Properties

Label 261.2.o.b.91.2
Level $261$
Weight $2$
Character 261.91
Analytic conductor $2.084$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(64,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.o (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 91.2
Character \(\chi\) \(=\) 261.91
Dual form 261.2.o.b.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26950 - 0.289755i) q^{2} +(-0.274272 - 0.132082i) q^{4} +(0.0725658 - 0.317931i) q^{5} +(0.994220 - 0.478791i) q^{7} +(2.34603 + 1.87090i) q^{8} +(-0.184244 + 0.382587i) q^{10} +(0.600556 - 0.478928i) q^{11} +(-2.99941 - 3.76114i) q^{13} +(-1.40089 + 0.319744i) q^{14} +(-2.05658 - 2.57887i) q^{16} -5.18289i q^{17} +(1.81600 - 3.77095i) q^{19} +(-0.0618958 + 0.0776149i) q^{20} +(-0.901176 + 0.433984i) q^{22} +(-0.314479 - 1.37782i) q^{23} +(4.40903 + 2.12328i) q^{25} +(2.71794 + 5.64386i) q^{26} -0.335926 q^{28} +(0.401521 - 5.37018i) q^{29} +(-4.40253 - 1.00485i) q^{31} +(-0.740318 - 1.53729i) q^{32} +(-1.50177 + 6.57967i) q^{34} +(-0.0800764 - 0.350838i) q^{35} +(1.40085 + 1.11714i) q^{37} +(-3.39805 + 4.26102i) q^{38} +(0.765059 - 0.610114i) q^{40} -1.34344i q^{41} +(7.02843 - 1.60419i) q^{43} +(-0.227973 + 0.0520334i) q^{44} +1.84026i q^{46} +(-0.354469 + 0.282680i) q^{47} +(-3.60520 + 4.52077i) q^{49} +(-4.98202 - 3.97303i) q^{50} +(0.325873 + 1.42774i) q^{52} +(-1.96455 + 8.60725i) q^{53} +(-0.108686 - 0.225689i) q^{55} +(3.22824 + 0.736825i) q^{56} +(-2.06576 + 6.70108i) q^{58} -3.67450 q^{59} +(3.83753 + 7.96872i) q^{61} +(5.29784 + 2.55131i) q^{62} +(1.96236 + 8.59768i) q^{64} +(-1.41344 + 0.680677i) q^{65} +(9.51550 - 11.9321i) q^{67} +(-0.684568 + 1.42152i) q^{68} +0.468590i q^{70} +(9.37723 + 11.7587i) q^{71} +(-13.3579 + 3.04884i) q^{73} +(-1.45468 - 1.82412i) q^{74} +(-0.996152 + 0.794405i) q^{76} +(0.367779 - 0.763701i) q^{77} +(-4.56304 - 3.63890i) q^{79} +(-0.969139 + 0.466713i) q^{80} +(-0.389269 + 1.70550i) q^{82} +(11.4666 + 5.52203i) q^{83} +(-1.64780 - 0.376101i) q^{85} -9.38739 q^{86} +2.30495 q^{88} +(8.07964 + 1.84412i) q^{89} +(-4.78288 - 2.30331i) q^{91} +(-0.0957331 + 0.419434i) q^{92} +(0.531905 - 0.256152i) q^{94} +(-1.06713 - 0.851004i) q^{95} +(-0.670747 + 1.39282i) q^{97} +(5.88670 - 4.69449i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 4 q^{5} + 8 q^{7} + 28 q^{11} - 10 q^{13} - 22 q^{16} + 20 q^{20} + 4 q^{22} - 18 q^{23} - 18 q^{25} - 28 q^{26} + 8 q^{28} - 28 q^{29} + 28 q^{31} + 14 q^{32} + 34 q^{34} - 28 q^{37} + 4 q^{38}+ \cdots + 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{1}{14}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26950 0.289755i −0.897670 0.204887i −0.251298 0.967910i \(-0.580857\pi\)
−0.646372 + 0.763022i \(0.723715\pi\)
\(3\) 0 0
\(4\) −0.274272 0.132082i −0.137136 0.0660411i
\(5\) 0.0725658 0.317931i 0.0324524 0.142183i −0.956106 0.293020i \(-0.905340\pi\)
0.988559 + 0.150837i \(0.0481968\pi\)
\(6\) 0 0
\(7\) 0.994220 0.478791i 0.375780 0.180966i −0.236454 0.971643i \(-0.575985\pi\)
0.612234 + 0.790677i \(0.290271\pi\)
\(8\) 2.34603 + 1.87090i 0.829447 + 0.661462i
\(9\) 0 0
\(10\) −0.184244 + 0.382587i −0.0582631 + 0.120985i
\(11\) 0.600556 0.478928i 0.181075 0.144402i −0.528758 0.848773i \(-0.677342\pi\)
0.709832 + 0.704371i \(0.248771\pi\)
\(12\) 0 0
\(13\) −2.99941 3.76114i −0.831887 1.04315i −0.998368 0.0571090i \(-0.981812\pi\)
0.166481 0.986045i \(-0.446760\pi\)
\(14\) −1.40089 + 0.319744i −0.374404 + 0.0854553i
\(15\) 0 0
\(16\) −2.05658 2.57887i −0.514144 0.644716i
\(17\) 5.18289i 1.25704i −0.777795 0.628518i \(-0.783662\pi\)
0.777795 0.628518i \(-0.216338\pi\)
\(18\) 0 0
\(19\) 1.81600 3.77095i 0.416618 0.865116i −0.582032 0.813166i \(-0.697742\pi\)
0.998650 0.0519502i \(-0.0165437\pi\)
\(20\) −0.0618958 + 0.0776149i −0.0138403 + 0.0173552i
\(21\) 0 0
\(22\) −0.901176 + 0.433984i −0.192131 + 0.0925256i
\(23\) −0.314479 1.37782i −0.0655733 0.287295i 0.931501 0.363740i \(-0.118500\pi\)
−0.997074 + 0.0764445i \(0.975643\pi\)
\(24\) 0 0
\(25\) 4.40903 + 2.12328i 0.881806 + 0.424655i
\(26\) 2.71794 + 5.64386i 0.533032 + 1.10685i
\(27\) 0 0
\(28\) −0.335926 −0.0634841
\(29\) 0.401521 5.37018i 0.0745606 0.997216i
\(30\) 0 0
\(31\) −4.40253 1.00485i −0.790718 0.180476i −0.191956 0.981403i \(-0.561483\pi\)
−0.598762 + 0.800927i \(0.704340\pi\)
\(32\) −0.740318 1.53729i −0.130871 0.271756i
\(33\) 0 0
\(34\) −1.50177 + 6.57967i −0.257551 + 1.12840i
\(35\) −0.0800764 0.350838i −0.0135354 0.0593024i
\(36\) 0 0
\(37\) 1.40085 + 1.11714i 0.230299 + 0.183657i 0.731840 0.681477i \(-0.238662\pi\)
−0.501541 + 0.865134i \(0.667233\pi\)
\(38\) −3.39805 + 4.26102i −0.551237 + 0.691229i
\(39\) 0 0
\(40\) 0.765059 0.610114i 0.120966 0.0964675i
\(41\) 1.34344i 0.209811i −0.994482 0.104905i \(-0.966546\pi\)
0.994482 0.104905i \(-0.0334540\pi\)
\(42\) 0 0
\(43\) 7.02843 1.60419i 1.07182 0.244637i 0.350026 0.936740i \(-0.386173\pi\)
0.721799 + 0.692103i \(0.243316\pi\)
\(44\) −0.227973 + 0.0520334i −0.0343683 + 0.00784433i
\(45\) 0 0
\(46\) 1.84026i 0.271332i
\(47\) −0.354469 + 0.282680i −0.0517046 + 0.0412331i −0.649001 0.760787i \(-0.724813\pi\)
0.597297 + 0.802020i \(0.296242\pi\)
\(48\) 0 0
\(49\) −3.60520 + 4.52077i −0.515028 + 0.645825i
\(50\) −4.98202 3.97303i −0.704564 0.561871i
\(51\) 0 0
\(52\) 0.325873 + 1.42774i 0.0451905 + 0.197992i
\(53\) −1.96455 + 8.60725i −0.269851 + 1.18230i 0.640334 + 0.768096i \(0.278796\pi\)
−0.910186 + 0.414200i \(0.864061\pi\)
\(54\) 0 0
\(55\) −0.108686 0.225689i −0.0146553 0.0304320i
\(56\) 3.22824 + 0.736825i 0.431392 + 0.0984624i
\(57\) 0 0
\(58\) −2.06576 + 6.70108i −0.271248 + 0.879895i
\(59\) −3.67450 −0.478379 −0.239190 0.970973i \(-0.576882\pi\)
−0.239190 + 0.970973i \(0.576882\pi\)
\(60\) 0 0
\(61\) 3.83753 + 7.96872i 0.491346 + 1.02029i 0.988301 + 0.152514i \(0.0487369\pi\)
−0.496956 + 0.867776i \(0.665549\pi\)
\(62\) 5.29784 + 2.55131i 0.672827 + 0.324016i
\(63\) 0 0
\(64\) 1.96236 + 8.59768i 0.245295 + 1.07471i
\(65\) −1.41344 + 0.680677i −0.175316 + 0.0844276i
\(66\) 0 0
\(67\) 9.51550 11.9321i 1.16250 1.45773i 0.298384 0.954446i \(-0.403552\pi\)
0.864119 0.503287i \(-0.167876\pi\)
\(68\) −0.684568 + 1.42152i −0.0830161 + 0.172385i
\(69\) 0 0
\(70\) 0.468590i 0.0560072i
