Properties

Label 2523.2.a.s.1.10
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 2 x^{10} + 38 x^{9} - 30 x^{8} - 90 x^{7} + 55 x^{6} + 90 x^{5} - 30 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(2.30214\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30214 q^{2} +1.00000 q^{3} -0.304418 q^{4} -0.326108 q^{5} +1.30214 q^{6} -1.10350 q^{7} -3.00069 q^{8} +1.00000 q^{9} -0.424639 q^{10} -0.768140 q^{11} -0.304418 q^{12} +4.81068 q^{13} -1.43692 q^{14} -0.326108 q^{15} -3.29849 q^{16} -5.18289 q^{17} +1.30214 q^{18} -4.18544 q^{19} +0.0992732 q^{20} -1.10350 q^{21} -1.00023 q^{22} -1.41325 q^{23} -3.00069 q^{24} -4.89365 q^{25} +6.26421 q^{26} +1.00000 q^{27} +0.335926 q^{28} -0.424639 q^{30} -4.51575 q^{31} +1.70626 q^{32} -0.768140 q^{33} -6.74888 q^{34} +0.359860 q^{35} -0.304418 q^{36} +1.79176 q^{37} -5.45006 q^{38} +4.81068 q^{39} +0.978547 q^{40} +1.34344 q^{41} -1.43692 q^{42} -7.20917 q^{43} +0.233836 q^{44} -0.326108 q^{45} -1.84026 q^{46} -0.453383 q^{47} -3.29849 q^{48} -5.78229 q^{49} -6.37225 q^{50} -5.18289 q^{51} -1.46446 q^{52} -8.82860 q^{53} +1.30214 q^{54} +0.250496 q^{55} +3.31126 q^{56} -4.18544 q^{57} +3.67450 q^{59} +0.0992732 q^{60} +8.84461 q^{61} -5.88016 q^{62} -1.10350 q^{63} +8.81878 q^{64} -1.56880 q^{65} -1.00023 q^{66} -15.2617 q^{67} +1.57777 q^{68} -1.41325 q^{69} +0.468590 q^{70} +15.0399 q^{71} -3.00069 q^{72} -13.7014 q^{73} +2.33313 q^{74} -4.89365 q^{75} +1.27413 q^{76} +0.847644 q^{77} +6.26421 q^{78} +5.83635 q^{79} +1.07566 q^{80} +1.00000 q^{81} +1.74936 q^{82} +12.7270 q^{83} +0.335926 q^{84} +1.69018 q^{85} -9.38739 q^{86} +2.30495 q^{88} -8.28742 q^{89} -0.424639 q^{90} -5.30860 q^{91} +0.430221 q^{92} -4.51575 q^{93} -0.590370 q^{94} +1.36491 q^{95} +1.70626 q^{96} -1.54591 q^{97} -7.52937 q^{98} -0.768140 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} + 12 q^{3} + 8 q^{4} + 2 q^{5} - 6 q^{6} - 10 q^{7} + 12 q^{9} - 20 q^{10} - 14 q^{11} + 8 q^{12} - 16 q^{13} + 2 q^{15} - 4 q^{16} - 22 q^{17} - 6 q^{18} - 16 q^{19} + 4 q^{20} - 10 q^{21}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30214 0.920756 0.460378 0.887723i \(-0.347714\pi\)
0.460378 + 0.887723i \(0.347714\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.304418 −0.152209
\(5\) −0.326108 −0.145840 −0.0729199 0.997338i \(-0.523232\pi\)
−0.0729199 + 0.997338i \(0.523232\pi\)
\(6\) 1.30214 0.531598
\(7\) −1.10350 −0.417084 −0.208542 0.978013i \(-0.566872\pi\)
−0.208542 + 0.978013i \(0.566872\pi\)
\(8\) −3.00069 −1.06090
\(9\) 1.00000 0.333333
\(10\) −0.424639 −0.134283
\(11\) −0.768140 −0.231603 −0.115802 0.993272i \(-0.536944\pi\)
−0.115802 + 0.993272i \(0.536944\pi\)
\(12\) −0.304418 −0.0878780
\(13\) 4.81068 1.33424 0.667122 0.744949i \(-0.267526\pi\)
0.667122 + 0.744949i \(0.267526\pi\)
\(14\) −1.43692 −0.384033
\(15\) −0.326108 −0.0842006
\(16\) −3.29849 −0.824623
\(17\) −5.18289 −1.25704 −0.628518 0.777795i \(-0.716338\pi\)
−0.628518 + 0.777795i \(0.716338\pi\)
\(18\) 1.30214 0.306919
\(19\) −4.18544 −0.960207 −0.480103 0.877212i \(-0.659401\pi\)
−0.480103 + 0.877212i \(0.659401\pi\)
\(20\) 0.0992732 0.0221982
\(21\) −1.10350 −0.240804
\(22\) −1.00023 −0.213250
\(23\) −1.41325 −0.294684 −0.147342 0.989086i \(-0.547072\pi\)
−0.147342 + 0.989086i \(0.547072\pi\)
\(24\) −3.00069 −0.612513
\(25\) −4.89365 −0.978731
\(26\) 6.26421 1.22851
\(27\) 1.00000 0.192450
\(28\) 0.335926 0.0634841
\(29\) 0 0
\(30\) −0.424639 −0.0775282
\(31\) −4.51575 −0.811053 −0.405526 0.914083i \(-0.632912\pi\)
−0.405526 + 0.914083i \(0.632912\pi\)
\(32\) 1.70626 0.301627
\(33\) −0.768140 −0.133716
\(34\) −6.74888 −1.15742
\(35\) 0.359860 0.0608275
\(36\) −0.304418 −0.0507364
\(37\) 1.79176 0.294564 0.147282 0.989095i \(-0.452948\pi\)
0.147282 + 0.989095i \(0.452948\pi\)
\(38\) −5.45006 −0.884116
\(39\) 4.81068 0.770326
\(40\) 0.978547 0.154722
\(41\) 1.34344 0.209811 0.104905 0.994482i \(-0.466546\pi\)
0.104905 + 0.994482i \(0.466546\pi\)
\(42\) −1.43692 −0.221721
\(43\) −7.20917 −1.09939 −0.549694 0.835366i \(-0.685256\pi\)
−0.549694 + 0.835366i \(0.685256\pi\)
\(44\) 0.233836 0.0352521
\(45\) −0.326108 −0.0486132
\(46\) −1.84026 −0.271332
\(47\) −0.453383 −0.0661327 −0.0330663 0.999453i \(-0.510527\pi\)
−0.0330663 + 0.999453i \(0.510527\pi\)
\(48\) −3.29849 −0.476096
\(49\) −5.78229 −0.826041
\(50\) −6.37225 −0.901172
\(51\) −5.18289 −0.725750
\(52\) −1.46446 −0.203084
\(53\) −8.82860 −1.21270 −0.606351 0.795197i \(-0.707367\pi\)
−0.606351 + 0.795197i \(0.707367\pi\)
\(54\) 1.30214 0.177199
\(55\) 0.250496 0.0337769
\(56\) 3.31126 0.442486
\(57\) −4.18544 −0.554376
\(58\) 0 0
\(59\) 3.67450 0.478379 0.239190 0.970973i \(-0.423118\pi\)
0.239190 + 0.970973i \(0.423118\pi\)
\(60\) 0.0992732 0.0128161
\(61\) 8.84461 1.13244 0.566218 0.824255i \(-0.308406\pi\)
0.566218 + 0.824255i \(0.308406\pi\)
\(62\) −5.88016 −0.746781
\(63\) −1.10350 −0.139028
\(64\) 8.81878 1.10235
\(65\) −1.56880 −0.194586
\(66\) −1.00023 −0.123120
\(67\) −15.2617 −1.86451 −0.932255 0.361802i \(-0.882162\pi\)
−0.932255 + 0.361802i \(0.882162\pi\)
\(68\) 1.57777 0.191333
\(69\) −1.41325 −0.170136
