Properties

Label 2548.2.u.d.589.3
Level $2548$
Weight $2$
Character 2548.589
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(589,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 188 x^{14} - 49 x^{13} + 1116 x^{12} - x^{11} + 4649 x^{10} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 589.3
Root \(0.893365 - 1.54735i\) of defining polynomial
Character \(\chi\) \(=\) 2548.589
Dual form 2548.2.u.d.1765.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.893365 + 1.54735i) q^{3} +1.41239i q^{5} +(-0.0962010 - 0.166625i) q^{9} +(1.44649 + 0.835132i) q^{11} +(-2.45155 - 2.64384i) q^{13} +(-2.18546 - 1.26178i) q^{15} +(-3.38930 - 5.87045i) q^{17} +(4.90862 - 2.83399i) q^{19} +(0.576127 - 0.997882i) q^{23} +3.00517 q^{25} -5.01642 q^{27} +(1.79209 - 3.10400i) q^{29} -5.14475i q^{31} +(-2.58449 + 1.49215i) q^{33} +(4.91950 + 2.84027i) q^{37} +(6.28108 - 1.43150i) q^{39} +(-6.63082 - 3.82831i) q^{41} +(-2.20385 - 3.81717i) q^{43} +(0.235339 - 0.135873i) q^{45} -11.7333i q^{47} +12.1115 q^{51} -3.16988 q^{53} +(-1.17953 + 2.04300i) q^{55} +10.1272i q^{57} +(6.77778 - 3.91315i) q^{59} +(2.00285 + 3.46904i) q^{61} +(3.73412 - 3.46254i) q^{65} +(-11.8853 - 6.86196i) q^{67} +(1.02938 + 1.78294i) q^{69} +(-2.78064 + 1.60540i) q^{71} +12.1870i q^{73} +(-2.68471 + 4.65006i) q^{75} +11.4664 q^{79} +(4.77009 - 8.26204i) q^{81} +6.72074i q^{83} +(8.29133 - 4.78700i) q^{85} +(3.20199 + 5.54600i) q^{87} +(6.22521 + 3.59413i) q^{89} +(7.96075 + 4.59614i) q^{93} +(4.00269 + 6.93286i) q^{95} +(-2.06757 + 1.19371i) q^{97} -0.321362i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - q^{3} - 6 q^{9} + 6 q^{11} + 4 q^{13} + 6 q^{15} + 10 q^{17} + 21 q^{19} - 6 q^{23} - 10 q^{25} + 20 q^{27} + 2 q^{29} + 12 q^{33} - 18 q^{37} - 25 q^{39} + 9 q^{41} - 14 q^{43} + 30 q^{45} - 4 q^{51}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.893365 + 1.54735i −0.515784 + 0.893365i 0.484048 + 0.875042i \(0.339166\pi\)
−0.999832 + 0.0183231i \(0.994167\pi\)
\(4\) 0 0
\(5\) 1.41239i 0.631638i 0.948819 + 0.315819i \(0.102279\pi\)
−0.948819 + 0.315819i \(0.897721\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.0962010 0.166625i −0.0320670 0.0555417i
\(10\) 0 0
\(11\) 1.44649 + 0.835132i 0.436133 + 0.251802i 0.701956 0.712220i \(-0.252310\pi\)
−0.265823 + 0.964022i \(0.585644\pi\)
\(12\) 0 0
\(13\) −2.45155 2.64384i −0.679938 0.733270i
\(14\) 0 0
\(15\) −2.18546 1.26178i −0.564283 0.325789i
\(16\) 0 0
\(17\) −3.38930 5.87045i −0.822027 1.42379i −0.904170 0.427172i \(-0.859510\pi\)
0.0821435 0.996621i \(-0.473823\pi\)
\(18\) 0 0
\(19\) 4.90862 2.83399i 1.12611 0.650163i 0.183160 0.983083i \(-0.441367\pi\)
0.942955 + 0.332920i \(0.108034\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.576127 0.997882i 0.120131 0.208073i −0.799688 0.600415i \(-0.795002\pi\)