\(71\) 9.37723 + 11.7587i 1.11287 + 1.39550i 0.909150 + 0.416469i \(0.136733\pi\)
0.203722 + 0.979029i \(0.434696\pi\)
\(72\) 0 0
\(73\) −13.3579 + 3.04884i −1.56342 + 0.356840i −0.914683 0.404173i \(-0.867559\pi\)
−0.648737 + 0.761013i \(0.724702\pi\)
\(74\) −1.45468 1.82412i −0.169104 0.212049i
\(75\) 0 0
\(76\) −0.996152 + 0.794405i −0.114266 + 0.0911245i
\(77\) 0.367779 0.763701i 0.0419123 0.0870318i
\(78\) 0 0
\(79\) −4.56304 3.63890i −0.513382 0.409408i 0.332237 0.943196i \(-0.392197\pi\)
−0.845619 + 0.533788i \(0.820768\pi\)
\(80\) −0.969139 + 0.466713i −0.108353 + 0.0521801i
\(81\) 0 0
\(82\) −0.389269 + 1.70550i −0.0429876 + 0.188341i
\(83\) 11.4666 + 5.52203i 1.25862 + 0.606122i 0.939811 0.341695i \(-0.111001\pi\)
0.318814 + 0.947817i \(0.396715\pi\)
\(84\) 0 0
\(85\) −1.64780 0.376101i −0.178730 0.0407938i
\(86\) −9.38739 −1.01227
\(87\) 0 0
\(88\) 2.30495 0.245708
\(89\) 8.07964 + 1.84412i 0.856440 + 0.195477i 0.628127 0.778111i \(-0.283822\pi\)
0.228313 + 0.973588i \(0.426679\pi\)
\(90\) 0 0
\(91\) −4.78288 2.30331i −0.501382 0.241453i
\(92\) −0.0957331 + 0.419434i −0.00998086 + 0.0437290i
\(93\) 0 0
\(94\) 0.531905 0.256152i 0.0548618 0.0264201i
\(95\) −1.06713 0.851004i −0.109485 0.0873112i
\(96\) 0 0
\(97\) −0.670747 + 1.39282i −0.0681040 + 0.141419i −0.932242 0.361836i \(-0.882150\pi\)
0.864138 + 0.503255i \(0.167864\pi\)
\(98\) 5.88670 4.69449i 0.594647 0.474215i
\(99\) 0 0
\(100\) −0.928824 1.16471i −0.0928824 0.116471i
\(101\) −15.7570 + 3.59643i −1.56788 + 0.357858i −0.916226 0.400661i \(-0.868781\pi\)
−0.651651 + 0.758519i \(0.725923\pi\)
\(102\) 0 0
\(103\) −6.82835 8.56248i −0.672818 0.843687i 0.321853 0.946790i \(-0.395694\pi\)
−0.994671 + 0.103103i \(0.967123\pi\)
\(104\) 14.4354i 1.41550i
\(105\) 0 0
\(106\) 4.98798 10.3576i 0.484475 1.00602i
\(107\) 7.79954 9.78032i 0.754010 0.945499i −0.245706 0.969345i \(-0.579020\pi\)
0.999716 + 0.0238458i \(0.00759106\pi\)
\(108\) 0 0
\(109\) 7.93042 3.81909i 0.759597 0.365802i −0.0136509 0.999907i \(-0.504345\pi\)
0.773247 + 0.634104i \(0.218631\pi\)
\(110\) 0.0725825 + 0.318005i 0.00692047 + 0.0303205i
\(111\) 0 0
\(112\) −3.27943 1.57929i −0.309877 0.149229i
\(113\) 1.06799 + 2.21771i 0.100468 + 0.208624i 0.945144 0.326654i \(-0.105921\pi\)
−0.844676 + 0.535278i \(0.820207\pi\)
\(114\) 0 0
\(115\) −0.460873 −0.0429766
\(116\) −0.819430 + 1.41985i −0.0760822 + 0.131830i
\(117\) 0 0
\(118\) 4.66477 + 1.06470i 0.429427 + 0.0980139i
\(119\) −2.48152 5.15294i −0.227481 0.472369i
\(120\) 0 0
\(121\) −2.31643 + 10.1490i −0.210585 + 0.922633i
\(122\) −2.56277 11.2282i −0.232022 1.01655i
\(123\) 0 0
\(124\) 1.07477 + 0.857097i 0.0965169 + 0.0769696i
\(125\) 2.01162 2.52250i 0.179925 0.225619i
\(126\) 0 0
\(127\) 11.9351 9.51790i 1.05907 0.844577i 0.0708265 0.997489i \(-0.477436\pi\)
0.988240 + 0.152911i \(0.0488649\pi\)
\(128\) 8.07081i 0.713366i
\(129\) 0 0
\(130\) 1.99159 0.454567i 0.174674 0.0398682i
\(131\) −8.52336 + 1.94540i −0.744689 + 0.169970i −0.577997 0.816039i \(-0.696166\pi\)
−0.166692 + 0.986009i \(0.553308\pi\)
\(132\) 0 0
\(133\) 4.61864i 0.400487i
\(134\) −15.5373 + 12.3906i −1.34222 + 1.07038i
\(135\) 0 0
\(136\) 9.69667 12.1592i 0.831482 1.04265i
\(137\) −18.2169 14.5275i −1.55638 1.24117i −0.838305 0.545202i \(-0.816453\pi\)
−0.718073 0.695968i \(-0.754975\pi\)
\(138\) 0 0
\(139\) 3.01052 + 13.1900i 0.255349 + 1.11876i 0.926160 + 0.377130i \(0.123089\pi\)
−0.670811 + 0.741628i \(0.734054\pi\)
\(140\) −0.0243767 + 0.106801i −0.00206021 + 0.00902637i
\(141\) 0 0
\(142\) −8.49724 17.6447i −0.713073 1.48071i
\(143\) −3.60263 0.822277i −0.301267 0.0687623i
\(144\) 0 0
\(145\) −1.67821 0.517347i −0.139368 0.0429633i
\(146\) 17.8412 1.47655
\(147\) 0 0
\(148\) −0.236660 0.491429i −0.0194533 0.0403952i
\(149\) 1.19555 + 0.575745i 0.0979430 + 0.0471668i 0.482214 0.876054i \(-0.339833\pi\)
−0.384271 + 0.923220i \(0.625547\pi\)
\(150\) 0 0
\(151\) 3.19768 + 14.0099i 0.260223 + 1.14011i 0.921010 + 0.389539i \(0.127366\pi\)
−0.660787 + 0.750574i \(0.729777\pi\)
\(152\) 11.3155 5.44924i 0.917805 0.441991i
\(153\) 0 0
\(154\) −0.688180 + 0.862950i −0.0554551 + 0.0695385i
\(155\) −0.638946 + 1.32679i −0.0513214 + 0.106570i
\(156\) 0 0
\(157\) 13.1931i 1.05292i −0.850199 0.526462i \(-0.823518\pi\)
0.850199 0.526462i \(-0.176482\pi\)
\(158\) 4.73838 + 5.94174i 0.376965 + 0.472699i
\(159\) 0 0
\(160\) −0.542473 + 0.123816i −0.0428863 + 0.00978851i
\(161\) −0.972350 1.21929i −0.0766319 0.0960933i
\(162\) 0 0
\(163\) 2.35391 1.87718i 0.184373 0.147032i −0.526954 0.849894i \(-0.676666\pi\)
0.711327 + 0.702861i \(0.248095\pi\)
\(164\) −0.177445 + 0.368469i −0.0138561 + 0.0287726i
\(165\) 0 0
\(166\) −12.9568 10.3327i −1.00564 0.801974i
\(167\) 1.23842 0.596394i 0.0958321 0.0461503i −0.385354 0.922769i \(-0.625921\pi\)
0.481186 + 0.876619i \(0.340206\pi\)
\(168\) 0 0
\(169\) −2.25696 + 9.88838i −0.173612 + 0.760645i
\(170\) 1.98291 + 0.954918i 0.152082 + 0.0732389i
\(171\) 0 0
\(172\) −2.13958 0.488346i −0.163142 0.0372360i
\(173\) 13.2857 1.01009 0.505045 0.863093i \(-0.331476\pi\)
0.505045 + 0.863093i \(0.331476\pi\)
\(174\) 0 0
\(175\) 5.40015 0.408213
\(176\) −2.47018 0.563802i −0.186197 0.0424982i
\(177\) 0 0
\(178\) −9.72273 4.68222i −0.728750 0.350947i
\(179\) −1.36940 + 5.99973i −0.102354 + 0.448441i 0.897617 + 0.440777i \(0.145297\pi\)
−0.999971 + 0.00766454i \(0.997560\pi\)
\(180\) 0 0
\(181\) −21.7247 + 10.4620i −1.61478 + 0.777638i −0.999939 0.0110120i \(-0.996495\pi\)
−0.614842 + 0.788650i \(0.710780\pi\)
\(182\) 5.40446 + 4.30991i 0.400605 + 0.319472i
\(183\) 0 0
\(184\) 1.83999 3.82077i 0.135645 0.281671i
\(185\) 0.456829 0.364309i 0.0335868 0.0267845i
\(186\) 0 0
\(187\) −2.48223 3.11262i −0.181519 0.227617i
\(188\) 0.134558 0.0307119i 0.00981363 0.00223990i
\(189\) 0 0
\(190\) 1.10813 + 1.38955i 0.0803923 + 0.100809i
\(191\) 5.15567i 0.373051i 0.982450 + 0.186526i \(0.0597228\pi\)
−0.982450 + 0.186526i \(0.940277\pi\)
\(192\) 0 0
\(193\) −1.20357 + 2.49924i −0.0866349 + 0.179899i −0.939785 0.341766i \(-0.888975\pi\)
0.853150 + 0.521666i \(0.174689\pi\)
\(194\) 1.25509 1.57383i 0.0901100 0.112994i
\(195\) 0 0
\(196\) 1.58592 0.763737i 0.113280 0.0545526i
\(197\) 5.49393 + 24.0705i 0.391426 + 1.71495i 0.659631 + 0.751589i \(0.270712\pi\)
