Properties

Label 2548.2.bq.f.361.7
Level $2548$
Weight $2$
Character 2548.361
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(361,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 188 x^{14} - 49 x^{13} + 1116 x^{12} - x^{11} + 4649 x^{10} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.7
Root \(0.893365 + 1.54735i\) of defining polynomial
Character \(\chi\) \(=\) 2548.361
Dual form 2548.2.bq.f.1941.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.78673 q^{3} +(-1.22316 + 0.706193i) q^{5} +0.192402 q^{9} +1.67026i q^{11} +(-2.45155 + 2.64384i) q^{13} +(-2.18546 + 1.26178i) q^{15} +(-3.38930 - 5.87045i) q^{17} -5.66799i q^{19} +(0.576127 - 0.997882i) q^{23} +(-1.50258 + 2.60255i) q^{25} -5.01642 q^{27} +(1.79209 + 3.10400i) q^{29} +(-4.45548 - 2.57238i) q^{31} +2.98431i q^{33} +(-4.91950 - 2.84027i) q^{37} +(-4.38026 + 4.72383i) q^{39} +(-6.63082 + 3.82831i) q^{41} +(-2.20385 + 3.81717i) q^{43} +(-0.235339 + 0.135873i) q^{45} +(10.1613 - 5.86665i) q^{47} +(-6.05577 - 10.4889i) q^{51} +(1.58494 - 2.74520i) q^{53} +(-1.17953 - 2.04300i) q^{55} -10.1272i q^{57} +(-6.77778 + 3.91315i) q^{59} -4.00570 q^{61} +(1.13158 - 4.96511i) q^{65} -13.7239i q^{67} +(1.02938 - 1.78294i) q^{69} +(-2.78064 - 1.60540i) q^{71} +(10.5543 + 6.09350i) q^{73} +(-2.68471 + 4.65006i) q^{75} +(-5.73321 - 9.93021i) q^{79} -9.54019 q^{81} -6.72074i q^{83} +(8.29133 + 4.78700i) q^{85} +(3.20199 + 5.54600i) q^{87} +(-6.22521 - 3.59413i) q^{89} +(-7.96075 - 4.59614i) q^{93} +(4.00269 + 6.93286i) q^{95} +(-2.06757 - 1.19371i) q^{97} +0.321362i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{3} + 12 q^{9} + 4 q^{13} + 6 q^{15} + 10 q^{17} - 6 q^{23} + 5 q^{25} + 20 q^{27} + 2 q^{29} - 9 q^{31} + 18 q^{37} + 11 q^{39} + 9 q^{41} - 14 q^{43} - 30 q^{45} - 36 q^{47} + 2 q^{51} - 13 q^{53}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.78673 1.03157 0.515784 0.856718i \(-0.327501\pi\)
0.515784 + 0.856718i \(0.327501\pi\)
\(4\) 0 0
\(5\) −1.22316 + 0.706193i −0.547015 + 0.315819i −0.747917 0.663792i \(-0.768946\pi\)
0.200902 + 0.979611i \(0.435613\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.192402 0.0641340
\(10\) 0 0
\(11\) 1.67026i 0.503604i 0.967779 + 0.251802i \(0.0810231\pi\)
−0.967779 + 0.251802i \(0.918977\pi\)
\(12\) 0 0
\(13\) −2.45155 + 2.64384i −0.679938 + 0.733270i
\(14\) 0 0
\(15\) −2.18546 + 1.26178i −0.564283 + 0.325789i
\(16\) 0 0
\(17\) −3.38930 5.87045i −0.822027 1.42379i −0.904170 0.427172i \(-0.859510\pi\)
0.0821435 0.996621i \(-0.473823\pi\)
\(18\) 0 0
\(19\) 5.66799i 1.30033i −0.759795 0.650163i \(-0.774701\pi\)
0.759795 0.650163i \(-0.225299\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.576127 0.997882i 0.120131 0.208073i −0.799688 0.600415i \(-0.795002\pi\)
0.919819 + 0.392343i \(0.128335\pi\)
\(24\) 0 0
\(25\) −1.50258 + 2.60255i −0.300517 + 0.520510i
\(26\) 0 0
\(27\) −5.01642 −0.965410
\(28\) 0 0
\(29\) 1.79209 + 3.10400i 0.332784 + 0.576398i 0.983057 0.183303i \(-0.0586788\pi\)
−0.650273 + 0.759701i \(0.725345\pi\)
\(30\) 0 0
\(31\) −4.45548 2.57238i −0.800229 0.462012i 0.0433224 0.999061i \(-0.486206\pi\)
−0.843551 + 0.537049i \(0.819539\pi\)
\(32\) 0 0
\(33\) 2.98431i 0.519502i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.91950 2.84027i −0.808761 0.466938i 0.0377646 0.999287i \(-0.487976\pi\)
−0.846525 + 0.532348i \(0.821310\pi\)
\(38\) 0 0
\(39\) −4.38026 + 4.72383i −0.701403 + 0.756418i
\(40\) 0 0
\(41\) −6.63082 + 3.82831i −1.03556 + 0.597881i −0.918572 0.395253i \(-0.870657\pi\)
−0.116987 + 0.993133i \(0.537324\pi\)
\(42\) 0 0
\(43\) −2.20385 + 3.81717i −0.336083 + 0.582113i −0.983692 0.179860i \(-0.942436\pi\)
0.647609 + 0.761973i \(0.275769\pi\)
\(44\) 0 0
\(45\) −0.235339 + 0.135873i −0.0350822 + 0.0202547i
\(46\) 0 0
\(47\) 10.1613 5.86665i 1.48218 0.855739i 0.482388 0.875958i \(-0.339770\pi\)
0.999796 + 0.0202189i \(0.00643631\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −6.05577 10.4889i −0.847977 1.46874i
\(52\) 0 0
\(53\) 1.58494 2.74520i 0.217708 0.377082i −0.736399 0.676548i \(-0.763475\pi\)
0.954107 + 0.299466i \(0.0968085\pi\)
\(54\) 0 0
\(55\) −1.17953 2.04300i −0.159048 0.275478i
\(56\) 0 0
\(57\) 10.1272i 1.34137i
\(58\) 0 0
\(59\) −6.77778 + 3.91315i −0.882391 + 0.509449i −0.871446 0.490491i \(-0.836817\pi\)
−0.0109453 + 0.999940i \(0.503484\pi\)
\(60\) 0 0
\(61\) −4.00570 −0.512877 −0.256439 0.966561i \(-0.582549\pi\)
−0.256439 + 0.966561i \(0.582549\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.13158 4.96511i 0.140356 0.615846i
\(66\) 0 0
\(67\) 13.7239i 1.67664i −0.545175 0.838322i \(-0.683537\pi\)
0.545175 0.838322i \(-0.316463\pi\)
\(68\) 0 0
\(69\) 1.02938 1.78294i 0.123923 0.214641i
\(70\) 0 0
\(71\) −2.78064 1.60540i −0.330001 0.190526i 0.325841 0.945425i \(-0.394353\pi\)
−0.655841 + 0.754899i \(0.727686\pi\)
\(72\) 0 0
\(73\) 10.5543 + 6.09350i 1.23528 + 0.713190i 0.968126 0.250463i \(-0.0805828\pi\)
0.267156 + 0.963653i \(0.413916\pi\)
\(74\) 0 0
