Properties

Label 2548.2.j.r
Level 25482548
Weight 22
Character orbit 2548.j
Analytic conductor 20.34620.346
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(1145,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.1145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2548=227213 2548 = 2^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2548.j (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.345882435020.3458824350
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+10x108x9+80x856x7+220x6240x5+484x4336x3++4 x^{12} + 10 x^{10} - 8 x^{9} + 80 x^{8} - 56 x^{7} + 220 x^{6} - 240 x^{5} + 484 x^{4} - 336 x^{3} + \cdots + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β7+β2+β1)q3+(β10+2β62)q5+(β10+β8+β6+1)q9+(β10+β6++2β1)q11++(β9+8β54β4+8)q99+O(q100) q + (\beta_{7} + \beta_{2} + \beta_1) q^{3} + ( - \beta_{10} + 2 \beta_{6} - 2) q^{5} + ( - \beta_{10} + \beta_{8} + \beta_{6} + \cdots - 1) q^{9} + ( - \beta_{10} + \beta_{6} + \cdots + 2 \beta_1) q^{11}+ \cdots + (\beta_{9} + 8 \beta_{5} - 4 \beta_{4} + \cdots - 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q10q56q9+4q1112q13+8q1516q1710q19+2q2312q2524q27+4q296q3128q3316q37+16q41+12q4334q4530q47+104q99+O(q100) 12 q - 10 q^{5} - 6 q^{9} + 4 q^{11} - 12 q^{13} + 8 q^{15} - 16 q^{17} - 10 q^{19} + 2 q^{23} - 12 q^{25} - 24 q^{27} + 4 q^{29} - 6 q^{31} - 28 q^{33} - 16 q^{37} + 16 q^{41} + 12 q^{43} - 34 q^{45} - 30 q^{47}+ \cdots - 104 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+10x108x9+80x856x7+220x6240x5+484x4336x3++4 x^{12} + 10 x^{10} - 8 x^{9} + 80 x^{8} - 56 x^{7} + 220 x^{6} - 240 x^{5} + 484 x^{4} - 336 x^{3} + \cdots + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (379000ν11+322300ν10+3778645ν9+152800ν8+28166440ν7+12684696)/86544668 ( 379000 \nu^{11} + 322300 \nu^{10} + 3778645 \nu^{9} + 152800 \nu^{8} + 28166440 \nu^{7} + \cdots - 12684696 ) / 86544668 Copy content Toggle raw display
β3\beta_{3}== (3905120ν117830811ν1041548809ν937653720ν8264964348ν7++1118396056)/432723340 ( - 3905120 \nu^{11} - 7830811 \nu^{10} - 41548809 \nu^{9} - 37653720 \nu^{8} - 264964348 \nu^{7} + \cdots + 1118396056 ) / 432723340 Copy content Toggle raw display
β4\beta_{4}== (3705810ν11+4692768ν10+38183017ν9+13824960ν8+266775954ν7++270746912)/216361670 ( 3705810 \nu^{11} + 4692768 \nu^{10} + 38183017 \nu^{9} + 13824960 \nu^{8} + 266775954 \nu^{7} + \cdots + 270746912 ) / 216361670 Copy content Toggle raw display
β5\beta_{5}== (11205ν11+10949ν10+114461ν9+15880ν8+824777ν7+187358ν6++510976)/347290 ( 11205 \nu^{11} + 10949 \nu^{10} + 114461 \nu^{9} + 15880 \nu^{8} + 824777 \nu^{7} + 187358 \nu^{6} + \cdots + 510976 ) / 347290 Copy content Toggle raw display
β6\beta_{6}== (3171174ν11379000ν1032034040ν9+21590747ν8253846720ν7++103206288)/86544668 ( - 3171174 \nu^{11} - 379000 \nu^{10} - 32034040 \nu^{9} + 21590747 \nu^{8} - 253846720 \nu^{7} + \cdots + 103206288 ) / 86544668 Copy content Toggle raw display