−0.268205 + 0.963362i \(0.586430\pi\)
\(198\) 0 0
\(199\) 4.73656 + 2.28101i 0.335766 + 0.161696i 0.594168 0.804341i \(-0.297482\pi\)
−0.258402 + 0.966038i \(0.583196\pi\)
\(200\) 6.37129 + 13.2301i 0.450518 + 0.935511i
\(201\) 0 0
\(202\) 21.0455 1.48076
\(203\) −2.17199 5.53138i −0.152444 0.388227i
\(204\) 0 0
\(205\) −0.427123 0.0974881i −0.0298316 0.00680886i
\(206\) 6.18756 + 12.8486i 0.431108 + 0.895204i
\(207\) 0 0
\(208\) −3.53096 + 15.4702i −0.244828 + 1.07266i
\(209\) −0.715407 3.13440i −0.0494857 0.216811i
\(210\) 0 0
\(211\) 18.9222 + 15.0899i 1.30266 + 1.03883i 0.996213 + 0.0869434i \(0.0277099\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(212\) 1.67568 2.10124i 0.115086 0.144314i
\(213\) 0 0
\(214\) −12.7354 + 10.1561i −0.870573 + 0.694259i
\(215\) 2.35097i 0.160335i
\(216\) 0 0
\(217\) −4.85820 + 1.10885i −0.329796 + 0.0752738i
\(218\) −11.1742 + 2.55045i −0.756816 + 0.172738i
\(219\) 0 0
\(220\) 0.0762557i 0.00514116i
\(221\) −19.4936 + 15.5456i −1.31128 + 1.04571i
\(222\) 0 0
\(223\) 0.757116 0.949394i 0.0507003 0.0635761i −0.755835 0.654762i \(-0.772769\pi\)
0.806535 + 0.591186i \(0.201340\pi\)
\(224\) −1.47208 1.17394i −0.0983573 0.0784374i
\(225\) 0 0
\(226\) −0.713222 3.12483i −0.0474428 0.207861i
\(227\) 3.55503 15.5756i 0.235956 1.03379i −0.708645 0.705566i \(-0.750693\pi\)
0.944600 0.328223i \(-0.106450\pi\)
\(228\) 0 0
\(229\) 6.65454 + 13.8183i 0.439745 + 0.913139i 0.996589 + 0.0825223i \(0.0262976\pi\)
−0.556845 + 0.830617i \(0.687988\pi\)
\(230\) 0.585077 + 0.133540i 0.0385788 + 0.00880537i
\(231\) 0 0
\(232\) 10.9890 11.8474i 0.721465 0.777820i
\(233\) −12.9851 −0.850684 −0.425342 0.905033i \(-0.639846\pi\)
−0.425342 + 0.905033i \(0.639846\pi\)
\(234\) 0 0
\(235\) 0.0641504 + 0.133210i 0.00418471 + 0.00868964i
\(236\) 1.00781 + 0.485336i 0.0656029 + 0.0315927i
\(237\) 0 0
\(238\) 1.65720 + 7.26068i 0.107420 + 0.470640i
\(239\) 0.229801 0.110667i 0.0148646 0.00715842i −0.426437 0.904517i \(-0.640231\pi\)
0.441301 + 0.897359i \(0.354517\pi\)
\(240\) 0 0
\(241\) −5.23484 + 6.56429i −0.337206 + 0.422843i −0.921306 0.388839i \(-0.872876\pi\)
0.584100 + 0.811682i \(0.301448\pi\)
\(242\) 5.88141 12.2129i 0.378072 0.785074i
\(243\) 0 0
\(244\) 2.69246i 0.172367i
\(245\) 1.17568 + 1.47426i 0.0751115 + 0.0941869i
\(246\) 0 0
\(247\) −19.6300 + 4.48043i −1.24903 + 0.285083i
\(248\) −8.44851 10.5941i −0.536481 0.672726i
\(249\) 0 0
\(250\) −3.28466 + 2.61943i −0.207740 + 0.165667i
\(251\) 8.09013 16.7993i 0.510644 1.06036i −0.473136 0.880989i \(-0.656878\pi\)
0.983781 0.179375i \(-0.0574075\pi\)
\(252\) 0 0
\(253\) −0.848739 0.676846i −0.0533597 0.0425530i
\(254\) −17.9094 + 8.62471i −1.12374 + 0.541163i
\(255\) 0 0
\(256\) 1.58617 6.94947i 0.0991357 0.434342i
\(257\) 22.1806 + 10.6816i 1.38359 + 0.666301i 0.969762 0.244054i \(-0.0784775\pi\)
0.413827 + 0.910355i \(0.364192\pi\)
\(258\) 0 0
\(259\) 1.92764 + 0.439971i 0.119778 + 0.0273384i
\(260\) 0.477572 0.0296177
\(261\) 0 0
\(262\) 11.3841 0.703310
\(263\) −9.91282 2.26254i −0.611251 0.139514i −0.0943210 0.995542i \(-0.530068\pi\)
−0.516930 + 0.856028i \(0.672925\pi\)
\(264\) 0 0
\(265\) 2.59396 + 1.24918i 0.159345 + 0.0767367i
\(266\) −1.33827 + 5.86336i −0.0820548 + 0.359505i
\(267\) 0 0
\(268\) −4.18584 + 2.01580i −0.255691 + 0.123134i
\(269\) −0.522286 0.416509i −0.0318444 0.0253950i 0.607438 0.794367i \(-0.292197\pi\)
−0.639283 + 0.768972i \(0.720769\pi\)
\(270\) 0 0
\(271\) −4.03127 + 8.37102i −0.244882 + 0.508504i −0.986791 0.161997i \(-0.948206\pi\)
0.741909 + 0.670501i \(0.233921\pi\)
\(272\) −13.3660 + 10.6590i −0.810432 + 0.646298i
\(273\) 0 0
\(274\) 18.9169 + 23.7211i 1.14281 + 1.43304i
\(275\) 3.66477 0.836459i 0.220994 0.0504404i
\(276\) 0 0
\(277\) −9.19224 11.5267i −0.552308 0.692572i 0.424807 0.905284i \(-0.360342\pi\)
−0.977115 + 0.212712i \(0.931770\pi\)
\(278\) 17.6169i 1.05659i
\(279\) 0 0
\(280\) 0.468520 0.972891i 0.0279994 0.0581414i
\(281\) 13.4220 16.8307i 0.800690 1.00403i −0.199021 0.979995i \(-0.563776\pi\)
0.999711 0.0240385i \(-0.00765244\pi\)
\(282\) 0 0
\(283\) 9.29893 4.47813i 0.552764 0.266197i −0.136583 0.990629i \(-0.543612\pi\)
0.689347 + 0.724431i \(0.257898\pi\)
\(284\) −1.01880 4.46363i −0.0604544 0.264868i
\(285\) 0 0
\(286\) 4.33527 + 2.08776i 0.256350 + 0.123452i
\(287\) −0.643229 1.33568i −0.0379686 0.0788427i
\(288\) 0 0
\(289\) −9.86239 −0.580141
\(290\) 1.98058 + 1.14304i 0.116304 + 0.0671216i
\(291\) 0 0
\(292\) 4.06638 + 0.928124i 0.237967 + 0.0543144i
\(293\) 10.9372 + 22.7113i 0.638958 + 1.32681i 0.929101 + 0.369826i \(0.120583\pi\)
−0.290143 + 0.956983i \(0.593703\pi\)
\(294\) 0 0
\(295\) −0.266643 + 1.16824i −0.0155246 + 0.0680175i
\(296\) 1.19639 + 5.24171i 0.0695385 + 0.304668i
\(297\) 0 0
\(298\) −1.35092 1.07732i −0.0782566 0.0624075i
\(299\) −4.23893 + 5.31545i −0.245144 + 0.307401i
\(300\) 0 0
\(301\) 6.21973 4.96007i 0.358499 0.285894i
\(302\) 18.7121i 1.07676i
\(303\) 0 0
\(304\) −13.4595 + 3.07205i −0.771956 + 0.176194i
\(305\) 2.81198 0.641816i 0.161013 0.0367503i
\(306\) 0 0
\(307\) 17.7845i 1.01502i −0.861647 0.507508i \(-0.830567\pi\)
0.861647 0.507508i \(-0.169433\pi\)
\(308\) −0.201743 + 0.160884i −0.0114953 + 0.00916723i
\(309\) 0 0
\(310\) 1.19558 1.49921i 0.0679045 0.0851496i
\(311\) −6.56620 5.23637i −0.372335 0.296927i 0.419388 0.907807i \(-0.362245\pi\)
−0.791724 + 0.610880i \(0.790816\pi\)
\(312\) 0 0
\(313\) 0.467343 + 2.04756i 0.0264158 + 0.115735i 0.986417 0.164261i \(-0.0525239\pi\)
−0.960001 + 0.279996i \(0.909667\pi\)
\(314\) −3.82276 + 16.7486i −0.215731 + 0.945179i
\(315\) 0 0
\(316\) 0.770877 + 1.60074i 0.0433652 + 0.0900489i
\(317\) −4.90180 1.11880i −0.275312 0.0628382i 0.0826355 0.996580i \(-0.473666\pi\)
−0.357948 + 0.933742i \(0.616523\pi\)
\(318\) 0 0
\(319\) −2.33079 3.41739i −0.130499 0.191337i
\(320\) 2.87587 0.160766
\(321\) 0 0
\(322\) 0.881101 + 1.82963i 0.0491018 + 0.101961i
\(323\) −19.5445 9.41212i −1.08748 0.523704i
\(324\) 0 0
\(325\) −5.23855 22.9516i −0.290582 1.27312i
\(326\) −3.53221 + 1.70102i −0.195631 + 0.0942108i
\(327\) 0 0
\(328\) 2.51345 3.15176i 0.138782 0.174027i
\(329\) −0.217076 + 0.450762i −0.0119678 + 0.0248513i
\(330\) 0 0