\(75\) −2.68471 + 4.65006i −0.310004 + 0.536942i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.73321 9.93021i −0.645037 1.11724i −0.984293 0.176542i \(-0.943509\pi\)
0.339256 0.940694i \(-0.389825\pi\)
\(80\) 0 0
\(81\) −9.54019 −1.06002
\(82\) 0 0
\(83\) 6.72074i 0.737697i −0.929490 0.368848i \(-0.879752\pi\)
0.929490 0.368848i \(-0.120248\pi\)
\(84\) 0 0
\(85\) 8.29133 + 4.78700i 0.899321 + 0.519223i
\(86\) 0 0
\(87\) 3.20199 + 5.54600i 0.343289 + 0.594594i
\(88\) 0 0
\(89\) −6.22521 3.59413i −0.659871 0.380977i 0.132357 0.991202i \(-0.457746\pi\)
−0.792228 + 0.610225i \(0.791079\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.96075 4.59614i −0.825491 0.476597i
\(94\) 0 0
\(95\) 4.00269 + 6.93286i 0.410667 + 0.711297i
\(96\) 0 0
\(97\) −2.06757 1.19371i −0.209930 0.121203i 0.391349 0.920242i \(-0.372009\pi\)
−0.601279 + 0.799039i \(0.705342\pi\)
\(98\) 0 0
\(99\) 0.321362i 0.0322981i
\(100\) 0 0
\(101\) −9.95283 −0.990344 −0.495172 0.868795i \(-0.664895\pi\)
−0.495172 + 0.868795i \(0.664895\pi\)
\(102\) 0 0
\(103\) 7.36258 + 12.7524i 0.725456 + 1.25653i 0.958786 + 0.284130i \(0.0917046\pi\)
−0.233330 + 0.972398i \(0.574962\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.521717 + 0.903640i −0.0504362 + 0.0873581i −0.890141 0.455685i \(-0.849395\pi\)
0.839705 + 0.543043i \(0.182728\pi\)
\(108\) 0 0
\(109\) 10.2335 + 5.90829i 0.980188 + 0.565912i 0.902327 0.431052i \(-0.141858\pi\)
0.0778611 + 0.996964i \(0.475191\pi\)
\(110\) 0 0
\(111\) −8.78981 5.07480i −0.834292 0.481679i
\(112\) 0 0
\(113\) −7.69833 + 13.3339i −0.724198 + 1.25435i 0.235105 + 0.971970i \(0.424457\pi\)
−0.959303 + 0.282378i \(0.908877\pi\)
\(114\) 0 0
\(115\) 1.62743i 0.151758i
\(116\) 0 0
\(117\) −0.471683 + 0.508680i −0.0436071 + 0.0470275i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.21022 0.746383
\(122\) 0 0
\(123\) −11.8475 + 6.84015i −1.06825 + 0.616755i
\(124\) 0 0
\(125\) 11.3064i 1.01127i
\(126\) 0 0
\(127\) −0.493081 0.854041i −0.0437538 0.0757839i 0.843319 0.537413i \(-0.180598\pi\)
−0.887073 + 0.461629i \(0.847265\pi\)
\(128\) 0 0
\(129\) −3.93767 + 6.82025i −0.346693 + 0.600490i
\(130\) 0 0
\(131\) −6.30826 10.9262i −0.551155 0.954629i −0.998192 0.0601131i \(-0.980854\pi\)
0.447036 0.894516i \(-0.352479\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6.13589 3.54256i 0.528093 0.304895i
\(136\) 0 0
\(137\) −16.0896 + 9.28931i −1.37462 + 0.793639i −0.991506 0.130060i \(-0.958483\pi\)
−0.383118 + 0.923700i \(0.625150\pi\)
\(138\) 0 0
\(139\) −4.75252 + 8.23161i −0.403104 + 0.698196i −0.994099 0.108479i \(-0.965402\pi\)
0.590995 + 0.806675i \(0.298735\pi\)
\(140\) 0 0
\(141\) 18.1556 10.4821i 1.52897 0.882753i
\(142\) 0 0
\(143\) −4.41591 4.09474i −0.369277 0.342419i
\(144\) 0 0
\(145\) −4.38404 2.53113i −0.364075 0.210199i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.88358i 0.154309i −0.997019 0.0771545i \(-0.975417\pi\)
0.997019 0.0771545i \(-0.0245835\pi\)
\(150\) 0 0
\(151\) −1.44355 0.833432i −0.117474 0.0678238i 0.440112 0.897943i \(-0.354939\pi\)
−0.557586 + 0.830119i \(0.688272\pi\)
\(152\) 0 0
\(153\) −0.652109 1.12949i −0.0527199 0.0913135i
\(154\) 0 0
\(155\) 7.26637 0.583649
\(156\) 0 0
\(157\) −4.81241 + 8.33535i −0.384072 + 0.665233i −0.991640 0.129035i \(-0.958812\pi\)
0.607568 + 0.794268i \(0.292145\pi\)
\(158\) 0 0
\(159\) 2.83186 4.90492i 0.224581 0.388986i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.81545i 0.220523i −0.993903 0.110262i \(-0.964831\pi\)
0.993903 0.110262i \(-0.0351688\pi\)
\(164\) 0 0
\(165\) −2.10750 3.65029i −0.164068 0.284175i
\(166\) 0 0
\(167\) −3.82773 + 2.20994i −0.296198 + 0.171010i −0.640734 0.767763i \(-0.721370\pi\)
0.344535 + 0.938773i \(0.388036\pi\)
\(168\) 0 0
\(169\) −0.979788 12.9630i −0.0753683 0.997156i
\(170\) 0 0
\(171\) 1.09053i 0.0833950i
\(172\) 0 0
\(173\) −18.5093 −1.40723 −0.703617 0.710580i \(-0.748433\pi\)
−0.703617 + 0.710580i \(0.748433\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.1101 + 6.99174i −0.910247 + 0.525532i
\(178\) 0 0
\(179\) −5.98312 −0.447200 −0.223600 0.974681i \(-0.571781\pi\)
−0.223600 + 0.974681i \(0.571781\pi\)
\(180\) 0 0
\(181\) 2.08148 0.154715 0.0773575 0.997003i \(-0.475352\pi\)
0.0773575 + 0.997003i \(0.475352\pi\)
\(182\) 0 0
\(183\) −7.15710 −0.529068
\(184\) 0 0
\(185\) 8.02312 0.589872
\(186\) 0 0
\(187\) 9.80520 5.66103i 0.717027 0.413976i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.0882 1.88768 0.943838 0.330408i \(-0.107186\pi\)
0.943838 + 0.330408i \(0.107186\pi\)
\(192\) 0 0
\(193\) 13.4469i 0.967930i 0.875087 + 0.483965i \(0.160804\pi\)
−0.875087 + 0.483965i \(0.839196\pi\)
\(194\) 0 0
\(195\) 2.02183 8.87131i 0.144786 0.635288i
\(196\) 0 0
\(197\) 4.44601 2.56691i 0.316765 0.182885i −0.333184 0.942862i \(-0.608123\pi\)
0.649950 + 0.759977i \(0.274790\pi\)
\(198\) 0 0
\(199\) 9.31361 + 16.1316i 0.660224 + 1.14354i 0.980556 + 0.196237i \(0.0628722\pi\)
−0.320332 + 0.947305i \(0.603794\pi\)
\(200\) 0 0
\(201\) 24.5209i 1.72957i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.40704 9.36527i 0.377644 0.654099i
\(206\) 0 0
