Properties

Label 2548.2.a.r
Level 25482548
Weight 22
Character orbit 2548.a
Self dual yes
Analytic conductor 20.34620.346
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(1,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2548=227213 2548 = 2^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2548.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 20.345882435020.3458824350
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.39110656.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x610x44x3+20x2+16x+2 x^{6} - 10x^{4} - 4x^{3} + 20x^{2} + 16x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+β1)q3+(β32)q5+(β3β2+β1+1)q9+(β32β11)q11+q13+(β53β4β3++1)q15++(β58β4+β3+8)q99+O(q100) q + (\beta_{4} + \beta_1) q^{3} + (\beta_{3} - 2) q^{5} + ( - \beta_{3} - \beta_{2} + \beta_1 + 1) q^{9} + (\beta_{3} - 2 \beta_1 - 1) q^{11} + q^{13} + (\beta_{5} - 3 \beta_{4} - \beta_{3} + \cdots + 1) q^{15}+ \cdots + (\beta_{5} - 8 \beta_{4} + \beta_{3} + \cdots - 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q10q5+6q94q11+6q13+4q1516q1710q192q23+12q25+12q27+2q296q3128q33+16q378q41+6q4334q4530q47+52q99+O(q100) 6 q - 10 q^{5} + 6 q^{9} - 4 q^{11} + 6 q^{13} + 4 q^{15} - 16 q^{17} - 10 q^{19} - 2 q^{23} + 12 q^{25} + 12 q^{27} + 2 q^{29} - 6 q^{31} - 28 q^{33} + 16 q^{37} - 8 q^{41} + 6 q^{43} - 34 q^{45} - 30 q^{47}+ \cdots - 52 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x610x44x3+20x2+16x+2 x^{6} - 10x^{4} - 4x^{3} + 20x^{2} + 16x + 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (2ν5+3ν4+18ν314ν234ν11)/5 ( -2\nu^{5} + 3\nu^{4} + 18\nu^{3} - 14\nu^{2} - 34\nu - 11 ) / 5 Copy content Toggle raw display
β3\beta_{3}== (2ν5+3ν4+18ν319ν229ν+9)/5 ( -2\nu^{5} + 3\nu^{4} + 18\nu^{3} - 19\nu^{2} - 29\nu + 9 ) / 5 Copy content Toggle raw display
β4\beta_{4}== (3ν5+2ν4+27ν36ν246ν14)/5 ( -3\nu^{5} + 2\nu^{4} + 27\nu^{3} - 6\nu^{2} - 46\nu - 14 ) / 5 Copy content Toggle raw display
β5\beta_{5}== (4ν5+ν4+41ν3+2ν288ν27)/5 ( -4\nu^{5} + \nu^{4} + 41\nu^{3} + 2\nu^{2} - 88\nu - 27 ) / 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+β1+4 -\beta_{3} + \beta_{2} + \beta _1 + 4 Copy content Toggle raw display
ν3\nu^{3}== β52β4+β2+6β1+2 \beta_{5} - 2\beta_{4} + \beta_{2} + 6\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== 2β46β3+9β2+8β1+25 -2\beta_{4} - 6\beta_{3} + 9\beta_{2} + 8\beta _1 + 25 Copy content Toggle raw display
ν5\nu^{5}== 9β521β42β3+13β2+42β1+22 9\beta_{5} - 21\beta_{4} - 2\beta_{3} + 13\beta_{2} + 42\beta _1 + 22 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.30569
−0.156000
−2.47334
−0.759171
2.87591
1.81830
0 −2.71991 0 −3.85705 0 0 0 4.39789 0
1.2 0 −1.57021 0 0.599047 0 0 0 −0.534430 0
1.3 0 −1.05913 0 −4.09294 0 0 0 −1.87824 0
1.4 0 0.655042 0 0.738118 0 0 0 −2.57092 0
1.5 0 1.46169 0 −0.327782 0 0 0 −0.863457 0
1.6 0 3.23252 0 −3.05939 0 0 0 7.44916 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.a.r 6
7.b odd 2 1 2548.2.a.s yes 6
7.c even 3 2 2548.2.j.s 12
7.d odd 6 2 2548.2.j.r 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2548.2.a.r 6 1.a even 1 1 trivial
2548.2.a.s yes 6 7.b odd 2 1
2548.2.j.r 12 7.d odd 6 2
2548.2.j.s 12 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2548))S_{2}^{\mathrm{new}}(\Gamma_0(2548)):

T3612T344T33+28T32+8T314 T_{3}^{6} - 12T_{3}^{4} - 4T_{3}^{3} + 28T_{3}^{2} + 8T_{3} - 14 Copy content Toggle raw display
T56+10T55+29T54+8T5347T52+6T5+7 T_{5}^{6} + 10T_{5}^{5} + 29T_{5}^{4} + 8T_{5}^{3} - 47T_{5}^{2} + 6T_{5} + 7 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T612T4+14 T^{6} - 12 T^{4} + \cdots - 14 Copy content Toggle raw display
55 T6+10T5++7 T^{6} + 10 T^{5} + \cdots + 7 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T6+4T5+82 T^{6} + 4 T^{5} + \cdots - 82 Copy content Toggle raw display
1313 (T1)6 (T - 1)^{6} Copy content Toggle raw display
1717 T6+16T5+254 T^{6} + 16 T^{5} + \cdots - 254 Copy content Toggle raw display
1919 T6+10T5++3647 T^{6} + 10 T^{5} + \cdots + 3647 Copy content Toggle raw display
2323 T6+2T5+4879 T^{6} + 2 T^{5} + \cdots - 4879 Copy content Toggle raw display
2929 T62T5++25 T^{6} - 2 T^{5} + \cdots + 25 Copy content Toggle raw display
3131 T6+6T5+89 T^{6} + 6 T^{5} + \cdots - 89 Copy content Toggle raw display
3737 T616T5++53918 T^{6} - 16 T^{5} + \cdots + 53918 Copy content Toggle raw display
4141 T6+8T5+76816 T^{6} + 8 T^{5} + \cdots - 76816 Copy content Toggle raw display
4343 T66T5++73 T^{6} - 6 T^{5} + \cdots + 73 Copy content Toggle raw display
4747 T6+30T5+14481 T^{6} + 30 T^{5} + \cdots - 14481 Copy content Toggle raw display
5353 T6+6T5+32719 T^{6} + 6 T^{5} + \cdots - 32719 Copy content Toggle raw display
5959 T6+8T5+19204 T^{6} + 8 T^{5} + \cdots - 19204 Copy content Toggle raw display
6161 T6+16T5++34552 T^{6} + 16 T^{5} + \cdots + 34552 Copy content Toggle raw display
6767 T6176T4++19936 T^{6} - 176 T^{4} + \cdots + 19936 Copy content Toggle raw display
7171 T6212T4+15842 T^{6} - 212 T^{4} + \cdots - 15842 Copy content Toggle raw display
7373 T6+14T5+1377 T^{6} + 14 T^{5} + \cdots - 1377 Copy content Toggle raw display
7979 T614T5+839 T^{6} - 14 T^{5} + \cdots - 839 Copy content Toggle raw display
8383 T614T5+38089 T^{6} - 14 T^{5} + \cdots - 38089 Copy content Toggle raw display
8989 T6+30T5++271111 T^{6} + 30 T^{5} + \cdots + 271111 Copy content Toggle raw display
9797 T6+22T5+233 T^{6} + 22 T^{5} + \cdots - 233 Copy content Toggle raw display
show more
show less