\(331\) 3.80922i 0.209374i −0.994505 0.104687i \(-0.966616\pi\)
0.994505 0.104687i \(-0.0333840\pi\)
\(332\) −2.41560 3.02907i −0.132574 0.166242i
\(333\) 0 0
\(334\) −1.74498 + 0.398281i −0.0954813 + 0.0217930i
\(335\) −3.10308 3.89113i −0.169539 0.212595i
\(336\) 0 0
\(337\) −1.18125 + 0.942012i −0.0643466 + 0.0513147i −0.655135 0.755512i \(-0.727388\pi\)
0.590788 + 0.806827i \(0.298817\pi\)
\(338\) 5.73041 11.8993i 0.311693 0.647237i
\(339\) 0 0
\(340\) 0.402270 + 0.320799i 0.0218161 + 0.0173978i
\(341\) −3.12522 + 1.50503i −0.169240 + 0.0815017i
\(342\) 0 0
\(343\) −3.13872 + 13.7516i −0.169475 + 0.742518i
\(344\) 19.4902 + 9.38598i 1.05084 + 0.506058i
\(345\) 0 0
\(346\) −16.8661 3.84958i −0.906729 0.206955i
\(347\) 23.3601 1.25404 0.627019 0.779004i \(-0.284275\pi\)
0.627019 + 0.779004i \(0.284275\pi\)
\(348\) 0 0
\(349\) −15.0240 −0.804216 −0.402108 0.915592i \(-0.631722\pi\)
−0.402108 + 0.915592i \(0.631722\pi\)
\(350\) −6.85548 1.56472i −0.366441 0.0836377i
\(351\) 0 0
\(352\) −1.18085 0.568668i −0.0629396 0.0303101i
\(353\) −3.57377 + 15.6577i −0.190213 + 0.833377i 0.786288 + 0.617861i \(0.212000\pi\)
−0.976500 + 0.215516i \(0.930857\pi\)
\(354\) 0 0
\(355\) 4.41892 2.12804i 0.234532 0.112945i
\(356\) −1.97244 1.57297i −0.104539 0.0833671i
\(357\) 0 0
\(358\) 3.47690 7.21986i 0.183760 0.381581i
\(359\) 20.7505 16.5480i 1.09517 0.873370i 0.102562 0.994727i \(-0.467296\pi\)
0.992609 + 0.121357i \(0.0387246\pi\)
\(360\) 0 0
\(361\) 0.924048 + 1.15872i 0.0486341 + 0.0609852i
\(362\) 30.6108 6.98672i 1.60887 0.367214i
\(363\) 0 0
\(364\) 1.00758 + 1.26347i 0.0528116 + 0.0662236i
\(365\) 4.46812i 0.233872i
\(366\) 0 0
\(367\) 7.37679 15.3181i 0.385065 0.799597i −0.614874 0.788625i \(-0.710793\pi\)
0.999940 0.0109716i \(-0.00349242\pi\)
\(368\) −2.90646 + 3.64459i −0.151510 + 0.189987i
\(369\) 0 0
\(370\) −0.685504 + 0.330121i −0.0356377 + 0.0171622i
\(371\) 2.16788 + 9.49811i 0.112551 + 0.493117i
\(372\) 0 0
\(373\) 10.5705 + 5.09050i 0.547322 + 0.263576i 0.687046 0.726614i \(-0.258907\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(374\) 2.24929 + 4.67070i 0.116308 + 0.241516i
\(375\) 0 0
\(376\) −1.36046 −0.0701604
\(377\) −21.4023 + 14.5972i −1.10228 + 0.751794i
\(378\) 0 0
\(379\) −7.51780 1.71589i −0.386163 0.0881392i 0.0250318 0.999687i \(-0.492031\pi\)
−0.411195 + 0.911547i \(0.634888\pi\)
\(380\) 0.180280 + 0.374355i 0.00924815 + 0.0192040i
\(381\) 0 0
\(382\) 1.49388 6.54511i 0.0764335 0.334877i
\(383\) 3.92927 + 17.2153i 0.200776 + 0.879659i 0.970466 + 0.241240i \(0.0775541\pi\)
−0.769689 + 0.638419i \(0.779589\pi\)
\(384\) 0 0
\(385\) −0.216116 0.172347i −0.0110143 0.00878361i
\(386\) 2.25210 2.82404i 0.114629 0.143740i
\(387\) 0 0
\(388\) 0.367933 0.293417i 0.0186790 0.0148960i
\(389\) 17.4066i 0.882550i −0.897372 0.441275i \(-0.854526\pi\)
0.897372 0.441275i \(-0.145474\pi\)
\(390\) 0 0
\(391\) −7.14110 + 1.62991i −0.361141 + 0.0824281i
\(392\) −16.9158 + 3.86092i −0.854377 + 0.195006i
\(393\) 0 0
\(394\) 32.1493i 1.61966i
\(395\) −1.48804 + 1.18667i −0.0748715 + 0.0597080i
\(396\) 0 0
\(397\) 5.44605 6.82914i 0.273330 0.342744i −0.626154 0.779700i \(-0.715372\pi\)
0.899483 + 0.436955i \(0.143943\pi\)
\(398\) −5.35212 4.26817i −0.268278 0.213944i
\(399\) 0 0
\(400\) −3.59186 15.7370i −0.179593 0.786849i
\(401\) 2.21564 9.70733i 0.110644 0.484761i −0.888996 0.457915i \(-0.848596\pi\)
0.999640 0.0268462i \(-0.00854643\pi\)
\(402\) 0 0
\(403\) 9.42562 + 19.5725i 0.469524 + 0.974976i
\(404\) 4.79671 + 1.09482i 0.238645 + 0.0544693i
\(405\) 0 0
\(406\) 1.15460 + 7.65142i 0.0573016 + 0.379734i
\(407\) 1.37632 0.0682218
\(408\) 0 0
\(409\) −8.84673 18.3704i −0.437443 0.908359i −0.996838 0.0794584i \(-0.974681\pi\)
0.559395 0.828901i \(-0.311033\pi\)
\(410\) 0.513984 + 0.247522i 0.0253839 + 0.0122242i
\(411\) 0 0
\(412\) 0.741871 + 3.25035i 0.0365494 + 0.160133i
\(413\) −3.65326 + 1.75932i −0.179765 + 0.0865704i
\(414\) 0 0
\(415\) 2.58771 3.24489i 0.127026 0.159285i
\(416\) −3.56143 + 7.39540i −0.174614 + 0.362589i
\(417\) 0 0
\(418\) 4.18641i 0.204764i
\(419\) 22.7123 + 28.4803i 1.10957 + 1.39135i 0.911567 + 0.411153i \(0.134874\pi\)
0.198002 + 0.980202i \(0.436555\pi\)
\(420\) 0 0
\(421\) 19.3547 4.41759i 0.943292 0.215300i 0.276897 0.960900i \(-0.410694\pi\)
0.666394 + 0.745599i \(0.267837\pi\)
\(422\) −19.6493 24.6394i −0.956511 1.19943i
\(423\) 0 0
\(424\) −20.7122 + 16.5174i −1.00587 + 0.802156i
\(425\) 11.0047 22.8515i 0.533807 1.10846i
\(426\) 0 0
\(427\) 7.63071 + 6.08528i 0.369276 + 0.294488i
\(428\) −3.43100 + 1.65228i −0.165844 + 0.0798660i
\(429\) 0 0
\(430\) −0.681203 + 2.98455i −0.0328505 + 0.143928i
\(431\) −32.2188 15.5158i −1.55193 0.747369i −0.555475 0.831533i \(-0.687464\pi\)
−0.996452 + 0.0841645i \(0.973178\pi\)
\(432\) 0 0
\(433\) 36.6041 + 8.35464i 1.75908 + 0.401498i 0.975536 0.219839i \(-0.0705532\pi\)
0.783543 + 0.621337i \(0.213410\pi\)
\(434\) 6.48877 0.311471
\(435\) 0 0
\(436\) −2.67952 −0.128326
\(437\) −5.76679 1.31623i −0.275863 0.0629639i
\(438\) 0 0
\(439\) 6.21349 + 2.99226i 0.296554 + 0.142813i 0.576244 0.817277i \(-0.304518\pi\)
−0.279691 + 0.960090i \(0.590232\pi\)
\(440\) 0.167260 0.732815i 0.00797382 0.0349356i
\(441\) 0 0
\(442\) 29.2515 14.0868i 1.39135 0.670040i
\(443\) 10.8106 + 8.62118i 0.513628 + 0.409605i 0.845707 0.533647i \(-0.179179\pi\)
−0.332080 + 0.943251i \(0.607750\pi\)
\(444\) 0 0
\(445\) 1.17261 2.43495i 0.0555870 0.115428i
\(446\) −1.23625 + 0.985875i −0.0585381 + 0.0466826i
\(447\) 0 0
\(448\) 6.06751 + 7.60842i 0.286663 + 0.359464i
\(449\) −19.5253 + 4.45651i −0.921454 + 0.210316i −0.656833 0.754036i \(-0.728104\pi\)
−0.264622 + 0.964352i \(0.585247\pi\)
\(450\) 0 0
\(451\) −0.643413 0.806814i −0.0302971 0.0379914i
\(452\) 0.749317i 0.0352449i
\(453\) 0 0
\(454\) −9.02620 + 18.7431i −0.423621 + 0.879657i
\(455\) −1.07937 + 1.35349i −0.0506016 + 0.0634524i
\(456\) 0 0
\(457\) −22.0357 + 10.6119i −1.03079 + 0.496402i −0.871276 0.490794i \(-0.836707\pi\)
−0.159513 + 0.987196i \(0.550992\pi\)
\(458\) −4.44401 19.4705i −0.207655 0.909796i
\(459\) 0 0
\(460\) 0.126404 + 0.0608731i 0.00589363 + 0.00283822i
\(461\) −9.66512 20.0698i −0.450150 0.934746i −0.995339 0.0964329i \(-0.969257\pi\)
0.545190 0.838313i \(-0.316458\pi\)