\(207\) 0.110848 0.191994i 0.00770447 0.0133445i
\(208\) 0 0
\(209\) 9.46703 0.654848
\(210\) 0 0
\(211\) 0.720035 + 1.24714i 0.0495692 + 0.0858564i 0.889745 0.456457i \(-0.150882\pi\)
−0.840176 + 0.542314i \(0.817548\pi\)
\(212\) 0 0
\(213\) −4.96824 2.86842i −0.340418 0.196541i
\(214\) 0 0
\(215\) 6.22536i 0.424566i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 18.8576 + 10.8874i 1.27428 + 0.735705i
\(220\) 0 0
\(221\) 23.8296 + 5.43092i 1.60295 + 0.365323i
\(222\) 0 0
\(223\) −0.263960 + 0.152397i −0.0176761 + 0.0102053i −0.508812 0.860878i \(-0.669915\pi\)
0.491136 + 0.871083i \(0.336582\pi\)
\(224\) 0 0
\(225\) −0.289100 + 0.500736i −0.0192733 + 0.0333824i
\(226\) 0 0
\(227\) −2.18239 + 1.26001i −0.144851 + 0.0836295i −0.570674 0.821177i \(-0.693318\pi\)
0.425823 + 0.904806i \(0.359985\pi\)
\(228\) 0 0
\(229\) 6.36123 3.67266i 0.420362 0.242696i −0.274870 0.961481i \(-0.588635\pi\)
0.695232 + 0.718785i \(0.255302\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.2428 21.2052i −0.802053 1.38920i −0.918262 0.395973i \(-0.870408\pi\)
0.116209 0.993225i \(-0.462926\pi\)
\(234\) 0 0
\(235\) −8.28597 + 14.3517i −0.540517 + 0.936203i
\(236\) 0 0
\(237\) −10.2437 17.7426i −0.665400 1.15251i
\(238\) 0 0
\(239\) 1.44381i 0.0933922i −0.998909 0.0466961i \(-0.985131\pi\)
0.998909 0.0466961i \(-0.0148692\pi\)
\(240\) 0 0
\(241\) 9.51138 5.49140i 0.612682 0.353732i −0.161333 0.986900i \(-0.551579\pi\)
0.774014 + 0.633168i \(0.218246\pi\)
\(242\) 0 0
\(243\) −1.99648 −0.128074
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 14.9853 + 13.8954i 0.953489 + 0.884141i
\(248\) 0 0
\(249\) 12.0081i 0.760985i
\(250\) 0 0
\(251\) −8.01603 + 13.8842i −0.505967 + 0.876361i 0.494009 + 0.869457i \(0.335531\pi\)
−0.999976 + 0.00690401i \(0.997802\pi\)
\(252\) 0 0
\(253\) 1.66673 + 0.962284i 0.104786 + 0.0604983i
\(254\) 0 0
\(255\) 14.8144 + 8.55308i 0.927712 + 0.535615i
\(256\) 0 0
\(257\) −13.7003 + 23.7296i −0.854600 + 1.48021i 0.0224155 + 0.999749i \(0.492864\pi\)
−0.877016 + 0.480462i \(0.840469\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.344802 + 0.597215i 0.0213427 + 0.0369667i
\(262\) 0 0
\(263\) 20.2007 1.24563 0.622814 0.782370i \(-0.285989\pi\)
0.622814 + 0.782370i \(0.285989\pi\)
\(264\) 0 0
\(265\) 4.47709i 0.275026i
\(266\) 0 0
\(267\) −11.1228 6.42174i −0.680703 0.393004i
\(268\) 0 0
\(269\) −4.54691 7.87548i −0.277230 0.480176i 0.693465 0.720490i \(-0.256083\pi\)
−0.970695 + 0.240314i \(0.922750\pi\)
\(270\) 0 0
\(271\) −1.56769 0.905105i −0.0952303 0.0549812i 0.451629 0.892206i \(-0.350843\pi\)
−0.546859 + 0.837225i \(0.684177\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.34695 2.50971i −0.262131 0.151341i
\(276\) 0 0
\(277\) 4.04743 + 7.01035i 0.243186 + 0.421211i 0.961620 0.274384i \(-0.0884740\pi\)
−0.718434 + 0.695595i \(0.755141\pi\)
\(278\) 0 0
\(279\) −0.857244 0.494930i −0.0513218 0.0296307i
\(280\) 0 0
\(281\) 16.0935i 0.960059i 0.877252 + 0.480030i \(0.159374\pi\)
−0.877252 + 0.480030i \(0.840626\pi\)
\(282\) 0 0
\(283\) −11.1911 −0.665242 −0.332621 0.943061i \(-0.607933\pi\)
−0.332621 + 0.943061i \(0.607933\pi\)
\(284\) 0 0
\(285\) 7.15173 + 12.3872i 0.423632 + 0.733752i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −14.4748 + 25.0710i −0.851457 + 1.47477i
\(290\) 0 0
\(291\) −3.69419 2.13284i −0.216557 0.125029i
\(292\) 0 0
\(293\) 12.9552 + 7.47966i 0.756848 + 0.436967i 0.828163 0.560487i \(-0.189386\pi\)
−0.0713148 + 0.997454i \(0.522719\pi\)
\(294\) 0 0
\(295\) 5.52688 9.57283i 0.321787 0.557352i
\(296\) 0 0
\(297\) 8.37874i 0.486184i
\(298\) 0 0
\(299\) 1.22583 + 3.96955i 0.0708918 + 0.229565i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −17.7830 −1.02161
\(304\) 0 0
\(305\) 4.89962 2.82880i 0.280551 0.161976i
\(306\) 0 0
\(307\) 10.4783i 0.598030i 0.954248 + 0.299015i \(0.0966581\pi\)
−0.954248 + 0.299015i \(0.903342\pi\)
\(308\) 0 0
\(309\) 13.1549 + 22.7850i 0.748358 + 1.29619i
\(310\) 0 0
\(311\) −4.83914 + 8.38164i −0.274403 + 0.475279i −0.969984 0.243168i \(-0.921813\pi\)
0.695582 + 0.718447i \(0.255147\pi\)
\(312\) 0 0
\(313\) 15.7678 + 27.3106i 0.891247 + 1.54368i 0.838382 + 0.545083i \(0.183502\pi\)
0.0528647 + 0.998602i \(0.483165\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.93778 1.11878i 0.108836 0.0628367i −0.444594 0.895732i \(-0.646652\pi\)
0.553430 + 0.832896i \(0.313319\pi\)
\(318\) 0 0
\(319\) −5.18450 + 2.99327i −0.290276 + 0.167591i
\(320\) 0 0
\(321\) −0.932166 + 1.61456i −0.0520284 + 0.0901159i
\(322\) 0 0
\(323\) −33.2736 + 19.2105i −1.85139 + 1.06890i
\(324\) 0 0
\(325\) −3.19707 10.3529i −0.177342 0.574275i
\(326\) 0 0
\(327\) 18.2844 + 10.5565i 1.01113 + 0.583777i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 21.0554i 1.15731i −0.815572 0.578656i \(-0.803577\pi\)
0.815572 0.578656i \(-0.196423\pi\)
\(332\) 0 0
\(333\) −0.946521 0.546474i −0.0518690 0.0299466i
\(334\) 0 0
\(335\) 9.69174 + 16.7866i 0.529516 + 0.917149i
\(336\) 0 0
\(337\) 24.6487 1.34270 0.671349 0.741141i \(-0.265715\pi\)
0.671349 + 0.741141i \(0.265715\pi\)