\(70\) 0.468590 0.0560072
\(71\) 15.0399 1.78491 0.892454 0.451138i \(-0.148982\pi\)
0.892454 + 0.451138i \(0.148982\pi\)
\(72\) −3.00069 −0.353634
\(73\) −13.7014 −1.60363 −0.801813 0.597575i \(-0.796131\pi\)
−0.801813 + 0.597575i \(0.796131\pi\)
\(74\) 2.33313 0.271221
\(75\) −4.89365 −0.565070
\(76\) 1.27413 0.146152
\(77\) 0.847644 0.0965980
\(78\) 6.26421 0.709282
\(79\) 5.83635 0.656640 0.328320 0.944567i \(-0.393518\pi\)
0.328320 + 0.944567i \(0.393518\pi\)
\(80\) 1.07566 0.120263
\(81\) 1.00000 0.111111
\(82\) 1.74936 0.193184
\(83\) 12.7270 1.39697 0.698484 0.715626i \(-0.253858\pi\)
0.698484 + 0.715626i \(0.253858\pi\)
\(84\) 0.335926 0.0366525
\(85\) 1.69018 0.183326
\(86\) −9.38739 −1.01227
\(87\) 0 0
\(88\) 2.30495 0.245708
\(89\) −8.28742 −0.878465 −0.439232 0.898374i \(-0.644749\pi\)
−0.439232 + 0.898374i \(0.644749\pi\)
\(90\) −0.424639 −0.0447609
\(91\) −5.30860 −0.556492
\(92\) 0.430221 0.0448536
\(93\) −4.51575 −0.468261
\(94\) −0.590370 −0.0608920
\(95\) 1.36491 0.140036
\(96\) 1.70626 0.174144
\(97\) −1.54591 −0.156964 −0.0784819 0.996916i \(-0.525007\pi\)
−0.0784819 + 0.996916i \(0.525007\pi\)
\(98\) −7.52937 −0.760582
\(99\) −0.768140 −0.0772010
\(100\) 1.48972 0.148972
\(101\) −16.1622 −1.60820 −0.804099 0.594495i \(-0.797352\pi\)
−0.804099 + 0.594495i \(0.797352\pi\)
\(102\) −6.74888 −0.668239
\(103\) −10.9518 −1.07912 −0.539558 0.841949i \(-0.681409\pi\)
−0.539558 + 0.841949i \(0.681409\pi\)
\(104\) −14.4354 −1.41550
\(105\) 0.359860 0.0351188
\(106\) −11.4961 −1.11660
\(107\) −12.5095 −1.20934 −0.604669 0.796477i \(-0.706695\pi\)
−0.604669 + 0.796477i \(0.706695\pi\)
\(108\) −0.304418 −0.0292927
\(109\) 8.80210 0.843089 0.421544 0.906808i \(-0.361488\pi\)
0.421544 + 0.906808i \(0.361488\pi\)
\(110\) 0.326183 0.0311003
\(111\) 1.79176 0.170066
\(112\) 3.63989 0.343937
\(113\) 2.46147 0.231556 0.115778 0.993275i \(-0.463064\pi\)
0.115778 + 0.993275i \(0.463064\pi\)
\(114\) −5.45006 −0.510444
\(115\) 0.460873 0.0429766
\(116\) 0 0
\(117\) 4.81068 0.444748
\(118\) 4.78473 0.440470
\(119\) 5.71933 0.524290
\(120\) 0.978547 0.0893287
\(121\) −10.4100 −0.946360
\(122\) 11.5170 1.04270
\(123\) 1.34344 0.121134
\(124\) 1.37468 0.123450
\(125\) 3.22640 0.288578
\(126\) −1.43692 −0.128011
\(127\) 15.2655 1.35460 0.677298 0.735708i \(-0.263151\pi\)
0.677298 + 0.735708i \(0.263151\pi\)
\(128\) 8.07081 0.713366
\(129\) −7.20917 −0.634732
\(130\) −2.04281 −0.179166
\(131\) 8.74255 0.763840 0.381920 0.924195i \(-0.375263\pi\)
0.381920 + 0.924195i \(0.375263\pi\)
\(132\) 0.233836 0.0203528
\(133\) 4.61864 0.400487
\(134\) −19.8729 −1.71676
\(135\) −0.326108 −0.0280669
\(136\) 15.5522 1.33359
\(137\) −23.3003 −1.99068 −0.995341 0.0964188i \(-0.969261\pi\)
−0.995341 + 0.0964188i \(0.969261\pi\)
\(138\) −1.84026 −0.156653
\(139\) −13.5292 −1.14753 −0.573765 0.819020i \(-0.694518\pi\)
−0.573765 + 0.819020i \(0.694518\pi\)
\(140\) −0.109548 −0.00925850
\(141\) −0.453383 −0.0381817
\(142\) 19.5841 1.64346
\(143\) −3.69528 −0.309015
\(144\) −3.29849 −0.274874
\(145\) 0 0
\(146\) −17.8412 −1.47655
\(147\) −5.78229 −0.476915
\(148\) −0.545445 −0.0448353
\(149\) −1.32696 −0.108708 −0.0543542 0.998522i \(-0.517310\pi\)
−0.0543542 + 0.998522i \(0.517310\pi\)
\(150\) −6.37225 −0.520292
\(151\) 14.3702 1.16943 0.584716 0.811238i \(-0.301206\pi\)
0.584716 + 0.811238i \(0.301206\pi\)
\(152\) 12.5592 1.01869
\(153\) −5.18289 −0.419012
\(154\) 1.10376 0.0889431
\(155\) 1.47262 0.118284
\(156\) −1.46446 −0.117251
\(157\) −13.1931 −1.05292 −0.526462 0.850199i \(-0.676482\pi\)
−0.526462 + 0.850199i \(0.676482\pi\)
\(158\) 7.59977 0.604605
\(159\) −8.82860 −0.700154
\(160\) −0.556424 −0.0439892
\(161\) 1.55953 0.122908
\(162\) 1.30214 0.102306
\(163\) −3.01077 −0.235821 −0.117911 0.993024i \(-0.537620\pi\)
−0.117911 + 0.993024i \(0.537620\pi\)
\(164\) −0.408969 −0.0319351
\(165\) 0.250496 0.0195011
\(166\) 16.5724 1.28627
\(167\) −1.37455 −0.106366 −0.0531828 0.998585i \(-0.516937\pi\)
−0.0531828 + 0.998585i \(0.516937\pi\)
\(168\) 3.31126 0.255469
\(169\) 10.1427 0.780206
\(170\) 2.20086 0.168798
\(171\) −4.18544 −0.320069
\(172\) 2.19461 0.167337
\(173\) 13.2857 1.01009 0.505045 0.863093i \(-0.331476\pi\)
0.505045 + 0.863093i \(0.331476\pi\)
\(174\) 0 0
\(175\) 5.40015 0.408213
\(176\) 2.53371 0.190985
\(177\) 3.67450 0.276192
\(178\) −10.7914 −0.808851
\(179\) 6.15403 0.459974 0.229987 0.973194i \(-0.426132\pi\)
0.229987 + 0.973194i \(0.426132\pi\)
\(180\) 0.0992732 0.00739938
\(181\) 24.1126 1.79227 0.896136 0.443779i \(-0.146362\pi\)
0.896136 + 0.443779i \(0.146362\pi\)
\(182\) −6.91256 −0.512393
\(183\) 8.84461 0.653812
\(184\) 4.24073 0.312631
\(185\) −0.584307 −0.0429591
\(186\) −5.88016 −0.431154
\(187\) 3.98119 0.291133
\(188\) 0.138018 0.0100660
\(189\) −1.10350 −0.0802679
\(190\) 1.77730 0.128939
\(191\) 5.15567 0.373051 0.186526 0.982450i \(-0.440277\pi\)
0.186526 + 0.982450i \(0.440277\pi\)
\(192\) 8.81878 0.636441
\(193\) 2.77395 0.199673 0.0998365 0.995004i \(-0.468168\pi\)
0.0998365 + 0.995004i \(0.468168\pi\)
\(194\) −2.01300 −0.144525
\(195\) −1.56880 −0.112344
\(196\) 1.76023 0.125731