\(462\) 0 0
\(463\) −27.5102 −1.27851 −0.639254 0.768996i \(-0.720757\pi\)
−0.639254 + 0.768996i \(0.720757\pi\)
\(464\) −14.6747 + 10.0087i −0.681257 + 0.464643i
\(465\) 0 0
\(466\) 16.4846 + 3.76250i 0.763634 + 0.174294i
\(467\) −10.3029 21.3941i −0.476760 0.990002i −0.991187 0.132468i \(-0.957710\pi\)
0.514428 0.857534i \(-0.328004\pi\)
\(468\) 0 0
\(469\) 3.74754 16.4190i 0.173045 0.758160i
\(470\) −0.0428407 0.187697i −0.00197609 0.00865783i
\(471\) 0 0
\(472\) −8.62050 6.87462i −0.396791 0.316430i
\(473\) 3.45267 4.32951i 0.158754 0.199071i
\(474\) 0 0
\(475\) 16.0136 12.7704i 0.734753 0.585946i
\(476\) 1.74107i 0.0798018i
\(477\) 0 0
\(478\) −0.323798 + 0.0739049i −0.0148102 + 0.00338033i
\(479\) −25.5186 + 5.82446i −1.16598 + 0.266126i −0.761341 0.648352i \(-0.775459\pi\)
−0.404635 + 0.914478i \(0.632601\pi\)
\(480\) 0 0
\(481\) 8.61959i 0.393020i
\(482\) 8.54765 6.81652i 0.389335 0.310484i
\(483\) 0 0
\(484\) 1.97583 2.47761i 0.0898104 0.112619i
\(485\) 0.394148 + 0.314322i 0.0178973 + 0.0142726i
\(486\) 0 0
\(487\) 3.63049 + 15.9062i 0.164513 + 0.720780i 0.988128 + 0.153631i \(0.0490966\pi\)
−0.823615 + 0.567149i \(0.808046\pi\)
\(488\) −5.90569 + 25.8745i −0.267338 + 1.17128i
\(489\) 0 0
\(490\) −1.06535 2.21223i −0.0481277 0.0999382i
\(491\) 32.0763 + 7.32121i 1.44758 + 0.330402i 0.872870 0.487952i \(-0.162256\pi\)
0.574714 + 0.818354i \(0.305113\pi\)
\(492\) 0 0
\(493\) −27.8331 2.08104i −1.25354 0.0937254i
\(494\) 26.2185 1.17963
\(495\) 0 0
\(496\) 6.46277 + 13.4201i 0.290187 + 0.602580i
\(497\) 14.9530 + 7.20098i 0.670733 + 0.323008i
\(498\) 0 0
\(499\) −4.93194 21.6082i −0.220784 0.967317i −0.956890 0.290451i \(-0.906195\pi\)
0.736106 0.676866i \(-0.236662\pi\)
\(500\) −0.884908 + 0.426149i −0.0395743 + 0.0190580i
\(501\) 0 0
\(502\) −15.1381 + 18.9825i −0.675645 + 0.847233i
\(503\) 17.2581 35.8369i 0.769503 1.59789i −0.0317009 0.999497i \(-0.510092\pi\)
0.801204 0.598392i \(-0.204193\pi\)
\(504\) 0 0
\(505\) 5.27061i 0.234539i
\(506\) 0.881352 + 1.10518i 0.0391809 + 0.0491313i
\(507\) 0 0
\(508\) −4.53060 + 1.03408i −0.201013 + 0.0458798i
\(509\) 6.35541 + 7.96943i 0.281699 + 0.353239i 0.902470 0.430753i \(-0.141752\pi\)
−0.620771 + 0.783992i \(0.713180\pi\)
\(510\) 0 0
\(511\) −11.8209 + 9.42685i −0.522926 + 0.417019i
\(512\) −11.0309 + 22.9058i −0.487500 + 1.01230i
\(513\) 0 0
\(514\) −25.0632 19.9872i −1.10549 0.881599i
\(515\) −3.21779 + 1.54960i −0.141793 + 0.0682837i
\(516\) 0 0
\(517\) −0.0774955 + 0.339530i −0.00340825 + 0.0149325i
\(518\) −2.31965 1.11708i −0.101919 0.0490818i
\(519\) 0 0
\(520\) −4.58945 1.04751i −0.201261 0.0459365i
\(521\) 7.09229 0.310719 0.155359 0.987858i \(-0.450346\pi\)
0.155359 + 0.987858i \(0.450346\pi\)
\(522\) 0 0
\(523\) 10.9937 0.480723 0.240361 0.970683i \(-0.422734\pi\)
0.240361 + 0.970683i \(0.422734\pi\)
\(524\) 2.59467 + 0.592216i 0.113349 + 0.0258711i
\(525\) 0 0
\(526\) 11.9287 + 5.74457i 0.520117 + 0.250475i
\(527\) −5.20803 + 22.8179i −0.226865 + 0.993961i
\(528\) 0 0
\(529\) 18.9228 9.11274i 0.822730 0.396206i
\(530\) −2.93106 2.33745i −0.127317 0.101532i
\(531\) 0 0
\(532\) −0.610041 + 1.26676i −0.0264486 + 0.0549211i
\(533\) −5.05289 + 4.02954i −0.218865 + 0.174539i
\(534\) 0 0
\(535\) −2.54349 3.18943i −0.109965 0.137891i
\(536\) 44.6473 10.1905i 1.92847 0.440161i
\(537\) 0 0
\(538\) 0.542356 + 0.680093i 0.0233826 + 0.0293209i
\(539\) 4.44161i 0.191314i
\(540\) 0 0
\(541\) −2.09471 + 4.34971i −0.0900586 + 0.187009i −0.941133 0.338037i \(-0.890237\pi\)
0.851074 + 0.525045i \(0.175952\pi\)
\(542\) 7.54323 9.45892i 0.324010 0.406295i
\(543\) 0 0
\(544\) −7.96759 + 3.83699i −0.341608 + 0.164510i
\(545\) −0.638731 2.79847i −0.0273602 0.119873i
\(546\) 0 0
\(547\) 30.9219 + 14.8912i 1.32212 + 0.636701i 0.955864 0.293811i \(-0.0949236\pi\)
0.366261 + 0.930512i \(0.380638\pi\)
\(548\) 3.07756 + 6.39062i 0.131467 + 0.272994i
\(549\) 0 0
\(550\) −4.89478 −0.208714
\(551\) −19.5215 11.2663i −0.831645 0.479962i
\(552\) 0 0
\(553\) −6.27894 1.43313i −0.267008 0.0609428i
\(554\) 8.32961 + 17.2966i 0.353891 + 0.734862i
\(555\) 0 0
\(556\) 0.916459 4.01527i 0.0388665 0.170285i
\(557\) 2.97941 + 13.0536i 0.126242 + 0.553101i 0.998003 + 0.0631697i \(0.0201209\pi\)
−0.871761 + 0.489931i \(0.837022\pi\)
\(558\) 0 0
\(559\) −27.1147 21.6233i −1.14683 0.914568i
\(560\) −0.740080 + 0.928031i −0.0312741 + 0.0392165i
\(561\) 0 0
\(562\) −21.9160 + 17.4774i −0.924470 + 0.737240i
\(563\) 1.89811i 0.0799960i 0.999200 + 0.0399980i \(0.0127352\pi\)
−0.999200 + 0.0399980i \(0.987265\pi\)
\(564\) 0 0
\(565\) 0.782578 0.178618i 0.0329233 0.00751453i
\(566\) −13.1025 + 2.99057i −0.550741 + 0.125703i
\(567\) 0 0
\(568\) 45.1301i 1.89362i
\(569\) 8.72457 6.95761i 0.365753 0.291678i −0.423317 0.905982i \(-0.639134\pi\)
0.789070 + 0.614303i \(0.210563\pi\)
\(570\) 0 0
\(571\) −8.23671 + 10.3285i −0.344696 + 0.432235i −0.923716 0.383079i \(-0.874864\pi\)
0.579020 + 0.815313i \(0.303435\pi\)
\(572\) 0.879491 + 0.701371i 0.0367734 + 0.0293258i
\(573\) 0 0
\(574\) 0.429559 + 1.88202i 0.0179294 + 0.0785540i
\(575\) 1.53895 6.74258i 0.0641786 0.281185i
\(576\) 0 0
\(577\) 6.01524 + 12.4908i 0.250418 + 0.519998i 0.987848 0.155426i \(-0.0496750\pi\)
−0.737430 + 0.675424i \(0.763961\pi\)
\(578\) 12.5203 + 2.85767i 0.520775 + 0.118864i
\(579\) 0 0
\(580\) 0.391953 + 0.363555i 0.0162750 + 0.0150958i
\(581\) 14.0442 0.582653
\(582\) 0 0
\(583\) 2.94243 + 6.11001i 0.121863 + 0.253051i
\(584\) −37.0420 17.8385i −1.53281 0.738163i
\(585\) 0 0
\(586\) −7.30403 32.0011i −0.301727 1.32195i
\(587\) −25.0371 + 12.0572i −1.03339 + 0.497655i −0.872139 0.489258i \(-0.837268\pi\)
−0.161253 + 0.986913i \(0.551553\pi\)
\(588\) 0 0
\(589\) −11.7842 + 14.7769i −0.485560 + 0.608873i
\(590\) 0.677005 1.40582i 0.0278719 0.0578765i
\(591\) 0 0
\(592\) 5.91011i 0.242904i
\(593\) −5.03568 6.31455i −0.206791 0.259307i 0.667611 0.744511i \(-0.267317\pi\)
−0.874401 + 0.485203i \(0.838746\pi\)
\(594\) 0 0
\(595\) −1.81835 + 0.415028i −0.0745453 + 0.0170145i
\(596\) −0.251859 0.315821i −0.0103165 0.0129365i
\(597\) 0 0
\(598\) 6.92149 5.51970i 0.283041 0.225717i
\(599\) −8.35658 + 17.3526i −0.341440 + 0.709008i −0.999015 0.0443814i \(-0.985868\pi\)
0.657574 + 0.753390i \(0.271583\pi\)