\(338\) 0 0
\(339\) −13.7548 + 23.8241i −0.747060 + 1.29395i
\(340\) 0 0
\(341\) 4.29655 7.44184i 0.232671 0.402998i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.90777i 0.156549i
\(346\) 0 0
\(347\) −16.8055 29.1080i −0.902167 1.56260i −0.824676 0.565606i \(-0.808642\pi\)
−0.0774912 0.996993i \(-0.524691\pi\)
\(348\) 0 0
\(349\) 2.46776 1.42476i 0.132096 0.0762658i −0.432496 0.901636i \(-0.642367\pi\)
0.564592 + 0.825370i \(0.309034\pi\)
\(350\) 0 0
\(351\) 12.2980 13.2626i 0.656419 0.707906i
\(352\) 0 0
\(353\) 28.5979i 1.52211i −0.648685 0.761057i \(-0.724681\pi\)
0.648685 0.761057i \(-0.275319\pi\)
\(354\) 0 0
\(355\) 4.53489 0.240687
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.32566 + 1.34272i −0.122743 + 0.0708660i −0.560115 0.828415i \(-0.689243\pi\)
0.437371 + 0.899281i \(0.355910\pi\)
\(360\) 0 0
\(361\) −13.1261 −0.690846
\(362\) 0 0
\(363\) 14.6694 0.769946
\(364\) 0 0
\(365\) −17.2127 −0.900956
\(366\) 0 0
\(367\) −1.13963 −0.0594884 −0.0297442 0.999558i \(-0.509469\pi\)
−0.0297442 + 0.999558i \(0.509469\pi\)
\(368\) 0 0
\(369\) −1.27578 + 0.736573i −0.0664146 + 0.0383445i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −23.0729 −1.19467 −0.597334 0.801993i \(-0.703773\pi\)
−0.597334 + 0.801993i \(0.703773\pi\)
\(374\) 0 0
\(375\) 20.2014i 1.04320i
\(376\) 0 0
\(377\) −12.5999 2.87160i −0.648927 0.147895i
\(378\) 0 0
\(379\) −15.5083 + 8.95374i −0.796609 + 0.459923i −0.842284 0.539034i \(-0.818789\pi\)
0.0456749 + 0.998956i \(0.485456\pi\)
\(380\) 0 0
\(381\) −0.881002 1.52594i −0.0451351 0.0781763i
\(382\) 0 0
\(383\) 35.3019i 1.80384i −0.431899 0.901922i \(-0.642156\pi\)
0.431899 0.901922i \(-0.357844\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.424024 + 0.734431i −0.0215544 + 0.0373332i
\(388\) 0 0
\(389\) 15.9362 27.6023i 0.807999 1.39949i −0.106249 0.994340i \(-0.533884\pi\)
0.914248 0.405155i \(-0.132782\pi\)
\(390\) 0 0
\(391\) −7.81068 −0.395003
\(392\) 0 0
\(393\) −11.2712 19.5222i −0.568555 0.984765i
\(394\) 0 0
\(395\) 14.0253 + 8.09750i 0.705689 + 0.407430i
\(396\) 0 0
\(397\) 8.89935i 0.446646i −0.974745 0.223323i \(-0.928310\pi\)
0.974745 0.223323i \(-0.0716904\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.84908 4.53167i −0.391964 0.226301i 0.291047 0.956709i \(-0.405997\pi\)
−0.683011 + 0.730408i \(0.739330\pi\)
\(402\) 0 0
\(403\) 17.7238 5.47328i 0.882886 0.272644i
\(404\) 0 0
\(405\) 11.6692 6.73721i 0.579847 0.334775i
\(406\) 0 0
\(407\) 4.74401 8.21686i 0.235152 0.407295i
\(408\) 0 0
\(409\) 10.2498 5.91773i 0.506820 0.292613i −0.224705 0.974427i \(-0.572142\pi\)
0.731526 + 0.681814i \(0.238809\pi\)
\(410\) 0 0
\(411\) −28.7477 + 16.5975i −1.41802 + 0.818694i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.74614 + 8.22055i 0.232979 + 0.403531i
\(416\) 0 0
\(417\) −8.49147 + 14.7077i −0.415829 + 0.720237i
\(418\) 0 0
\(419\) 8.87793 + 15.3770i 0.433715 + 0.751217i 0.997190 0.0749167i \(-0.0238691\pi\)
−0.563475 + 0.826133i \(0.690536\pi\)
\(420\) 0 0
\(421\) 22.6045i 1.10168i −0.834612 0.550838i \(-0.814308\pi\)
0.834612 0.550838i \(-0.185692\pi\)
\(422\) 0 0
\(423\) 1.95506 1.12875i 0.0950583 0.0548819i
\(424\) 0 0
\(425\) 20.3709 0.988131
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −7.89004 7.31619i −0.380935 0.353229i
\(430\) 0 0
\(431\) 21.0750i 1.01515i −0.861609 0.507573i \(-0.830543\pi\)
0.861609 0.507573i \(-0.169457\pi\)
\(432\) 0 0
\(433\) 12.8663 22.2851i 0.618316 1.07095i −0.371477 0.928442i \(-0.621149\pi\)
0.989793 0.142512i \(-0.0455181\pi\)
\(434\) 0 0
\(435\) −7.83310 4.52244i −0.375568 0.216834i
\(436\) 0 0
\(437\) −5.65598 3.26548i −0.270562 0.156209i
\(438\) 0 0
\(439\) −15.8732 + 27.4931i −0.757585 + 1.31218i 0.186494 + 0.982456i \(0.440288\pi\)
−0.944079 + 0.329720i \(0.893046\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.91818 + 17.1788i 0.471227 + 0.816189i 0.999458 0.0329114i \(-0.0104779\pi\)
−0.528231 + 0.849101i \(0.677145\pi\)
\(444\) 0 0
\(445\) 10.1526 0.481279
\(446\) 0 0
\(447\) 3.36545i 0.159180i
\(448\) 0 0
\(449\) −15.2765 8.81989i −0.720942 0.416236i 0.0941570 0.995557i \(-0.469984\pi\)
−0.815099 + 0.579321i \(0.803318\pi\)
\(450\) 0 0
\(451\) −6.39428 11.0752i −0.301095 0.521512i
\(452\) 0 0
\(453\) −2.57923 1.48912i −0.121183 0.0699649i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.1212 + 13.3490i 1.08156 + 0.624441i 0.931318 0.364207i \(-0.118660\pi\)
0.150246 + 0.988649i \(0.451993\pi\)
\(458\) 0 0
\(459\) 17.0022 + 29.4486i 0.793593 + 1.37454i
\(460\) 0 0
\(461\) −3.64848 2.10645i −0.169927 0.0981071i 0.412625 0.910901i \(-0.364612\pi\)
−0.582551 + 0.812794i \(0.697945\pi\)
\(462\) 0 0
\(463\) 34.4422i 1.60067i 0.599556 + 0.800333i \(0.295344\pi\)
−0.599556 + 0.800333i \(0.704656\pi\)
\(464\) 0 0
\(465\) 12.9830 0.602074
\(466\) 0 0
\(467\) 13.4413 + 23.2810i 0.621988 + 1.07732i 0.989115 + 0.147144i \(0.0470082\pi\)
−0.367127 + 0.930171i \(0.619658\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −8.59848 + 14.8930i −0.396197 + 0.686234i
\(472\) 0 0
