Properties

Label 87.2.i.a.4.3
Level $87$
Weight $2$
Character 87.4
Analytic conductor $0.695$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(4,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.i (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 4.3
Character \(\chi\) \(=\) 87.4
Dual form 87.2.i.a.22.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26950 + 0.289755i) q^{2} +(0.433884 + 0.900969i) q^{3} +(-0.274272 - 0.132082i) q^{4} +(-0.0725658 + 0.317931i) q^{5} +(0.289755 + 1.26950i) q^{6} +(0.994220 - 0.478791i) q^{7} +(-2.34603 - 1.87090i) q^{8} +(-0.623490 + 0.781831i) q^{9} +(-0.184244 + 0.382587i) q^{10} +(-0.600556 + 0.478928i) q^{11} -0.304418i q^{12} +(-2.99941 - 3.76114i) q^{13} +(1.40089 - 0.319744i) q^{14} +(-0.317931 + 0.0725658i) q^{15} +(-2.05658 - 2.57887i) q^{16} +5.18289i q^{17} +(-1.01806 + 0.811874i) q^{18} +(1.81600 - 3.77095i) q^{19} +(0.0618958 - 0.0776149i) q^{20} +(0.862752 + 0.688022i) q^{21} +(-0.901176 + 0.433984i) q^{22} +(0.314479 + 1.37782i) q^{23} +(0.667716 - 2.92545i) q^{24} +(4.40903 + 2.12328i) q^{25} +(-2.71794 - 5.64386i) q^{26} +(-0.974928 - 0.222521i) q^{27} -0.335926 q^{28} +(-0.401521 + 5.37018i) q^{29} -0.424639 q^{30} +(-4.40253 - 1.00485i) q^{31} +(0.740318 + 1.53729i) q^{32} +(-0.692070 - 0.333284i) q^{33} +(-1.50177 + 6.57967i) q^{34} +(0.0800764 + 0.350838i) q^{35} +(0.274272 - 0.132082i) q^{36} +(1.40085 + 1.11714i) q^{37} +(3.39805 - 4.26102i) q^{38} +(2.08728 - 4.33428i) q^{39} +(0.765059 - 0.610114i) q^{40} +1.34344i q^{41} +(0.895904 + 1.12343i) q^{42} +(7.02843 - 1.60419i) q^{43} +(0.227973 - 0.0520334i) q^{44} +(-0.203325 - 0.254961i) q^{45} +1.84026i q^{46} +(0.354469 - 0.282680i) q^{47} +(1.43116 - 2.97184i) q^{48} +(-3.60520 + 4.52077i) q^{49} +(4.98202 + 3.97303i) q^{50} +(-4.66963 + 2.24877i) q^{51} +(0.325873 + 1.42774i) q^{52} +(1.96455 - 8.60725i) q^{53} +(-1.17319 - 0.564980i) q^{54} +(-0.108686 - 0.225689i) q^{55} +(-3.22824 - 0.736825i) q^{56} +4.18544 q^{57} +(-2.06576 + 6.70108i) q^{58} +3.67450 q^{59} +(0.0967842 + 0.0220904i) q^{60} +(3.83753 + 7.96872i) q^{61} +(-5.29784 - 2.55131i) q^{62} +(-0.245552 + 1.07583i) q^{63} +(1.96236 + 8.59768i) q^{64} +(1.41344 - 0.680677i) q^{65} +(-0.782011 - 0.623633i) q^{66} +(9.51550 - 11.9321i) q^{67} +(0.684568 - 1.42152i) q^{68} +(-1.10493 + 0.881149i) q^{69} +0.468590i q^{70} +(-9.37723 - 11.7587i) q^{71} +(2.92545 - 0.667716i) q^{72} +(-13.3579 + 3.04884i) q^{73} +(1.45468 + 1.82412i) q^{74} +4.89365i q^{75} +(-0.996152 + 0.794405i) q^{76} +(-0.367779 + 0.763701i) q^{77} +(3.90567 - 4.89756i) q^{78} +(-4.56304 - 3.63890i) q^{79} +(0.969139 - 0.466713i) q^{80} +(-0.222521 - 0.974928i) q^{81} +(-0.389269 + 1.70550i) q^{82} +(-11.4666 - 5.52203i) q^{83} +(-0.145753 - 0.302659i) q^{84} +(-1.64780 - 0.376101i) q^{85} +9.38739 q^{86} +(-5.01257 + 1.96827i) q^{87} +2.30495 q^{88} +(-8.07964 - 1.84412i) q^{89} +(-0.184244 - 0.382587i) q^{90} +(-4.78288 - 2.30331i) q^{91} +(0.0957331 - 0.419434i) q^{92} +(-1.00485 - 4.40253i) q^{93} +(0.531905 - 0.256152i) q^{94} +(1.06713 + 0.851004i) q^{95} +(-1.06383 + 1.33401i) q^{96} +(-0.670747 + 1.39282i) q^{97} +(-5.88670 + 4.69449i) q^{98} -0.768140i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} - 4 q^{5} - 2 q^{6} + 8 q^{7} + 4 q^{9} - 28 q^{11} - 10 q^{13} - 14 q^{15} - 22 q^{16} - 20 q^{20} + 4 q^{22} + 18 q^{23} - 18 q^{25} + 28 q^{26} + 8 q^{28} + 28 q^{29} - 40 q^{30} + 28 q^{31}+ \cdots - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{1}{14}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26950 + 0.289755i 0.897670 + 0.204887i 0.646372 0.763022i \(-0.276285\pi\)
0.251298 + 0.967910i \(0.419143\pi\)
\(3\) 0.433884 + 0.900969i 0.250503 + 0.520175i
\(4\) −0.274272 0.132082i −0.137136 0.0660411i
\(5\) −0.0725658 + 0.317931i −0.0324524 + 0.142183i −0.988559 0.150837i \(-0.951803\pi\)
0.956106 + 0.293020i \(0.0946603\pi\)
\(6\) 0.289755 + 1.26950i 0.118292 + 0.518270i
\(7\) 0.994220 0.478791i 0.375780 0.180966i −0.236454 0.971643i \(-0.575985\pi\)
0.612234 + 0.790677i \(0.290271\pi\)
\(8\) −2.34603 1.87090i −0.829447 0.661462i
\(9\) −0.623490 + 0.781831i −0.207830 + 0.260610i
\(10\) −0.184244 + 0.382587i −0.0582631 + 0.120985i
\(11\) −0.600556 + 0.478928i −0.181075 + 0.144402i −0.709832 0.704371i \(-0.751229\pi\)
0.528758 + 0.848773i \(0.322658\pi\)
\(12\) 0.304418i 0.0878780i
\(13\) −2.99941 3.76114i −0.831887 1.04315i −0.998368 0.0571090i \(-0.981812\pi\)
0.166481 0.986045i \(-0.446760\pi\)
\(14\) 1.40089 0.319744i 0.374404 0.0854553i
\(15\) −0.317931 + 0.0725658i −0.0820895 + 0.0187364i
\(16\) −2.05658 2.57887i −0.514144 0.644716i
\(17\) 5.18289i 1.25704i 0.777795 + 0.628518i \(0.216338\pi\)
−0.777795 + 0.628518i \(0.783662\pi\)
\(18\) −1.01806 + 0.811874i −0.239959 + 0.191361i
\(19\) 1.81600 3.77095i 0.416618 0.865116i −0.582032 0.813166i \(-0.697742\pi\)
0.998650 0.0519502i \(-0.0165437\pi\)
\(20\) 0.0618958 0.0776149i 0.0138403 0.0173552i
\(21\) 0.862752 + 0.688022i 0.188268 + 0.150139i
\(22\) −0.901176 + 0.433984i −0.192131 + 0.0925256i
\(23\) 0.314479 + 1.37782i 0.0655733 + 0.287295i 0.997074 0.0764445i \(-0.0243568\pi\)
−0.931501 + 0.363740i \(0.881500\pi\)
\(24\) 0.667716 2.92545i 0.136297 0.597156i
\(25\) 4.40903 + 2.12328i 0.881806 + 0.424655i
\(26\) −2.71794 5.64386i −0.533032 1.10685i
\(27\) −0.974928 0.222521i −0.187625 0.0428242i
\(28\) −0.335926 −0.0634841
\(29\) −0.401521 + 5.37018i −0.0745606 + 0.997216i
\(30\) −0.424639 −0.0775282
\(31\) −4.40253 1.00485i −0.790718 0.180476i −0.191956 0.981403i \(-0.561483\pi\)
−0.598762 + 0.800927i \(0.704340\pi\)
\(32\) 0.740318 + 1.53729i 0.130871 + 0.271756i
\(33\) −0.692070 0.333284i −0.120474 0.0580172i
\(34\) −1.50177 + 6.57967i −0.257551 + 1.12840i
\(35\) 0.0800764 + 0.350838i 0.0135354 + 0.0593024i
\(36\) 0.274272 0.132082i 0.0457119 0.0220137i
\(37\) 1.40085 + 1.11714i 0.230299 + 0.183657i 0.731840 0.681477i \(-0.238662\pi\)
−0.501541 + 0.865134i \(0.667233\pi\)
\(38\) 3.39805 4.26102i 0.551237 0.691229i
\(39\) 2.08728 4.33428i 0.334232 0.694040i
\(40\) 0.765059 0.610114i 0.120966 0.0964675i
\(41\) 1.34344i 0.209811i 0.994482 + 0.104905i \(0.0334540\pi\)
−0.994482 + 0.104905i \(0.966546\pi\)
\(42\) 0.895904 + 1.12343i 0.138241 + 0.173349i
\(43\) 7.02843 1.60419i 1.07182 0.244637i 0.350026 0.936740i \(-0.386173\pi\)
0.721799 + 0.692103i \(0.243316\pi\)
\(44\) 0.227973 0.0520334i 0.0343683 0.00784433i
\(45\) −0.203325 0.254961i −0.0303099 0.0380074i
\(46\) 1.84026i 0.271332i
\(47\) 0.354469 0.282680i 0.0517046 0.0412331i −0.597297 0.802020i \(-0.703758\pi\)
0.649001 + 0.760787i \(0.275187\pi\)
\(48\) 1.43116 2.97184i 0.206570 0.428948i
\(49\) −3.60520 + 4.52077i −0.515028 + 0.645825i
\(50\) 4.98202 + 3.97303i 0.704564 + 0.561871i
\(51\) −4.66963 + 2.24877i −0.653878 + 0.314891i
\(52\) 0.325873 + 1.42774i 0.0451905 + 0.197992i
\(53\) 1.96455 8.60725i 0.269851 1.18230i −0.640334 0.768096i \(-0.721204\pi\)
0.910186 0.414200i \(-0.135939\pi\)
\(54\) −1.17319 0.564980i −0.159651 0.0768840i
\(55\) −0.108686 0.225689i −0.0146553 0.0304320i
\(56\) −3.22824 0.736825i −0.431392 0.0984624i
\(57\) 4.18544 0.554376
\(58\) −2.06576 + 6.70108i −0.271248 + 0.879895i
\(59\) 3.67450 0.478379 0.239190 0.970973i \(-0.423118\pi\)
0.239190 + 0.970973i \(0.423118\pi\)
\(60\) 0.0967842 + 0.0220904i 0.0124948 + 0.00285185i
\(61\) 3.83753 + 7.96872i 0.491346 + 1.02029i 0.988301 + 0.152514i \(0.0487369\pi\)
−0.496956 + 0.867776i \(0.665549\pi\)
\(62\) −5.29784 2.55131i −0.672827 0.324016i
\(63\) −0.245552 + 1.07583i −0.0309367 + 0.135542i
\(64\) 1.96236 + 8.59768i 0.245295 + 1.07471i
\(65\) 1.41344 0.680677i 0.175316 0.0844276i
\(66\) −0.782011 0.623633i −0.0962589 0.0767639i
\(67\) 9.51550 11.9321i 1.16250 1.45773i 0.298384 0.954446i \(-0.403552\pi\)