0.919819 + 0.392343i \(0.128335\pi\)
\(24\) 0 0
\(25\) 3.00517 0.601033
\(26\) 0 0
\(27\) −5.01642 −0.965410
\(28\) 0 0
\(29\) 1.79209 3.10400i 0.332784 0.576398i −0.650273 0.759701i \(-0.725345\pi\)
0.983057 + 0.183303i \(0.0586788\pi\)
\(30\) 0 0
\(31\) 5.14475i 0.924025i −0.886874 0.462012i \(-0.847128\pi\)
0.886874 0.462012i \(-0.152872\pi\)
\(32\) 0 0
\(33\) −2.58449 + 1.49215i −0.449902 + 0.259751i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.91950 + 2.84027i 0.808761 + 0.466938i 0.846525 0.532348i \(-0.178690\pi\)
−0.0377646 + 0.999287i \(0.512024\pi\)
\(38\) 0 0
\(39\) 6.28108 1.43150i 1.00578 0.229224i
\(40\) 0 0
\(41\) −6.63082 3.82831i −1.03556 0.597881i −0.116987 0.993133i \(-0.537324\pi\)
−0.918572 + 0.395253i \(0.870657\pi\)
\(42\) 0 0
\(43\) −2.20385 3.81717i −0.336083 0.582113i 0.647609 0.761973i \(-0.275769\pi\)
−0.983692 + 0.179860i \(0.942436\pi\)
\(44\) 0 0
\(45\) 0.235339 0.135873i 0.0350822 0.0202547i
\(46\) 0 0
\(47\) 11.7333i 1.71148i −0.517408 0.855739i \(-0.673103\pi\)
0.517408 0.855739i \(-0.326897\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 12.1115 1.69595
\(52\) 0 0
\(53\) −3.16988 −0.435417 −0.217708 0.976014i \(-0.569858\pi\)
−0.217708 + 0.976014i \(0.569858\pi\)
\(54\) 0 0
\(55\) −1.17953 + 2.04300i −0.159048 + 0.275478i
\(56\) 0 0
\(57\) 10.1272i 1.34137i
\(58\) 0 0
\(59\) 6.77778 3.91315i 0.882391 0.509449i 0.0109453 0.999940i \(-0.496516\pi\)
0.871446 + 0.490491i \(0.163183\pi\)
\(60\) 0 0
\(61\) 2.00285 + 3.46904i 0.256439 + 0.444165i 0.965285 0.261198i \(-0.0841175\pi\)
−0.708847 + 0.705363i \(0.750784\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.73412 3.46254i 0.463161 0.429475i
\(66\) 0 0
\(67\) −11.8853 6.86196i −1.45202 0.838322i −0.453421 0.891296i \(-0.649797\pi\)
−0.998596 + 0.0529740i \(0.983130\pi\)
\(68\) 0 0
\(69\) 1.02938 + 1.78294i 0.123923 + 0.214641i
\(70\) 0 0
\(71\) −2.78064 + 1.60540i −0.330001 + 0.190526i −0.655841 0.754899i \(-0.727686\pi\)
0.325841 + 0.945425i \(0.394353\pi\)
\(72\) 0 0
\(73\) 12.1870i 1.42638i 0.700970 + 0.713190i \(0.252751\pi\)
−0.700970 + 0.713190i \(0.747249\pi\)
\(74\) 0 0
\(75\) −2.68471 + 4.65006i −0.310004 + 0.536942i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.4664 1.29007 0.645037 0.764152i \(-0.276842\pi\)
0.645037 + 0.764152i \(0.276842\pi\)
\(80\) 0 0
\(81\) 4.77009 8.26204i 0.530010 0.918005i
\(82\) 0 0
\(83\) 6.72074i 0.737697i 0.929490 + 0.368848i \(0.120248\pi\)
−0.929490 + 0.368848i \(0.879752\pi\)
\(84\) 0 0
\(85\) 8.29133 4.78700i 0.899321 0.519223i
\(86\) 0 0
\(87\) 3.20199 + 5.54600i 0.343289 + 0.594594i
\(88\) 0 0
\(89\) 6.22521 + 3.59413i 0.659871 + 0.380977i 0.792228 0.610225i \(-0.208921\pi\)
