941056 + 0.163556i
\(659\) −5165.25 −0.305325 −0.152663 0.988278i \(-0.548785\pi\)
−0.152663 + 0.988278i \(0.548785\pi\)
\(660\) 0 0
\(661\) −30379.4 −1.78763 −0.893814 0.448438i \(-0.851981\pi\)
−0.893814 + 0.448438i \(0.851981\pi\)
\(662\) 10283.3 + 17872.4i 0.603731 + 1.04929i
\(663\) 0 0
\(664\) 53.6851 12049.2i 0.00313763 0.704216i
\(665\) 14342.8i 0.836375i
\(666\) 0 0
\(667\) 29841.7i 1.73235i
\(668\) 705.878 1214.27i 0.0408851 0.0703317i
\(669\) 0 0
\(670\) −13437.3 + 7731.42i −0.774816 + 0.445807i
\(671\) 6250.75 0.359624
\(672\) 0 0
\(673\) −27648.0 −1.58358 −0.791791 0.610792i \(-0.790851\pi\)
−0.791791 + 0.610792i \(0.790851\pi\)
\(674\) 3780.95 2175.45i 0.216078 0.124325i
\(675\) 0 0
\(676\) 14743.4 25362.0i 0.838837 1.44299i
\(677\) 23696.2i 1.34523i −0.739994 0.672614i \(-0.765172\pi\)
0.739994 0.672614i \(-0.234828\pi\)
\(678\) 0 0
\(679\) 4564.65i 0.257990i
\(680\) −170.129 + 38184.2i −0.00959436 + 2.15338i
\(681\) 0 0
\(682\) 5067.32 + 8807.04i 0.284513 + 0.494485i
\(683\) 13246.1 0.742092 0.371046 0.928615i \(-0.378999\pi\)
0.371046 + 0.928615i \(0.378999\pi\)
\(684\) 0 0
\(685\) 44142.0 2.46216
\(686\) −483.827 840.894i −0.0269280 0.0468010i
\(687\) 0 0
\(688\) −27294.3 + 15542.9i −1.51248 + 0.861291i
\(689\) 9716.37i 0.537248i
\(690\) 0 0
\(691\) 19929.8i 1.09720i 0.836084 + 0.548601i \(0.184839\pi\)
−0.836084 + 0.548601i \(0.815161\pi\)
\(692\) −15311.6 8900.90i −0.841126 0.488961i
\(693\) 0 0
\(694\) −28492.3 + 16393.6i −1.55843 + 0.896678i
\(695\) 26439.5 1.44303
\(696\) 0 0
\(697\) 12917.0 0.701959
\(698\) −16387.7 + 9428.99i −0.888656 + 0.511308i
\(699\) 0 0
\(700\) −7813.91 4542.36i −0.421912 0.245265i
\(701\) 11158.7i 0.601226i 0.953746 + 0.300613i \(0.0971913\pi\)
−0.953746 + 0.300613i \(0.902809\pi\)
\(702\) 0 0
\(703\) 2328.86i 0.124942i
\(704\) 6847.59 + 61.0200i 0.366588 + 0.00326673i
\(705\) 0 0
\(706\) 16960.2 + 29476.9i 0.904115 + 1.57136i
\(707\) 1952.84 0.103881
\(708\) 0 0
\(709\) 31413.7 1.66399 0.831994 0.554784i \(-0.187199\pi\)
0.831994 + 0.554784i \(0.187199\pi\)
\(710\) −16088.1 27961.2i −0.850388 1.47798i
\(711\) 0 0
\(712\) −3175.48 14.1483i −0.167143 0.000744706i
\(713\) 40629.8i 2.13408i
\(714\) 0 0
\(715\) 17332.7i 0.906583i
\(716\) −1508.07 + 2594.22i −0.0787139 + 0.135406i
\(717\) 0 0
\(718\) −31373.8 + 18051.6i −1.63072 + 0.938272i
\(719\) −26970.8 −1.39894 −0.699472 0.714660i \(-0.746581\pi\)
−0.699472 + 0.714660i \(0.746581\pi\)
\(720\) 0 0
\(721\) 5069.90 0.261877
\(722\) −19122.2 + 11002.4i −0.985669 + 0.567126i
\(723\) 0 0
\(724\) 16813.7 28923.5i 0.863090 1.48471i
\(725\) 31840.1i 1.63105i
\(726\) 0 0
\(727\) 30262.1i 1.54382i 0.635732 + 0.771910i \(0.280699\pi\)
−0.635732 + 0.771910i \(0.719301\pi\)
\(728\) 12129.0 + 54.0408i 0.617488 + 0.00275121i