\(197\) 24.6895 1.75905 0.879527 0.475849i \(-0.157859\pi\)
0.879527 + 0.475849i \(0.157859\pi\)
\(198\) −1.00023 −0.0710833
\(199\) −5.25719 −0.372672 −0.186336 0.982486i \(-0.559661\pi\)
−0.186336 + 0.982486i \(0.559661\pi\)
\(200\) 14.6843 1.03834
\(201\) −15.2617 −1.07648
\(202\) −21.0455 −1.48076
\(203\) 0 0
\(204\) 1.57777 0.110466
\(205\) −0.438107 −0.0305988
\(206\) −14.2609 −0.993602
\(207\) −1.41325 −0.0982279
\(208\) −15.8680 −1.10025
\(209\) 3.21501 0.222387
\(210\) 0.468590 0.0323358
\(211\) 24.2023 1.66616 0.833079 0.553154i \(-0.186576\pi\)
0.833079 + 0.553154i \(0.186576\pi\)
\(212\) 2.68759 0.184584
\(213\) 15.0399 1.03052
\(214\) −16.2892 −1.11350
\(215\) 2.35097 0.160335
\(216\) −3.00069 −0.204171
\(217\) 4.98314 0.338277
\(218\) 11.4616 0.776279
\(219\) −13.7014 −0.925854
\(220\) −0.0762557 −0.00514116
\(221\) −24.9333 −1.67719
\(222\) 2.33313 0.156590
\(223\) 1.21432 0.0813169 0.0406585 0.999173i \(-0.487054\pi\)
0.0406585 + 0.999173i \(0.487054\pi\)
\(224\) −1.88286 −0.125804
\(225\) −4.89365 −0.326244
\(226\) 3.20519 0.213206
\(227\) 15.9762 1.06037 0.530187 0.847880i \(-0.322122\pi\)
0.530187 + 0.847880i \(0.322122\pi\)
\(228\) 1.27413 0.0843811
\(229\) −15.3372 −1.01351 −0.506754 0.862091i \(-0.669155\pi\)
−0.506754 + 0.862091i \(0.669155\pi\)
\(230\) 0.600123 0.0395710
\(231\) 0.847644 0.0557709
\(232\) 0 0
\(233\) 12.9851 0.850684 0.425342 0.905033i \(-0.360154\pi\)
0.425342 + 0.905033i \(0.360154\pi\)
\(234\) 6.26421 0.409504
\(235\) 0.147852 0.00964477
\(236\) −1.11859 −0.0728137
\(237\) 5.83635 0.379111
\(238\) 7.44740 0.482743
\(239\) 0.255060 0.0164985 0.00824924 0.999966i \(-0.497374\pi\)
0.00824924 + 0.999966i \(0.497374\pi\)
\(240\) 1.07566 0.0694338
\(241\) 8.39604 0.540836 0.270418 0.962743i \(-0.412838\pi\)
0.270418 + 0.962743i \(0.412838\pi\)
\(242\) −13.5553 −0.871366
\(243\) 1.00000 0.0641500
\(244\) −2.69246 −0.172367
\(245\) 1.88565 0.120470
\(246\) 1.74936 0.111535
\(247\) −20.1348 −1.28115
\(248\) 13.5504 0.860448
\(249\) 12.7270 0.806540
\(250\) 4.20123 0.265709
\(251\) 18.6458 1.17692 0.588458 0.808528i \(-0.299735\pi\)
0.588458 + 0.808528i \(0.299735\pi\)
\(252\) 0.335926 0.0211614
\(253\) 1.08558 0.0682497
\(254\) 19.8779 1.24725
\(255\) 1.69018 0.105843
\(256\) −7.12819 −0.445512
\(257\) 24.6186 1.53567 0.767834 0.640649i \(-0.221335\pi\)
0.767834 + 0.640649i \(0.221335\pi\)
\(258\) −9.38739 −0.584433
\(259\) −1.97721 −0.122858
\(260\) 0.477572 0.0296177
\(261\) 0 0
\(262\) 11.3841 0.703310
\(263\) 10.1677 0.626970 0.313485 0.949593i \(-0.398503\pi\)
0.313485 + 0.949593i \(0.398503\pi\)
\(264\) 2.30495 0.141860
\(265\) 2.87907 0.176860
\(266\) 6.01414 0.368751
\(267\) −8.28742 −0.507182
\(268\) 4.64594 0.283796
\(269\) 0.668029 0.0407305 0.0203652 0.999793i \(-0.493517\pi\)
0.0203652 + 0.999793i \(0.493517\pi\)
\(270\) −0.424639 −0.0258427
\(271\) −9.29114 −0.564396 −0.282198 0.959356i \(-0.591064\pi\)
−0.282198 + 0.959356i \(0.591064\pi\)
\(272\) 17.0957 1.03658
\(273\) −5.30860 −0.321291
\(274\) −30.3404 −1.83293
\(275\) 3.75901 0.226677
\(276\) 0.430221 0.0258962
\(277\) −14.7432 −0.885833 −0.442917 0.896563i \(-0.646056\pi\)
−0.442917 + 0.896563i \(0.646056\pi\)
\(278\) −17.6169 −1.05659
\(279\) −4.51575 −0.270351
\(280\) −1.07983 −0.0645320
\(281\) −21.5272 −1.28421 −0.642104 0.766618i \(-0.721938\pi\)
−0.642104 + 0.766618i \(0.721938\pi\)
\(282\) −0.590370 −0.0351560
\(283\) 10.3210 0.613522 0.306761 0.951787i \(-0.400755\pi\)
0.306761 + 0.951787i \(0.400755\pi\)
\(284\) −4.57843 −0.271680
\(285\) 1.36491 0.0808500
\(286\) −4.81179 −0.284527
\(287\) −1.48249 −0.0875088
\(288\) 1.70626 0.100542
\(289\) 9.86239 0.580141
\(290\) 0 0
\(291\) −1.54591 −0.0906230
\(292\) 4.17095 0.244087
\(293\) −25.2077 −1.47265 −0.736324 0.676630i \(-0.763440\pi\)
−0.736324 + 0.676630i \(0.763440\pi\)
\(294\) −7.52937 −0.439122
\(295\) −1.19828 −0.0697667
\(296\) −5.37651 −0.312503
\(297\) −0.768140 −0.0445720
\(298\) −1.72789 −0.100094
\(299\) −6.79872 −0.393180
\(300\) 1.48972 0.0860089
\(301\) 7.95533 0.458538
\(302\) 18.7121 1.07676
\(303\) −16.1622 −0.928494
\(304\) 13.8057 0.791809
\(305\) −2.88429 −0.165154
\(306\) −6.74888 −0.385808
\(307\) 17.7845 1.01502 0.507508 0.861647i \(-0.330567\pi\)
0.507508 + 0.861647i \(0.330567\pi\)
\(308\) −0.258038 −0.0147031
\(309\) −10.9518 −0.623028
\(310\) 1.91757 0.108910
\(311\) −8.39849 −0.476234 −0.238117 0.971236i \(-0.576530\pi\)
−0.238117 + 0.971236i \(0.576530\pi\)
\(312\) −14.4354 −0.817241
\(313\) −2.10022 −0.118712 −0.0593558 0.998237i \(-0.518905\pi\)
−0.0593558 + 0.998237i \(0.518905\pi\)
\(314\) −17.1793 −0.969486
\(315\) 0.359860 0.0202758
\(316\) −1.77669 −0.0999467
\(317\) −5.02786 −0.282393 −0.141196 0.989982i \(-0.545095\pi\)
−0.141196 + 0.989982i \(0.545095\pi\)
\(318\) −11.4961 −0.644670
\(319\) 0 0
\(320\) −2.87587 −0.160766
\(321\) −12.5095 −0.698212
\(322\) 2.03073 0.113168
\(323\) 21.6927 1.20701
\(324\) −0.304418 −0.0169121
\(325\) −23.5418 −1.30587
\(326\) −3.92045 −0.217134
\(327\) 8.80210 0.486757
\(328\) −4.03126 −0.222589
\(329\) 0.500309 0.0275829
\(330\) 0.326183 0.0179558