−0.132357 + 0.991202i \(0.542254\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.96075 + 4.59614i 0.825491 + 0.476597i
\(94\) 0 0
\(95\) 4.00269 + 6.93286i 0.410667 + 0.711297i
\(96\) 0 0
\(97\) −2.06757 + 1.19371i −0.209930 + 0.121203i −0.601279 0.799039i \(-0.705342\pi\)
0.391349 + 0.920242i \(0.372009\pi\)
\(98\) 0 0
\(99\) 0.321362i 0.0322981i
\(100\) 0 0
\(101\) 4.97642 8.61941i 0.495172 0.857663i −0.504813 0.863229i \(-0.668438\pi\)
0.999985 + 0.00556600i \(0.00177172\pi\)
\(102\) 0 0
\(103\) −14.7252 −1.45091 −0.725456 0.688268i \(-0.758371\pi\)
−0.725456 + 0.688268i \(0.758371\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.521717 + 0.903640i −0.0504362 + 0.0873581i −0.890141 0.455685i \(-0.849395\pi\)
0.839705 + 0.543043i \(0.182728\pi\)
\(108\) 0 0
\(109\) 11.8166i 1.13182i 0.824466 + 0.565912i \(0.191476\pi\)
−0.824466 + 0.565912i \(0.808524\pi\)
\(110\) 0 0
\(111\) −8.78981 + 5.07480i −0.834292 + 0.481679i
\(112\) 0 0
\(113\) −7.69833 13.3339i −0.724198 1.25435i −0.959303 0.282378i \(-0.908877\pi\)
0.235105 0.971970i \(-0.424457\pi\)
\(114\) 0 0
\(115\) 1.40939 + 0.813714i 0.131427 + 0.0758792i
\(116\) 0 0
\(117\) −0.204688 + 0.662830i −0.0189234 + 0.0612786i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.10511 7.11026i −0.373192 0.646387i
\(122\) 0 0
\(123\) 11.8475 6.84015i 1.06825 0.616755i
\(124\) 0 0
\(125\) 11.3064i 1.01127i
\(126\) 0 0
\(127\) −0.493081 + 0.854041i −0.0437538 + 0.0757839i −0.887073 0.461629i \(-0.847265\pi\)
0.843319 + 0.537413i \(0.180598\pi\)
\(128\) 0 0
\(129\) 7.87535 0.693386
\(130\) 0 0
\(131\) 12.6165 1.10231 0.551155 0.834403i \(-0.314187\pi\)
0.551155 + 0.834403i \(0.314187\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 7.08512i 0.609790i
\(136\) 0 0
\(137\) 16.0896 9.28931i 1.37462 0.793639i 0.383118 0.923700i \(-0.374850\pi\)
0.991506 + 0.130060i \(0.0415170\pi\)
\(138\) 0 0
\(139\) −4.75252 8.23161i −0.403104 0.698196i 0.590995 0.806675i \(-0.298735\pi\)
−0.994099 + 0.108479i \(0.965402\pi\)
\(140\) 0 0
\(141\) 18.1556 + 10.4821i 1.52897 + 0.882753i
\(142\) 0 0
\(143\) −1.33819 5.87166i −0.111905 0.491013i
\(144\) 0 0
\(145\) 4.38404 + 2.53113i 0.364075 + 0.210199i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.63123 0.941790i 0.133635 0.0771545i −0.431692 0.902021i \(-0.642083\pi\)
0.565327 + 0.824867i \(0.308750\pi\)
\(150\) 0 0
\(151\) 1.66686i 0.135648i −0.997697 0.0678238i \(-0.978394\pi\)
0.997697 0.0678238i \(-0.0216056\pi\)
\(152\) 0 0
\(153\) −0.652109 + 1.12949i −0.0527199 + 0.0913135i
\(154\) 0 0
\(155\) 7.26637 0.583649
\(156\) 0 0
\(157\) 9.62483 0.768145 0.384072 0.923303i \(-0.374521\pi\)
0.384072 + 0.923303i \(0.374521\pi\)
\(158\) 0 0