0.864119 0.503287i \(-0.167876\pi\)
\(68\) 0.684568 1.42152i 0.0830161 0.172385i
\(69\) −1.10493 + 0.881149i −0.133018 + 0.106078i
\(70\) 0.468590i 0.0560072i
\(71\) −9.37723 11.7587i −1.11287 1.39550i −0.909150 0.416469i \(-0.863267\pi\)
−0.203722 0.979029i \(-0.565304\pi\)
\(72\) 2.92545 0.667716i 0.344768 0.0786910i
\(73\) −13.3579 + 3.04884i −1.56342 + 0.356840i −0.914683 0.404173i \(-0.867559\pi\)
−0.648737 + 0.761013i \(0.724702\pi\)
\(74\) 1.45468 + 1.82412i 0.169104 + 0.212049i
\(75\) 4.89365i 0.565070i
\(76\) −0.996152 + 0.794405i −0.114266 + 0.0911245i
\(77\) −0.367779 + 0.763701i −0.0419123 + 0.0870318i
\(78\) 3.90567 4.89756i 0.442230 0.554539i
\(79\) −4.56304 3.63890i −0.513382 0.409408i 0.332237 0.943196i \(-0.392197\pi\)
−0.845619 + 0.533788i \(0.820768\pi\)
\(80\) 0.969139 0.466713i 0.108353 0.0521801i
\(81\) −0.222521 0.974928i −0.0247245 0.108325i
\(82\) −0.389269 + 1.70550i −0.0429876 + 0.188341i
\(83\) −11.4666 5.52203i −1.25862 0.606122i −0.318814 0.947817i \(-0.603285\pi\)
−0.939811 + 0.341695i \(0.888999\pi\)
\(84\) −0.145753 0.302659i −0.0159029 0.0330228i
\(85\) −1.64780 0.376101i −0.178730 0.0407938i
\(86\) 9.38739 1.01227
\(87\) −5.01257 + 1.96827i −0.537404 + 0.211021i
\(88\) 2.30495 0.245708
\(89\) −8.07964 1.84412i −0.856440 0.195477i −0.228313 0.973588i \(-0.573321\pi\)
−0.628127 + 0.778111i \(0.716178\pi\)
\(90\) −0.184244 0.382587i −0.0194210 0.0403282i
\(91\) −4.78288 2.30331i −0.501382 0.241453i
\(92\) 0.0957331 0.419434i 0.00998086 0.0437290i
\(93\) −1.00485 4.40253i −0.104198 0.456521i
\(94\) 0.531905 0.256152i 0.0548618 0.0264201i
\(95\) 1.06713 + 0.851004i 0.109485 + 0.0873112i
\(96\) −1.06383 + 1.33401i −0.108577 + 0.136151i
\(97\) −0.670747 + 1.39282i −0.0681040 + 0.141419i −0.932242 0.361836i \(-0.882150\pi\)
0.864138 + 0.503255i \(0.167864\pi\)
\(98\) −5.88670 + 4.69449i −0.594647 + 0.474215i
\(99\) 0.768140i 0.0772010i
\(100\) −0.928824 1.16471i −0.0928824 0.116471i
\(101\) 15.7570 3.59643i 1.56788 0.357858i 0.651651 0.758519i \(-0.274077\pi\)
0.916226 + 0.400661i \(0.131219\pi\)
\(102\) −6.57967 + 1.50177i −0.651485 + 0.148697i
\(103\) −6.82835 8.56248i −0.672818 0.843687i 0.321853 0.946790i \(-0.395694\pi\)
−0.994671 + 0.103103i \(0.967123\pi\)
\(104\) 14.4354i 1.41550i
\(105\) −0.281350 + 0.224369i −0.0274569 + 0.0218962i
\(106\) 4.98798 10.3576i 0.484475 1.00602i
\(107\) −7.79954 + 9.78032i −0.754010 + 0.945499i −0.999716 0.0238458i \(-0.992409\pi\)
0.245706 + 0.969345i \(0.420980\pi\)
\(108\) 0.238004 + 0.189802i 0.0229019 + 0.0182637i
\(109\) 7.93042 3.81909i 0.759597 0.365802i −0.0136509 0.999907i \(-0.504345\pi\)
0.773247 + 0.634104i \(0.218631\pi\)
\(110\) −0.0725825 0.318005i −0.00692047 0.0303205i
\(111\) −0.398704 + 1.74684i −0.0378433 + 0.165802i
\(112\) −3.27943 1.57929i −0.309877 0.149229i
\(113\) −1.06799 2.21771i −0.100468 0.208624i 0.844676 0.535278i \(-0.179793\pi\)
−0.945144 + 0.326654i \(0.894079\pi\)
\(114\) 5.31341 + 1.21275i 0.497647 + 0.113585i
\(115\) −0.460873 −0.0429766
\(116\) 0.819430 1.41985i 0.0760822 0.131830i
\(117\) 4.81068 0.444748
\(118\) 4.66477 + 1.06470i 0.429427 + 0.0980139i
\(119\) 2.48152 + 5.15294i 0.227481 + 0.472369i
\(120\) 0.881640 + 0.424576i 0.0804824 + 0.0387583i
\(121\) −2.31643 + 10.1490i −0.210585 + 0.922633i
\(122\) 2.56277 + 11.2282i 0.232022 + 1.01655i
\(123\) −1.21040 + 0.582899i −0.109138 + 0.0525582i
\(124\) 1.07477 + 0.857097i 0.0965169 + 0.0769696i
\(125\) −2.01162 + 2.52250i −0.179925 + 0.225619i
\(126\) −0.623456 + 1.29462i −0.0555418 + 0.115334i
\(127\) 11.9351 9.51790i 1.05907 0.844577i 0.0708265 0.997489i \(-0.477436\pi\)
0.988240 + 0.152911i \(0.0488649\pi\)
\(128\) 8.07081i 0.713366i
\(129\) 4.49485 + 5.63636i 0.395749 + 0.496254i
\(130\) 1.99159 0.454567i 0.174674 0.0398682i
\(131\) 8.52336 1.94540i 0.744689 0.169970i 0.166692 0.986009i \(-0.446692\pi\)
0.577997 + 0.816039i \(0.303834\pi\)
\(132\) 0.145794 + 0.182820i 0.0126898 + 0.0159125i
\(133\) 4.61864i 0.400487i
\(134\) 15.5373 12.3906i 1.34222 1.07038i
\(135\) 0.141493 0.293813i 0.0121778 0.0252874i
\(136\) 9.69667 12.1592i 0.831482 1.04265i
\(137\) 18.2169 + 14.5275i 1.55638 + 1.24117i 0.838305 + 0.545202i \(0.183547\pi\)
0.718073 + 0.695968i \(0.245025\pi\)
\(138\) −1.65802 + 0.798460i −0.141140 + 0.0679694i
\(139\) 3.01052 + 13.1900i 0.255349 + 1.11876i 0.926160 + 0.377130i \(0.123089\pi\)
−0.670811 + 0.741628i \(0.734054\pi\)
\(140\) 0.0243767 0.106801i 0.00206021 0.00902637i
\(141\) 0.408484 + 0.196715i 0.0344005 + 0.0165664i
\(142\) −8.49724 17.6447i −0.713073 1.48071i
\(143\) 3.60263 + 0.822277i 0.301267 + 0.0687623i
\(144\) 3.29849 0.274874
\(145\) −1.67821 0.517347i −0.139368 0.0429633i
\(146\) −17.8412 −1.47655
\(147\) −5.63731 1.28668i −0.464958 0.106124i
\(148\) −0.236660 0.491429i −0.0194533 0.0403952i
\(149\) −1.19555 0.575745i −0.0979430 0.0471668i 0.384271 0.923220i \(-0.374453\pi\)
−0.482214 + 0.876054i \(0.660167\pi\)
\(150\) −1.41796 + 6.21248i −0.115776 + 0.507247i
\(151\) 3.19768 + 14.0099i 0.260223 + 1.14011i 0.921010 + 0.389539i \(0.127366\pi\)
−0.660787 + 0.750574i \(0.729777\pi\)
\(152\) −11.3155 + 5.44924i −0.917805 + 0.441991i
\(153\) −4.05215 3.23148i −0.327597 0.261250i
\(154\) −0.688180 + 0.862950i −0.0554551 + 0.0695385i
\(155\) 0.638946 1.32679i 0.0513214 0.106570i
\(156\) −1.14496 + 0.913076i −0.0916703 + 0.0731046i
\(157\) 13.1931i 1.05292i −0.850199 0.526462i \(-0.823518\pi\)
0.850199 0.526462i \(-0.176482\pi\)
\(158\) −4.73838 5.94174i −0.376965 0.472699i
\(159\) 8.60725 1.96455i 0.682599 0.155799i
\(160\) −0.542473 + 0.123816i −0.0428863 + 0.00978851i
\(161\) 0.972350 + 1.21929i 0.0766319 + 0.0960933i
\(162\) 1.30214i 0.102306i
\(163\) 2.35391 1.87718i 0.184373 0.147032i −0.526954 0.849894i \(-0.676666\pi\)
0.711327 + 0.702861i \(0.248095\pi\)
\(164\) 0.177445 0.368469i 0.0138561 0.0287726i
\(165\) 0.156182 0.195846i 0.0121587 0.0152466i
\(166\) −12.9568 10.3327i −1.00564 0.801974i
\(167\) −1.23842 + 0.596394i −0.0958321 + 0.0461503i −0.481186 0.876619i \(-0.659794\pi\)
0.385354 + 0.922769i \(0.374079\pi\)
\(168\) −0.736825 3.22824i −0.0568473 0.249064i
\(169\) −2.25696 + 9.88838i −0.173612 + 0.760645i
\(170\) −1.98291 0.954918i −0.152082 0.0732389i
\(171\) 1.81600 + 3.77095i 0.138873 + 0.288372i
\(172\) −2.13958 0.488346i −0.163142 0.0372360i
\(173\) −13.2857 −1.01009 −0.505045 0.863093i \(-0.668524\pi\)
−0.505045 + 0.863093i \(0.668524\pi\)
\(174\) −6.93377 + 1.04630i −0.525647 + 0.0793200i
\(175\) 5.40015 0.408213
\(176\) 2.47018 + 0.563802i 0.186197 + 0.0424982i
\(177\) 1.59431 + 3.31061i 0.119835 + 0.248841i
\(178\) −9.72273 4.68222i −0.728750 0.350947i
\(179\) 1.36940 5.99973i 0.102354 0.448441i −0.897617 0.440777i \(-0.854703\pi\)
0.999971 0.00766454i \(-0.00243972\pi\)
\(180\) 0.0220904 + 0.0967842i 0.00164652 + 0.00721387i
\(181\) −21.7247 + 10.4620i −1.61478 + 0.777638i −0.999939 0.0110120i \(-0.996495\pi\)
−0.614842 + 0.788650i \(0.710780\pi\)
\(182\) −5.40446 4.30991i −0.400605 0.319472i
\(183\) −5.51452 + 6.91500i −0.407645 + 0.511171i
\(184\) 1.83999 3.82077i 0.135645 0.281671i
\(185\) −0.456829 + 0.364309i −0.0335868 + 0.0267845i
\(186\) 5.88016i 0.431154i
\(187\) −2.48223 3.11262i −0.181519 0.227617i
\(188\) −0.134558 + 0.0307119i −0.00981363 + 0.00223990i
\(189\) −1.07583 + 0.245552i −0.0782554 + 0.0178613i
\(190\) 1.10813 + 1.38955i 0.0803923 + 0.100809i
\(191\) 5.15567i 0.373051i −0.982450 0.186526i \(-0.940277\pi\)
0.982450 0.186526i \(-0.0597228\pi\)
\(192\) −6.89480 + 5.49842i −0.497589 + 0.396814i
\(193\) −1.20357 + 2.49924i −0.0866349 + 0.179899i −0.939785 0.341766i \(-0.888975\pi\)
0.853150 + 0.521666i \(0.174689\pi\)
\(194\) −1.25509 + 1.57383i −0.0901100 + 0.112994i
\(195\) 1.22654 + 0.978131i 0.0878342 + 0.0700454i