\(600\) 0 0
\(601\) 17.3000 + 13.7963i 0.705681 + 0.562762i 0.909226 0.416304i \(-0.136675\pi\)
−0.203544 + 0.979066i \(0.565246\pi\)
\(602\) −9.33313 + 4.49460i −0.380390 + 0.183186i
\(603\) 0 0
\(604\) 0.973432 4.26488i 0.0396084 0.173536i
\(605\) 3.05858 + 1.47293i 0.124349 + 0.0598833i
\(606\) 0 0
\(607\) 11.5672 + 2.64014i 0.469499 + 0.107160i 0.450723 0.892664i \(-0.351166\pi\)
0.0187755 + 0.999824i \(0.494023\pi\)
\(608\) −7.14145 −0.289624
\(609\) 0 0
\(610\) −3.75577 −0.152067
\(611\) 2.12640 + 0.485336i 0.0860248 + 0.0196346i
\(612\) 0 0
\(613\) 30.4811 + 14.6789i 1.23112 + 0.592876i 0.932387 0.361461i \(-0.117722\pi\)
0.298733 + 0.954337i \(0.403436\pi\)
\(614\) −5.15314 + 22.5774i −0.207964 + 0.911150i
\(615\) 0 0
\(616\) 2.29163 1.10359i 0.0923323 0.0444649i
\(617\) −1.32047 1.05304i −0.0531601 0.0423938i 0.596549 0.802576i \(-0.296538\pi\)
−0.649709 + 0.760183i \(0.725109\pi\)
\(618\) 0 0
\(619\) −6.73642 + 13.9883i −0.270759 + 0.562238i −0.991369 0.131104i \(-0.958148\pi\)
0.720609 + 0.693341i \(0.243862\pi\)
\(620\) 0.350489 0.279506i 0.0140760 0.0112252i
\(621\) 0 0
\(622\) 6.81851 + 8.55014i 0.273397 + 0.342830i
\(623\) 8.91589 2.03499i 0.357208 0.0815303i
\(624\) 0 0
\(625\) 14.5997 + 18.3075i 0.583988 + 0.732298i
\(626\) 2.73479i 0.109304i
\(627\) 0 0
\(628\) −1.74257 + 3.61849i −0.0695363 + 0.144394i
\(629\) 5.79004 7.26048i 0.230864 0.289494i
\(630\) 0 0
\(631\) −16.5425 + 7.96642i −0.658545 + 0.317138i −0.733142 0.680075i \(-0.761947\pi\)
0.0745977 + 0.997214i \(0.476233\pi\)
\(632\) −3.89702 17.0740i −0.155015 0.679166i
\(633\) 0 0
\(634\) 5.89864 + 2.84064i 0.234265 + 0.112816i
\(635\) −2.15996 4.48521i −0.0857155 0.177990i
\(636\) 0 0
\(637\) 27.8167 1.10214
\(638\) 1.96873 + 5.01373i 0.0779426 + 0.198495i
\(639\) 0 0
\(640\) −2.56597 0.585665i −0.101429 0.0231504i
\(641\) −2.23437 4.63971i −0.0882522 0.183258i 0.852171 0.523263i \(-0.175285\pi\)
−0.940424 + 0.340005i \(0.889571\pi\)
\(642\) 0 0
\(643\) 6.29062 27.5610i 0.248078 1.08690i −0.685372 0.728193i \(-0.740361\pi\)
0.933450 0.358707i \(-0.116782\pi\)
\(644\) 0.105642 + 0.462846i 0.00416286 + 0.0182387i
\(645\) 0 0
\(646\) 22.0844 + 17.6118i 0.868901 + 0.692925i
\(647\) −17.6767 + 22.1659i −0.694943 + 0.871431i −0.996634 0.0819746i \(-0.973877\pi\)
0.301691 + 0.953406i \(0.402449\pi\)
\(648\) 0 0
\(649\) −2.20674 + 1.75982i −0.0866223 + 0.0690790i
\(650\) 30.6549i 1.20238i
\(651\) 0 0
\(652\) −0.893553 + 0.203948i −0.0349942 + 0.00798721i
\(653\) −39.3129 + 8.97291i −1.53843 + 0.351137i −0.905932 0.423424i \(-0.860828\pi\)
−0.632500 + 0.774561i \(0.717971\pi\)
\(654\) 0 0
\(655\) 2.85101i 0.111398i
\(656\) −3.46456 + 2.76290i −0.135268 + 0.107873i
\(657\) 0 0
\(658\) 0.406188 0.509343i 0.0158348 0.0198563i
\(659\) 38.6554 + 30.8267i 1.50580 + 1.20084i 0.920941 + 0.389701i \(0.127422\pi\)
0.584859 + 0.811135i \(0.301150\pi\)
\(660\) 0 0
\(661\) −3.53346 15.4811i −0.137436 0.602146i −0.995993 0.0894282i \(-0.971496\pi\)
0.858557 0.512717i \(-0.171361\pi\)
\(662\) −1.10374 + 4.83579i −0.0428980 + 0.187949i
\(663\) 0 0
\(664\) 16.5699 + 34.4077i 0.643036 + 1.33528i
\(665\) −1.46841 0.335155i −0.0569426 0.0129968i
\(666\) 0 0
\(667\) −7.52541 + 1.13558i −0.291385 + 0.0439699i
\(668\) −0.418437 −0.0161898
\(669\) 0 0
\(670\) 2.81187 + 5.83892i 0.108632 + 0.225577i
\(671\) 6.12109 + 2.94776i 0.236302 + 0.113797i
\(672\) 0 0
\(673\) −2.60304 11.4047i −0.100340 0.439617i −0.999995 0.00301712i \(-0.999040\pi\)
0.899656 0.436600i \(-0.143818\pi\)
\(674\) 1.77254 0.853611i 0.0682757 0.0328799i
\(675\) 0 0
\(676\) 1.92510 2.41400i 0.0740423 0.0928461i
\(677\) 8.46222 17.5720i 0.325230 0.675346i −0.672683 0.739931i \(-0.734858\pi\)
0.997912 + 0.0645849i \(0.0205723\pi\)
\(678\) 0 0
\(679\) 1.70592i 0.0654671i
\(680\) −3.16216 3.96522i −0.121263 0.152059i
\(681\) 0 0
\(682\) 4.40354 1.00508i 0.168620 0.0384865i
\(683\) −15.4166 19.3318i −0.589900 0.739711i 0.393866 0.919168i \(-0.371137\pi\)
−0.983766 + 0.179457i \(0.942566\pi\)
\(684\) 0 0
\(685\) −5.94068 + 4.73753i −0.226982 + 0.181012i
\(686\) 7.96919 16.5482i 0.304265 0.631813i
\(687\) 0 0
\(688\) −18.5915 14.8262i −0.708794 0.565244i
\(689\) 38.2656 18.4277i 1.45780 0.702041i
\(690\) 0 0
\(691\) 10.6279 46.5640i 0.404306 1.77138i −0.205324 0.978694i \(-0.565825\pi\)
0.609630 0.792686i \(-0.291318\pi\)
\(692\) −3.64388 1.75480i −0.138520 0.0667075i
\(693\) 0 0
\(694\) −29.6556 6.76870i −1.12571 0.256936i
\(695\) 4.41197 0.167355
\(696\) 0 0
\(697\) −6.96293 −0.263740
\(698\) 19.0729 + 4.35327i 0.721921 + 0.164774i
\(699\) 0 0
\(700\) −1.48111 0.713264i −0.0559806 0.0269588i
\(701\) 1.81198 7.93882i 0.0684377 0.299845i −0.929113 0.369797i \(-0.879427\pi\)
0.997550 + 0.0699516i \(0.0222845\pi\)
\(702\) 0 0
\(703\) 6.75665 3.25383i 0.254832 0.122721i
\(704\) 5.29617 + 4.22356i 0.199607 + 0.159181i
\(705\) 0 0
\(706\) 9.07379 18.8419i 0.341497 0.709125i
\(707\) −13.9440 + 11.1199i −0.524417 + 0.418208i
\(708\) 0 0
\(709\) 1.10726 + 1.38847i 0.0415842 + 0.0521449i 0.802189 0.597071i \(-0.203669\pi\)
−0.760605 + 0.649215i \(0.775097\pi\)
\(710\) −6.22641 + 1.42114i −0.233673 + 0.0533344i
\(711\) 0 0
\(712\) 15.5049 + 19.4425i 0.581071 + 0.728640i
\(713\) 6.38190i 0.239004i
\(714\) 0 0
\(715\) −0.522855 + 1.08572i −0.0195537 + 0.0406036i
\(716\) 1.16805 1.46468i 0.0436519 0.0547378i
\(717\) 0 0
\(718\) −31.1376 + 14.9951i −1.16204 + 0.559611i
\(719\) 6.25224 + 27.3929i 0.233169 + 1.02158i 0.946992 + 0.321256i \(0.104105\pi\)
−0.713823 + 0.700326i \(0.753038\pi\)
\(720\) 0 0
\(721\) −10.8885 5.24364i −0.405510 0.195283i
\(722\) −0.837332 1.73874i −0.0311623 0.0647091i
\(723\) 0 0
\(724\) 7.34031 0.272800
\(725\) 13.1727 22.8247i 0.489221 0.847689i
\(726\) 0 0
\(727\) −45.8409 10.4629i −1.70015 0.388047i −0.741121 0.671372i \(-0.765705\pi\)
−0.959024 + 0.283325i \(0.908563\pi\)
\(728\) −6.91152 14.3519i −0.256158 0.531918i
\(729\) 0 0
\(730\) 1.29466 5.67227i 0.0479175 0.209940i
\(731\) −8.31436 36.4276i −0.307518 1.34732i
\(732\) 0 0
\(733\) −24.3427 19.4127i −0.899119 0.717023i 0.0605475 0.998165i \(-0.480715\pi\)
−0.959666 + 0.281142i \(0.909287\pi\)
\(734\) −13.8033 + 17.3088i −0.509489 + 0.638879i
\(735\) 0 0
\(736\) −1.88529 + 1.50347i −0.0694927 + 0.0554186i