\(159\) 2.83186 4.90492i 0.224581 0.388986i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.43825 1.40773i 0.190979 0.110262i −0.401462 0.915876i \(-0.631498\pi\)
0.592441 + 0.805614i \(0.298164\pi\)
\(164\) 0 0
\(165\) −2.10750 3.65029i −0.164068 0.284175i
\(166\) 0 0
\(167\) −3.82773 2.20994i −0.296198 0.171010i 0.344535 0.938773i \(-0.388036\pi\)
−0.640734 + 0.767763i \(0.721370\pi\)
\(168\) 0 0
\(169\) −0.979788 + 12.9630i −0.0753683 + 0.997156i
\(170\) 0 0
\(171\) −0.944428 0.545266i −0.0722222 0.0416975i
\(172\) 0 0
\(173\) 9.25463 + 16.0295i 0.703617 + 1.21870i 0.967189 + 0.254060i \(0.0817660\pi\)
−0.263572 + 0.964640i \(0.584901\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.9835i 1.05106i
\(178\) 0 0
\(179\) 2.99156 5.18154i 0.223600 0.387286i −0.732299 0.680984i \(-0.761552\pi\)
0.955898 + 0.293697i \(0.0948858\pi\)
\(180\) 0 0
\(181\) 2.08148 0.154715 0.0773575 0.997003i \(-0.475352\pi\)
0.0773575 + 0.997003i \(0.475352\pi\)
\(182\) 0 0
\(183\) −7.15710 −0.529068
\(184\) 0 0
\(185\) −4.01156 + 6.94823i −0.294936 + 0.510844i
\(186\) 0 0
\(187\) 11.3221i 0.827951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.0441 22.5930i −0.943838 1.63478i −0.758061 0.652183i \(-0.773853\pi\)
−0.185777 0.982592i \(-0.559480\pi\)
\(192\) 0 0
\(193\) 11.6454 + 6.72345i 0.838252 + 0.483965i 0.856670 0.515866i \(-0.172530\pi\)
−0.0184180 + 0.999830i \(0.505863\pi\)
\(194\) 0 0
\(195\) 2.02183 + 8.87131i 0.144786 + 0.635288i
\(196\) 0 0
\(197\) 4.44601 + 2.56691i 0.316765 + 0.182885i 0.649950 0.759977i \(-0.274790\pi\)
−0.333184 + 0.942862i \(0.608123\pi\)
\(198\) 0 0
\(199\) 9.31361 + 16.1316i 0.660224 + 1.14354i 0.980556 + 0.196237i \(0.0628722\pi\)
−0.320332 + 0.947305i \(0.603794\pi\)
\(200\) 0 0
\(201\) 21.2358 12.2605i 1.49786 0.864787i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.40704 9.36527i 0.377644 0.654099i
\(206\) 0 0
\(207\) −0.221696 −0.0154089
\(208\) 0 0
\(209\) 9.46703 0.654848
\(210\) 0 0
\(211\) 0.720035 1.24714i 0.0495692 0.0858564i −0.840176 0.542314i \(-0.817548\pi\)
0.889745 + 0.456457i \(0.150882\pi\)
\(212\) 0 0
\(213\) 5.73683i 0.393081i
\(214\) 0 0
\(215\) 5.39132 3.11268i 0.367685 0.212283i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −18.8576 10.8874i −1.27428 0.735705i
\(220\) 0 0
\(221\) −7.21147 + 23.3525i −0.485096 + 1.57086i
\(222\) 0 0
\(223\) −0.263960 0.152397i −0.0176761 0.0102053i 0.491136 0.871083i \(-0.336582\pi\)
−0.508812 + 0.860878i \(0.669915\pi\)
\(224\) 0 0
\(225\) −0.289100 0.500736i −0.0192733 0.0333824i
\(226\) 0 0
\(227\) 2.18239 1.26001i 0.144851 0.0836295i −0.425823 0.904806i \(-0.640015\pi\)
0.570674 + 0.821177i \(0.306682\pi\)
\(228\) 0 0
\(229\) 7.34531i 0.485392i −0.970102 0.242696i \(-0.921968\pi\)