\(196\) 1.58592 0.763737i 0.113280 0.0545526i
\(197\) −5.49393 24.0705i −0.391426 1.71495i −0.659631 0.751589i \(-0.729288\pi\)
0.268205 0.963362i \(-0.413570\pi\)
\(198\) 0.222572 0.975152i 0.0158175 0.0693010i
\(199\) 4.73656 + 2.28101i 0.335766 + 0.161696i 0.594168 0.804341i \(-0.297482\pi\)
−0.258402 + 0.966038i \(0.583196\pi\)
\(200\) −6.37129 13.2301i −0.450518 0.935511i
\(201\) 14.8790 + 3.39604i 1.04949 + 0.239538i
\(202\) 21.0455 1.48076
\(203\) 2.17199 + 5.53138i 0.152444 + 0.388227i
\(204\) 1.57777 0.110466
\(205\) −0.427123 0.0974881i −0.0298316 0.00680886i
\(206\) −6.18756 12.8486i −0.431108 0.895204i
\(207\) −1.27330 0.613188i −0.0885003 0.0426195i
\(208\) −3.53096 + 15.4702i −0.244828 + 1.07266i
\(209\) 0.715407 + 3.13440i 0.0494857 + 0.216811i
\(210\) −0.422185 + 0.203314i −0.0291335 + 0.0140300i
\(211\) 18.9222 + 15.0899i 1.30266 + 1.03883i 0.996213 + 0.0869434i \(0.0277099\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(212\) −1.67568 + 2.10124i −0.115086 + 0.144314i
\(213\) 6.52557 13.5505i 0.447125 0.928464i
\(214\) −12.7354 + 10.1561i −0.870573 + 0.694259i
\(215\) 2.35097i 0.160335i
\(216\) 1.87090 + 2.34603i 0.127298 + 0.159627i
\(217\) −4.85820 + 1.10885i −0.329796 + 0.0752738i
\(218\) 11.1742 2.55045i 0.756816 0.172738i
\(219\) −8.54267 10.7122i −0.577260 0.723861i
\(220\) 0.0762557i 0.00514116i
\(221\) 19.4936 15.5456i 1.31128 1.04571i
\(222\) −1.01231 + 2.10208i −0.0679417 + 0.141082i
\(223\) 0.757116 0.949394i 0.0507003 0.0635761i −0.755835 0.654762i \(-0.772769\pi\)
0.806535 + 0.591186i \(0.201340\pi\)
\(224\) 1.47208 + 1.17394i 0.0983573 + 0.0784374i
\(225\) −4.40903 + 2.12328i −0.293935 + 0.141552i
\(226\) −0.713222 3.12483i −0.0474428 0.207861i
\(227\) −3.55503 + 15.5756i −0.235956 + 1.03379i 0.708645 + 0.705566i \(0.249307\pi\)
−0.944600 + 0.328223i \(0.893550\pi\)
\(228\) −1.14795 0.552823i −0.0760247 0.0366116i
\(229\) 6.65454 + 13.8183i 0.439745 + 0.913139i 0.996589 + 0.0825223i \(0.0262976\pi\)
−0.556845 + 0.830617i \(0.687988\pi\)
\(230\) −0.585077 0.133540i −0.0385788 0.00880537i
\(231\) −0.847644 −0.0557709
\(232\) 10.9890 11.8474i 0.721465 0.777820i
\(233\) 12.9851 0.850684 0.425342 0.905033i \(-0.360154\pi\)
0.425342 + 0.905033i \(0.360154\pi\)
\(234\) 6.10715 + 1.39392i 0.399237 + 0.0911232i
\(235\) 0.0641504 + 0.133210i 0.00418471 + 0.00868964i
\(236\) −1.00781 0.485336i −0.0656029 0.0315927i
\(237\) 1.29871 5.69002i 0.0843602 0.369606i
\(238\) 1.65720 + 7.26068i 0.107420 + 0.470640i
\(239\) −0.229801 + 0.110667i −0.0148646 + 0.00715842i −0.441301 0.897359i \(-0.645483\pi\)
0.426437 + 0.904517i \(0.359769\pi\)
\(240\) 0.840988 + 0.670665i 0.0542855 + 0.0432913i
\(241\) −5.23484 + 6.56429i −0.337206 + 0.422843i −0.921306 0.388839i \(-0.872876\pi\)
0.584100 + 0.811682i \(0.301448\pi\)
\(242\) −5.88141 + 12.2129i −0.378072 + 0.785074i
\(243\) 0.781831 0.623490i 0.0501545 0.0399969i
\(244\) 2.69246i 0.172367i
\(245\) −1.17568 1.47426i −0.0751115 0.0941869i
\(246\) −1.70550 + 0.389269i −0.108739 + 0.0248189i
\(247\) −19.6300 + 4.48043i −1.24903 + 0.285083i
\(248\) 8.44851 + 10.5941i 0.536481 + 0.672726i
\(249\) 12.7270i 0.806540i
\(250\) −3.28466 + 2.61943i −0.207740 + 0.165667i
\(251\) −8.09013 + 16.7993i −0.510644 + 1.06036i 0.473136 + 0.880989i \(0.343122\pi\)
−0.983781 + 0.179375i \(0.942593\pi\)
\(252\) 0.209447 0.262638i 0.0131939 0.0165446i
\(253\) −0.848739 0.676846i −0.0533597 0.0425530i
\(254\) 17.9094 8.62471i 1.12374 0.541163i
\(255\) −0.376101 1.64780i −0.0235523 0.103190i
\(256\) 1.58617 6.94947i 0.0991357 0.434342i
\(257\) −22.1806 10.6816i −1.38359 0.666301i −0.413827 0.910355i \(-0.635808\pi\)
−0.969762 + 0.244054i \(0.921523\pi\)
\(258\) 4.07304 + 8.45775i 0.253576 + 0.526556i
\(259\) 1.92764 + 0.439971i 0.119778 + 0.0273384i
\(260\) −0.477572 −0.0296177
\(261\) −3.94823 3.66217i −0.244389 0.226683i
\(262\) 11.3841 0.703310
\(263\) 9.91282 + 2.26254i 0.611251 + 0.139514i 0.516930 0.856028i \(-0.327075\pi\)
0.0943210 + 0.995542i \(0.469932\pi\)
\(264\) 1.00008 + 2.07669i 0.0615506 + 0.127811i
\(265\) 2.59396 + 1.24918i 0.159345 + 0.0767367i
\(266\) 1.33827 5.86336i 0.0820548 0.359505i
\(267\) −1.84412 8.07964i −0.112859 0.494466i
\(268\) −4.18584 + 2.01580i −0.255691 + 0.123134i
\(269\) 0.522286 + 0.416509i 0.0318444 + 0.0253950i 0.639283 0.768972i \(-0.279231\pi\)
−0.607438 + 0.794367i \(0.707803\pi\)
\(270\) 0.264758 0.331996i 0.0161127 0.0202047i
\(271\) −4.03127 + 8.37102i −0.244882 + 0.508504i −0.986791 0.161997i \(-0.948206\pi\)
0.741909 + 0.670501i \(0.233921\pi\)
\(272\) 13.3660 10.6590i 0.810432 0.646298i
\(273\) 5.30860i 0.321291i
\(274\) 18.9169 + 23.7211i 1.14281 + 1.43304i
\(275\) −3.66477 + 0.836459i −0.220994 + 0.0504404i
\(276\) 0.419434 0.0957331i 0.0252470 0.00576245i
\(277\) −9.19224 11.5267i −0.552308 0.692572i 0.424807 0.905284i \(-0.360342\pi\)
−0.977115 + 0.212712i \(0.931770\pi\)
\(278\) 17.6169i 1.05659i
\(279\) 3.53056 2.81552i 0.211369 0.168561i
\(280\) 0.468520 0.972891i 0.0279994 0.0581414i
\(281\) −13.4220 + 16.8307i −0.800690 + 1.00403i 0.199021 + 0.979995i \(0.436224\pi\)
−0.999711 + 0.0240385i \(0.992348\pi\)
\(282\) 0.461570 + 0.368090i 0.0274861 + 0.0219194i
\(283\) 9.29893 4.47813i 0.552764 0.266197i −0.136583 0.990629i \(-0.543612\pi\)
0.689347 + 0.724431i \(0.257898\pi\)
\(284\) 1.01880 + 4.46363i 0.0604544 + 0.264868i
\(285\) −0.303720 + 1.33068i −0.0179908 + 0.0788229i
\(286\) 4.33527 + 2.08776i 0.256350 + 0.123452i
\(287\) 0.643229 + 1.33568i 0.0379686 + 0.0788427i
\(288\) −1.66348 0.379678i −0.0980214 0.0223728i
\(289\) −9.86239 −0.580141
\(290\) −1.98058 1.14304i −0.116304 0.0671216i
\(291\) −1.54591 −0.0906230
\(292\) 4.06638 + 0.928124i 0.237967 + 0.0543144i
\(293\) −10.9372 22.7113i −0.638958 1.32681i −0.929101 0.369826i \(-0.879417\pi\)
0.290143 0.956983i \(-0.406297\pi\)
\(294\) −6.78373 3.26687i −0.395635 0.190528i
\(295\) −0.266643 + 1.16824i −0.0155246 + 0.0680175i
\(296\) −1.19639 5.24171i −0.0695385 0.304668i
\(297\) 0.692070 0.333284i 0.0401580 0.0193391i
\(298\) −1.35092 1.07732i −0.0782566 0.0624075i
\(299\) 4.23893 5.31545i 0.245144 0.307401i
\(300\) 0.646365 1.34219i 0.0373179 0.0774914i
\(301\) 6.21973 4.96007i 0.358499 0.285894i
\(302\) 18.7121i 1.07676i
\(303\) 10.0770 + 12.6361i 0.578906 + 0.725926i
\(304\) −13.4595 + 3.07205i −0.771956 + 0.176194i
\(305\) −2.81198 + 0.641816i −0.161013 + 0.0367503i
\(306\) −4.20786 5.27649i −0.240547 0.301637i
\(307\) 17.7845i 1.01502i −0.861647 0.507508i \(-0.830567\pi\)
0.861647 0.507508i \(-0.169433\pi\)
\(308\) 0.201743 0.160884i 0.0114953 0.00916723i
\(309\) 4.75182 9.86726i 0.270322 0.561329i
\(310\) 1.19558 1.49921i 0.0679045 0.0851496i
\(311\) 6.56620 + 5.23637i 0.372335 + 0.296927i 0.791724 0.610880i \(-0.209184\pi\)
−0.419388 + 0.907807i \(0.637755\pi\)
\(312\) −13.0058 + 6.26327i −0.736309 + 0.354588i
\(313\) 0.467343 + 2.04756i 0.0264158 + 0.115735i 0.986417 0.164261i \(-0.0525239\pi\)
−0.960001 + 0.279996i \(0.909667\pi\)
\(314\) 3.82276 16.7486i 0.215731 0.945179i
\(315\) −0.324223 0.156137i −0.0182679 0.00879735i
\(316\) 0.770877 + 1.60074i 0.0433652 + 0.0900489i
\(317\) 4.90180 + 1.11880i 0.275312 + 0.0628382i 0.357948 0.933742i \(-0.383477\pi\)
−0.0826355 + 0.996580i \(0.526334\pi\)
\(318\) 11.4961 0.644670
\(319\) −2.33079 3.41739i −0.130499 0.191337i
\(320\) −2.87587 −0.160766
\(321\) −12.1959 2.78362i −0.680706 0.155367i
\(322\) 0.881101 + 1.82963i 0.0491018 + 0.101961i
\(323\) 19.5445 + 9.41212i 1.08748 + 0.523704i
\(324\) −0.0677395 + 0.296786i −0.00376330 + 0.0164881i
\(325\) −5.23855 22.9516i −0.290582 1.27312i
\(326\) 3.53221 1.70102i 0.195631 0.0942108i
\(327\) 6.88176 + 5.48802i 0.380562 + 0.303488i
\(328\) 2.51345 3.15176i 0.138782 0.174027i