\(331\) −3.80922 −0.209374 −0.104687 0.994505i \(-0.533384\pi\)
−0.104687 + 0.994505i \(0.533384\pi\)
\(332\) −3.87433 −0.212631
\(333\) 1.79176 0.0981879
\(334\) −1.78986 −0.0979368
\(335\) 4.97695 0.271920
\(336\) 3.63989 0.198572
\(337\) 1.51087 0.0823023 0.0411512 0.999153i \(-0.486897\pi\)
0.0411512 + 0.999153i \(0.486897\pi\)
\(338\) 13.2072 0.718379
\(339\) 2.46147 0.133689
\(340\) −0.514522 −0.0279039
\(341\) 3.46873 0.187842
\(342\) −5.45006 −0.294705
\(343\) 14.1053 0.761613
\(344\) 21.6325 1.16634
\(345\) 0.460873 0.0248126
\(346\) 17.2999 0.930047
\(347\) 23.3601 1.25404 0.627019 0.779004i \(-0.284275\pi\)
0.627019 + 0.779004i \(0.284275\pi\)
\(348\) 0 0
\(349\) −15.0240 −0.804216 −0.402108 0.915592i \(-0.631722\pi\)
−0.402108 + 0.915592i \(0.631722\pi\)
\(350\) 7.03178 0.375865
\(351\) 4.81068 0.256775
\(352\) −1.31065 −0.0698577
\(353\) 16.0604 0.854808 0.427404 0.904061i \(-0.359428\pi\)
0.427404 + 0.904061i \(0.359428\pi\)
\(354\) 4.78473 0.254306
\(355\) −4.90463 −0.260311
\(356\) 2.52284 0.133710
\(357\) 5.71933 0.302699
\(358\) 8.01343 0.423523
\(359\) −26.5409 −1.40078 −0.700388 0.713762i \(-0.746990\pi\)
−0.700388 + 0.713762i \(0.746990\pi\)
\(360\) 0.978547 0.0515739
\(361\) −1.48206 −0.0780030
\(362\) 31.3981 1.65024
\(363\) −10.4100 −0.546381
\(364\) 1.61603 0.0847032
\(365\) 4.46812 0.233872
\(366\) 11.5170 0.602001
\(367\) −17.0018 −0.887485 −0.443743 0.896154i \(-0.646350\pi\)
−0.443743 + 0.896154i \(0.646350\pi\)
\(368\) 4.66161 0.243003
\(369\) 1.34344 0.0699369
\(370\) −0.760852 −0.0395548
\(371\) 9.74237 0.505799
\(372\) 1.37468 0.0712737
\(373\) −11.7324 −0.607481 −0.303741 0.952755i \(-0.598236\pi\)
−0.303741 + 0.952755i \(0.598236\pi\)
\(374\) 5.18409 0.268063
\(375\) 3.22640 0.166610
\(376\) 1.36046 0.0701604
\(377\) 0 0
\(378\) −1.43692 −0.0739071
\(379\) −7.71113 −0.396094 −0.198047 0.980193i \(-0.563460\pi\)
−0.198047 + 0.980193i \(0.563460\pi\)
\(380\) −0.415502 −0.0213148
\(381\) 15.2655 0.782077
\(382\) 6.71343 0.343489
\(383\) −17.6580 −0.902281 −0.451140 0.892453i \(-0.648983\pi\)
−0.451140 + 0.892453i \(0.648983\pi\)
\(384\) 8.07081 0.411862
\(385\) −0.276423 −0.0140878
\(386\) 3.61208 0.183850
\(387\) −7.20917 −0.366463
\(388\) 0.470605 0.0238913
\(389\) 17.4066 0.882550 0.441275 0.897372i \(-0.354526\pi\)
0.441275 + 0.897372i \(0.354526\pi\)
\(390\) −2.04281 −0.103441
\(391\) 7.32475 0.370428
\(392\) 17.3508 0.876349
\(393\) 8.74255 0.441003
\(394\) 32.1493 1.61966
\(395\) −1.90328 −0.0957642
\(396\) 0.233836 0.0117507
\(397\) 8.73479 0.438387 0.219193 0.975681i \(-0.429657\pi\)
0.219193 + 0.975681i \(0.429657\pi\)
\(398\) −6.84562 −0.343140
\(399\) 4.61864 0.231221
\(400\) 16.1417 0.807084
\(401\) 9.95698 0.497228 0.248614 0.968603i \(-0.420025\pi\)
0.248614 + 0.968603i \(0.420025\pi\)
\(402\) −19.8729 −0.991171
\(403\) −21.7238 −1.08214
\(404\) 4.92007 0.244783
\(405\) −0.326108 −0.0162044
\(406\) 0 0
\(407\) −1.37632 −0.0682218
\(408\) 15.5522 0.769951
\(409\) −20.3896 −1.00820 −0.504101 0.863644i \(-0.668176\pi\)
−0.504101 + 0.863644i \(0.668176\pi\)
\(410\) −0.570479 −0.0281740
\(411\) −23.3003 −1.14932
\(412\) 3.33394 0.164251
\(413\) −4.05482 −0.199524
\(414\) −1.84026 −0.0904439
\(415\) −4.15037 −0.203734
\(416\) 8.20827 0.402444
\(417\) −13.5292 −0.662526
\(418\) 4.18641 0.204764
\(419\) 36.4277 1.77961 0.889804 0.456342i \(-0.150841\pi\)
0.889804 + 0.456342i \(0.150841\pi\)
\(420\) −0.109548 −0.00534540
\(421\) 19.8525 0.967550 0.483775 0.875192i \(-0.339265\pi\)
0.483775 + 0.875192i \(0.339265\pi\)
\(422\) 31.5150 1.53412
\(423\) −0.453383 −0.0220442
\(424\) 26.4919 1.28656
\(425\) 25.3633 1.23030
\(426\) 19.5841 0.948855
\(427\) −9.76004 −0.472321
\(428\) 3.80812 0.184072
\(429\) −3.69528 −0.178410
\(430\) 3.06130 0.147629
\(431\) −35.7602 −1.72251 −0.861255 0.508174i \(-0.830321\pi\)
−0.861255 + 0.508174i \(0.830321\pi\)
\(432\) −3.29849 −0.158699
\(433\) −37.5454 −1.80432 −0.902159 0.431404i \(-0.858018\pi\)
−0.902159 + 0.431404i \(0.858018\pi\)
\(434\) 6.48877 0.311471
\(435\) 0 0
\(436\) −2.67952 −0.128326
\(437\) 5.91510 0.282957
\(438\) −17.8412 −0.852485
\(439\) 6.89646 0.329150 0.164575 0.986365i \(-0.447375\pi\)
0.164575 + 0.986365i \(0.447375\pi\)
\(440\) −0.751661 −0.0358340
\(441\) −5.78229 −0.275347
\(442\) −32.4667 −1.54428
\(443\) −13.8273 −0.656955 −0.328477 0.944512i \(-0.606535\pi\)
−0.328477 + 0.944512i \(0.606535\pi\)
\(444\) −0.545445 −0.0258857
\(445\) 2.70259 0.128115
\(446\) 1.58122 0.0748730
\(447\) −1.32696 −0.0627629
\(448\) −9.73154 −0.459772
\(449\) −20.0274 −0.945151 −0.472576 0.881290i \(-0.656676\pi\)
−0.472576 + 0.881290i \(0.656676\pi\)
\(450\) −6.37225 −0.300391
\(451\) −1.03195 −0.0485928
\(452\) −0.749317 −0.0352449
\(453\) 14.3702 0.675172
\(454\) 20.8033 0.976346
\(455\) 1.73117 0.0811587
\(456\) 12.5592 0.588139
\(457\) −24.4578 −1.14409 −0.572045 0.820223i \(-0.693850\pi\)
−0.572045 + 0.820223i \(0.693850\pi\)
\(458\) −19.9712 −0.933193
\(459\) −5.18289 −0.241917
\(460\) −0.140298 −0.00654144
\(461\) −22.2758 −1.03749 −0.518745 0.854929i \(-0.673600\pi\)
−0.518745 + 0.854929i \(0.673600\pi\)