\(473\) −6.37568 3.68100i −0.293154 0.169253i
\(474\) 0 0
\(475\) 14.7512 + 8.51662i 0.676833 + 0.390770i
\(476\) 0 0
\(477\) 0.304946 0.528181i 0.0139625 0.0241838i
\(478\) 0 0
\(479\) 35.5745i 1.62544i −0.582654 0.812720i \(-0.697986\pi\)
0.582654 0.812720i \(-0.302014\pi\)
\(480\) 0 0
\(481\) 19.5696 6.04329i 0.892299 0.275550i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.37197 0.153113
\(486\) 0 0
\(487\) 21.6293 12.4877i 0.980117 0.565871i 0.0778114 0.996968i \(-0.475207\pi\)
0.902305 + 0.431097i \(0.141873\pi\)
\(488\) 0 0
\(489\) 5.03045i 0.227485i
\(490\) 0 0
\(491\) 18.6406 + 32.2865i 0.841240 + 1.45707i 0.888847 + 0.458205i \(0.151507\pi\)
−0.0476065 + 0.998866i \(0.515159\pi\)
\(492\) 0 0
\(493\) 12.1479 21.0408i 0.547114 0.947629i
\(494\) 0 0
\(495\) −0.226944 0.393078i −0.0102004 0.0176675i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.60298 + 1.50283i −0.116525 + 0.0672759i −0.557130 0.830425i \(-0.688097\pi\)
0.440605 + 0.897701i \(0.354764\pi\)
\(500\) 0 0
\(501\) −6.83911 + 3.94856i −0.305549 + 0.176409i
\(502\) 0 0
\(503\) −6.70811 + 11.6188i −0.299100 + 0.518056i −0.975930 0.218083i \(-0.930020\pi\)
0.676831 + 0.736139i \(0.263353\pi\)
\(504\) 0 0
\(505\) 12.1739 7.02862i 0.541733 0.312769i
\(506\) 0 0
\(507\) −1.75062 23.1614i −0.0777476 1.02863i
\(508\) 0 0
\(509\) −36.1416 20.8664i −1.60195 0.924886i −0.991097 0.133143i \(-0.957493\pi\)
−0.610853 0.791744i \(-0.709173\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 28.4330i 1.25535i
\(514\) 0 0
\(515\) −18.0112 10.3988i −0.793670 0.458226i
\(516\) 0 0
\(517\) 9.79886 + 16.9721i 0.430953 + 0.746433i
\(518\) 0 0
\(519\) −33.0710 −1.45166
\(520\) 0 0
\(521\) 10.2284 17.7161i 0.448115 0.776158i −0.550148 0.835067i \(-0.685429\pi\)
0.998263 + 0.0589091i \(0.0187622\pi\)
\(522\) 0 0
\(523\) −1.30125 + 2.25383i −0.0568996 + 0.0985529i −0.893072 0.449913i \(-0.851455\pi\)
0.836173 + 0.548466i \(0.184788\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 34.8742i 1.51915i
\(528\) 0 0
\(529\) 10.8362 + 18.7688i 0.471137 + 0.816034i
\(530\) 0 0
\(531\) −1.30406 + 0.752898i −0.0565913 + 0.0326730i
\(532\) 0 0
\(533\) 6.13437 26.9161i 0.265709 1.16587i
\(534\) 0 0
\(535\) 1.47373i 0.0637149i
\(536\) 0 0
\(537\) −10.6902 −0.461317
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −12.7573 + 7.36542i −0.548478 + 0.316664i −0.748508 0.663126i \(-0.769229\pi\)
0.200030 + 0.979790i \(0.435896\pi\)
\(542\) 0 0
\(543\) 3.71904 0.159599
\(544\) 0 0
\(545\) −16.6896 −0.714903
\(546\) 0 0
\(547\) −0.154082 −0.00658808 −0.00329404 0.999995i \(-0.501049\pi\)
−0.00329404 + 0.999995i \(0.501049\pi\)
\(548\) 0 0
\(549\) −0.770704 −0.0328929
\(550\) 0 0
\(551\) 17.5934 10.1576i 0.749505 0.432727i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 14.3352 0.608493
\(556\) 0 0
\(557\) 26.9944i 1.14379i −0.820326 0.571896i \(-0.806208\pi\)
0.820326 0.571896i \(-0.193792\pi\)
\(558\) 0 0
\(559\) −4.68915 15.1846i −0.198330 0.642241i
\(560\) 0 0
\(561\) 17.5192 10.1147i 0.739663 0.427044i
\(562\) 0 0
\(563\) 20.2361 + 35.0500i 0.852852 + 1.47718i 0.878624 + 0.477515i \(0.158462\pi\)
−0.0257722 + 0.999668i \(0.508204\pi\)
\(564\) 0 0
\(565\) 21.7460i 0.914862i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.74231 + 4.74982i −0.114964 + 0.199123i −0.917765 0.397124i \(-0.870008\pi\)
0.802802 + 0.596246i \(0.203342\pi\)
\(570\) 0 0
\(571\) −9.73251 + 16.8572i −0.407293 + 0.705452i −0.994585 0.103923i \(-0.966860\pi\)
0.587293 + 0.809375i \(0.300194\pi\)
\(572\) 0 0
\(573\) 46.6126 1.94727
\(574\) 0 0
\(575\) 1.73136 + 2.99880i 0.0722026 + 0.125059i
\(576\) 0 0
\(577\) −25.1822 14.5389i −1.04835 0.605264i −0.126161 0.992010i \(-0.540266\pi\)
−0.922186 + 0.386746i \(0.873599\pi\)
\(578\) 0 0
\(579\) 24.0260i 0.998486i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.58520 + 2.64727i 0.189900 + 0.109639i
\(584\) 0 0
\(585\) 0.217719 0.955297i 0.00900156 0.0394967i
\(586\) 0 0
\(587\) −21.2641 + 12.2768i −0.877662 + 0.506718i −0.869887 0.493252i \(-0.835808\pi\)
−0.00777502 + 0.999970i \(0.502475\pi\)
\(588\) 0 0
\(589\) −14.5802 + 25.2536i −0.600766 + 1.04056i
\(590\) 0 0
\(591\) 7.94382 4.58637i 0.326765 0.188658i
\(592\) 0 0
\(593\) −23.0759 + 13.3229i −0.947612 + 0.547104i −0.892338 0.451367i \(-0.850937\pi\)
−0.0552739 + 0.998471i \(0.517603\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.6409 + 28.8229i 0.681067 + 1.17964i
\(598\) 0 0
\(599\) −1.09700 + 1.90005i −0.0448220 + 0.0776340i −0.887566 0.460680i \(-0.847605\pi\)
0.842744 + 0.538315i \(0.180939\pi\)
\(600\) 0 0
\(601\) 2.47046 + 4.27896i 0.100772 + 0.174542i 0.912003 0.410184i \(-0.134535\pi\)
−0.811231 + 0.584726i \(0.801202\pi\)
\(602\) 0 0
\(603\) 2.64051i 0.107530i
\(604\) 0 0
\(605\) −10.0424 + 5.79800i −0.408283 + 0.235722i
\(606\) 0 0
\(607\) −8.16315 −0.331332 −0.165666 0.986182i \(-0.552977\pi\)
−0.165666 + 0.986182i \(0.552977\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.40055 + 41.2474i −0.380306 + 1.66869i
\(612\) 0 0
\(613\) 20.8841i 0.843503i −0.906712 0.421751i \(-0.861416\pi\)