\(329\) 0.217076 0.450762i 0.0119678 0.0248513i
\(330\) 0.255020 0.203372i 0.0140384 0.0111952i
\(331\) 3.80922i 0.209374i −0.994505 0.104687i \(-0.966616\pi\)
0.994505 0.104687i \(-0.0333840\pi\)
\(332\) 2.41560 + 3.02907i 0.132574 + 0.166242i
\(333\) −1.74684 + 0.398704i −0.0957261 + 0.0218489i
\(334\) −1.74498 + 0.398281i −0.0954813 + 0.0217930i
\(335\) 3.10308 + 3.89113i 0.169539 + 0.212595i
\(336\) 3.63989i 0.198572i
\(337\) −1.18125 + 0.942012i −0.0643466 + 0.0513147i −0.655135 0.755512i \(-0.727388\pi\)
0.590788 + 0.806827i \(0.298817\pi\)
\(338\) −5.73041 + 11.8993i −0.311693 + 0.647237i
\(339\) 1.53470 1.92445i 0.0833535 0.104522i
\(340\) 0.402270 + 0.320799i 0.0218161 + 0.0173978i
\(341\) 3.12522 1.50503i 0.169240 0.0815017i
\(342\) 1.21275 + 5.31341i 0.0655781 + 0.287316i
\(343\) −3.13872 + 13.7516i −0.169475 + 0.742518i
\(344\) −19.4902 9.38598i −1.05084 0.506058i
\(345\) −0.199965 0.415232i −0.0107658 0.0223553i
\(346\) −16.8661 3.84958i −0.906729 0.206955i
\(347\) −23.3601 −1.25404 −0.627019 0.779004i \(-0.715725\pi\)
−0.627019 + 0.779004i \(0.715725\pi\)
\(348\) 1.63478 + 0.122230i 0.0876334 + 0.00655224i
\(349\) −15.0240 −0.804216 −0.402108 0.915592i \(-0.631722\pi\)
−0.402108 + 0.915592i \(0.631722\pi\)
\(350\) 6.85548 + 1.56472i 0.366441 + 0.0836377i
\(351\) 2.08728 + 4.33428i 0.111411 + 0.231347i
\(352\) −1.18085 0.568668i −0.0629396 0.0303101i
\(353\) 3.57377 15.6577i 0.190213 0.833377i −0.786288 0.617861i \(-0.788000\pi\)
0.976500 0.215516i \(-0.0691433\pi\)
\(354\) 1.06470 + 4.66477i 0.0565883 + 0.247930i
\(355\) 4.41892 2.12804i 0.234532 0.112945i
\(356\) 1.97244 + 1.57297i 0.104539 + 0.0833671i
\(357\) −3.56594 + 4.47155i −0.188730 + 0.236660i
\(358\) 3.47690 7.21986i 0.183760 0.381581i
\(359\) −20.7505 + 16.5480i −1.09517 + 0.873370i −0.992609 0.121357i \(-0.961275\pi\)
−0.102562 + 0.994727i \(0.532704\pi\)
\(360\) 0.978547i 0.0515739i
\(361\) 0.924048 + 1.15872i 0.0486341 + 0.0609852i
\(362\) −30.6108 + 6.98672i −1.60887 + 0.367214i
\(363\) −10.1490 + 2.31643i −0.532682 + 0.121581i
\(364\) 1.00758 + 1.26347i 0.0528116 + 0.0662236i
\(365\) 4.46812i 0.233872i
\(366\) −9.00433 + 7.18071i −0.470664 + 0.375342i
\(367\) 7.37679 15.3181i 0.385065 0.799597i −0.614874 0.788625i \(-0.710793\pi\)
0.999940 0.0109716i \(-0.00349242\pi\)
\(368\) 2.90646 3.64459i 0.151510 0.189987i
\(369\) −1.05035 0.837624i −0.0546789 0.0436050i
\(370\) −0.685504 + 0.330121i −0.0356377 + 0.0171622i
\(371\) −2.16788 9.49811i −0.112551 0.493117i
\(372\) −0.305895 + 1.34021i −0.0158599 + 0.0694867i
\(373\) 10.5705 + 5.09050i 0.547322 + 0.263576i 0.687046 0.726614i \(-0.258907\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(374\) −2.24929 4.67070i −0.116308 0.241516i
\(375\) −3.14550 0.717941i −0.162433 0.0370743i
\(376\) −1.36046 −0.0701604
\(377\) 21.4023 14.5972i 1.10228 0.751794i
\(378\) −1.43692 −0.0739071
\(379\) −7.51780 1.71589i −0.386163 0.0881392i 0.0250318 0.999687i \(-0.492031\pi\)
−0.411195 + 0.911547i \(0.634888\pi\)
\(380\) −0.180280 0.374355i −0.00924815 0.0192040i
\(381\) 13.7538 + 6.62347i 0.704627 + 0.339330i
\(382\) 1.49388 6.54511i 0.0764335 0.334877i
\(383\) −3.92927 17.2153i −0.200776 0.879659i −0.970466 0.241240i \(-0.922446\pi\)
0.769689 0.638419i \(-0.220411\pi\)
\(384\) −7.27155 + 3.50180i −0.371075 + 0.178700i
\(385\) −0.216116 0.172347i −0.0110143 0.00878361i
\(386\) −2.25210 + 2.82404i −0.114629 + 0.143740i
\(387\) −3.12794 + 6.49524i −0.159002 + 0.330172i
\(388\) 0.367933 0.293417i 0.0186790 0.0148960i
\(389\) 17.4066i 0.882550i 0.897372 + 0.441275i \(0.145474\pi\)
−0.897372 + 0.441275i \(0.854526\pi\)
\(390\) 1.27367 + 1.59713i 0.0644947 + 0.0808738i
\(391\) −7.14110 + 1.62991i −0.361141 + 0.0824281i
\(392\) 16.9158 3.86092i 0.854377 0.195006i
\(393\) 5.45089 + 6.83520i 0.274961 + 0.344790i
\(394\) 32.1493i 1.61966i
\(395\) 1.48804 1.18667i 0.0748715 0.0597080i
\(396\) −0.101458 + 0.210679i −0.00509844 + 0.0105870i
\(397\) 5.44605 6.82914i 0.273330 0.342744i −0.626154 0.779700i \(-0.715372\pi\)
0.899483 + 0.436955i \(0.143943\pi\)
\(398\) 5.35212 + 4.26817i 0.268278 + 0.213944i
\(399\) 4.16125 2.00395i 0.208323 0.100323i
\(400\) −3.59186 15.7370i −0.179593 0.786849i
\(401\) −2.21564 + 9.70733i −0.110644 + 0.484761i 0.888996 + 0.457915i \(0.151404\pi\)
−0.999640 + 0.0268462i \(0.991454\pi\)
\(402\) 17.9049 + 8.62253i 0.893014 + 0.430053i
\(403\) 9.42562 + 19.5725i 0.469524 + 0.974976i
\(404\) −4.79671 1.09482i −0.238645 0.0544693i
\(405\) 0.326108 0.0162044
\(406\) 1.15460 + 7.65142i 0.0573016 + 0.379734i
\(407\) −1.37632 −0.0682218
\(408\) 15.1623 + 3.46070i 0.750647 + 0.171330i
\(409\) −8.84673 18.3704i −0.437443 0.908359i −0.996838 0.0794584i \(-0.974681\pi\)
0.559395 0.828901i \(-0.311033\pi\)
\(410\) −0.513984 0.247522i −0.0253839 0.0122242i
\(411\) −5.18481 + 22.7161i −0.255748 + 1.12050i
\(412\) 0.741871 + 3.25035i 0.0365494 + 0.160133i
\(413\) 3.65326 1.75932i 0.179765 0.0865704i
\(414\) −1.43877 1.14738i −0.0707119 0.0563909i
\(415\) 2.58771 3.24489i 0.127026 0.159285i
\(416\) 3.56143 7.39540i 0.174614 0.362589i
\(417\) −10.5775 + 8.43530i −0.517984 + 0.413078i
\(418\) 4.18641i 0.204764i
\(419\) −22.7123 28.4803i −1.10957 1.39135i −0.911567 0.411153i \(-0.865126\pi\)
−0.198002 0.980202i \(-0.563445\pi\)
\(420\) 0.106801 0.0243767i 0.00521138 0.00118946i
\(421\) 19.3547 4.41759i 0.943292 0.215300i 0.276897 0.960900i \(-0.410694\pi\)
0.666394 + 0.745599i \(0.267837\pi\)
\(422\) 19.6493 + 24.6394i 0.956511 + 1.19943i
\(423\) 0.453383i 0.0220442i
\(424\) −20.7122 + 16.5174i −1.00587 + 0.802156i
\(425\) −11.0047 + 22.8515i −0.533807 + 1.10846i
\(426\) 12.2105 15.3115i 0.591601 0.741844i
\(427\) 7.63071 + 6.08528i 0.369276 + 0.294488i
\(428\) 3.43100 1.65228i 0.165844 0.0798660i
\(429\) 0.822277 + 3.60263i 0.0396999 + 0.173937i
\(430\) −0.681203 + 2.98455i −0.0328505 + 0.143928i
\(431\) 32.2188 + 15.5158i 1.55193 + 0.747369i 0.996452 0.0841645i \(-0.0268221\pi\)
0.555475 + 0.831533i \(0.312536\pi\)
\(432\) 1.43116 + 2.97184i 0.0688568 + 0.142983i
\(433\) 36.6041 + 8.35464i 1.75908 + 0.401498i 0.975536 0.219839i \(-0.0705532\pi\)
0.783543 + 0.621337i \(0.213410\pi\)
\(434\) −6.48877 −0.311471
\(435\) −0.262035 1.73648i −0.0125636 0.0832580i
\(436\) −2.67952 −0.128326
\(437\) 5.76679 + 1.31623i 0.275863 + 0.0629639i
\(438\) −7.74100 16.0744i −0.369879 0.768062i
\(439\) 6.21349 + 2.99226i 0.296554 + 0.142813i 0.576244 0.817277i \(-0.304518\pi\)
−0.279691 + 0.960090i \(0.590232\pi\)
\(440\) −0.167260 + 0.732815i −0.00797382 + 0.0349356i
\(441\) −1.28668 5.63731i −0.0612705 0.268443i
\(442\) 29.2515 14.0868i 1.39135 0.670040i
\(443\) −10.8106 8.62118i −0.513628 0.409605i 0.332080 0.943251i \(-0.392250\pi\)
−0.845707 + 0.533647i \(0.820821\pi\)
\(444\) 0.340079 0.426446i 0.0161395 0.0202382i
\(445\) 1.17261 2.43495i 0.0555870 0.115428i
\(446\) 1.23625 0.985875i 0.0585381 0.0466826i
\(447\) 1.32696i 0.0627629i
\(448\) 6.06751 + 7.60842i 0.286663 + 0.359464i
\(449\) 19.5253 4.45651i 0.921454 0.210316i 0.264622 0.964352i \(-0.414753\pi\)
0.656833 + 0.754036i \(0.271896\pi\)
\(450\) −6.21248 + 1.41796i −0.292859 + 0.0668432i
\(451\) −0.643413 0.806814i −0.0302971 0.0379914i
\(452\) 0.749317i 0.0352449i
\(453\) −11.2351 + 8.95969i −0.527871 + 0.420963i
\(454\) −9.02620 + 18.7431i −0.423621 + 0.879657i
\(455\) 1.07937 1.35349i 0.0506016 0.0634524i
\(456\) −9.81918 7.83054i −0.459825 0.366699i
\(457\) −22.0357 + 10.6119i −1.03079 + 0.496402i −0.871276 0.490794i \(-0.836707\pi\)
−0.159513 + 0.987196i \(0.550992\pi\)
\(458\) 4.44401 + 19.4705i 0.207655 + 0.909796i
\(459\) 1.15330 5.05295i 0.0538316 0.235851i
\(460\) 0.126404 + 0.0608731i 0.00589363 + 0.00283822i
\(461\) 9.66512 + 20.0698i 0.450150 + 0.934746i 0.995339 + 0.0964329i \(0.0307433\pi\)