\(729\) 0 0
\(730\) −8073.28 14031.4i −0.409323 0.711405i
\(731\) 48938.5 2.47613
\(732\) 0 0
\(733\) −24635.9 −1.24140 −0.620702 0.784047i \(-0.713152\pi\)
−0.620702 + 0.784047i \(0.713152\pi\)
\(734\) 11565.1 + 20100.3i 0.581576 + 1.01078i
\(735\) 0 0
\(736\) −23611.5 13866.9i −1.18252 0.694486i
\(737\) 4331.75i 0.216502i
\(738\) 0 0
\(739\) 3397.12i 0.169100i −0.996419 0.0845501i \(-0.973055\pi\)
0.996419 0.0845501i \(-0.0269453\pi\)
\(740\) 2251.39 + 1308.77i 0.111841 + 0.0650153i
\(741\) 0 0
\(742\) −2177.47 + 1252.86i −0.107732 + 0.0619862i
\(743\) −23215.4 −1.14629 −0.573143 0.819455i \(-0.694276\pi\)
−0.573143 + 0.819455i \(0.694276\pi\)
\(744\) 0 0
\(745\) −16476.0 −0.810246
\(746\) 23353.7 13437.1i 1.14617 0.659472i
\(747\) 0 0
\(748\) −9224.15 5362.16i −0.450894 0.262112i
\(749\) 12566.2i 0.613030i
\(750\) 0 0
\(751\) 18025.4i 0.875840i −0.899014 0.437920i \(-0.855715\pi\)
0.899014 0.437920i \(-0.144285\pi\)
\(752\) −5094.61 8946.44i −0.247049 0.433834i
\(753\) 0 0
\(754\) 21309.4 + 37035.8i 1.02923 + 1.78881i
\(755\) 8864.19 0.427286
\(756\) 0 0
\(757\) 14686.1 0.705121 0.352561 0.935789i \(-0.385311\pi\)
0.352561 + 0.935789i \(0.385311\pi\)
\(758\) −8982.15 15611.0i −0.430404 0.748045i
\(759\) 0 0
\(760\) −206.567 + 46362.4i −0.00985920 + 2.21282i
\(761\) 16534.6i 0.787618i −0.919192 0.393809i \(-0.871157\pi\)
0.919192 0.393809i \(-0.128843\pi\)
\(762\) 0 0
\(763\) 6130.38i 0.290871i
\(764\) −19451.9 + 33461.8i −0.921133 + 1.58456i
\(765\) 0 0
\(766\) −8083.58 + 4651.06i −0.381294 + 0.219386i
\(767\) −21886.3 −1.03033
\(768\) 0 0
\(769\) −12385.9 −0.580816 −0.290408 0.956903i \(-0.593791\pi\)
−0.290408 + 0.956903i \(0.593791\pi\)
\(770\) 3884.32 2234.93i 0.181794 0.104599i
\(771\) 0 0
\(772\) 13016.7 22391.6i 0.606839 1.04390i
\(773\) 5344.00i 0.248655i 0.992241 + 0.124328i \(0.0396774\pi\)
−0.992241 + 0.124328i \(0.960323\pi\)
\(774\) 0 0
\(775\) 43350.6i 2.00929i
\(776\) 65.7409 14755.0i 0.00304119 0.682571i
\(777\) 0 0
\(778\) 7256.59 + 12612.0i 0.334397 + 0.581185i
\(779\) 15683.5 0.721335
\(780\) 0 0
\(781\) 9013.82 0.412983
\(782\) 21277.0 + 36979.6i 0.972973 + 1.69103i
\(783\) 0 0
\(784\) 1551.84 + 2725.12i 0.0706924 + 0.124140i
\(785\) 12701.2i 0.577485i
\(786\) 0 0
\(787\) 1893.32i 0.0857554i −0.999080 0.0428777i \(-0.986347\pi\)
0.999080 0.0428777i \(-0.0136526\pi\)
\(788\) −8511.30 4947.77i −0.384775 0.223676i
\(789\) 0 0
\(790\) 36069.1 20753.2i 1.62441 0.934638i
\(791\) −872.710 −0.0392288
\(792\) 0 0
\(793\) −35788.6 −1.60263
\(794\) −21845.1 + 12569.0i −0.976389 + 0.561786i
\(795\) 0 0
\(796\) 26695.1 + 15518.4i 1.18867 + 0.690997i
\(797\) 11076.9i 0.492301i −0.969232 0.246151i \(-0.920834\pi\)
0.969232 0.246151i \(-0.0791658\pi\)
\(798\) 0 0