0.906712 0.421751i \(-0.138584\pi\)
\(614\) 0 0
\(615\) 9.66092 16.7332i 0.389566 0.674748i
\(616\) 0 0
\(617\) −32.3343 18.6682i −1.30173 0.751555i −0.321030 0.947069i \(-0.604029\pi\)
−0.980701 + 0.195514i \(0.937362\pi\)
\(618\) 0 0
\(619\) 11.5619 + 6.67527i 0.464712 + 0.268302i 0.714024 0.700122i \(-0.246871\pi\)
−0.249311 + 0.968423i \(0.580204\pi\)
\(620\) 0 0
\(621\) −2.89009 + 5.00579i −0.115976 + 0.200875i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.471566 + 0.816776i 0.0188626 + 0.0326710i
\(626\) 0 0
\(627\) 16.9150 0.675521
\(628\) 0 0
\(629\) 38.5062i 1.53534i
\(630\) 0 0
\(631\) 37.7929 + 21.8198i 1.50451 + 0.868631i 0.999986 + 0.00523510i \(0.00166639\pi\)
0.504527 + 0.863396i \(0.331667\pi\)
\(632\) 0 0
\(633\) 1.28651 + 2.22830i 0.0511341 + 0.0885668i
\(634\) 0 0
\(635\) 1.20623 + 0.696420i 0.0478680 + 0.0276366i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.535000 0.308882i −0.0211643 0.0122192i
\(640\) 0 0
\(641\) −13.0431 22.5914i −0.515173 0.892306i −0.999845 0.0176101i \(-0.994394\pi\)
0.484672 0.874696i \(-0.338939\pi\)
\(642\) 0 0
\(643\) 38.2452 + 22.0809i 1.50825 + 0.870786i 0.999954 + 0.00960062i \(0.00305602\pi\)
0.508291 + 0.861185i \(0.330277\pi\)
\(644\) 0 0
\(645\) 11.1230i 0.437969i
\(646\) 0 0
\(647\) 15.5207 0.610182 0.305091 0.952323i \(-0.401313\pi\)
0.305091 + 0.952323i \(0.401313\pi\)
\(648\) 0 0
\(649\) −6.53600 11.3207i −0.256560 0.444375i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.1084 33.0967i 0.747769 1.29517i −0.201121 0.979566i \(-0.564458\pi\)
0.948890 0.315608i \(-0.102208\pi\)
\(654\) 0 0
\(655\) 15.4320 + 8.90970i 0.602980 + 0.348131i
\(656\) 0 0
\(657\) 2.03066 + 1.17240i 0.0792236 + 0.0457397i
\(658\) 0 0
\(659\) −10.2159 + 17.6944i −0.397955 + 0.689277i −0.993473 0.114064i \(-0.963613\pi\)
0.595519 + 0.803341i \(0.296946\pi\)
\(660\) 0 0
\(661\) 8.65534i 0.336654i 0.985731 + 0.168327i \(0.0538364\pi\)
−0.985731 + 0.168327i \(0.946164\pi\)
\(662\) 0 0
\(663\) 42.5770 + 9.70359i 1.65355 + 0.376856i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.12990 0.159910
\(668\) 0 0
\(669\) −0.471625 + 0.272293i −0.0182341 + 0.0105275i
\(670\) 0 0
\(671\) 6.69058i 0.258287i
\(672\) 0 0
\(673\) −13.0726 22.6424i −0.503912 0.872801i −0.999990 0.00452265i \(-0.998560\pi\)
0.496078 0.868278i \(-0.334773\pi\)
\(674\) 0 0
\(675\) 7.53759 13.0555i 0.290122 0.502506i
\(676\) 0 0
\(677\) 0.159898 + 0.276952i 0.00614539 + 0.0106441i 0.869082 0.494668i \(-0.164711\pi\)
−0.862936 + 0.505313i \(0.831377\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −3.89935 + 2.25129i −0.149423 + 0.0862696i
\(682\) 0 0
\(683\) −4.50473 + 2.60081i −0.172369 + 0.0995170i −0.583702 0.811968i \(-0.698396\pi\)
0.411334 + 0.911485i \(0.365063\pi\)
\(684\) 0 0
\(685\) 13.1201 22.7247i 0.501293 0.868265i
\(686\) 0 0
\(687\) 11.3658 6.56204i 0.433632 0.250357i
\(688\) 0 0
\(689\) 3.37230 + 10.9203i 0.128474 + 0.416031i
\(690\) 0 0
\(691\) 5.48965 + 3.16945i 0.208836 + 0.120572i 0.600770 0.799422i \(-0.294861\pi\)
−0.391934 + 0.919993i \(0.628194\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.4248i 0.509231i
\(696\) 0 0
\(697\) 44.9477 + 25.9506i 1.70252 + 0.982948i
\(698\) 0 0
\(699\) −21.8746 37.8879i −0.827373 1.43305i
\(700\) 0 0
\(701\) 39.6964 1.49931 0.749655 0.661828i \(-0.230219\pi\)
0.749655 + 0.661828i \(0.230219\pi\)
\(702\) 0 0
\(703\) −16.0986 + 27.8837i −0.607172 + 1.05165i
\(704\) 0 0
\(705\) −14.8048 + 25.6426i −0.557581 + 0.965758i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 30.3877i 1.14123i −0.821217 0.570617i \(-0.806704\pi\)
0.821217 0.570617i \(-0.193296\pi\)
\(710\) 0 0
\(711\) −1.10308 1.91059i −0.0413688 0.0716528i
\(712\) 0 0
\(713\) −5.13385 + 2.96403i −0.192264 + 0.111004i
\(714\) 0 0
\(715\) 8.29305 + 1.89004i 0.310142 + 0.0706836i
\(716\) 0 0
\(717\) 2.57969i 0.0963404i
\(718\) 0 0
\(719\) −22.2790 −0.830865 −0.415432 0.909624i \(-0.636370\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 16.9943 9.81164i 0.632023 0.364899i
\(724\) 0 0
\(725\) −10.7711 −0.400028
\(726\) 0 0
\(727\) 39.0166 1.44705 0.723523 0.690300i \(-0.242522\pi\)
0.723523 + 0.690300i \(0.242522\pi\)
\(728\) 0 0
\(729\) 25.0534 0.927903
\(730\) 0 0
\(731\) 29.8780 1.10508
\(732\) 0 0
\(733\) 30.9728 17.8821i 1.14400 0.660491i 0.196586 0.980487i \(-0.437015\pi\)
0.947419 + 0.319995i \(0.103681\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.9226 0.844364
\(738\) 0 0
\(739\) 19.6281i 0.722030i −0.932560 0.361015i \(-0.882430\pi\)
0.932560 0.361015i \(-0.117570\pi\)
\(740\) 0 0
\(741\) 26.7746 + 24.8273i 0.983589 + 0.912052i
\(742\) 0 0
\(743\) −20.5695 + 11.8758i −0.754621 + 0.435681i −0.827361 0.561670i \(-0.810159\pi\)
0.0727399 + 0.997351i \(0.476826\pi\)
\(744\) 0 0
\(745\) 1.33017 + 2.30392i 0.0487337 + 0.0844092i
\(746\) 0 0
\(747\) 1.29308i 0.0473114i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.26053 + 14.3077i −0.301431 + 0.522094i −0.976460 0.215697i \(-0.930798\pi\)
0.675029 + 0.737791i \(0.264131\pi\)
\(752\) 0 0