0.970102 0.242696i \(-0.0780317\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.4856 1.60411 0.802053 0.597252i \(-0.203741\pi\)
0.802053 + 0.597252i \(0.203741\pi\)
\(234\) 0 0
\(235\) 16.5719 1.08103
\(236\) 0 0
\(237\) −10.2437 + 17.7426i −0.665400 + 1.15251i
\(238\) 0 0
\(239\) 1.44381i 0.0933922i 0.998909 + 0.0466961i \(0.0148692\pi\)
−0.998909 + 0.0466961i \(0.985131\pi\)
\(240\) 0 0
\(241\) −9.51138 + 5.49140i −0.612682 + 0.353732i −0.774014 0.633168i \(-0.781754\pi\)
0.161333 + 0.986900i \(0.448421\pi\)
\(242\) 0 0
\(243\) 0.998240 + 1.72900i 0.0640371 + 0.110916i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −19.5264 6.02993i −1.24243 0.383675i
\(248\) 0 0
\(249\) −10.3994 6.00407i −0.659032 0.380493i
\(250\) 0 0
\(251\) −8.01603 13.8842i −0.505967 0.876361i −0.999976 0.00690401i \(-0.997802\pi\)
0.494009 0.869457i \(-0.335531\pi\)
\(252\) 0 0
\(253\) 1.66673 0.962284i 0.104786 0.0604983i
\(254\) 0 0
\(255\) 17.1062i 1.07123i
\(256\) 0 0
\(257\) −13.7003 + 23.7296i −0.854600 + 1.48021i 0.0224155 + 0.999749i \(0.492864\pi\)
−0.877016 + 0.480462i \(0.840469\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.689605 −0.0426855
\(262\) 0 0
\(263\) −10.1003 + 17.4943i −0.622814 + 1.07875i 0.366145 + 0.930558i \(0.380677\pi\)
−0.988959 + 0.148188i \(0.952656\pi\)
\(264\) 0 0
\(265\) 4.47709i 0.275026i
\(266\) 0 0
\(267\) −11.1228 + 6.42174i −0.680703 + 0.393004i
\(268\) 0 0
\(269\) −4.54691 7.87548i −0.277230 0.480176i 0.693465 0.720490i \(-0.256083\pi\)
−0.970695 + 0.240314i \(0.922750\pi\)
\(270\) 0 0
\(271\) 1.56769 + 0.905105i 0.0952303 + 0.0549812i 0.546859 0.837225i \(-0.315823\pi\)
−0.451629 + 0.892206i \(0.649157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.34695 + 2.50971i 0.262131 + 0.151341i
\(276\) 0 0
\(277\) 4.04743 + 7.01035i 0.243186 + 0.421211i 0.961620 0.274384i \(-0.0884740\pi\)
−0.718434 + 0.695595i \(0.755141\pi\)
\(278\) 0 0
\(279\) −0.857244 + 0.494930i −0.0513218 + 0.0296307i
\(280\) 0 0
\(281\) 16.0935i 0.960059i −0.877252 0.480030i \(-0.840626\pi\)
0.877252 0.480030i \(-0.159374\pi\)
\(282\) 0 0
\(283\) 5.59555 9.69177i 0.332621 0.576116i −0.650404 0.759588i \(-0.725400\pi\)
0.983025 + 0.183472i \(0.0587338\pi\)
\(284\) 0 0
\(285\) −14.3035 −0.847263
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −14.4748 + 25.0710i −0.851457 + 1.47477i
\(290\) 0 0
\(291\) 4.26568i 0.250059i
\(292\) 0 0
\(293\) 12.9552 7.47966i 0.756848 0.436967i −0.0713148 0.997454i \(-0.522719\pi\)
0.828163 + 0.560487i \(0.189386\pi\)
\(294\) 0 0
\(295\) 5.52688 + 9.57283i 0.321787 + 0.557352i
\(296\) 0 0
\(297\) −7.25620 4.18937i −0.421048 0.243092i
\(298\) 0 0
\(299\) −4.05065 + 0.923170i −0.234255 + 0.0533883i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 8.89151 + 15.4005i 0.510804 + 0.884738i