\(799\) 16040.9i 0.710245i
\(800\) 25192.7 + 14795.5i 1.11337 + 0.653876i
\(801\) 0 0
\(802\) −852.660 1481.93i −0.0375418 0.0652478i
\(803\) 4523.29 0.198784
\(804\) 0 0
\(805\) −17919.6 −0.784577
\(806\) −29012.9 50424.6i −1.26791 2.20363i
\(807\) 0 0
\(808\) −6312.47 28.1252i −0.274842 0.00122455i
\(809\) 2577.82i 0.112029i −0.998430 0.0560144i \(-0.982161\pi\)
0.998430 0.0560144i \(-0.0178393\pi\)
\(810\) 0 0
\(811\) 1314.23i 0.0569038i 0.999595 + 0.0284519i \(0.00905774\pi\)
−0.999595 + 0.0284519i \(0.990942\pi\)
\(812\) −5552.16 + 9551.00i −0.239954 + 0.412776i
\(813\) 0 0
\(814\) −630.702 + 362.888i −0.0271574 + 0.0156256i
\(815\) −14468.6 −0.621857
\(816\) 0 0
\(817\) 59420.0 2.54448
\(818\) −2225.31 + 1280.38i −0.0951177 + 0.0547280i
\(819\) 0 0
\(820\) 8813.81 15161.8i 0.375356 0.645698i
\(821\) 23769.1i 1.01041i −0.862999 0.505206i \(-0.831416\pi\)
0.862999 0.505206i \(-0.168584\pi\)
\(822\) 0 0
\(823\) 26175.8i 1.10866i −0.832296 0.554332i \(-0.812974\pi\)
0.832296 0.554332i \(-0.187026\pi\)
\(824\) −16388.2 73.0177i −0.692853 0.00308700i
\(825\) 0 0
\(826\) −2822.07 4904.78i −0.118877 0.206609i
\(827\) 23138.9 0.972935 0.486468 0.873699i \(-0.338285\pi\)
0.486468 + 0.873699i \(0.338285\pi\)
\(828\) 0 0
\(829\) 35835.2 1.50133 0.750667 0.660680i \(-0.229732\pi\)
0.750667 + 0.660680i \(0.229732\pi\)
\(830\) 12711.8 + 22093.3i 0.531608 + 0.923937i
\(831\) 0 0
\(832\) −39205.7 349.369i −1.63367 0.0145579i
\(833\) 4886.12i 0.203234i
\(834\) 0 0
\(835\) 2971.17i 0.123140i
\(836\) −11199.8 6510.62i −0.463340 0.269348i
\(837\) 0 0
\(838\) −7437.64 + 4279.41i −0.306598 + 0.176408i
\(839\) −14944.9 −0.614964 −0.307482 0.951554i \(-0.599486\pi\)
−0.307482 + 0.951554i \(0.599486\pi\)
\(840\) 0 0
\(841\) −14529.4 −0.595734
\(842\) 10875.1 6257.21i 0.445106 0.256102i
\(843\) 0 0
\(844\) −29667.2 17246.1i −1.20994 0.703358i
\(845\) 62057.7i 2.52645i
\(846\) 0 0
\(847\) 8064.82i 0.327167i
\(848\) 7056.62 4018.44i 0.285761 0.162729i
\(849\) 0 0
\(850\) −22701.9 39456.0i −0.916079 1.59215i
\(851\) 2909.64 0.117204
\(852\) 0 0
\(853\) 9080.88 0.364506 0.182253 0.983252i \(-0.441661\pi\)
0.182253 + 0.983252i \(0.441661\pi\)
\(854\) −4614.68 8020.34i −0.184907 0.321370i
\(855\) 0 0
\(856\) 180.981 40619.8i 0.00722641 1.62191i
\(857\) 22288.3i 0.888393i −0.895929 0.444197i \(-0.853489\pi\)
0.895929 0.444197i \(-0.146511\pi\)
\(858\) 0 0
\(859\) 4362.16i 0.173266i 0.996240 + 0.0866328i \(0.0276107\pi\)
−0.996240 + 0.0866328i \(0.972389\pi\)
\(860\) 33392.8 57443.4i 1.32405 2.27768i
\(861\) 0 0
\(862\) −33106.1 + 19048.3i −1.30812 + 0.752655i
\(863\) −15689.4 −0.618858 −0.309429 0.950923i \(-0.600138\pi\)
−0.309429 + 0.950923i \(0.600138\pi\)
\(864\) 0 0
\(865\) 37465.5 1.47268
\(866\) −26453.3 + 15220.5i −1.03802 + 0.597245i