\(462\) 1.10376 0.0513513
\(463\) 27.5102 1.27851 0.639254 0.768996i \(-0.279243\pi\)
0.639254 + 0.768996i \(0.279243\pi\)
\(464\) 0 0
\(465\) 1.47262 0.0682911
\(466\) 16.9085 0.783272
\(467\) 23.7457 1.09882 0.549410 0.835553i \(-0.314853\pi\)
0.549410 + 0.835553i \(0.314853\pi\)
\(468\) −1.46446 −0.0676947
\(469\) 16.8413 0.777658
\(470\) 0.192524 0.00888048
\(471\) −13.1931 −0.607906
\(472\) −11.0260 −0.507514
\(473\) 5.53766 0.254622
\(474\) 7.59977 0.349069
\(475\) 20.4821 0.939784
\(476\) −1.74107 −0.0798018
\(477\) −8.82860 −0.404234
\(478\) 0.332126 0.0151911
\(479\) 26.1749 1.19596 0.597980 0.801511i \(-0.295970\pi\)
0.597980 + 0.801511i \(0.295970\pi\)
\(480\) −0.556424 −0.0253972
\(481\) 8.61959 0.393020
\(482\) 10.9329 0.497978
\(483\) 1.55953 0.0709610
\(484\) 3.16898 0.144045
\(485\) 0.504134 0.0228915
\(486\) 1.30214 0.0590665
\(487\) −16.3153 −0.739316 −0.369658 0.929168i \(-0.620525\pi\)
−0.369658 + 0.929168i \(0.620525\pi\)
\(488\) −26.5399 −1.20141
\(489\) −3.01077 −0.136152
\(490\) 2.45539 0.110923
\(491\) 32.9012 1.48481 0.742406 0.669950i \(-0.233685\pi\)
0.742406 + 0.669950i \(0.233685\pi\)
\(492\) −0.408969 −0.0184378
\(493\) 0 0
\(494\) −26.2185 −1.17963
\(495\) 0.250496 0.0112590
\(496\) 14.8952 0.668813
\(497\) −16.5966 −0.744457
\(498\) 16.5724 0.742626
\(499\) −22.1639 −0.992193 −0.496097 0.868267i \(-0.665234\pi\)
−0.496097 + 0.868267i \(0.665234\pi\)
\(500\) −0.982174 −0.0439242
\(501\) −1.37455 −0.0614102
\(502\) 24.2796 1.08365
\(503\) −39.7760 −1.77352 −0.886762 0.462227i \(-0.847050\pi\)
−0.886762 + 0.462227i \(0.847050\pi\)
\(504\) 3.31126 0.147495
\(505\) 5.27061 0.234539
\(506\) 1.41358 0.0628413
\(507\) 10.1427 0.450452
\(508\) −4.64711 −0.206182
\(509\) −10.1933 −0.451810 −0.225905 0.974149i \(-0.572534\pi\)
−0.225905 + 0.974149i \(0.572534\pi\)
\(510\) 2.20086 0.0974558
\(511\) 15.1195 0.668847
\(512\) −25.4236 −1.12357
\(513\) −4.18544 −0.184792
\(514\) 32.0570 1.41397
\(515\) 3.57147 0.157378
\(516\) 2.19461 0.0966121
\(517\) 0.348262 0.0153165
\(518\) −2.57461 −0.113122
\(519\) 13.2857 0.583176
\(520\) 4.70748 0.206437
\(521\) 7.09229 0.310719 0.155359 0.987858i \(-0.450346\pi\)
0.155359 + 0.987858i \(0.450346\pi\)
\(522\) 0 0
\(523\) 10.9937 0.480723 0.240361 0.970683i \(-0.422734\pi\)
0.240361 + 0.970683i \(0.422734\pi\)
\(524\) −2.66139 −0.116264
\(525\) 5.40015 0.235682
\(526\) 13.2399 0.577286
\(527\) 23.4047 1.01952
\(528\) 2.53371 0.110265
\(529\) −21.0027 −0.913161
\(530\) 3.74897 0.162845
\(531\) 3.67450 0.159460
\(532\) −1.40600 −0.0609578
\(533\) 6.46289 0.279939
\(534\) −10.7914 −0.466990
\(535\) 4.07944 0.176370
\(536\) 45.7955 1.97806
\(537\) 6.15403 0.265566
\(538\) 0.869871 0.0375028
\(539\) 4.44161 0.191314
\(540\) 0.0992732 0.00427204
\(541\) 4.82781 0.207564 0.103782 0.994600i \(-0.466906\pi\)
0.103782 + 0.994600i \(0.466906\pi\)
\(542\) −12.0984 −0.519671
\(543\) 24.1126 1.03477
\(544\) −8.84336 −0.379156
\(545\) −2.87043 −0.122956
\(546\) −6.91256 −0.295830
\(547\) −34.3207 −1.46745 −0.733724 0.679448i \(-0.762219\pi\)
−0.733724 + 0.679448i \(0.762219\pi\)
\(548\) 7.09305 0.303000
\(549\) 8.84461 0.377479
\(550\) 4.89478 0.208714
\(551\) 0 0
\(552\) 4.24073 0.180498
\(553\) −6.44041 −0.273874
\(554\) −19.1978 −0.815636
\(555\) −0.584307 −0.0248024
\(556\) 4.11853 0.174665
\(557\) −13.3893 −0.567325 −0.283662 0.958924i \(-0.591550\pi\)
−0.283662 + 0.958924i \(0.591550\pi\)
\(558\) −5.88016 −0.248927
\(559\) −34.6811 −1.46685
\(560\) −1.18700 −0.0501597
\(561\) 3.98119 0.168086
\(562\) −28.0316 −1.18244
\(563\) −1.89811 −0.0799960 −0.0399980 0.999200i \(-0.512735\pi\)
−0.0399980 + 0.999200i \(0.512735\pi\)
\(564\) 0.138018 0.00581161
\(565\) −0.802704 −0.0337700
\(566\) 13.4395 0.564904
\(567\) −1.10350 −0.0463427
\(568\) −45.1301 −1.89362
\(569\) 11.1591 0.467815 0.233908 0.972259i \(-0.424849\pi\)
0.233908 + 0.972259i \(0.424849\pi\)
\(570\) 1.77730 0.0744431
\(571\) −13.2107 −0.552849 −0.276425 0.961036i \(-0.589150\pi\)
−0.276425 + 0.961036i \(0.589150\pi\)
\(572\) 1.12491 0.0470349
\(573\) 5.15567 0.215381
\(574\) −1.93042 −0.0805742
\(575\) 6.91598 0.288416
\(576\) 8.81878 0.367449
\(577\) −13.8637 −0.577154 −0.288577 0.957457i \(-0.593182\pi\)
−0.288577 + 0.957457i \(0.593182\pi\)
\(578\) 12.8423 0.534168
\(579\) 2.77395 0.115281
\(580\) 0 0
\(581\) −14.0442 −0.582653
\(582\) −2.01300 −0.0834417
\(583\) 6.78160 0.280865
\(584\) 41.1136 1.70129
\(585\) −1.56880 −0.0648619
\(586\) −32.8240 −1.35595
\(587\) −27.7891 −1.14698 −0.573489 0.819213i \(-0.694411\pi\)
−0.573489 + 0.819213i \(0.694411\pi\)
\(588\) 1.76023 0.0725908
\(589\) 18.9004 0.778778
\(590\) −1.56034 −0.0642381
\(591\) 24.6895 1.01559
\(592\) −5.91011 −0.242904
\(593\) −8.07661 −0.331667 −0.165833 0.986154i \(-0.553031\pi\)
−0.165833 + 0.986154i \(0.553031\pi\)
\(594\) −1.00023 −0.0410399
\(595\) −1.86512 −0.0764623
\(596\) 0.403950 0.0165464
\(597\) −5.25719 −0.215162
\(598\) −8.85292 −0.362023
\(599\) −19.2599 −0.786940 −0.393470 0.919337i \(-0.628725\pi\)
−0.393470 + 0.919337i \(0.628725\pi\)
\(600\) 14.6843 0.599485