\(737\) 11.7231i 0.431826i
\(738\) 0 0
\(739\) 12.3734 2.82414i 0.455161 0.103888i 0.0112072 0.999937i \(-0.496433\pi\)
0.443954 + 0.896050i \(0.353575\pi\)
\(740\) −0.173414 + 0.0395806i −0.00637483 + 0.00145501i
\(741\) 0 0
\(742\) 12.6860i 0.465717i
\(743\) 10.7328 8.55909i 0.393747 0.314002i −0.406525 0.913639i \(-0.633260\pi\)
0.800272 + 0.599637i \(0.204688\pi\)
\(744\) 0 0
\(745\) 0.269803 0.338322i 0.00988482 0.0123952i
\(746\) −11.9443 9.52524i −0.437311 0.348744i
\(747\) 0 0
\(748\) 0.269684 + 1.18156i 0.00986061 + 0.0432022i
\(749\) 3.07173 13.4581i 0.112239 0.491750i
\(750\) 0 0
\(751\) −2.11829 4.39867i −0.0772973 0.160510i 0.858739 0.512414i \(-0.171249\pi\)
−0.936036 + 0.351904i \(0.885534\pi\)
\(752\) 1.45799 + 0.332776i 0.0531672 + 0.0121351i
\(753\) 0 0
\(754\) 31.3998 12.3297i 1.14351 0.449020i
\(755\) 4.68624 0.170550
\(756\) 0 0
\(757\) −8.84210 18.3608i −0.321372 0.667335i 0.676220 0.736700i \(-0.263617\pi\)
−0.997591 + 0.0693651i \(0.977903\pi\)
\(758\) 9.04664 + 4.35663i 0.328589 + 0.158240i
\(759\) 0 0
\(760\) −0.911368 3.99297i −0.0330588 0.144840i
\(761\) −32.2082 + 15.5107i −1.16755 + 0.562261i −0.914259 0.405130i \(-0.867226\pi\)
−0.253288 + 0.967391i \(0.581512\pi\)
\(762\) 0 0
\(763\) 6.05604 7.59403i 0.219243 0.274922i
\(764\) 0.680973 1.41405i 0.0246367 0.0511587i
\(765\) 0 0
\(766\) 22.9933i 0.830780i
\(767\) 11.0213 + 13.8203i 0.397958 + 0.499023i
\(768\) 0 0
\(769\) 22.6272 5.16452i 0.815959 0.186237i 0.205879 0.978577i \(-0.433995\pi\)
0.610080 + 0.792340i \(0.291137\pi\)
\(770\) 0.224421 + 0.281415i 0.00808756 + 0.0101415i
\(771\) 0 0
\(772\) 0.660210 0.526500i 0.0237615 0.0189492i
\(773\) 18.5344 38.4871i 0.666636 1.38428i −0.243470 0.969908i \(-0.578286\pi\)
0.910106 0.414375i \(-0.136000\pi\)
\(774\) 0 0
\(775\) −17.2773 13.7782i −0.620620 0.494928i
\(776\) −4.17942 + 2.01270i −0.150032 + 0.0722517i
\(777\) 0 0
\(778\) −5.04364 + 22.0977i −0.180823 + 0.792239i
\(779\) −5.06607 2.43969i −0.181511 0.0874110i
\(780\) 0 0
\(781\) 11.2631 + 2.57073i 0.403026 + 0.0919880i
\(782\) 9.53788 0.341074
\(783\) 0 0
\(784\) 19.0728 0.681172
\(785\) −4.19450 0.957368i −0.149708 0.0341699i
\(786\) 0 0
\(787\) −12.6203 6.07762i −0.449866 0.216644i 0.195212 0.980761i \(-0.437461\pi\)
−0.645077 + 0.764117i \(0.723175\pi\)
\(788\) 1.67245 7.32750i 0.0595787 0.261031i
\(789\) 0 0
\(790\) 2.23291 1.07531i 0.0794433 0.0382579i
\(791\) 2.12364 + 1.69354i 0.0755079 + 0.0602155i
\(792\) 0 0
\(793\) 18.4612 38.3350i 0.655575 1.36132i
\(794\) −8.89252 + 7.09155i −0.315584 + 0.251670i
\(795\) 0 0
\(796\) −0.997823 1.25123i −0.0353669 0.0443487i
\(797\) −8.94816 + 2.04236i −0.316960 + 0.0723441i −0.378041 0.925789i \(-0.623402\pi\)
0.0610812 + 0.998133i \(0.480545\pi\)
\(798\) 0 0
\(799\) 1.46510 + 1.83718i 0.0518315 + 0.0649946i
\(800\) 8.34984i 0.295211i
\(801\) 0 0
\(802\) −5.62549 + 11.6814i −0.198643 + 0.412486i
\(803\) −6.56197 + 8.22845i −0.231567 + 0.290376i
\(804\) 0 0
\(805\) −0.458209 + 0.220662i −0.0161497 + 0.00777731i
\(806\) −6.29458 27.5784i −0.221717 0.971407i
\(807\) 0 0
\(808\) −43.6949 21.0424i −1.53718 0.740268i
\(809\) 5.06054 + 10.5083i 0.177919 + 0.369453i 0.970788 0.239940i \(-0.0771277\pi\)
−0.792869 + 0.609392i \(0.791413\pi\)
\(810\) 0 0
\(811\) 10.2506 0.359946 0.179973 0.983672i \(-0.442399\pi\)
0.179973 + 0.983672i \(0.442399\pi\)
\(812\) −0.134881 + 1.80398i −0.00473341 + 0.0633074i
\(813\) 0 0
\(814\) −1.74724 0.398796i −0.0612407 0.0139778i
\(815\) −0.426002 0.884601i −0.0149222 0.0309862i
\(816\) 0 0
\(817\) 6.71426 29.4171i 0.234902 1.02917i
\(818\) 5.90799 + 25.8846i 0.206568 + 0.905034i
\(819\) 0 0
\(820\) 0.104271 + 0.0831536i 0.00364131 + 0.00290385i
\(821\) 14.2411 17.8578i 0.497019 0.623242i −0.468535 0.883445i \(-0.655218\pi\)
0.965554 + 0.260203i \(0.0837894\pi\)
\(822\) 0 0
\(823\) 0.386174 0.307963i 0.0134612 0.0107349i −0.616736 0.787170i \(-0.711545\pi\)
0.630197 + 0.776435i \(0.282974\pi\)
\(824\) 32.8630i 1.14484i
\(825\) 0 0
\(826\) 5.14758 1.17490i 0.179107 0.0408801i
\(827\) 51.0365 11.6488i 1.77471 0.405067i 0.795185 0.606367i \(-0.207374\pi\)
0.979530 + 0.201300i \(0.0645166\pi\)
\(828\) 0 0
\(829\) 39.7417i 1.38029i 0.723673 + 0.690143i \(0.242452\pi\)
−0.723673 + 0.690143i \(0.757548\pi\)
\(830\) −4.22531 + 3.36958i −0.146663 + 0.116960i
\(831\) 0 0
\(832\) 26.4512 33.1687i 0.917029 1.14992i
\(833\) 23.4307 + 18.6853i 0.811825 + 0.647409i
\(834\) 0 0
\(835\) −0.0997451 0.437012i −0.00345182 0.0151234i
\(836\) −0.217783 + 0.954170i −0.00753218 + 0.0330006i
\(837\) 0 0
\(838\) −20.5809 42.7367i −0.710955 1.47631i
\(839\) −31.1101 7.10068i −1.07404 0.245143i −0.351301 0.936263i \(-0.614260\pi\)
−0.722740 + 0.691120i \(0.757118\pi\)
\(840\) 0 0
\(841\) −28.6776 4.31248i −0.988881 0.148706i
\(842\) −25.8508 −0.890877
\(843\) 0 0
\(844\) −3.19670 6.63802i −0.110035 0.228490i
\(845\) 2.98005 + 1.43512i 0.102517 + 0.0493695i
\(846\) 0 0
\(847\) 2.55619 + 11.1994i 0.0878317 + 0.384816i
\(848\) 26.2372 12.6352i 0.900988 0.433893i
\(849\) 0 0
\(850\) −20.5918 + 25.8213i −0.706293 + 0.885663i
\(851\) 1.09869 2.28144i 0.0376625 0.0782069i
\(852\) 0 0
\(853\) 12.8451i 0.439806i 0.975522 + 0.219903i \(0.0705741\pi\)
−0.975522 + 0.219903i \(0.929426\pi\)
\(854\) −7.92392 9.93629i −0.271151 0.340013i
\(855\) 0 0
\(856\) 36.5959 8.35278i 1.25082 0.285492i
\(857\) −5.92373 7.42812i −0.202351 0.253740i 0.670294 0.742096i \(-0.266168\pi\)
−0.872644 + 0.488356i \(0.837597\pi\)
\(858\) 0 0
\(859\) −14.5414 + 11.5964i −0.496146 + 0.395663i −0.839344 0.543600i \(-0.817061\pi\)
0.343199 + 0.939263i \(0.388489\pi\)
\(860\) −0.310521 + 0.644803i −0.0105887 + 0.0219876i
\(861\) 0 0
\(862\) 36.4060 + 29.0328i 1.23999 + 0.988861i
\(863\) −43.7868 + 21.0866i −1.49052 + 0.717796i −0.989078 0.147396i \(-0.952911\pi\)
−0.501441 + 0.865192i \(0.667197\pi\)
\(864\) 0 0
\(865\) 0.964085 4.22393i 0.0327799 0.143618i
\(866\) −44.0480 21.2124i −1.49681 0.720826i
\(867\) 0 0
\(868\) 1.47893 + 0.337555i 0.0501980 + 0.0114574i
\(869\) −4.48313 −0.152080
\(870\) 0 0
\(871\) −73.4191 −2.48771
\(872\) 25.7501 + 5.87730i 0.872010 + 0.199031i
\(873\) 0 0
\(874\) 6.93954 + 3.34191i 0.234734 + 0.113042i
\(875\) 0.792248 3.47107i 0.0267829 0.117343i