β7\beta_{7}== (27192621ν117411620ν10+262540674ν9293907002ν8+2147759760ν7+826492776)/432723340 ( 27192621 \nu^{11} - 7411620 \nu^{10} + 262540674 \nu^{9} - 293907002 \nu^{8} + 2147759760 \nu^{7} + \cdots - 826492776 ) / 432723340 Copy content Toggle raw display
β8\beta_{8}== (29498324ν114899106ν10291648120ν9+197195993ν8++139153820)/432723340 ( - 29498324 \nu^{11} - 4899106 \nu^{10} - 291648120 \nu^{9} + 197195993 \nu^{8} + \cdots + 139153820 ) / 432723340 Copy content Toggle raw display
β9\beta_{9}== (15940620ν1113784186ν10161115064ν98253520ν8+608382084)/216361670 ( - 15940620 \nu^{11} - 13784186 \nu^{10} - 161115064 \nu^{9} - 8253520 \nu^{8} + \cdots - 608382084 ) / 216361670 Copy content Toggle raw display
β10\beta_{10}== (35536656ν112624119ν10364956680ν9+245386747ν8++201658580)/432723340 ( - 35536656 \nu^{11} - 2624119 \nu^{10} - 364956680 \nu^{9} + 245386747 \nu^{8} + \cdots + 201658580 ) / 432723340 Copy content Toggle raw display
β11\beta_{11}== (52697053ν1116024810ν10+514656112ν9582294921ν8+1617413908)/432723340 ( 52697053 \nu^{11} - 16024810 \nu^{10} + 514656112 \nu^{9} - 582294921 \nu^{8} + \cdots - 1617413908 ) / 432723340 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β10+β84β6+β4+β3β2β1 \beta_{10} + \beta_{8} - 4\beta_{6} + \beta_{4} + \beta_{3} - \beta_{2} - \beta_1 Copy content Toggle raw display
ν3\nu^{3}== β9+2β5β4+6β2+2 \beta_{9} + 2\beta_{5} - \beta_{4} + 6\beta_{2} + 2 Copy content Toggle raw display
ν4\nu^{4}== 6β109β82β7+25β62β5+8β125 -6\beta_{10} - 9\beta_{8} - 2\beta_{7} + 25\beta_{6} - 2\beta_{5} + 8\beta _1 - 25 Copy content Toggle raw display
ν5\nu^{5}== 9β11+2β10+13β8+21β722β6+13β4+42β1 - 9 \beta_{11} + 2 \beta_{10} + 13 \beta_{8} + 21 \beta_{7} - 22 \beta_{6} + 13 \beta_{4} + \cdots - 42 \beta_1 Copy content Toggle raw display
ν6\nu^{6}== 4β9+28β574β440β3+68β2+176 4\beta_{9} + 28\beta_{5} - 74\beta_{4} - 40\beta_{3} + 68\beta_{2} + 176 Copy content Toggle raw display
ν7\nu^{7}== 70β1128β1070β9130β8178β7+216β6+216 70 \beta_{11} - 28 \beta_{10} - 70 \beta_{9} - 130 \beta_{8} - 178 \beta_{7} + 216 \beta_{6} + \cdots - 216 Copy content Toggle raw display
ν8\nu^{8}== 60β11+286β10+594β8+292β71308β6+594β4+590β1 - 60 \beta_{11} + 286 \beta_{10} + 594 \beta_{8} + 292 \beta_{7} - 1308 \beta_{6} + 594 \beta_{4} + \cdots - 590 \beta_1 Copy content Toggle raw display
ν9\nu^{9}== 534β9+1436β51190β4304β3+2432β2+2020 534\beta_{9} + 1436\beta_{5} - 1190\beta_{4} - 304\beta_{3} + 2432\beta_{2} + 2020 Copy content Toggle raw display
ν10\nu^{10}== 656β112128β10656β94754β82732β7+10022β6+10022 656 \beta_{11} - 2128 \beta_{10} - 656 \beta_{9} - 4754 \beta_{8} - 2732 \beta_{7} + 10022 \beta_{6} + \cdots - 10022 Copy content Toggle raw display
ν11\nu^{11}== 4098β11+2980β10+10466β8+11478β718252β6+19228β1 - 4098 \beta_{11} + 2980 \beta_{10} + 10466 \beta_{8} + 11478 \beta_{7} - 18252 \beta_{6} + \cdots - 19228 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2548Z)×\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times.