\(753\) −14.3225 + 24.8072i −0.521940 + 0.904026i
\(754\) 0 0
\(755\) 2.35426 0.0856801
\(756\) 0 0
\(757\) −5.76790 9.99030i −0.209638 0.363104i 0.741963 0.670441i \(-0.233895\pi\)
−0.951601 + 0.307338i \(0.900562\pi\)
\(758\) 0 0
\(759\) 2.97799 + 1.71934i 0.108094 + 0.0624082i
\(760\) 0 0
\(761\) 12.1906i 0.441909i 0.975284 + 0.220954i \(0.0709172\pi\)
−0.975284 + 0.220954i \(0.929083\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.59527 + 0.921029i 0.0576771 + 0.0332999i
\(766\) 0 0
\(767\) 6.27032 27.5127i 0.226408 0.993424i
\(768\) 0 0
\(769\) −12.3254 + 7.11605i −0.444464 + 0.256611i −0.705489 0.708721i \(-0.749273\pi\)
0.261026 + 0.965332i \(0.415939\pi\)
\(770\) 0 0
\(771\) −24.4787 + 42.3983i −0.881579 + 1.52694i
\(772\) 0 0
\(773\) −40.0536 + 23.1250i −1.44063 + 0.831748i −0.997892 0.0649035i \(-0.979326\pi\)
−0.442738 + 0.896651i \(0.645993\pi\)
\(774\) 0 0
\(775\) 13.3895 7.73042i 0.480964 0.277685i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21.6988 + 37.5834i 0.777440 + 1.34656i
\(780\) 0 0
\(781\) 2.68144 4.64440i 0.0959496 0.166190i
\(782\) 0 0
\(783\) −8.98989 15.5710i −0.321273 0.556460i
\(784\) 0 0
\(785\) 13.5940i 0.485189i
\(786\) 0 0
\(787\) −27.3472 + 15.7889i −0.974822 + 0.562814i −0.900703 0.434436i \(-0.856948\pi\)
−0.0741191 + 0.997249i \(0.523615\pi\)
\(788\) 0 0
\(789\) 36.0932 1.28495
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 9.82018 10.5904i 0.348725 0.376077i
\(794\) 0 0
\(795\) 7.99935i 0.283708i
\(796\) 0 0
\(797\) 2.40382 4.16354i 0.0851477 0.147480i −0.820306 0.571924i \(-0.806197\pi\)
0.905454 + 0.424444i \(0.139530\pi\)
\(798\) 0 0
\(799\) −68.8797 39.7677i −2.43679 1.40688i
\(800\) 0 0
\(801\) −1.19774 0.691517i −0.0423202 0.0244336i
\(802\) 0 0
\(803\) −10.1778 + 17.6284i −0.359165 + 0.622092i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.12410 14.0713i −0.285982 0.495335i
\(808\) 0 0
\(809\) −1.51624 −0.0533082 −0.0266541 0.999645i \(-0.508485\pi\)
−0.0266541 + 0.999645i \(0.508485\pi\)
\(810\) 0 0
\(811\) 44.4771i 1.56180i −0.624654 0.780901i \(-0.714760\pi\)
0.624654 0.780901i \(-0.285240\pi\)
\(812\) 0 0
\(813\) −2.80104 1.61718i −0.0982366 0.0567169i
\(814\) 0 0
\(815\) 1.98825 + 3.44375i 0.0696454 + 0.120629i
\(816\) 0 0
\(817\) 21.6357 + 12.4914i 0.756937 + 0.437018i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.8647 + 6.27272i 0.379179 + 0.218919i 0.677461 0.735559i \(-0.263080\pi\)
−0.298282 + 0.954478i \(0.596414\pi\)
\(822\) 0 0
\(823\) 19.3302 + 33.4809i 0.673808 + 1.16707i 0.976816 + 0.214082i \(0.0686760\pi\)
−0.303007 + 0.952988i \(0.597991\pi\)
\(824\) 0 0
\(825\) −7.76682 4.48418i −0.270406 0.156119i
\(826\) 0 0
\(827\) 10.4039i 0.361780i −0.983503 0.180890i \(-0.942102\pi\)
0.983503 0.180890i \(-0.0578977\pi\)
\(828\) 0 0
\(829\) 17.9274 0.622645 0.311323 0.950304i \(-0.399228\pi\)
0.311323 + 0.950304i \(0.399228\pi\)
\(830\) 0 0
\(831\) 7.23166 + 12.5256i 0.250864 + 0.434508i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 3.12129 5.40622i 0.108017 0.187090i
\(836\) 0 0
\(837\) 22.3506 + 12.9041i 0.772549 + 0.446031i
\(838\) 0 0
\(839\) 8.61866 + 4.97598i 0.297549 + 0.171790i 0.641341 0.767256i \(-0.278378\pi\)
−0.343792 + 0.939046i \(0.611712\pi\)
\(840\) 0 0
\(841\) 8.07680 13.9894i 0.278510 0.482394i
\(842\) 0 0
\(843\) 28.7548i 0.990367i
\(844\) 0 0
\(845\) 10.3528 + 15.1640i 0.356148 + 0.521656i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −19.9955 −0.686242
\(850\) 0 0
\(851\) −5.66851 + 3.27272i −0.194314 + 0.112187i
\(852\) 0 0
\(853\) 21.5922i 0.739302i 0.929171 + 0.369651i \(0.120523\pi\)
−0.929171 + 0.369651i \(0.879477\pi\)
\(854\) 0 0
\(855\) 0.770125 + 1.33390i 0.0263377 + 0.0456183i
\(856\) 0 0
\(857\) −1.98635 + 3.44046i −0.0678524 + 0.117524i −0.897956 0.440086i \(-0.854948\pi\)
0.830103 + 0.557610i \(0.188281\pi\)
\(858\) 0 0
\(859\) −24.9020 43.1315i −0.849644 1.47163i −0.881527 0.472134i \(-0.843484\pi\)
0.0318828 0.999492i \(-0.489850\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.81070 + 5.66421i −0.333960 + 0.192812i −0.657598 0.753369i \(-0.728427\pi\)
0.323638 + 0.946181i \(0.395094\pi\)
\(864\) 0 0
\(865\) 22.6398 13.0711i 0.769777 0.444431i
\(866\) 0 0
\(867\) −25.8625 + 44.7951i −0.878336 + 1.52132i
\(868\) 0 0
\(869\) 16.5861 9.57598i 0.562644 0.324843i
\(870\) 0 0
\(871\) 36.2839 + 33.6449i 1.22943 + 1.14001i
\(872\) 0 0
\(873\) −0.397805 0.229673i −0.0134636 0.00777324i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.21814i 0.176204i 0.996111 + 0.0881019i \(0.0280801\pi\)
−0.996111 + 0.0881019i \(0.971920\pi\)
\(878\) 0 0
\(879\) 23.1474 + 13.3641i 0.780741 + 0.450761i
\(880\) 0 0
\(881\) 16.4160 + 28.4334i 0.553070 + 0.957946i 0.998051 + 0.0624056i \(0.0198772\pi\)
−0.444981 + 0.895540i \(0.646789\pi\)
\(882\) 0 0
\(883\) 45.6813 1.53730 0.768648 0.639672i \(-0.220930\pi\)
0.768648 + 0.639672i \(0.220930\pi\)
\(884\) 0 0
\(885\) 9.87504 17.1041i 0.331946 0.574947i
\(886\) 0 0
\(887\) −3.32423 + 5.75774i −0.111617 + 0.193326i −0.916422 0.400213i \(-0.868936\pi\)