−0.545190 + 0.838313i \(0.683542\pi\)
\(462\) −1.07608 0.245609i −0.0500638 0.0114267i
\(463\) −27.5102 −1.27851 −0.639254 0.768996i \(-0.720757\pi\)
−0.639254 + 0.768996i \(0.720757\pi\)
\(464\) 14.6747 10.0087i 0.681257 0.464643i
\(465\) 1.47262 0.0682911
\(466\) 16.4846 + 3.76250i 0.763634 + 0.174294i
\(467\) 10.3029 + 21.3941i 0.476760 + 0.990002i 0.991187 + 0.132468i \(0.0422902\pi\)
−0.514428 + 0.857534i \(0.671996\pi\)
\(468\) −1.31943 0.635406i −0.0609908 0.0293716i
\(469\) 3.74754 16.4190i 0.173045 0.758160i
\(470\) 0.0428407 + 0.187697i 0.00197609 + 0.00865783i
\(471\) 11.8866 5.72427i 0.547704 0.263761i
\(472\) −8.62050 6.87462i −0.396791 0.316430i
\(473\) −3.45267 + 4.32951i −0.158754 + 0.199071i
\(474\) 3.29742 6.84715i 0.151455 0.314500i
\(475\) 16.0136 12.7704i 0.734753 0.585946i
\(476\) 1.74107i 0.0798018i
\(477\) 5.50454 + 6.90248i 0.252036 + 0.316043i
\(478\) −0.323798 + 0.0739049i −0.0148102 + 0.00338033i
\(479\) 25.5186 5.82446i 1.16598 0.266126i 0.404635 0.914478i \(-0.367399\pi\)
0.761341 + 0.648352i \(0.224541\pi\)
\(480\) −0.346925 0.435030i −0.0158349 0.0198563i
\(481\) 8.61959i 0.393020i
\(482\) −8.54765 + 6.81652i −0.389335 + 0.310484i
\(483\) −0.676654 + 1.40509i −0.0307888 + 0.0639336i
\(484\) 1.97583 2.47761i 0.0898104 0.112619i
\(485\) −0.394148 0.314322i −0.0178973 0.0142726i
\(486\) 1.17319 0.564980i 0.0532171 0.0256280i
\(487\) 3.63049 + 15.9062i 0.164513 + 0.720780i 0.988128 + 0.153631i \(0.0490966\pi\)
−0.823615 + 0.567149i \(0.808046\pi\)
\(488\) 5.90569 25.8745i 0.267338 1.17128i
\(489\) 2.71261 + 1.30632i 0.122668 + 0.0590739i
\(490\) −1.06535 2.21223i −0.0481277 0.0999382i
\(491\) −32.0763 7.32121i −1.44758 0.330402i −0.574714 0.818354i \(-0.694887\pi\)
−0.872870 + 0.487952i \(0.837744\pi\)
\(492\) 0.408969 0.0184378
\(493\) −27.8331 2.08104i −1.25354 0.0937254i
\(494\) −26.2185 −1.17963
\(495\) 0.244216 + 0.0557407i 0.0109767 + 0.00250536i
\(496\) 6.46277 + 13.4201i 0.290187 + 0.602580i
\(497\) −14.9530 7.20098i −0.670733 0.323008i
\(498\) 3.68770 16.1569i 0.165250 0.724007i
\(499\) −4.93194 21.6082i −0.220784 0.967317i −0.956890 0.290451i \(-0.906195\pi\)
0.736106 0.676866i \(-0.236662\pi\)
\(500\) 0.884908 0.426149i 0.0395743 0.0190580i
\(501\) −1.07466 0.857016i −0.0480125 0.0382887i
\(502\) −15.1381 + 18.9825i −0.675645 + 0.847233i
\(503\) −17.2581 + 35.8369i −0.769503 + 1.59789i 0.0317009 + 0.999497i \(0.489908\pi\)
−0.801204 + 0.598392i \(0.795807\pi\)
\(504\) 2.58885 2.06454i 0.115316 0.0919618i
\(505\) 5.27061i 0.234539i
\(506\) −0.881352 1.10518i −0.0391809 0.0491313i
\(507\) −9.88838 + 2.25696i −0.439159 + 0.100235i
\(508\) −4.53060 + 1.03408i −0.201013 + 0.0458798i
\(509\) −6.35541 7.96943i −0.281699 0.353239i 0.620771 0.783992i \(-0.286820\pi\)
−0.902470 + 0.430753i \(0.858248\pi\)
\(510\) 2.20086i 0.0974558i
\(511\) −11.8209 + 9.42685i −0.522926 + 0.417019i
\(512\) 11.0309 22.9058i 0.487500 1.01230i
\(513\) −2.60958 + 3.27231i −0.115216 + 0.144476i
\(514\) −25.0632 19.9872i −1.10549 0.881599i
\(515\) 3.21779 1.54960i 0.141793 0.0682837i
\(516\) −0.488346 2.13958i −0.0214982 0.0941899i
\(517\) −0.0774955 + 0.339530i −0.00340825 + 0.0149325i
\(518\) 2.31965 + 1.11708i 0.101919 + 0.0490818i
\(519\) −5.76444 11.9700i −0.253031 0.525424i
\(520\) −4.58945 1.04751i −0.201261 0.0459365i
\(521\) −7.09229 −0.310719 −0.155359 0.987858i \(-0.549654\pi\)
−0.155359 + 0.987858i \(0.549654\pi\)
\(522\) −3.95113 5.79313i −0.172936 0.253559i
\(523\) 10.9937 0.480723 0.240361 0.970683i \(-0.422734\pi\)
0.240361 + 0.970683i \(0.422734\pi\)
\(524\) −2.59467 0.592216i −0.113349 0.0258711i
\(525\) 2.34304 + 4.86537i 0.102259 + 0.212342i
\(526\) 11.9287 + 5.74457i 0.520117 + 0.250475i
\(527\) 5.20803 22.8179i 0.226865 0.993961i
\(528\) 0.563802 + 2.47018i 0.0245364 + 0.107501i
\(529\) 18.9228 9.11274i 0.822730 0.396206i
\(530\) 2.93106 + 2.33745i 0.127317 + 0.101532i
\(531\) −2.29101 + 2.87284i −0.0994215 + 0.124671i
\(532\) −0.610041 + 1.26676i −0.0264486 + 0.0549211i
\(533\) 5.05289 4.02954i 0.218865 0.174539i
\(534\) 10.7914i 0.466990i
\(535\) −2.54349 3.18943i −0.109965 0.137891i
\(536\) −44.6473 + 10.1905i −1.92847 + 0.440161i
\(537\) 5.99973 1.36940i 0.258908 0.0590940i
\(538\) 0.542356 + 0.680093i 0.0233826 + 0.0293209i
\(539\) 4.44161i 0.191314i
\(540\) −0.0776149 + 0.0618958i −0.00334001 + 0.00266357i
\(541\) −2.09471 + 4.34971i −0.0900586 + 0.187009i −0.941133 0.338037i \(-0.890237\pi\)
0.851074 + 0.525045i \(0.175952\pi\)
\(542\) −7.54323 + 9.45892i −0.324010 + 0.406295i
\(543\) −18.8520 15.0339i −0.809015 0.645168i
\(544\) −7.96759 + 3.83699i −0.341608 + 0.164510i
\(545\) 0.638731 + 2.79847i 0.0273602 + 0.119873i
\(546\) 1.53819 6.73925i 0.0658284 0.288413i
\(547\) 30.9219 + 14.8912i 1.32212 + 0.636701i 0.955864 0.293811i \(-0.0949236\pi\)
0.366261 + 0.930512i \(0.380638\pi\)
\(548\) −3.07756 6.39062i −0.131467 0.272994i
\(549\) −8.62286 1.96811i −0.368015 0.0839969i
\(550\) −4.89478 −0.208714
\(551\) 19.5215 + 11.2663i 0.831645 + 0.479962i
\(552\) 4.24073 0.180498
\(553\) −6.27894 1.43313i −0.267008 0.0609428i
\(554\) −8.32961 17.2966i −0.353891 0.734862i
\(555\) −0.526442 0.253521i −0.0223462 0.0107614i
\(556\) 0.916459 4.01527i 0.0388665 0.170285i
\(557\) −2.97941 13.0536i −0.126242 0.553101i −0.998003 0.0631697i \(-0.979879\pi\)
0.871761 0.489931i \(-0.162978\pi\)
\(558\) 5.29784 2.55131i 0.224276 0.108005i
\(559\) −27.1147 21.6233i −1.14683 0.914568i
\(560\) 0.740080 0.928031i 0.0312741 0.0392165i
\(561\) 1.72737 3.58693i 0.0729298 0.151440i
\(562\) −21.9160 + 17.4774i −0.924470 + 0.737240i
\(563\) 1.89811i 0.0799960i −0.999200 0.0399980i \(-0.987265\pi\)
0.999200 0.0399980i \(-0.0127352\pi\)
\(564\) −0.0860529 0.107907i −0.00362348 0.00454370i
\(565\) 0.782578 0.178618i 0.0329233 0.00751453i
\(566\) 13.1025 2.99057i 0.550741 0.125703i
\(567\) −0.688022 0.862752i −0.0288942 0.0362322i
\(568\) 45.1301i 1.89362i
\(569\) −8.72457 + 6.95761i −0.365753 + 0.291678i −0.789070 0.614303i \(-0.789437\pi\)
0.423317 + 0.905982i \(0.360866\pi\)
\(570\) −0.771143 + 1.60130i −0.0322996 + 0.0670709i
\(571\) −8.23671 + 10.3285i −0.344696 + 0.432235i −0.923716 0.383079i \(-0.874864\pi\)
0.579020 + 0.815313i \(0.303435\pi\)
\(572\) −0.879491 0.701371i −0.0367734 0.0293258i
\(573\) 4.64510 2.23696i 0.194052 0.0934505i
\(574\) 0.429559 + 1.88202i 0.0179294 + 0.0785540i
\(575\) −1.53895 + 6.74258i −0.0641786 + 0.281185i
\(576\) −7.94545 3.82633i −0.331060 0.159430i
\(577\) 6.01524 + 12.4908i 0.250418 + 0.519998i 0.987848 0.155426i \(-0.0496750\pi\)
−0.737430 + 0.675424i \(0.763961\pi\)
\(578\) −12.5203 2.85767i −0.520775 0.118864i
\(579\) −2.77395 −0.115281
\(580\) 0.391953 + 0.363555i 0.0162750 + 0.0150958i
\(581\) −14.0442 −0.582653
\(582\) −1.96253 0.447935i −0.0813496 0.0185675i
\(583\) 2.94243 + 6.11001i 0.121863 + 0.253051i
\(584\) 37.0420 + 17.8385i 1.53281 + 0.738163i
\(585\) −0.349091 + 1.52947i −0.0144331 + 0.0632357i
\(586\) −7.30403 32.0011i −0.301727 1.32195i
\(587\) 25.0371 12.0572i 1.03339 0.497655i 0.161253 0.986913i \(-0.448447\pi\)
0.872139 + 0.489258i \(0.162732\pi\)
\(588\) 1.37621 + 1.09749i 0.0567538 + 0.0452596i
\(589\) −11.7842 + 14.7769i −0.485560 + 0.608873i
\(590\) −0.677005 + 1.40582i −0.0278719 + 0.0578765i
\(591\) 19.3030 15.3937i 0.794021 0.633210i
\(592\) 5.91011i 0.242904i
\(593\) 5.03568 + 6.31455i 0.206791 + 0.259307i 0.874401 0.485203i \(-0.161254\pi\)
−0.667611 + 0.744511i \(0.732683\pi\)
\(594\) 0.975152 0.222572i 0.0400110 0.00913224i
\(595\) −1.81835 + 0.415028i −0.0745453 + 0.0170145i
\(596\) 0.251859 + 0.315821i 0.0103165 + 0.0129365i
\(597\) 5.25719i 0.215162i
\(598\) 6.92149 5.51970i 0.283041 0.225717i
\(599\) 8.35658 17.3526i 0.341440 0.709008i −0.657574 0.753390i \(-0.728417\pi\)