\(601\) −22.1275 −0.902600 −0.451300 0.892372i \(-0.649040\pi\)
−0.451300 + 0.892372i \(0.649040\pi\)
\(602\) 10.3590 0.422201
\(603\) −15.2617 −0.621503
\(604\) −4.37456 −0.177998
\(605\) 3.39477 0.138017
\(606\) −21.0455 −0.854916
\(607\) −11.8647 −0.481573 −0.240786 0.970578i \(-0.577405\pi\)
−0.240786 + 0.970578i \(0.577405\pi\)
\(608\) −7.14145 −0.289624
\(609\) 0 0
\(610\) −3.75577 −0.152067
\(611\) −2.18108 −0.0882371
\(612\) 1.57777 0.0637775
\(613\) 33.8315 1.36644 0.683220 0.730212i \(-0.260579\pi\)
0.683220 + 0.730212i \(0.260579\pi\)
\(614\) 23.1580 0.934582
\(615\) −0.438107 −0.0176662
\(616\) −2.54351 −0.102481
\(617\) 1.68895 0.0679944 0.0339972 0.999422i \(-0.489176\pi\)
0.0339972 + 0.999422i \(0.489176\pi\)
\(618\) −14.2609 −0.573656
\(619\) −15.5259 −0.624037 −0.312018 0.950076i \(-0.601005\pi\)
−0.312018 + 0.950076i \(0.601005\pi\)
\(620\) −0.448293 −0.0180039
\(621\) −1.41325 −0.0567119
\(622\) −10.9360 −0.438495
\(623\) 9.14518 0.366394
\(624\) −15.8680 −0.635229
\(625\) 23.4161 0.936645
\(626\) −2.73479 −0.109304
\(627\) 3.21501 0.128395
\(628\) 4.01622 0.160265
\(629\) −9.28650 −0.370277
\(630\) 0.468590 0.0186691
\(631\) −18.3607 −0.730929 −0.365465 0.930825i \(-0.619090\pi\)
−0.365465 + 0.930825i \(0.619090\pi\)
\(632\) −17.5130 −0.696632
\(633\) 24.2023 0.961957
\(634\) −6.54700 −0.260014
\(635\) −4.97821 −0.197554
\(636\) 2.68759 0.106570
\(637\) −27.8167 −1.10214
\(638\) 0 0
\(639\) 15.0399 0.594970
\(640\) −2.63195 −0.104037
\(641\) 5.14969 0.203401 0.101700 0.994815i \(-0.467572\pi\)
0.101700 + 0.994815i \(0.467572\pi\)
\(642\) −16.2892 −0.642882
\(643\) 28.2698 1.11485 0.557426 0.830227i \(-0.311789\pi\)
0.557426 + 0.830227i \(0.311789\pi\)
\(644\) −0.474749 −0.0187077
\(645\) 2.35097 0.0925692
\(646\) 28.2471 1.11137
\(647\) −28.3512 −1.11460 −0.557301 0.830310i \(-0.688163\pi\)
−0.557301 + 0.830310i \(0.688163\pi\)
\(648\) −3.00069 −0.117878
\(649\) −2.82253 −0.110794
\(650\) −30.6549 −1.20238
\(651\) 4.98314 0.195304
\(652\) 0.916532 0.0358942
\(653\) 40.3239 1.57800 0.788998 0.614396i \(-0.210600\pi\)
0.788998 + 0.614396i \(0.210600\pi\)
\(654\) 11.4616 0.448185
\(655\) −2.85101 −0.111398
\(656\) −4.43134 −0.173015
\(657\) −13.7014 −0.534542
\(658\) 0.651474 0.0253971
\(659\) 49.4421 1.92599 0.962996 0.269517i \(-0.0868641\pi\)
0.962996 + 0.269517i \(0.0868641\pi\)
\(660\) −0.0762557 −0.00296825
\(661\) 15.8792 0.617631 0.308815 0.951122i \(-0.400067\pi\)
0.308815 + 0.951122i \(0.400067\pi\)
\(662\) −4.96016 −0.192782
\(663\) −24.9333 −0.968328
\(664\) −38.1897 −1.48205
\(665\) −1.50617 −0.0584069
\(666\) 2.33313 0.0904070
\(667\) 0 0
\(668\) 0.418437 0.0161898
\(669\) 1.21432 0.0469483
\(670\) 6.48071 0.250372
\(671\) −6.79390 −0.262276
\(672\) −1.88286 −0.0726328
\(673\) −11.6979 −0.450923 −0.225461 0.974252i \(-0.572389\pi\)
−0.225461 + 0.974252i \(0.572389\pi\)
\(674\) 1.96737 0.0757803
\(675\) −4.89365 −0.188357
\(676\) −3.08762 −0.118755
\(677\) −19.5034 −0.749578 −0.374789 0.927110i \(-0.622285\pi\)
−0.374789 + 0.927110i \(0.622285\pi\)
\(678\) 3.20519 0.123095
\(679\) 1.70592 0.0654671
\(680\) −5.07170 −0.194491
\(681\) 15.9762 0.612208
\(682\) 4.51679 0.172957
\(683\) 24.7263 0.946126 0.473063 0.881029i \(-0.343148\pi\)
0.473063 + 0.881029i \(0.343148\pi\)
\(684\) 1.27413 0.0487174
\(685\) 7.59842 0.290321
\(686\) 18.3671 0.701259
\(687\) −15.3372 −0.585149
\(688\) 23.7794 0.906581
\(689\) −42.4716 −1.61804
\(690\) 0.600123 0.0228463
\(691\) −47.7615 −1.81693 −0.908467 0.417956i \(-0.862746\pi\)
−0.908467 + 0.417956i \(0.862746\pi\)
\(692\) −4.04440 −0.153745
\(693\) 0.847644 0.0321993
\(694\) 30.4183 1.15466
\(695\) 4.41197 0.167355
\(696\) 0 0
\(697\) −6.96293 −0.263740
\(698\) −19.5634 −0.740486
\(699\) 12.9851 0.491143
\(700\) −1.64391 −0.0621338
\(701\) −8.14298 −0.307556 −0.153778 0.988105i \(-0.549144\pi\)
−0.153778 + 0.988105i \(0.549144\pi\)
\(702\) 6.26421 0.236427
\(703\) −7.49931 −0.282842
\(704\) −6.77406 −0.255307
\(705\) 0.147852 0.00556841
\(706\) 20.9130 0.787070
\(707\) 17.8350 0.670754
\(708\) −1.11859 −0.0420390
\(709\) −1.77591 −0.0666959 −0.0333479 0.999444i \(-0.510617\pi\)
−0.0333479 + 0.999444i \(0.510617\pi\)
\(710\) −6.38654 −0.239682
\(711\) 5.83635 0.218880
\(712\) 24.8679 0.931966
\(713\) 6.38190 0.239004
\(714\) 7.44740 0.278712
\(715\) 1.20506 0.0450666
\(716\) −1.87340 −0.0700122
\(717\) 0.255060 0.00952540
\(718\) −34.5601 −1.28977
\(719\) 28.0973 1.04785 0.523927 0.851763i \(-0.324467\pi\)
0.523927 + 0.851763i \(0.324467\pi\)
\(720\) 1.07566 0.0400876
\(721\) 12.0854 0.450082
\(722\) −1.92985 −0.0718217
\(723\) 8.39604 0.312252
\(724\) −7.34031 −0.272800
\(725\) 0 0
\(726\) −13.5553 −0.503084
\(727\) −47.0198 −1.74387 −0.871934 0.489624i \(-0.837134\pi\)
−0.871934 + 0.489624i \(0.837134\pi\)
\(728\) 15.9294 0.590384
\(729\) 1.00000 0.0370370
\(730\) 5.81815 0.215339
\(731\) 37.3644 1.38197
\(732\) −2.69246 −0.0995163
\(733\) −31.1355 −1.15002 −0.575008 0.818148i \(-0.695001\pi\)
−0.575008 + 0.818148i \(0.695001\pi\)
\(734\) −22.1388 −0.817157
\(735\) 1.88565 0.0695531
\(736\) −2.41138 −0.0888845
\(737\) 11.7231 0.431826
\(738\) 1.74936 0.0643948