\(867\) 0 0
\(868\) 7559.32 13003.8i 0.295599 0.508498i
\(869\) 11627.6i 0.453899i
\(870\) 0 0
\(871\) 24801.4i 0.964825i
\(872\) 88.2909 19816.2i 0.00342879 0.769565i
\(873\) 0 0
\(874\) 25834.1 + 44899.8i 0.999830 + 1.73771i
\(875\) 4311.77 0.166588
\(876\) 0 0
\(877\) −27444.7 −1.05672 −0.528358 0.849021i \(-0.677192\pi\)
−0.528358 + 0.849021i \(0.677192\pi\)
\(878\) 149.847 + 260.435i 0.00575979 + 0.0100106i
\(879\) 0 0
\(880\) −12588.1 + 7168.37i −0.482209 + 0.274597i
\(881\) 16731.3i 0.639832i −0.947446 0.319916i \(-0.896345\pi\)
0.947446 0.319916i \(-0.103655\pi\)
\(882\) 0 0
\(883\) 8681.97i 0.330885i 0.986219 + 0.165443i \(0.0529053\pi\)
−0.986219 + 0.165443i \(0.947095\pi\)
\(884\) 52812.7 + 30701.0i 2.00937 + 1.16808i
\(885\) 0 0
\(886\) 9099.44 5235.56i 0.345036 0.198524i
\(887\) −7585.42 −0.287140 −0.143570 0.989640i \(-0.545858\pi\)
−0.143570 + 0.989640i \(0.545858\pi\)
\(888\) 0 0
\(889\) −2151.48 −0.0811681
\(890\) 5822.52 3350.11i 0.219293 0.126175i
\(891\) 0 0
\(892\) −2080.51 1209.44i −0.0780948 0.0453979i
\(893\) 19476.5i 0.729850i
\(894\) 0 0
\(895\) 6347.74i 0.237074i
\(896\) −4977.00 8831.19i −0.185569 0.329274i
\(897\) 0 0
\(898\) −2666.41 4634.24i −0.0990860 0.172212i
\(899\) 52987.7 1.96578
\(900\) 0 0
\(901\) −12652.5 −0.467830
\(902\) 2443.84 + 4247.41i 0.0902118 + 0.156789i
\(903\) 0 0
\(904\) 2821.00 + 12.5689i 0.103789 + 0.000462429i
\(905\) 70772.1i 2.59950i
\(906\) 0 0
\(907\) 50795.8i 1.85959i −0.368080 0.929794i \(-0.619985\pi\)
0.368080 0.929794i \(-0.380015\pi\)
\(908\) 6010.43 10339.3i 0.219673 0.377888i
\(909\) 0 0
\(910\) −22239.6 + 12796.0i −0.810149 + 0.466137i
\(911\) −23040.6 −0.837947 −0.418973 0.907999i \(-0.637610\pi\)
−0.418973 + 0.907999i \(0.637610\pi\)
\(912\) 0 0
\(913\) −7122.17 −0.258170
\(914\) −32493.4 + 18695.8i −1.17592 + 0.676589i
\(915\) 0 0
\(916\) 9275.93 15956.7i 0.334591 0.575574i
\(917\) 6562.70i 0.236335i
\(918\) 0 0
\(919\) 3161.63i 0.113485i −0.998389 0.0567424i \(-0.981929\pi\)
0.998389 0.0567424i \(-0.0180714\pi\)
\(920\) 57924.5 + 258.082i 2.07578 + 0.00924860i
\(921\) 0 0
\(922\) −11780.5 20474.7i −0.420794 0.731342i
\(923\) −51608.5 −1.84043
\(924\) 0 0
\(925\) −3104.48 −0.110351
\(926\) −4887.38 8494.30i −0.173444 0.301447i
\(927\) 0 0
\(928\) 18084.7 30793.2i 0.639718 1.08926i
\(929\) 22607.2i 0.798403i 0.916863 + 0.399202i \(0.130713\pi\)
−0.916863 + 0.399202i \(0.869287\pi\)
\(930\) 0 0
\(931\) 5932.63i 0.208844i
\(932\) 17490.3 + 10167.4i 0.614714 + 0.357344i
\(933\) 0 0
\(934\) 27069.5 15575.0i 0.948330 0.545642i
\(935\) 22570.3 0.789443
\(936\) 0 0
\(937\) 10752.2 0.374878 0.187439 0.982276i \(-0.439981\pi\)
0.187439 + 0.982276i \(0.439981\pi\)
\(938\) −5558.07 + 3197.96i −0.193473 + 0.111319i
\(939\) 0 0