0.999015 + 0.0443814i \(0.0141317\pi\)
\(600\) 9.15553 11.4807i 0.373773 0.468696i
\(601\) 17.3000 + 13.7963i 0.705681 + 0.562762i 0.909226 0.416304i \(-0.136675\pi\)
−0.203544 + 0.979066i \(0.565246\pi\)
\(602\) 9.33313 4.49460i 0.380390 0.183186i
\(603\) 3.39604 + 14.8790i 0.138298 + 0.605921i
\(604\) 0.973432 4.26488i 0.0396084 0.173536i
\(605\) −3.05858 1.47293i −0.124349 0.0598833i
\(606\) 9.13131 + 18.9614i 0.370934 + 0.770253i
\(607\) 11.5672 + 2.64014i 0.469499 + 0.107160i 0.450723 0.892664i \(-0.351166\pi\)
0.0187755 + 0.999824i \(0.494023\pi\)
\(608\) 7.14145 0.289624
\(609\) −4.04121 + 4.35687i −0.163758 + 0.176549i
\(610\) −3.75577 −0.152067
\(611\) −2.12640 0.485336i −0.0860248 0.0196346i
\(612\) 0.684568 + 1.42152i 0.0276720 + 0.0574616i
\(613\) 30.4811 + 14.6789i 1.23112 + 0.592876i 0.932387 0.361461i \(-0.117722\pi\)
0.298733 + 0.954337i \(0.403436\pi\)
\(614\) 5.15314 22.5774i 0.207964 0.911150i
\(615\) −0.0974881 0.427123i −0.00393110 0.0172233i
\(616\) 2.29163 1.10359i 0.0923323 0.0444649i
\(617\) 1.32047 + 1.05304i 0.0531601 + 0.0423938i 0.649709 0.760183i \(-0.274891\pi\)
−0.596549 + 0.802576i \(0.703462\pi\)
\(618\) 8.89151 11.1496i 0.357669 0.448502i
\(619\) −6.73642 + 13.9883i −0.270759 + 0.562238i −0.991369 0.131104i \(-0.958148\pi\)
0.720609 + 0.693341i \(0.243862\pi\)
\(620\) −0.350489 + 0.279506i −0.0140760 + 0.0112252i
\(621\) 1.41325i 0.0567119i
\(622\) 6.81851 + 8.55014i 0.273397 + 0.342830i
\(623\) −8.91589 + 2.03499i −0.357208 + 0.0815303i
\(624\) −15.4702 + 3.53096i −0.619302 + 0.141352i
\(625\) 14.5997 + 18.3075i 0.583988 + 0.732298i
\(626\) 2.73479i 0.109304i
\(627\) −2.51359 + 2.00452i −0.100383 + 0.0800530i
\(628\) −1.74257 + 3.61849i −0.0695363 + 0.144394i
\(629\) −5.79004 + 7.26048i −0.230864 + 0.289494i
\(630\) −0.366358 0.292161i −0.0145961 0.0116400i
\(631\) −16.5425 + 7.96642i −0.658545 + 0.317138i −0.733142 0.680075i \(-0.761947\pi\)
0.0745977 + 0.997214i \(0.476233\pi\)
\(632\) 3.89702 + 17.0740i 0.155015 + 0.679166i
\(633\) −5.38553 + 23.5955i −0.214056 + 0.937839i
\(634\) 5.89864 + 2.84064i 0.234265 + 0.112816i
\(635\) 2.15996 + 4.48521i 0.0857155 + 0.177990i
\(636\) −2.62021 0.598045i −0.103898 0.0237140i
\(637\) 27.8167 1.10214
\(638\) −1.96873 5.01373i −0.0779426 0.198495i
\(639\) 15.0399 0.594970
\(640\) −2.56597 0.585665i −0.101429 0.0231504i
\(641\) 2.23437 + 4.63971i 0.0882522 + 0.183258i 0.940424 0.340005i \(-0.110429\pi\)
−0.852171 + 0.523263i \(0.824715\pi\)
\(642\) −14.6760 7.06761i −0.579217 0.278936i
\(643\) 6.29062 27.5610i 0.248078 1.08690i −0.685372 0.728193i \(-0.740361\pi\)
0.933450 0.358707i \(-0.116782\pi\)
\(644\) −0.105642 0.462846i −0.00416286 0.0182387i
\(645\) −2.11815 + 1.02005i −0.0834020 + 0.0401643i
\(646\) 22.0844 + 17.6118i 0.868901 + 0.692925i
\(647\) 17.6767 22.1659i 0.694943 0.871431i −0.301691 0.953406i \(-0.597551\pi\)
0.996634 + 0.0819746i \(0.0261226\pi\)
\(648\) −1.30195 + 2.70353i −0.0511454 + 0.106205i
\(649\) −2.20674 + 1.75982i −0.0866223 + 0.0690790i
\(650\) 30.6549i 1.20238i
\(651\) −3.10693 3.89597i −0.121770 0.152695i
\(652\) −0.893553 + 0.203948i −0.0349942 + 0.00798721i
\(653\) 39.3129 8.97291i 1.53843 0.351137i 0.632500 0.774561i \(-0.282029\pi\)
0.905932 + 0.423424i \(0.139172\pi\)
\(654\) 7.14620 + 8.96105i 0.279439 + 0.350405i
\(655\) 2.85101i 0.111398i
\(656\) 3.46456 2.76290i 0.135268 0.107873i
\(657\) 5.94481 12.3445i 0.231929 0.481606i
\(658\) 0.406188 0.509343i 0.0158348 0.0198563i
\(659\) −38.6554 30.8267i −1.50580 1.20084i −0.920941 0.389701i \(-0.872578\pi\)
−0.584859 0.811135i \(-0.698850\pi\)
\(660\) −0.0687040 + 0.0330861i −0.00267430 + 0.00128788i
\(661\) −3.53346 15.4811i −0.137436 0.602146i −0.995993 0.0894282i \(-0.971496\pi\)
0.858557 0.512717i \(-0.171361\pi\)
\(662\) 1.10374 4.83579i 0.0428980 0.187949i
\(663\) 22.4641 + 10.8181i 0.872433 + 0.420142i
\(664\) 16.5699 + 34.4077i 0.643036 + 1.33528i
\(665\) 1.46841 + 0.335155i 0.0569426 + 0.0129968i
\(666\) −2.33313 −0.0904070
\(667\) −7.52541 + 1.13558i −0.291385 + 0.0439699i
\(668\) 0.418437 0.0161898
\(669\) 1.18387 + 0.270212i 0.0457712 + 0.0104470i
\(670\) 2.81187 + 5.83892i 0.108632 + 0.225577i
\(671\) −6.12109 2.94776i −0.236302 0.113797i
\(672\) −0.418975 + 1.83565i −0.0161623 + 0.0708118i
\(673\) −2.60304 11.4047i −0.100340 0.439617i −0.999995 0.00301712i \(-0.999040\pi\)
0.899656 0.436600i \(-0.143818\pi\)
\(674\) −1.77254 + 0.853611i −0.0682757 + 0.0328799i
\(675\) −3.82601 3.05114i −0.147263 0.117439i
\(676\) 1.92510 2.41400i 0.0740423 0.0928461i
\(677\) −8.46222 + 17.5720i −0.325230 + 0.675346i −0.997912 0.0645849i \(-0.979428\pi\)
0.672683 + 0.739931i \(0.265142\pi\)
\(678\) 2.50592 1.99840i 0.0962392 0.0767482i
\(679\) 1.70592i 0.0654671i
\(680\) 3.16216 + 3.96522i 0.121263 + 0.152059i
\(681\) −15.5756 + 3.55503i −0.596858 + 0.136229i
\(682\) 4.40354 1.00508i 0.168620 0.0384865i
\(683\) 15.4166 + 19.3318i 0.589900 + 0.739711i 0.983766 0.179457i \(-0.0574340\pi\)
−0.393866 + 0.919168i \(0.628863\pi\)
\(684\) 1.27413i 0.0487174i
\(685\) −5.94068 + 4.73753i −0.226982 + 0.181012i
\(686\) −7.96919 + 16.5482i −0.304265 + 0.631813i
\(687\) −9.56256 + 11.9911i −0.364834 + 0.457488i
\(688\) −18.5915 14.8262i −0.708794 0.565244i
\(689\) −38.2656 + 18.4277i −1.45780 + 0.702041i
\(690\) −0.133540 0.585077i −0.00508378 0.0222735i
\(691\) 10.6279 46.5640i 0.404306 1.77138i −0.205324 0.978694i \(-0.565825\pi\)
0.609630 0.792686i \(-0.291318\pi\)
\(692\) 3.64388 + 1.75480i 0.138520 + 0.0667075i
\(693\) −0.367779 0.763701i −0.0139708 0.0290106i
\(694\) −29.6556 6.76870i −1.12571 0.256936i
\(695\) −4.41197 −0.167355
\(696\) 15.4421 + 4.76038i 0.585331 + 0.180442i
\(697\) −6.96293 −0.263740
\(698\) −19.0729 4.35327i −0.721921 0.164774i
\(699\) 5.63404 + 11.6992i 0.213099 + 0.442504i
\(700\) −1.48111 0.713264i −0.0559806 0.0269588i
\(701\) −1.81198 + 7.93882i −0.0684377 + 0.299845i −0.997550 0.0699516i \(-0.977716\pi\)
0.929113 + 0.369797i \(0.120573\pi\)
\(702\) 1.39392 + 6.10715i 0.0526100 + 0.230500i
\(703\) 6.75665 3.25383i 0.254832 0.122721i
\(704\) −5.29617 4.22356i −0.199607 0.159181i
\(705\) −0.0921840 + 0.115595i −0.00347185 + 0.00435356i
\(706\) 9.07379 18.8419i 0.341497 0.709125i
\(707\) 13.9440 11.1199i 0.524417 0.418208i
\(708\) 1.11859i 0.0420390i
\(709\) 1.10726 + 1.38847i 0.0415842 + 0.0521449i 0.802189 0.597071i \(-0.203669\pi\)
−0.760605 + 0.649215i \(0.775097\pi\)
\(710\) 6.22641 1.42114i 0.233673 0.0533344i
\(711\) 5.69002 1.29871i 0.213392 0.0487054i
\(712\) 15.5049 + 19.4425i 0.581071 + 0.728640i
\(713\) 6.38190i 0.239004i
\(714\) −5.82261 + 4.64338i −0.217906 + 0.173774i
\(715\) −0.522855 + 1.08572i −0.0195537 + 0.0406036i
\(716\) −1.16805 + 1.46468i −0.0436519 + 0.0547378i
\(717\) −0.199414 0.159028i −0.00744726 0.00593899i
\(718\) −31.1376 + 14.9951i −1.16204 + 0.559611i
\(719\) −6.25224 27.3929i −0.233169 1.02158i −0.946992 0.321256i \(-0.895895\pi\)
0.713823 0.700326i \(-0.246962\pi\)
\(720\) −0.239358 + 1.04869i −0.00892033 + 0.0390825i
\(721\) −10.8885 5.24364i −0.405510 0.195283i
\(722\) 0.837332 + 1.73874i 0.0311623 + 0.0647091i
\(723\) −8.18553 1.86829i −0.304423 0.0694826i
\(724\) 7.34031 0.272800
\(725\) −13.1727 + 22.8247i −0.489221 + 0.847689i
\(726\) −13.5553 −0.503084
\(727\) −45.8409 10.4629i −1.70015 0.388047i −0.741121 0.671372i \(-0.765705\pi\)
−0.959024 + 0.283325i \(0.908563\pi\)
\(728\) 6.91152 + 14.3519i 0.256158 + 0.531918i
\(729\) 0.900969 + 0.433884i 0.0333692 + 0.0160698i
\(730\) 1.29466 5.67227i 0.0479175 0.209940i
\(731\) 8.31436 + 36.4276i 0.307518 + 1.34732i
\(732\) 2.42583 1.16822i 0.0896611 0.0431785i
\(733\) −24.3427 19.4127i −0.899119 0.717023i 0.0605475 0.998165i \(-0.480715\pi\)
−0.959666 + 0.281142i \(0.909287\pi\)