\(304\) 0 0
\(305\) −4.89962 + 2.82880i −0.280551 + 0.161976i
\(306\) 0 0
\(307\) 10.4783i 0.598030i −0.954248 0.299015i \(-0.903342\pi\)
0.954248 0.299015i \(-0.0966581\pi\)
\(308\) 0 0
\(309\) 13.1549 22.7850i 0.748358 1.29619i
\(310\) 0 0
\(311\) 9.67828 0.548805 0.274403 0.961615i \(-0.411520\pi\)
0.274403 + 0.961615i \(0.411520\pi\)
\(312\) 0 0
\(313\) −31.5355 −1.78249 −0.891247 0.453519i \(-0.850169\pi\)
−0.891247 + 0.453519i \(0.850169\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.23755i 0.125673i −0.998024 0.0628367i \(-0.979985\pi\)
0.998024 0.0628367i \(-0.0200147\pi\)
\(318\) 0 0
\(319\) 5.18450 2.99327i 0.290276 0.167591i
\(320\) 0 0
\(321\) −0.932166 1.61456i −0.0520284 0.0901159i
\(322\) 0 0
\(323\) −33.2736 19.2105i −1.85139 1.06890i
\(324\) 0 0
\(325\) −7.36732 7.94518i −0.408666 0.440720i
\(326\) 0 0
\(327\) −18.2844 10.5565i −1.01113 0.583777i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 18.2345 10.5277i 1.00226 0.578656i 0.0933448 0.995634i \(-0.470244\pi\)
0.908917 + 0.416978i \(0.136911\pi\)
\(332\) 0 0
\(333\) 1.09295i 0.0598932i
\(334\) 0 0
\(335\) 9.69174 16.7866i 0.529516 0.917149i
\(336\) 0 0
\(337\) 24.6487 1.34270 0.671349 0.741141i \(-0.265715\pi\)
0.671349 + 0.741141i \(0.265715\pi\)
\(338\) 0 0
\(339\) 27.5097 1.49412
\(340\) 0 0
\(341\) 4.29655 7.44184i 0.232671 0.402998i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.51820 + 1.45389i −0.135576 + 0.0782746i
\(346\) 0 0
\(347\) −16.8055 29.1080i −0.902167 1.56260i −0.824676 0.565606i \(-0.808642\pi\)
−0.0774912 0.996993i \(-0.524691\pi\)
\(348\) 0 0
\(349\) 2.46776 + 1.42476i 0.132096 + 0.0762658i 0.564592 0.825370i \(-0.309034\pi\)
−0.432496 + 0.901636i \(0.642367\pi\)
\(350\) 0 0
\(351\) 12.2980 + 13.2626i 0.656419 + 0.707906i
\(352\) 0 0
\(353\) −24.7665 14.2990i −1.31819 0.761057i −0.334752 0.942306i \(-0.608652\pi\)
−0.983437 + 0.181250i \(0.941986\pi\)
\(354\) 0 0
\(355\) −2.26744 3.92733i −0.120343 0.208441i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.68544i 0.141732i 0.997486 + 0.0708660i \(0.0225763\pi\)
−0.997486 + 0.0708660i \(0.977424\pi\)
\(360\) 0 0
\(361\) 6.56304 11.3675i 0.345423 0.598290i
\(362\) 0 0
\(363\) 14.6694 0.769946
\(364\) 0 0
\(365\) −17.2127 −0.900956
\(366\) 0 0
\(367\) 0.569817 0.986952i 0.0297442 0.0515185i −0.850770 0.525538i \(-0.823864\pi\)
0.880514 + 0.474020i \(0.157197\pi\)
\(368\) 0 0
\(369\) 1.47315i 0.0766889i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.5364 + 19.9817i 0.597334 + 1.03461i 0.993213 + 0.116310i \(0.0371066\pi\)
−0.395879 + 0.918303i \(0.629560\pi\)
\(374\) 0 0
\(375\) −17.4950 10.1007i −0.903436 0.521599i
\(376\) 0 0