\(940\) 18828.6 + 10945.4i 0.653321 + 0.379787i
\(941\) 33974.1i 1.17697i 0.808510 + 0.588483i \(0.200275\pi\)
−0.808510 + 0.588483i \(0.799725\pi\)
\(942\) 0 0
\(943\) 19594.7i 0.676661i
\(944\) 9051.59 + 15895.1i 0.312081 + 0.548033i
\(945\) 0 0
\(946\) 9258.97 + 16092.2i 0.318219 + 0.553067i
\(947\) −6432.76 −0.220736 −0.110368 0.993891i \(-0.535203\pi\)
−0.110368 + 0.993891i \(0.535203\pi\)
\(948\) 0 0
\(949\) −25898.0 −0.885864
\(950\) −27564.1 47906.6i −0.941366 1.63610i
\(951\) 0 0
\(952\) −70.3708 + 15794.2i −0.00239573 + 0.537702i
\(953\) 25913.1i 0.880805i 0.897801 + 0.440402i \(0.145164\pi\)
−0.897801 + 0.440402i \(0.854836\pi\)
\(954\) 0 0
\(955\) 81876.7i 2.77431i
\(956\) −5218.24 + 8976.58i −0.176538 + 0.303686i
\(957\) 0 0
\(958\) 23322.0 13418.8i 0.786534 0.452549i
\(959\) 18258.5 0.614806
\(960\) 0 0
\(961\) −42352.2 −1.42165
\(962\) 3611.07 2077.71i 0.121025 0.0696341i
\(963\) 0 0
\(964\) 18377.3 31613.2i 0.613998 1.05622i
\(965\) 54789.5i 1.82771i
\(966\) 0 0
\(967\) 37738.1i 1.25499i 0.778621 + 0.627494i \(0.215919\pi\)
−0.778621 + 0.627494i \(0.784081\pi\)
\(968\) −116.151 + 26069.2i −0.00385665 + 0.865594i
\(969\) 0 0
\(970\) 15566.5 + 27054.6i 0.515267 + 0.895538i
\(971\) −21658.2 −0.715801 −0.357901 0.933760i \(-0.616507\pi\)
−0.357901 + 0.933760i \(0.616507\pi\)
\(972\) 0 0
\(973\) 10936.2 0.360328
\(974\) 19666.7 + 34180.9i 0.646985 + 1.12446i
\(975\) 0 0
\(976\) 14801.2 + 25991.9i 0.485426 + 0.852438i
\(977\) 7552.74i 0.247322i 0.992325 + 0.123661i \(0.0394635\pi\)
−0.992325 + 0.123661i \(0.960536\pi\)
\(978\) 0 0
\(979\) 1877.00i 0.0612759i
\(980\) −5735.27 3334.01i −0.186945 0.108675i
\(981\) 0 0
\(982\) 35228.1 20269.3i 1.14478 0.658674i
\(983\) 31253.8 1.01408 0.507041 0.861922i \(-0.330739\pi\)
0.507041 + 0.861922i \(0.330739\pi\)
\(984\) 0 0
\(985\) 20826.1 0.673679
\(986\) −48227.3 + 27748.6i −1.55768 + 0.896244i
\(987\) 0 0
\(988\) 64124.1 + 37276.4i 2.06484 + 1.20033i
\(989\) 74238.4i 2.38690i
\(990\) 0 0
\(991\) 50695.5i 1.62502i 0.582946 + 0.812511i \(0.301900\pi\)
−0.582946 + 0.812511i \(0.698100\pi\)
\(992\) −24622.4 + 41925.2i −0.788068 + 1.34186i
\(993\) 0 0
\(994\) −6654.54 11565.6i −0.212343 0.369054i
\(995\) −65319.6 −2.08118
\(996\) 0 0
\(997\) 7967.10 0.253080 0.126540 0.991962i \(-0.459613\pi\)
0.126540 + 0.991962i \(0.459613\pi\)
\(998\) −27445.2 47699.9i −0.870502 1.51294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.4.e.a.71.33 yes 36
3.2 odd 2 inner 252.4.e.a.71.4 yes 36
4.3 odd 2 inner 252.4.e.a.71.3 36
12.11 even 2 inner 252.4.e.a.71.34 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.e.a.71.3 36 4.3 odd 2 inner
252.4.e.a.71.4 yes 36 3.2 odd 2 inner
252.4.e.a.71.33 yes 36 1.1 even 1 trivial
252.4.e.a.71.34 yes 36 12.11 even 2 inner