\(739\) −12.6916 −0.466866 −0.233433 0.972373i \(-0.574996\pi\)
−0.233433 + 0.972373i \(0.574996\pi\)
\(740\) 0.177874 0.00653877
\(741\) −20.1348 −0.739672
\(742\) 12.6860 0.465717
\(743\) 13.7277 0.503621 0.251810 0.967777i \(-0.418974\pi\)
0.251810 + 0.967777i \(0.418974\pi\)
\(744\) 13.5504 0.496780
\(745\) 0.432730 0.0158540
\(746\) −15.2773 −0.559342
\(747\) 12.7270 0.465656
\(748\) −1.21195 −0.0443132
\(749\) 13.8042 0.504396
\(750\) 4.20123 0.153407
\(751\) 4.88215 0.178152 0.0890761 0.996025i \(-0.471609\pi\)
0.0890761 + 0.996025i \(0.471609\pi\)
\(752\) 1.49548 0.0545345
\(753\) 18.6458 0.679492
\(754\) 0 0
\(755\) −4.68624 −0.170550
\(756\) 0.335926 0.0122175
\(757\) −20.3790 −0.740686 −0.370343 0.928895i \(-0.620760\pi\)
−0.370343 + 0.928895i \(0.620760\pi\)
\(758\) −10.0410 −0.364706
\(759\) 1.08558 0.0394040
\(760\) −4.09565 −0.148565
\(761\) −35.7484 −1.29588 −0.647940 0.761692i \(-0.724369\pi\)
−0.647940 + 0.761692i \(0.724369\pi\)
\(762\) 19.8779 0.720102
\(763\) −9.71313 −0.351639
\(764\) −1.56948 −0.0567819
\(765\) 1.69018 0.0611086
\(766\) −22.9933 −0.830780
\(767\) 17.6769 0.638275
\(768\) −7.12819 −0.257216
\(769\) 23.2091 0.836943 0.418471 0.908230i \(-0.362566\pi\)
0.418471 + 0.908230i \(0.362566\pi\)
\(770\) −0.359943 −0.0129714
\(771\) 24.6186 0.886618
\(772\) −0.844441 −0.0303921
\(773\) 42.7174 1.53644 0.768220 0.640186i \(-0.221143\pi\)
0.768220 + 0.640186i \(0.221143\pi\)
\(774\) −9.38739 −0.337423
\(775\) 22.0985 0.793802
\(776\) 4.63880 0.166523
\(777\) −1.97721 −0.0709320
\(778\) 22.6659 0.812613
\(779\) −5.62291 −0.201462
\(780\) 0.477572 0.0170998
\(781\) −11.5528 −0.413390
\(782\) 9.53788 0.341074
\(783\) 0 0
\(784\) 19.0728 0.681172
\(785\) 4.30237 0.153558
\(786\) 11.3841 0.406056
\(787\) −14.0075 −0.499313 −0.249657 0.968334i \(-0.580318\pi\)
−0.249657 + 0.968334i \(0.580318\pi\)
\(788\) −7.51594 −0.267744
\(789\) 10.1677 0.361981
\(790\) −2.47834 −0.0881755
\(791\) −2.71623 −0.0965782
\(792\) 2.30495 0.0819028
\(793\) 42.5486 1.51095
\(794\) 11.3740 0.403647
\(795\) 2.87907 0.102110
\(796\) 1.60038 0.0567241
\(797\) −9.17828 −0.325111 −0.162556 0.986699i \(-0.551974\pi\)
−0.162556 + 0.986699i \(0.551974\pi\)
\(798\) 6.01414 0.212898
\(799\) 2.34984 0.0831312
\(800\) −8.34984 −0.295211
\(801\) −8.28742 −0.292822
\(802\) 12.9654 0.457825
\(803\) 10.5246 0.371404
\(804\) 4.64594 0.163849
\(805\) −0.508574 −0.0179249
\(806\) −28.2876 −0.996388
\(807\) 0.668029 0.0235157
\(808\) 48.4977 1.70614
\(809\) 11.6633 0.410061 0.205031 0.978756i \(-0.434271\pi\)
0.205031 + 0.978756i \(0.434271\pi\)
\(810\) −0.424639 −0.0149203
\(811\) −10.2506 −0.359946 −0.179973 0.983672i \(-0.557601\pi\)
−0.179973 + 0.983672i \(0.557601\pi\)
\(812\) 0 0
\(813\) −9.29114 −0.325854
\(814\) −1.79217 −0.0628156
\(815\) 0.981833 0.0343921
\(816\) 17.0957 0.598471
\(817\) 30.1736 1.05564
\(818\) −26.5503 −0.928308
\(819\) −5.30860 −0.185497
\(820\) 0.133368 0.00465741
\(821\) 22.8410 0.797157 0.398578 0.917134i \(-0.369504\pi\)
0.398578 + 0.917134i \(0.369504\pi\)
\(822\) −30.3404 −1.05824
\(823\) 0.493935 0.0172175 0.00860874 0.999963i \(-0.497260\pi\)
0.00860874 + 0.999963i \(0.497260\pi\)
\(824\) 32.8630 1.14484
\(825\) 3.75901 0.130872
\(826\) −5.27996 −0.183713
\(827\) −52.3490 −1.82035 −0.910177 0.414219i \(-0.864055\pi\)
−0.910177 + 0.414219i \(0.864055\pi\)
\(828\) 0.430221 0.0149512
\(829\) −39.7417 −1.38029 −0.690143 0.723673i \(-0.742452\pi\)
−0.690143 + 0.723673i \(0.742452\pi\)
\(830\) −5.40438 −0.187589
\(831\) −14.7432 −0.511436
\(832\) 42.4244 1.47080
\(833\) 29.9690 1.03836
\(834\) −17.6169 −0.610025
\(835\) 0.448250 0.0155123
\(836\) −0.978708 −0.0338493
\(837\) −4.51575 −0.156087
\(838\) 47.4341 1.63858
\(839\) −31.9102 −1.10166 −0.550831 0.834617i \(-0.685689\pi\)
−0.550831 + 0.834617i \(0.685689\pi\)
\(840\) −1.07983 −0.0372576
\(841\) 0 0
\(842\) 25.8508 0.890877
\(843\) −21.5272 −0.741438
\(844\) −7.36764 −0.253605
\(845\) −3.30761 −0.113785
\(846\) −0.590370 −0.0202973
\(847\) 11.4874 0.394712
\(848\) 29.1211 1.00002
\(849\) 10.3210 0.354217
\(850\) 33.0267 1.13281
\(851\) −2.53221 −0.0868031
\(852\) −4.57843 −0.156854
\(853\) 12.8451 0.439806 0.219903 0.975522i \(-0.429426\pi\)
0.219903 + 0.975522i \(0.429426\pi\)
\(854\) −12.7090 −0.434893
\(855\) 1.36491 0.0466788
\(856\) 37.5371 1.28299
\(857\) 9.50092 0.324545 0.162273 0.986746i \(-0.448118\pi\)
0.162273 + 0.986746i \(0.448118\pi\)
\(858\) −4.81179 −0.164272
\(859\) 18.5991 0.634594 0.317297 0.948326i \(-0.397225\pi\)
0.317297 + 0.948326i \(0.397225\pi\)
\(860\) −0.715678 −0.0244044
\(861\) −1.48249 −0.0505232
\(862\) −46.5650 −1.58601
\(863\) 48.5996 1.65435 0.827175 0.561944i \(-0.189946\pi\)
0.827175 + 0.561944i \(0.189946\pi\)
\(864\) 1.70626 0.0580481
\(865\) −4.33256 −0.147311
\(866\) −48.8896 −1.66134
\(867\) 9.86239 0.334944
\(868\) −1.51696 −0.0514889
\(869\) −4.48313 −0.152080
\(870\) 0 0
\(871\) −73.4191 −2.48771
\(872\) −26.4124 −0.894435
\(873\) −1.54591 −0.0523212
\(874\) 7.70231 0.260535
\(875\) −3.56033 −0.120361
\(876\) 4.17095 0.140923
\(877\) 12.5576 0.424040 0.212020 0.977265i \(-0.431996\pi\)