\(377\) −12.5999 + 2.87160i −0.648927 + 0.147895i
\(378\) 0 0
\(379\) −15.5083 8.95374i −0.796609 0.459923i 0.0456749 0.998956i \(-0.485456\pi\)
−0.842284 + 0.539034i \(0.818789\pi\)
\(380\) 0 0
\(381\) −0.881002 1.52594i −0.0451351 0.0781763i
\(382\) 0 0
\(383\) 30.5724 17.6510i 1.56217 0.901922i 0.565138 0.824997i \(-0.308823\pi\)
0.997037 0.0769251i \(-0.0245102\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.424024 + 0.734431i −0.0215544 + 0.0373332i
\(388\) 0 0
\(389\) −31.8724 −1.61600 −0.807999 0.589184i \(-0.799449\pi\)
−0.807999 + 0.589184i \(0.799449\pi\)
\(390\) 0 0
\(391\) −7.81068 −0.395003
\(392\) 0 0
\(393\) −11.2712 + 19.5222i −0.568555 + 0.984765i
\(394\) 0 0
\(395\) 16.1950i 0.814859i
\(396\) 0 0
\(397\) 7.70707 4.44968i 0.386807 0.223323i −0.293969 0.955815i \(-0.594976\pi\)
0.680776 + 0.732492i \(0.261643\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.84908 + 4.53167i 0.391964 + 0.226301i 0.683011 0.730408i \(-0.260670\pi\)
−0.291047 + 0.956709i \(0.594003\pi\)
\(402\) 0 0
\(403\) −13.6019 + 12.6126i −0.677559 + 0.628279i
\(404\) 0 0
\(405\) 11.6692 + 6.73721i 0.579847 + 0.334775i
\(406\) 0 0
\(407\) 4.74401 + 8.21686i 0.235152 + 0.407295i
\(408\) 0 0
\(409\) −10.2498 + 5.91773i −0.506820 + 0.292613i −0.731526 0.681814i \(-0.761191\pi\)
0.224705 + 0.974427i \(0.427858\pi\)
\(410\) 0 0
\(411\) 33.1950i 1.63739i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −9.49227 −0.465957
\(416\) 0 0
\(417\) 16.9829 0.831658
\(418\) 0 0
\(419\) 8.87793 15.3770i 0.433715 0.751217i −0.563475 0.826133i \(-0.690536\pi\)
0.997190 + 0.0749167i \(0.0238691\pi\)
\(420\) 0 0
\(421\) 22.6045i 1.10168i 0.834612 + 0.550838i \(0.185692\pi\)
−0.834612 + 0.550838i \(0.814308\pi\)
\(422\) 0 0
\(423\) −1.95506 + 1.12875i −0.0950583 + 0.0548819i
\(424\) 0 0
\(425\) −10.1854 17.6417i −0.494066 0.855747i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10.2810 + 3.17488i 0.496373 + 0.153285i
\(430\) 0 0
\(431\) −18.2515 10.5375i −0.879142 0.507573i −0.00876660 0.999962i \(-0.502791\pi\)
−0.870375 + 0.492389i \(0.836124\pi\)
\(432\) 0 0
\(433\) 12.8663 + 22.2851i 0.618316 + 1.07095i 0.989793 + 0.142512i \(0.0455181\pi\)
−0.371477 + 0.928442i \(0.621149\pi\)
\(434\) 0 0
\(435\) −7.83310 + 4.52244i −0.375568 + 0.216834i
\(436\) 0 0
\(437\) 6.53096i 0.312418i
\(438\) 0 0
\(439\) −15.8732 + 27.4931i −0.757585 + 1.31218i 0.186494 + 0.982456i \(0.440288\pi\)
−0.944079 + 0.329720i \(0.893046\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −19.8364 −0.942454 −0.471227 0.882012i \(-0.656189\pi\)
−0.471227 + 0.882012i \(0.656189\pi\)
\(444\) 0 0
\(445\) −5.07630 + 8.79240i −0.240640 + 0.416800i
\(446\) 0 0
\(447\) 3.36545i 0.159180i
\(448\) 0 0
\(449\) −15.2765 + 8.81989i −0.720942 + 0.416236i −0.815099 0.579321i \(-0.803318\pi\)