\(734\) 13.8033 17.3088i 0.509489 0.638879i
\(735\) 0.818152 1.69891i 0.0301780 0.0626652i
\(736\) −1.88529 + 1.50347i −0.0694927 + 0.0554186i
\(737\) 11.7231i 0.431826i
\(738\) −1.09071 1.36770i −0.0401495 0.0503459i
\(739\) 12.3734 2.82414i 0.455161 0.103888i 0.0112072 0.999937i \(-0.496433\pi\)
0.443954 + 0.896050i \(0.353575\pi\)
\(740\) 0.173414 0.0395806i 0.00637483 0.00145501i
\(741\) −12.5539 15.7421i −0.461178 0.578299i
\(742\) 12.6860i 0.465717i
\(743\) −10.7328 + 8.55909i −0.393747 + 0.314002i −0.800272 0.599637i \(-0.795312\pi\)
0.406525 + 0.913639i \(0.366740\pi\)
\(744\) −5.87928 + 12.2084i −0.215545 + 0.447583i
\(745\) 0.269803 0.338322i 0.00988482 0.0123952i
\(746\) 11.9443 + 9.52524i 0.437311 + 0.348744i
\(747\) 11.4666 5.52203i 0.419542 0.202041i
\(748\) 0.269684 + 1.18156i 0.00986061 + 0.0432022i
\(749\) −3.07173 + 13.4581i −0.112239 + 0.491750i
\(750\) −3.78518 1.82285i −0.138215 0.0665610i
\(751\) −2.11829 4.39867i −0.0772973 0.160510i 0.858739 0.512414i \(-0.171249\pi\)
−0.936036 + 0.351904i \(0.885534\pi\)
\(752\) −1.45799 0.332776i −0.0531672 0.0121351i
\(753\) −18.6458 −0.679492
\(754\) 31.3998 12.3297i 1.14351 0.449020i
\(755\) −4.68624 −0.170550
\(756\) 0.327504 + 0.0747506i 0.0119112 + 0.00271865i
\(757\) −8.84210 18.3608i −0.321372 0.667335i 0.676220 0.736700i \(-0.263617\pi\)
−0.997591 + 0.0693651i \(0.977903\pi\)
\(758\) −9.04664 4.35663i −0.328589 0.158240i
\(759\) 0.241564 1.05836i 0.00876821 0.0384160i
\(760\) −0.911368 3.99297i −0.0330588 0.144840i
\(761\) 32.2082 15.5107i 1.16755 0.562261i 0.253288 0.967391i \(-0.418488\pi\)
0.914259 + 0.405130i \(0.132774\pi\)
\(762\) 15.5412 + 12.3937i 0.562998 + 0.448976i
\(763\) 6.05604 7.59403i 0.219243 0.274922i
\(764\) −0.680973 + 1.41405i −0.0246367 + 0.0511587i
\(765\) 1.32144 1.05381i 0.0477767 0.0381006i
\(766\) 22.9933i 0.830780i
\(767\) −11.0213 13.8203i −0.397958 0.499023i
\(768\) 6.94947 1.58617i 0.250767 0.0572360i
\(769\) 22.6272 5.16452i 0.815959 0.186237i 0.205879 0.978577i \(-0.433995\pi\)
0.610080 + 0.792340i \(0.291137\pi\)
\(770\) −0.224421 0.281415i −0.00808756 0.0101415i
\(771\) 24.6186i 0.886618i
\(772\) 0.660210 0.526500i 0.0237615 0.0189492i
\(773\) −18.5344 + 38.4871i −0.666636 + 1.38428i 0.243470 + 0.969908i \(0.421714\pi\)
−0.910106 + 0.414375i \(0.864000\pi\)
\(774\) −5.85294 + 7.33936i −0.210380 + 0.263808i
\(775\) −17.2773 13.7782i −0.620620 0.494928i
\(776\) 4.17942 2.01270i 0.150032 0.0722517i
\(777\) 0.439971 + 1.92764i 0.0157839 + 0.0691536i
\(778\) −5.04364 + 22.0977i −0.180823 + 0.792239i
\(779\) 5.06607 + 2.43969i 0.181511 + 0.0874110i
\(780\) −0.207211 0.430277i −0.00741933 0.0154064i
\(781\) 11.2631 + 2.57073i 0.403026 + 0.0919880i
\(782\) −9.53788 −0.341074
\(783\) 1.58643 5.14619i 0.0566944 0.183910i
\(784\) 19.0728 0.681172
\(785\) 4.19450 + 0.957368i 0.149708 + 0.0341699i
\(786\) 4.93936 + 10.2567i 0.176181 + 0.365844i
\(787\) −12.6203 6.07762i −0.449866 0.216644i 0.195212 0.980761i \(-0.437461\pi\)
−0.645077 + 0.764117i \(0.723175\pi\)
\(788\) −1.67245 + 7.32750i −0.0595787 + 0.261031i
\(789\) 2.26254 + 9.91282i 0.0805484 + 0.352906i
\(790\) 2.23291 1.07531i 0.0794433 0.0382579i
\(791\) −2.12364 1.69354i −0.0755079 0.0602155i
\(792\) −1.43711 + 1.80208i −0.0510655 + 0.0640342i
\(793\) 18.4612 38.3350i 0.655575 1.36132i
\(794\) 8.89252 7.09155i 0.315584 0.251670i
\(795\) 2.87907i 0.102110i
\(796\) −0.997823 1.25123i −0.0353669 0.0443487i
\(797\) 8.94816 2.04236i 0.316960 0.0723441i −0.0610812 0.998133i \(-0.519455\pi\)
0.378041 + 0.925789i \(0.376598\pi\)
\(798\) 5.86336 1.33827i 0.207561 0.0473743i
\(799\) 1.46510 + 1.83718i 0.0518315 + 0.0649946i
\(800\) 8.34984i 0.295211i
\(801\) 6.47936 5.16712i 0.228937 0.182571i
\(802\) −5.62549 + 11.6814i −0.198643 + 0.412486i
\(803\) 6.56197 8.22845i 0.231567 0.290376i
\(804\) −3.63234 2.89669i −0.128103 0.102158i
\(805\) −0.458209 + 0.220662i −0.0161497 + 0.00777731i
\(806\) 6.29458 + 27.5784i 0.221717 + 0.971407i
\(807\) −0.148651 + 0.651280i −0.00523275 + 0.0229262i
\(808\) −43.6949 21.0424i −1.53718 0.740268i
\(809\) −5.06054 10.5083i −0.177919 0.369453i 0.792869 0.609392i \(-0.208587\pi\)
−0.970788 + 0.239940i \(0.922872\pi\)
\(810\) 0.413993 + 0.0944911i 0.0145462 + 0.00332008i
\(811\) 10.2506 0.359946 0.179973 0.983672i \(-0.442399\pi\)
0.179973 + 0.983672i \(0.442399\pi\)
\(812\) 0.134881 1.80398i 0.00473341 0.0633074i
\(813\) −9.29114 −0.325854
\(814\) −1.74724 0.398796i −0.0612407 0.0139778i
\(815\) 0.426002 + 0.884601i 0.0149222 + 0.0309862i
\(816\) 15.4027 + 7.41756i 0.539203 + 0.259667i
\(817\) 6.71426 29.4171i 0.234902 1.02917i
\(818\) −5.90799 25.8846i −0.206568 0.905034i
\(819\) 4.78288 2.30331i 0.167127 0.0804843i
\(820\) 0.104271 + 0.0831536i 0.00364131 + 0.00290385i
\(821\) −14.2411 + 17.8578i −0.497019 + 0.623242i −0.965554 0.260203i \(-0.916211\pi\)
0.468535 + 0.883445i \(0.344782\pi\)
\(822\) −13.1642 + 27.3358i −0.459155 + 0.953444i
\(823\) 0.386174 0.307963i 0.0134612 0.0107349i −0.616736 0.787170i \(-0.711545\pi\)
0.630197 + 0.776435i \(0.282974\pi\)
\(824\) 32.8630i 1.14484i
\(825\) −2.34371 2.93891i −0.0815974 0.102320i
\(826\) 5.14758 1.17490i 0.179107 0.0408801i
\(827\) −51.0365 + 11.6488i −1.77471 + 0.405067i −0.979530 0.201300i \(-0.935483\pi\)
−0.795185 + 0.606367i \(0.792626\pi\)
\(828\) 0.268238 + 0.336360i 0.00932192 + 0.0116893i
\(829\) 39.7417i 1.38029i 0.723673 + 0.690143i \(0.242452\pi\)
−0.723673 + 0.690143i \(0.757548\pi\)
\(830\) 4.22531 3.36958i 0.146663 0.116960i
\(831\) 6.39684 13.2832i 0.221904 0.460788i
\(832\) 26.4512 33.1687i 0.917029 1.14992i
\(833\) −23.4307 18.6853i −0.811825 0.647409i
\(834\) −15.8723 + 7.64370i −0.549613 + 0.264680i
\(835\) −0.0997451 0.437012i −0.00345182 0.0151234i
\(836\) 0.217783 0.954170i 0.00753218 0.0330006i
\(837\) 4.06855 + 1.95931i 0.140630 + 0.0677237i
\(838\) −20.5809 42.7367i −0.710955 1.47631i
\(839\) 31.1101 + 7.10068i 1.07404 + 0.245143i 0.722740 0.691120i \(-0.242882\pi\)
0.351301 + 0.936263i \(0.385740\pi\)
\(840\) 1.07983 0.0372576
\(841\) −28.6776 4.31248i −0.988881 0.148706i
\(842\) 25.8508 0.890877
\(843\) −20.9875 4.79026i −0.722848 0.164985i
\(844\) −3.19670 6.63802i −0.110035 0.228490i
\(845\) −2.98005 1.43512i −0.102517 0.0493695i
\(846\) −0.131370 + 0.575568i −0.00451658 + 0.0197884i
\(847\) 2.55619 + 11.1994i 0.0878317 + 0.384816i
\(848\) −26.2372 + 12.6352i −0.900988 + 0.433893i
\(849\) 8.06931 + 6.43506i 0.276938 + 0.220851i
\(850\) −20.5918 + 25.8213i −0.706293 + 0.885663i
\(851\) −1.09869 + 2.28144i −0.0376625 + 0.0782069i
\(852\) −3.57956 + 2.85460i −0.122634 + 0.0977970i
\(853\) 12.8451i 0.439806i 0.975522 + 0.219903i \(0.0705741\pi\)
−0.975522 + 0.219903i \(0.929426\pi\)
\(854\) 7.92392 + 9.93629i 0.271151 + 0.340013i
\(855\) −1.33068 + 0.303720i −0.0455084 + 0.0103870i
\(856\) 36.5959 8.35278i 1.25082 0.285492i
\(857\) 5.92373 + 7.42812i 0.202351 + 0.253740i 0.872644 0.488356i \(-0.162403\pi\)
−0.670294 + 0.742096i \(0.733832\pi\)
\(858\) 4.81179i 0.164272i
\(859\) −14.5414 + 11.5964i −0.496146 + 0.395663i −0.839344 0.543600i \(-0.817061\pi\)
0.343199 + 0.939263i \(0.388489\pi\)
\(860\) 0.310521 0.644803i 0.0105887 0.0219876i
\(861\) −0.924319 + 1.15906i −0.0315007 + 0.0395006i
\(862\) 36.4060 + 29.0328i 1.23999 + 0.988861i
\(863\) 43.7868 21.0866i 1.49052 0.717796i 0.501441 0.865192i \(-0.332803\pi\)
0.989078 + 0.147396i \(0.0470892\pi\)
\(864\) −0.379678 1.66348i −0.0129169 0.0565927i
\(865\) 0.964085 4.22393i 0.0327799 0.143618i
\(866\) 44.0480 + 21.2124i 1.49681 + 0.720826i
\(867\) −4.27913 8.88571i −0.145327 0.301775i
\(868\) 1.47893 + 0.337555i 0.0501980 + 0.0114574i
\(869\) 4.48313 0.152080
\(870\) 0.170502 2.28039i 0.00578055 0.0773124i
\(871\) −73.4191 −2.48771
\(872\) −25.7501 5.87730i −0.872010 0.199031i