nn 197197 885885 12751275
χ(n)\chi(n) 11 1+β6-1 + \beta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1145.1
0.652846 + 1.13076i
0.0779999 + 0.135100i
1.23667 + 2.14198i
0.379586 + 0.657462i
−1.43795 2.49061i
−0.909151 1.57470i
0.652846 1.13076i
0.0779999 0.135100i
1.23667 2.14198i
0.379586 0.657462i
−1.43795 + 2.49061i
−0.909151 + 1.57470i
0 −1.35995 + 2.35551i 0 −1.92853 3.34030i 0 0 0 −2.19894 3.80868i 0
1145.2 0 −0.785107 + 1.35984i 0 0.299524 + 0.518790i 0 0 0 0.267215 + 0.462830i 0
1145.3 0 −0.529566 + 0.917235i 0 −2.04647 3.54459i 0 0 0 0.939121 + 1.62660i 0
1145.4 0 0.327521 0.567283i 0 0.369059 + 0.639229i 0 0 0 1.28546 + 2.22648i 0
1145.5 0 0.730846 1.26586i 0 −0.163891 0.283868i 0 0 0 0.431728 + 0.747776i 0
1145.6 0 1.61626 2.79944i 0 −1.52970 2.64951i 0 0 0 −3.72458 6.45116i 0
1353.1 0 −1.35995 2.35551i 0 −1.92853 + 3.34030i 0 0 0 −2.19894 + 3.80868i 0
1353.2 0 −0.785107 1.35984i 0 0.299524 0.518790i 0 0 0 0.267215 0.462830i 0
1353.3 0 −0.529566 0.917235i 0 −2.04647 + 3.54459i 0 0 0 0.939121 1.62660i 0
1353.4 0 0.327521 + 0.567283i 0 0.369059 0.639229i 0 0 0 1.28546 2.22648i 0
1353.5 0 0.730846 + 1.26586i 0 −0.163891 + 0.283868i 0 0 0 0.431728 0.747776i 0
1353.6 0 1.61626 + 2.79944i 0 −1.52970 + 2.64951i 0 0 0 −3.72458 + 6.45116i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1145.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.j.r 12
7.b odd 2 1 2548.2.j.s 12
7.c even 3 1 2548.2.a.s yes 6
7.c even 3 1 inner 2548.2.j.r 12
7.d odd 6 1 2548.2.a.r 6
7.d odd 6 1 2548.2.j.s 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2548.2.a.r 6 7.d odd 6 1
2548.2.a.s yes 6 7.c even 3 1
2548.2.j.r 12 1.a even 1 1 trivial
2548.2.j.r 12 7.c even 3 1 inner
2548.2.j.s 12 7.b odd 2 1
2548.2.j.s 12 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2548,[χ])S_{2}^{\mathrm{new}}(2548, [\chi]):

T312+12T310+8T39+116T38+56T37+324T36+80T35++196 T_{3}^{12} + 12 T_{3}^{10} + 8 T_{3}^{9} + 116 T_{3}^{8} + 56 T_{3}^{7} + 324 T_{3}^{6} + 80 T_{3}^{5} + \cdots + 196 Copy content Toggle raw display
T512+10T511+71T510+274T59+808T58+1178T57+1381T56++49 T_{5}^{12} + 10 T_{5}^{11} + 71 T_{5}^{10} + 274 T_{5}^{9} + 808 T_{5}^{8} + 1178 T_{5}^{7} + 1381 T_{5}^{6} + \cdots + 49 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+12T10++196 T^{12} + 12 T^{10} + \cdots + 196 Copy content Toggle raw display
55 T12+10T11++49 T^{12} + 10 T^{11} + \cdots + 49 Copy content Toggle raw display
77 T12 T^{12} Copy content Toggle raw display
1111 T124T11++6724 T^{12} - 4 T^{11} + \cdots + 6724 Copy content Toggle raw display
1313 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
1717 T12+16T11++64516 T^{12} + 16 T^{11} + \cdots + 64516 Copy content Toggle raw display
1919 T12+10T11++13300609 T^{12} + 10 T^{11} + \cdots + 13300609 Copy content Toggle raw display
2323 T122T11++23804641 T^{12} - 2 T^{11} + \cdots + 23804641 Copy content Toggle raw display
2929 (T62T557T4++25)2 (T^{6} - 2 T^{5} - 57 T^{4} + \cdots + 25)^{2} Copy content Toggle raw display
3131 T12+6T11++7921 T^{12} + 6 T^{11} + \cdots + 7921 Copy content Toggle raw display
3737 T12++2907150724 T^{12} + \cdots + 2907150724 Copy content Toggle raw display
4141 (T68T5+76816)2 (T^{6} - 8 T^{5} + \cdots - 76816)^{2} Copy content Toggle raw display
4343 (T66T5105T4++73)2 (T^{6} - 6 T^{5} - 105 T^{4} + \cdots + 73)^{2} Copy content Toggle raw display
4747 T12++209699361 T^{12} + \cdots + 209699361 Copy content Toggle raw display
5353 T12++1070532961 T^{12} + \cdots + 1070532961 Copy content Toggle raw display
5959 T12++368793616 T^{12} + \cdots + 368793616 Copy content Toggle raw display
6161 T12++1193840704 T^{12} + \cdots + 1193840704 Copy content Toggle raw display
6767 T12++397444096 T^{12} + \cdots + 397444096 Copy content Toggle raw display
7171 (T6212T4+15842)2 (T^{6} - 212 T^{4} + \cdots - 15842)^{2} Copy content Toggle raw display
7373 T12+14T11++1896129 T^{12} + 14 T^{11} + \cdots + 1896129 Copy content Toggle raw display
7979 T12+14T11++703921 T^{12} + 14 T^{11} + \cdots + 703921 Copy content Toggle raw display
8383 (T6+14T5+38089)2 (T^{6} + 14 T^{5} + \cdots - 38089)^{2} Copy content Toggle raw display
8989 T12++73501174321 T^{12} + \cdots + 73501174321 Copy content Toggle raw display
9797 (T622T5+233)2 (T^{6} - 22 T^{5} + \cdots - 233)^{2} Copy content Toggle raw display
show more
show less