\(876\) 0 0
\(877\) −11.3140 + 5.44854i −0.382047 + 0.183984i −0.615043 0.788493i \(-0.710861\pi\)
0.232996 + 0.972478i \(0.425147\pi\)
\(878\) −7.02099 5.59905i −0.236947 0.188959i
\(879\) 0 0
\(880\) −0.358501 + 0.744435i −0.0120851 + 0.0250949i
\(881\) 11.2267 8.95299i 0.378237 0.301634i −0.415856 0.909431i \(-0.636518\pi\)
0.794093 + 0.607797i \(0.207946\pi\)
\(882\) 0 0
\(883\) 15.4326 + 19.3518i 0.519347 + 0.651241i 0.970470 0.241221i \(-0.0775478\pi\)
−0.451123 + 0.892462i \(0.648976\pi\)
\(884\) 7.39985 1.68897i 0.248884 0.0568061i
\(885\) 0 0
\(886\) −11.2260 14.0770i −0.377146 0.472926i
\(887\) 17.0877i 0.573749i 0.957968 + 0.286875i \(0.0926163\pi\)
−0.957968 + 0.286875i \(0.907384\pi\)
\(888\) 0 0
\(889\) 7.30900 15.1773i 0.245136 0.509030i
\(890\) −2.19416 + 2.75139i −0.0735485 + 0.0922269i
\(891\) 0 0
\(892\) −0.333054 + 0.160390i −0.0111515 + 0.00537026i
\(893\) 0.422258 + 1.85003i 0.0141303 + 0.0619089i
\(894\) 0 0
\(895\) 1.80813 + 0.870750i 0.0604392 + 0.0291060i
\(896\) −3.86424 8.02417i −0.129095 0.268069i
\(897\) 0 0
\(898\) 26.0786 0.870253
\(899\) −7.16392 + 23.2389i −0.238930 + 0.775061i
\(900\) 0 0
\(901\) 44.6105 + 10.1820i 1.48619 + 0.339213i
\(902\) 0.583033 + 1.21068i 0.0194129 + 0.0403112i
\(903\) 0 0
\(904\) −1.64356 + 7.20091i −0.0546641 + 0.239499i
\(905\) 1.74975 + 7.66614i 0.0581635 + 0.254831i
\(906\) 0 0
\(907\) −4.05424 3.23315i −0.134619 0.107355i 0.553865 0.832606i \(-0.313152\pi\)
−0.688484 + 0.725251i \(0.741724\pi\)
\(908\) −3.03230 + 3.80239i −0.100631 + 0.126187i
\(909\) 0 0
\(910\) 1.76243 1.40549i 0.0584241 0.0465917i
\(911\) 18.0436i 0.597811i 0.954283 + 0.298905i \(0.0966215\pi\)
−0.954283 + 0.298905i \(0.903378\pi\)
\(912\) 0 0
\(913\) 9.53100 2.17539i 0.315430 0.0719949i
\(914\) 31.0492 7.08677i 1.02701 0.234409i
\(915\) 0 0
\(916\) 4.66891i 0.154265i
\(917\) −7.54265 + 6.01506i −0.249080 + 0.198635i
\(918\) 0 0
\(919\) −5.45496 + 6.84030i −0.179943 + 0.225641i −0.863620 0.504144i \(-0.831808\pi\)
0.683677 + 0.729785i \(0.260380\pi\)
\(920\) −1.08122 0.862246i −0.0356468 0.0284274i
\(921\) 0 0
\(922\) 6.45453 + 28.2791i 0.212568 + 0.931323i
\(923\) 16.0999 70.5382i 0.529934 2.32179i
\(924\) 0 0
\(925\) 3.80440 + 7.89992i 0.125088 + 0.259748i
\(926\) 34.9241 + 7.97121i 1.14768 + 0.261950i
\(927\) 0 0
\(928\) −8.55275 + 3.35838i −0.280758 + 0.110244i
\(929\) −42.8899 −1.40717 −0.703587 0.710609i \(-0.748419\pi\)
−0.703587 + 0.710609i \(0.748419\pi\)
\(930\) 0 0
\(931\) 10.5006 + 21.8047i 0.344144 + 0.714621i
\(932\) 3.56145 + 1.71510i 0.116659 + 0.0561801i
\(933\) 0 0
\(934\) 6.88042 + 30.1451i 0.225134 + 0.986377i
\(935\) −1.16972 + 0.563310i −0.0382541 + 0.0184222i
\(936\) 0 0
\(937\) −10.3965 + 13.0367i −0.339637 + 0.425892i −0.922092 0.386972i \(-0.873521\pi\)
0.582454 + 0.812863i \(0.302093\pi\)
\(938\) −9.51498 + 19.7581i −0.310675 + 0.645123i
\(939\) 0 0
\(940\) 0.0450088i 0.00146802i
\(941\) 10.3481 + 12.9761i 0.337337 + 0.423007i 0.921348 0.388738i \(-0.127089\pi\)
−0.584011 + 0.811746i \(0.698518\pi\)
\(942\) 0 0
\(943\) −1.85103 + 0.422485i −0.0602777 + 0.0137580i
\(944\) 7.55689 + 9.47604i 0.245956 + 0.308419i
\(945\) 0 0
\(946\) −5.63766 + 4.49588i −0.183296 + 0.146174i
\(947\) −19.5444 + 40.5843i −0.635107 + 1.31881i 0.296391 + 0.955067i \(0.404217\pi\)
−0.931498 + 0.363746i \(0.881498\pi\)
\(948\) 0 0
\(949\) 51.5329 + 41.0961i 1.67283 + 1.33404i
\(950\) −24.0295 + 11.5720i −0.779618 + 0.375444i
\(951\) 0 0
\(952\) 3.81889 16.7316i 0.123771 0.542275i
\(953\) 17.4621 + 8.40933i 0.565655 + 0.272405i 0.694779 0.719224i \(-0.255502\pi\)
−0.129124 + 0.991628i \(0.541217\pi\)
\(954\) 0 0
\(955\) 1.63915 + 0.374125i 0.0530417 + 0.0121064i
\(956\) −0.0776451 −0.00251122
\(957\) 0 0
\(958\) 34.0835 1.10119
\(959\) −25.0673 5.72145i −0.809465 0.184755i
\(960\) 0 0
\(961\) −9.55748 4.60264i −0.308306 0.148472i
\(962\) −2.49757 + 10.9426i −0.0805248 + 0.352802i
\(963\) 0 0
\(964\) 2.30279 1.10897i 0.0741680 0.0357174i
\(965\) 0.707249 + 0.564012i 0.0227671 + 0.0181562i
\(966\) 0 0
\(967\) −11.2078 + 23.2732i −0.360417 + 0.748414i −0.999790 0.0204826i \(-0.993480\pi\)
0.639373 + 0.768897i \(0.279194\pi\)
\(968\) −24.4221 + 19.4760i −0.784956 + 0.625981i
\(969\) 0 0
\(970\) −0.409293 0.513238i −0.0131416 0.0164791i
\(971\) −27.5064 + 6.27816i −0.882723 + 0.201476i −0.639774 0.768563i \(-0.720972\pi\)
−0.242949 + 0.970039i \(0.578115\pi\)
\(972\) 0 0
\(973\) 9.30836 + 11.6723i 0.298412 + 0.374197i
\(974\) 21.2449i 0.680729i
\(975\) 0 0
\(976\) 12.6581 26.2848i 0.405175 0.841355i
\(977\) −17.8073 + 22.3297i −0.569707 + 0.714390i −0.980319 0.197420i \(-0.936744\pi\)
0.410612 + 0.911810i \(0.365315\pi\)
\(978\) 0 0
\(979\) 5.73548 2.76206i 0.183307 0.0882758i
\(980\) −0.127733 0.559634i −0.00408027 0.0178768i
\(981\) 0 0
\(982\) −38.5995 18.5885i −1.23176 0.593184i
\(983\) 9.85199 + 20.4579i 0.314230 + 0.652505i 0.996939 0.0781854i \(-0.0249126\pi\)
−0.682709 + 0.730690i \(0.739198\pi\)
\(984\) 0 0
\(985\) 8.05143 0.256540
\(986\) 34.7310 + 10.7066i 1.10606 + 0.340969i
\(987\) 0 0
\(988\) 5.97574 + 1.36392i 0.190114 + 0.0433922i
\(989\) −4.42058 9.17943i −0.140566 0.291889i
\(990\) 0 0
\(991\) −10.4378 + 45.7310i −0.331568 + 1.45269i 0.484528 + 0.874776i \(0.338991\pi\)
−0.816096 + 0.577917i \(0.803866\pi\)
\(992\) 1.71453 + 7.51186i 0.0544364 + 0.238502i
\(993\) 0 0
\(994\) −16.8963 13.4743i −0.535917 0.427379i
\(995\) 1.06892 1.34038i 0.0338869 0.0424929i
\(996\) 0 0
\(997\) −28.3877 + 22.6385i −0.899048 + 0.716967i −0.959651 0.281195i \(-0.909269\pi\)
0.0606024 + 0.998162i \(0.480698\pi\)
\(998\) 28.8606i 0.913567i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.o.b.91.2 24
3.2 odd 2 87.2.i.a.4.3 24
29.14 odd 28 7569.2.a.bn.1.10 12
29.15 odd 28 7569.2.a.bt.1.3 12
29.22 even 14 inner 261.2.o.b.109.2 24
87.14 even 28 2523.2.a.v.1.3 12
87.44 even 28 2523.2.a.s.1.10 12
87.80 odd 14 87.2.i.a.22.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.4.3 24 3.2 odd 2
87.2.i.a.22.3 yes 24 87.80 odd 14
261.2.o.b.91.2 24 1.1 even 1 trivial
261.2.o.b.109.2 24 29.22 even 14 inner
2523.2.a.s.1.10 12 87.44 even 28
2523.2.a.v.1.3 12 87.14 even 28
7569.2.a.bn.1.10 12 29.14 odd 28
7569.2.a.bt.1.3 12 29.15 odd 28