0.212020 + 0.977265i \(0.431996\pi\)
\(878\) 8.98019 0.303067
\(879\) −25.2077 −0.850233
\(880\) −0.826260 −0.0278532
\(881\) −14.3595 −0.483783 −0.241892 0.970303i \(-0.577768\pi\)
−0.241892 + 0.970303i \(0.577768\pi\)
\(882\) −7.52937 −0.253527
\(883\) −24.7519 −0.832969 −0.416484 0.909143i \(-0.636738\pi\)
−0.416484 + 0.909143i \(0.636738\pi\)
\(884\) 7.59015 0.255284
\(885\) −1.19828 −0.0402798
\(886\) −18.0051 −0.604895
\(887\) 17.0877 0.573749 0.286875 0.957968i \(-0.407384\pi\)
0.286875 + 0.957968i \(0.407384\pi\)
\(888\) −5.37651 −0.180424
\(889\) −16.8455 −0.564981
\(890\) 3.51916 0.117963
\(891\) −0.768140 −0.0257337
\(892\) −0.369662 −0.0123772
\(893\) 1.89761 0.0635011
\(894\) −1.72789 −0.0577893
\(895\) −2.00687 −0.0670824
\(896\) −8.90615 −0.297534
\(897\) −6.79872 −0.227003
\(898\) −26.0786 −0.870253
\(899\) 0 0
\(900\) 1.48972 0.0496573
\(901\) 45.7577 1.52441
\(902\) −1.34375 −0.0447421
\(903\) 7.95533 0.264737
\(904\) −7.38610 −0.245658
\(905\) −7.86329 −0.261385
\(906\) 18.7121 0.621669
\(907\) −5.18557 −0.172184 −0.0860921 0.996287i \(-0.527438\pi\)
−0.0860921 + 0.996287i \(0.527438\pi\)
\(908\) −4.86344 −0.161399
\(909\) −16.1622 −0.536066
\(910\) 2.25424 0.0747273
\(911\) −18.0436 −0.597811 −0.298905 0.954283i \(-0.596622\pi\)
−0.298905 + 0.954283i \(0.596622\pi\)
\(912\) 13.8057 0.457151
\(913\) −9.77611 −0.323542
\(914\) −31.8476 −1.05343
\(915\) −2.88429 −0.0953518
\(916\) 4.66891 0.154265
\(917\) −9.64741 −0.318586
\(918\) −6.74888 −0.222746
\(919\) −8.74908 −0.288605 −0.144303 0.989534i \(-0.546094\pi\)
−0.144303 + 0.989534i \(0.546094\pi\)
\(920\) −1.38294 −0.0455940
\(921\) 17.7845 0.586020
\(922\) −29.0064 −0.955274
\(923\) 72.3522 2.38150
\(924\) −0.258038 −0.00848884
\(925\) −8.76825 −0.288298
\(926\) 35.8223 1.17719
\(927\) −10.9518 −0.359705
\(928\) 0 0
\(929\) 42.8899 1.40717 0.703587 0.710609i \(-0.251581\pi\)
0.703587 + 0.710609i \(0.251581\pi\)
\(930\) 1.91757 0.0628794
\(931\) 24.2014 0.793170
\(932\) −3.95291 −0.129482
\(933\) −8.39849 −0.274954
\(934\) 30.9203 1.01174
\(935\) −1.29830 −0.0424588
\(936\) −14.4354 −0.471834
\(937\) 16.6746 0.544736 0.272368 0.962193i \(-0.412193\pi\)
0.272368 + 0.962193i \(0.412193\pi\)
\(938\) 21.9298 0.716033
\(939\) −2.10022 −0.0685381
\(940\) −0.0450088 −0.00146802
\(941\) 16.5970 0.541047 0.270523 0.962713i \(-0.412803\pi\)
0.270523 + 0.962713i \(0.412803\pi\)
\(942\) −17.1793 −0.559733
\(943\) −1.89863 −0.0618278
\(944\) −12.1203 −0.394483
\(945\) 0.359860 0.0117063
\(946\) 7.21083 0.234444
\(947\) −45.0452 −1.46377 −0.731886 0.681427i \(-0.761360\pi\)
−0.731886 + 0.681427i \(0.761360\pi\)
\(948\) −1.77669 −0.0577043
\(949\) −65.9130 −2.13963
\(950\) 26.6707 0.865311
\(951\) −5.02786 −0.163039
\(952\) −17.1619 −0.556221
\(953\) 19.3815 0.627829 0.313915 0.949451i \(-0.398359\pi\)
0.313915 + 0.949451i \(0.398359\pi\)
\(954\) −11.4961 −0.372201
\(955\) −1.68130 −0.0544057
\(956\) −0.0776451 −0.00251122
\(957\) 0 0
\(958\) 34.0835 1.10119
\(959\) 25.7119 0.830282
\(960\) −2.87587 −0.0928183
\(961\) −10.6080 −0.342194
\(962\) 11.2240 0.361875
\(963\) −12.5095 −0.403113
\(964\) −2.55591 −0.0823203
\(965\) −0.904605 −0.0291203
\(966\) 2.03073 0.0653377
\(967\) −25.8312 −0.830677 −0.415338 0.909667i \(-0.636337\pi\)
−0.415338 + 0.909667i \(0.636337\pi\)
\(968\) 31.2370 1.00400
\(969\) 21.6927 0.696870
\(970\) 0.656456 0.0210775
\(971\) −28.2138 −0.905424 −0.452712 0.891657i \(-0.649543\pi\)
−0.452712 + 0.891657i \(0.649543\pi\)
\(972\) −0.304418 −0.00976423
\(973\) 14.9295 0.478616
\(974\) −21.2449 −0.680729
\(975\) −23.5418 −0.753942
\(976\) −29.1739 −0.933833
\(977\) 28.5608 0.913740 0.456870 0.889534i \(-0.348971\pi\)
0.456870 + 0.889534i \(0.348971\pi\)
\(978\) −3.92045 −0.125362
\(979\) 6.36590 0.203455
\(980\) −0.574026 −0.0183366
\(981\) 8.80210 0.281030
\(982\) 42.8422 1.36715
\(983\) 22.7065 0.724226 0.362113 0.932134i \(-0.382055\pi\)
0.362113 + 0.932134i \(0.382055\pi\)
\(984\) −4.03126 −0.128512
\(985\) −8.05143 −0.256540
\(986\) 0 0
\(987\) 0.500309 0.0159250
\(988\) 6.12942 0.195003
\(989\) 10.1884 0.323972
\(990\) 0.326183 0.0103668
\(991\) −46.9070 −1.49005 −0.745026 0.667036i \(-0.767563\pi\)
−0.745026 + 0.667036i \(0.767563\pi\)
\(992\) −7.70504 −0.244635
\(993\) −3.80922 −0.120882
\(994\) −21.6111 −0.685463
\(995\) 1.71441 0.0543504
\(996\) −3.87433 −0.122763
\(997\) −36.3093 −1.14993 −0.574963 0.818179i \(-0.694984\pi\)
−0.574963 + 0.818179i \(0.694984\pi\)
\(998\) −28.8606 −0.913567
\(999\) 1.79176 0.0566888
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.s.1.10 12
3.2 odd 2 7569.2.a.bt.1.3 12
29.2 odd 28 87.2.i.a.4.3 24
29.15 odd 28 87.2.i.a.22.3 yes 24
29.28 even 2 2523.2.a.v.1.3 12
87.2 even 28 261.2.o.b.91.2 24
87.44 even 28 261.2.o.b.109.2 24
87.86 odd 2 7569.2.a.bn.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.4.3 24 29.2 odd 28
87.2.i.a.22.3 yes 24 29.15 odd 28
261.2.o.b.91.2 24 87.2 even 28
261.2.o.b.109.2 24 87.44 even 28
2523.2.a.s.1.10 12 1.1 even 1 trivial
2523.2.a.v.1.3 12 29.28 even 2
7569.2.a.bn.1.10 12 87.86 odd 2
7569.2.a.bt.1.3 12 3.2 odd 2