0.804805 + 0.593539i \(0.202270\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 15.9346i 0.533830i
\(892\) 0 0
\(893\) −33.2521 57.5943i −1.11274 1.92732i
\(894\) 0 0
\(895\) 7.31833 4.22524i 0.244625 0.141234i
\(896\) 0 0
\(897\) 2.19023 + 7.09251i 0.0731298 + 0.236812i
\(898\) 0 0
\(899\) 18.4398i 0.615000i
\(900\) 0 0
\(901\) −21.4874 −0.715848
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.54598 + 1.46992i −0.0846314 + 0.0488619i
\(906\) 0 0
\(907\) −24.7179 −0.820744 −0.410372 0.911918i \(-0.634601\pi\)
−0.410372 + 0.911918i \(0.634601\pi\)
\(908\) 0 0
\(909\) −1.91494 −0.0635147
\(910\) 0 0
\(911\) −14.4092 −0.477397 −0.238698 0.971094i \(-0.576721\pi\)
−0.238698 + 0.971094i \(0.576721\pi\)
\(912\) 0 0
\(913\) 11.2254 0.371507
\(914\) 0 0
\(915\) 8.75429 5.05429i 0.289408 0.167090i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.73332 −0.123151 −0.0615754 0.998102i \(-0.519612\pi\)
−0.0615754 + 0.998102i \(0.519612\pi\)
\(920\) 0 0
\(921\) 18.7220i 0.616909i
\(922\) 0 0
\(923\) 11.0613 3.41583i 0.364087 0.112434i
\(924\) 0 0
\(925\) 14.7839 8.53550i 0.486092 0.280645i
\(926\) 0 0
\(927\) 1.41657 + 2.45358i 0.0465264 + 0.0805861i
\(928\) 0 0
\(929\) 25.4504i 0.834999i −0.908677 0.417500i \(-0.862907\pi\)
0.908677 0.417500i \(-0.137093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −8.64624 + 14.9757i −0.283065 + 0.490283i
\(934\) 0 0
\(935\) −7.99556 + 13.8487i −0.261483 + 0.452901i
\(936\) 0 0
\(937\) −25.0364 −0.817905 −0.408952 0.912556i \(-0.634106\pi\)
−0.408952 + 0.912556i \(0.634106\pi\)
\(938\) 0 0
\(939\) 28.1727 + 48.7966i 0.919382 + 1.59242i
\(940\) 0 0
\(941\) 10.7221 + 6.19042i 0.349531 + 0.201802i 0.664479 0.747307i \(-0.268654\pi\)
−0.314948 + 0.949109i \(0.601987\pi\)
\(942\) 0 0
\(943\) 8.82236i 0.287296i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.5614 10.1391i −0.570669 0.329476i 0.186747 0.982408i \(-0.440205\pi\)
−0.757417 + 0.652932i \(0.773539\pi\)
\(948\) 0 0
\(949\) −41.9846 + 12.9652i −1.36288 + 0.420869i
\(950\) 0 0
\(951\) 3.46228 1.99895i 0.112272 0.0648204i
\(952\) 0 0
\(953\) −0.542566 + 0.939751i −0.0175754 + 0.0304415i −0.874679 0.484702i \(-0.838928\pi\)
0.857104 + 0.515144i \(0.172261\pi\)
\(954\) 0 0
\(955\) −31.9101 + 18.4233i −1.03259 + 0.596164i
\(956\) 0 0
\(957\) −9.26329 + 5.34816i −0.299440 + 0.172882i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.26577 3.92443i −0.0730893 0.126594i
\(962\) 0 0
\(963\) −0.100379 + 0.173862i −0.00323468 + 0.00560262i
\(964\) 0 0
\(965\) −9.49611 16.4477i −0.305691 0.529472i
\(966\) 0 0
\(967\) 6.19597i 0.199249i −0.995025 0.0996245i \(-0.968236\pi\)
0.995025 0.0996245i \(-0.0317642\pi\)
\(968\) 0 0
\(969\) −59.4509 + 34.3240i −1.90984 + 1.10265i
\(970\) 0 0
\(971\) −43.0247 −1.38073 −0.690364 0.723462i \(-0.742550\pi\)
−0.690364 + 0.723462i \(0.742550\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −5.71230 18.4978i −0.182940 0.592404i
\(976\) 0 0
\(977\) 57.4675i 1.83855i −0.393616 0.919275i \(-0.628776\pi\)
0.393616 0.919275i \(-0.371224\pi\)
\(978\) 0 0
\(979\) 6.00315 10.3978i 0.191861 0.332314i
\(980\) 0 0
\(981\) 1.96894 + 1.13677i 0.0628634 + 0.0362942i
\(982\) 0 0
\(983\) −4.43890 2.56280i −0.141579 0.0817406i 0.427537 0.903998i \(-0.359381\pi\)
−0.569116 + 0.822257i \(0.692715\pi\)
\(984\) 0 0
\(985\) −3.62546 + 6.27949i −0.115517 + 0.200081i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.53939 + 4.39835i 0.0807479 + 0.139859i
\(990\) 0 0
\(991\) 35.5383 1.12891 0.564456 0.825463i \(-0.309086\pi\)
0.564456 + 0.825463i \(0.309086\pi\)
\(992\) 0 0
\(993\) 37.6204i 1.19385i
\(994\) 0 0
\(995\) −22.7841 13.1544i −0.722305 0.417023i
\(996\) 0 0
\(997\) −20.5543 35.6011i −0.650961 1.12750i −0.982890 0.184193i \(-0.941033\pi\)
0.331929 0.943304i \(-0.392301\pi\)
\(998\) 0 0
\(999\) 24.6783 + 14.2480i 0.780786 + 0.450787i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bq.f.361.7 18
7.2 even 3 2548.2.bb.f.569.3 18
7.3 odd 6 2548.2.u.e.1765.7 18
7.4 even 3 2548.2.u.d.1765.3 18
7.5 odd 6 364.2.bb.a.205.7 18
7.6 odd 2 364.2.bq.a.361.3 yes 18
13.4 even 6 2548.2.bb.f.1733.3 18
21.5 even 6 3276.2.hi.i.1297.7 18
21.20 even 2 3276.2.fe.i.361.3 18
91.4 even 6 2548.2.u.d.589.3 18
91.17 odd 6 2548.2.u.e.589.7 18
91.30 even 6 inner 2548.2.bq.f.1941.7 18
91.69 odd 6 364.2.bb.a.277.7 yes 18
91.82 odd 6 364.2.bq.a.121.3 yes 18
273.173 even 6 3276.2.fe.i.2305.3 18
273.251 even 6 3276.2.hi.i.1369.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.bb.a.205.7 18 7.5 odd 6
364.2.bb.a.277.7 yes 18 91.69 odd 6
364.2.bq.a.121.3 yes 18 91.82 odd 6
364.2.bq.a.361.3 yes 18 7.6 odd 2
2548.2.u.d.589.3 18 91.4 even 6
2548.2.u.d.1765.3 18 7.4 even 3
2548.2.u.e.589.7 18 91.17 odd 6
2548.2.u.e.1765.7 18 7.3 odd 6
2548.2.bb.f.569.3 18 7.2 even 3
2548.2.bb.f.1733.3 18 13.4 even 6
2548.2.bq.f.361.7 18 1.1 even 1 trivial
2548.2.bq.f.1941.7 18 91.30 even 6 inner
3276.2.fe.i.361.3 18 21.20 even 2
3276.2.fe.i.2305.3 18 273.173 even 6
3276.2.hi.i.1297.7 18 21.5 even 6
3276.2.hi.i.1369.7 18 273.251 even 6