\(873\) −0.670747 1.39282i −0.0227013 0.0471398i
\(874\) 6.93954 + 3.34191i 0.234734 + 0.113042i
\(875\) −0.792248 + 3.47107i −0.0267829 + 0.117343i
\(876\) 0.928124 + 4.06638i 0.0313584 + 0.137390i
\(877\) −11.3140 + 5.44854i −0.382047 + 0.183984i −0.615043 0.788493i \(-0.710861\pi\)
0.232996 + 0.972478i \(0.425147\pi\)
\(878\) 7.02099 + 5.59905i 0.236947 + 0.188959i
\(879\) 15.7167 19.7081i 0.530112 0.664739i
\(880\) −0.358501 + 0.744435i −0.0120851 + 0.0250949i
\(881\) −11.2267 + 8.95299i −0.378237 + 0.301634i −0.794093 0.607797i \(-0.792054\pi\)
0.415856 + 0.909431i \(0.363482\pi\)
\(882\) 7.52937i 0.253527i
\(883\) 15.4326 + 19.3518i 0.519347 + 0.651241i 0.970470 0.241221i \(-0.0775478\pi\)
−0.451123 + 0.892462i \(0.648976\pi\)
\(884\) −7.39985 + 1.68897i −0.248884 + 0.0568061i
\(885\) −1.16824 + 0.266643i −0.0392699 + 0.00896311i
\(886\) −11.2260 14.0770i −0.377146 0.472926i
\(887\) 17.0877i 0.573749i −0.957968 0.286875i \(-0.907384\pi\)
0.957968 0.286875i \(-0.0926163\pi\)
\(888\) 4.20353 3.35220i 0.141061 0.112492i
\(889\) 7.30900 15.1773i 0.245136 0.509030i
\(890\) 2.19416 2.75139i 0.0735485 0.0922269i
\(891\) 0.600556 + 0.478928i 0.0201194 + 0.0160447i
\(892\) −0.333054 + 0.160390i −0.0111515 + 0.00537026i
\(893\) −0.422258 1.85003i −0.0141303 0.0619089i
\(894\) 0.384492 1.68457i 0.0128593 0.0563404i
\(895\) 1.80813 + 0.870750i 0.0604392 + 0.0291060i
\(896\) 3.86424 + 8.02417i 0.129095 + 0.268069i
\(897\) 6.62826 + 1.51286i 0.221311 + 0.0505128i
\(898\) 26.0786 0.870253
\(899\) 7.16392 23.2389i 0.238930 0.775061i
\(900\) 1.48972 0.0496573
\(901\) 44.6105 + 10.1820i 1.48619 + 0.339213i
\(902\) −0.583033 1.21068i −0.0194129 0.0403112i
\(903\) 7.16751 + 3.45169i 0.238520 + 0.114865i
\(904\) −1.64356 + 7.20091i −0.0546641 + 0.239499i
\(905\) −1.74975 7.66614i −0.0581635 0.254831i
\(906\) −16.8590 + 8.11889i −0.560104 + 0.269732i
\(907\) −4.05424 3.23315i −0.134619 0.107355i 0.553865 0.832606i \(-0.313152\pi\)
−0.688484 + 0.725251i \(0.741724\pi\)
\(908\) 3.03230 3.80239i 0.100631 0.126187i
\(909\) −7.01251 + 14.5616i −0.232590 + 0.482979i
\(910\) 1.76243 1.40549i 0.0584241 0.0465917i
\(911\) 18.0436i 0.597811i −0.954283 0.298905i \(-0.903378\pi\)
0.954283 0.298905i \(-0.0966215\pi\)
\(912\) −8.60769 10.7937i −0.285029 0.357415i
\(913\) 9.53100 2.17539i 0.315430 0.0719949i
\(914\) −31.0492 + 7.08677i −1.02701 + 0.234409i
\(915\) −1.79833 2.25503i −0.0594509 0.0745491i
\(916\) 4.66891i 0.154265i
\(917\) 7.54265 6.01506i 0.249080 0.198635i
\(918\) 2.92823 6.08053i 0.0966460 0.200687i
\(919\) −5.45496 + 6.84030i −0.179943 + 0.225641i −0.863620 0.504144i \(-0.831808\pi\)
0.683677 + 0.729785i \(0.260380\pi\)
\(920\) 1.08122 + 0.862246i 0.0356468 + 0.0284274i
\(921\) 16.0233 7.71641i 0.527986 0.254264i
\(922\) 6.45453 + 28.2791i 0.212568 + 0.931323i
\(923\) −16.0999 + 70.5382i −0.529934 + 2.32179i
\(924\) 0.232485 + 0.111959i 0.00764818 + 0.00368317i
\(925\) 3.80440 + 7.89992i 0.125088 + 0.259748i
\(926\) −34.9241 7.97121i −1.14768 0.261950i
\(927\) 10.9518 0.359705
\(928\) −8.55275 + 3.35838i −0.280758 + 0.110244i
\(929\) 42.8899 1.40717 0.703587 0.710609i \(-0.251581\pi\)
0.703587 + 0.710609i \(0.251581\pi\)
\(930\) 1.86949 + 0.426698i 0.0613029 + 0.0139920i
\(931\) 10.5006 + 21.8047i 0.344144 + 0.714621i
\(932\) −3.56145 1.71510i −0.116659 0.0561801i
\(933\) −1.86884 + 8.18792i −0.0611830 + 0.268060i
\(934\) 6.88042 + 30.1451i 0.225134 + 0.986377i
\(935\) 1.16972 0.563310i 0.0382541 0.0184222i
\(936\) −11.2860 9.00030i −0.368895 0.294184i
\(937\) −10.3965 + 13.0367i −0.339637 + 0.425892i −0.922092 0.386972i \(-0.873521\pi\)
0.582454 + 0.812863i \(0.302093\pi\)
\(938\) 9.51498 19.7581i 0.310675 0.645123i
\(939\) −1.64202 + 1.30947i −0.0535853 + 0.0427328i
\(940\) 0.0450088i 0.00146802i
\(941\) −10.3481 12.9761i −0.337337 0.423007i 0.584011 0.811746i \(-0.301482\pi\)
−0.921348 + 0.388738i \(0.872911\pi\)
\(942\) 16.7486 3.82276i 0.545699 0.124552i
\(943\) −1.85103 + 0.422485i −0.0602777 + 0.0137580i
\(944\) −7.55689 9.47604i −0.245956 0.308419i
\(945\) 0.359860i 0.0117063i
\(946\) −5.63766 + 4.49588i −0.183296 + 0.146174i
\(947\) 19.5444 40.5843i 0.635107 1.31881i −0.296391 0.955067i \(-0.595783\pi\)
0.931498 0.363746i \(-0.118502\pi\)
\(948\) −1.10775 + 1.38907i −0.0359780 + 0.0451150i
\(949\) 51.5329 + 41.0961i 1.67283 + 1.33404i
\(950\) 24.0295 11.5720i 0.779618 0.375444i
\(951\) 1.11880 + 4.90180i 0.0362797 + 0.158952i
\(952\) 3.81889 16.7316i 0.123771 0.542275i
\(953\) −17.4621 8.40933i −0.565655 0.272405i 0.129124 0.991628i \(-0.458783\pi\)
−0.694779 + 0.719224i \(0.744498\pi\)
\(954\) 4.98798 + 10.3576i 0.161492 + 0.335341i
\(955\) 1.63915 + 0.374125i 0.0530417 + 0.0121064i
\(956\) 0.0776451 0.00251122
\(957\) 2.06767 3.58272i 0.0668384 0.115813i
\(958\) 34.0835 1.10119
\(959\) 25.0673 + 5.72145i 0.809465 + 0.184755i
\(960\) −1.24779 2.59107i −0.0402724 0.0836264i
\(961\) −9.55748 4.60264i −0.308306 0.148472i
\(962\) 2.49757 10.9426i 0.0805248 0.352802i
\(963\) −2.78362 12.1959i −0.0897010 0.393006i
\(964\) 2.30279 1.10897i 0.0741680 0.0357174i
\(965\) −0.707249 0.564012i −0.0227671 0.0181562i
\(966\) −1.26614 + 1.58769i −0.0407374 + 0.0510831i
\(967\) −11.2078 + 23.2732i −0.360417 + 0.748414i −0.999790 0.0204826i \(-0.993480\pi\)
0.639373 + 0.768897i \(0.279194\pi\)
\(968\) 24.4221 19.4760i 0.784956 0.625981i
\(969\) 21.6927i 0.696870i
\(970\) −0.409293 0.513238i −0.0131416 0.0164791i
\(971\) 27.5064 6.27816i 0.882723 0.201476i 0.242949 0.970039i \(-0.421885\pi\)
0.639774 + 0.768563i \(0.279028\pi\)
\(972\) −0.296786 + 0.0677395i −0.00951942 + 0.00217274i
\(973\) 9.30836 + 11.6723i 0.298412 + 0.374197i
\(974\) 21.2449i 0.680729i
\(975\) 18.4057 14.6781i 0.589455 0.470075i
\(976\) 12.6581 26.2848i 0.405175 0.841355i
\(977\) 17.8073 22.3297i 0.569707 0.714390i −0.410612 0.911810i \(-0.634685\pi\)
0.980319 + 0.197420i \(0.0632563\pi\)
\(978\) 3.06513 + 2.44436i 0.0980122 + 0.0781621i
\(979\) 5.73548 2.76206i 0.183307 0.0882758i
\(980\) 0.127733 + 0.559634i 0.00408027 + 0.0178768i
\(981\) −1.95865 + 8.58142i −0.0625350 + 0.273984i
\(982\) −38.5995 18.5885i −1.23176 0.593184i
\(983\) −9.85199 20.4579i −0.314230 0.652505i 0.682709 0.730690i \(-0.260802\pi\)
−0.996939 + 0.0781854i \(0.975087\pi\)
\(984\) 3.93018 + 0.897039i 0.125290 + 0.0285966i
\(985\) 8.05143 0.256540
\(986\) −34.7310 10.7066i −1.10606 0.340969i
\(987\) 0.500309 0.0159250
\(988\) 5.97574 + 1.36392i 0.190114 + 0.0433922i
\(989\) 4.42058 + 9.17943i 0.140566 + 0.291889i
\(990\) 0.293880 + 0.141525i 0.00934013 + 0.00449797i
\(991\) −10.4378 + 45.7310i −0.331568 + 1.45269i 0.484528 + 0.874776i \(0.338991\pi\)
−0.816096 + 0.577917i \(0.803866\pi\)
\(992\) −1.71453 7.51186i −0.0544364 0.238502i
\(993\) 3.43199 1.65276i 0.108911 0.0524487i
\(994\) −16.8963 13.4743i −0.535917 0.427379i
\(995\) −1.06892 + 1.34038i −0.0338869 + 0.0424929i
\(996\) −1.68101 + 3.49065i −0.0532648 + 0.110605i
\(997\) −28.3877 + 22.6385i −0.899048 + 0.716967i −0.959651 0.281195i \(-0.909269\pi\)
0.0606024 + 0.998162i \(0.480698\pi\)
\(998\) 28.8606i 0.913567i
\(999\) −1.11714 1.40085i −0.0353449 0.0443211i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.2.i.a.4.3 24
3.2 odd 2 261.2.o.b.91.2 24
29.14 odd 28 2523.2.a.v.1.3 12
29.15 odd 28 2523.2.a.s.1.10 12
29.22 even 14 inner 87.2.i.a.22.3 yes 24
87.14 even 28 7569.2.a.bn.1.10 12
87.44 even 28 7569.2.a.bt.1.3 12
87.80 odd 14 261.2.o.b.109.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.4.3 24 1.1 even 1 trivial
87.2.i.a.22.3 yes 24 29.22 even 14 inner
261.2.o.b.91.2 24 3.2 odd 2
261.2.o.b.109.2 24 87.80 odd 14
2523.2.a.s.1.10 12 29.15 odd 28
2523.2.a.v.1.3 12 29.14 odd 28
7569.2.a.bn.1.10 12 87.14 even 28
7569.2.a.bt.1.3 12 87.44 even 28