0.0941570 + 0.995557i \(0.469984\pi\)
\(450\) 0 0
\(451\) −6.39428 11.0752i −0.301095 0.521512i
\(452\) 0 0
\(453\) 2.57923 + 1.48912i 0.121183 + 0.0699649i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −23.1212 13.3490i −1.08156 0.624441i −0.150246 0.988649i \(-0.548007\pi\)
−0.931318 + 0.364207i \(0.881340\pi\)
\(458\) 0 0
\(459\) 17.0022 + 29.4486i 0.793593 + 1.37454i
\(460\) 0 0
\(461\) −3.64848 + 2.10645i −0.169927 + 0.0981071i −0.582551 0.812794i \(-0.697945\pi\)
0.412625 + 0.910901i \(0.364612\pi\)
\(462\) 0 0
\(463\) 34.4422i 1.60067i −0.599556 0.800333i \(-0.704656\pi\)
0.599556 0.800333i \(-0.295344\pi\)
\(464\) 0 0
\(465\) −6.49152 + 11.2436i −0.301037 + 0.521411i
\(466\) 0 0
\(467\) −26.8826 −1.24398 −0.621988 0.783027i \(-0.713675\pi\)
−0.621988 + 0.783027i \(0.713675\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −8.59848 + 14.8930i −0.396197 + 0.686234i
\(472\) 0 0
\(473\) 7.36201i 0.338505i
\(474\) 0 0
\(475\) 14.7512 8.51662i 0.676833 0.390770i
\(476\) 0 0
\(477\) 0.304946 + 0.528181i 0.0139625 + 0.0241838i
\(478\) 0 0
\(479\) −30.8084 17.7873i −1.40767 0.812720i −0.412510 0.910953i \(-0.635348\pi\)
−0.995163 + 0.0982329i \(0.968681\pi\)
\(480\) 0 0
\(481\) −4.55117 19.9695i −0.207516 0.910529i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.68598 2.92021i −0.0765565 0.132600i
\(486\) 0 0
\(487\) −21.6293 + 12.4877i −0.980117 + 0.565871i −0.902305 0.431097i \(-0.858127\pi\)
−0.0778114 + 0.996968i \(0.524793\pi\)
\(488\) 0 0
\(489\) 5.03045i 0.227485i
\(490\) 0 0
\(491\) 18.6406 32.2865i 0.841240 1.45707i −0.0476065 0.998866i \(-0.515159\pi\)
0.888847 0.458205i \(-0.151507\pi\)
\(492\) 0 0
\(493\) −24.2958 −1.09423
\(494\) 0 0
\(495\) 0.453887 0.0204007
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.00566i 0.134552i 0.997734 + 0.0672759i \(0.0214308\pi\)
−0.997734 + 0.0672759i \(0.978569\pi\)
\(500\) 0 0
\(501\) 6.83911 3.94856i 0.305549 0.176409i
\(502\) 0 0
\(503\) −6.70811 11.6188i −0.299100 0.518056i 0.676831 0.736139i \(-0.263353\pi\)
−0.975930 + 0.218083i \(0.930020\pi\)
\(504\) 0 0
\(505\) 12.1739 + 7.02862i 0.541733 + 0.312769i
\(506\) 0 0
\(507\) −19.1831 13.0968i −0.851950 0.581649i
\(508\) 0 0
\(509\) 36.1416 + 20.8664i 1.60195 + 0.924886i 0.991097 + 0.133143i \(0.0425068\pi\)
0.610853 + 0.791744i \(0.290827\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −24.6237 + 14.2165i −1.08716 + 0.627674i
\(514\) 0 0
\(515\) 20.7976i 0.916452i
\(516\) 0 0
\(517\) 9.79886 16.9721i 0.430953 0.746433i
\(518\) 0 0
\(519\) −33.0710 −1.45166
\(520\) 0 0
\(521\) −20.4568 −0.896230 −0.448115 0.893976i \(-0.647904\pi\)
−0.448115 + 0.893976i \(0.647904\pi\)
\(522\) 0 0
\(523\) −1.30125 + 2.25383i −0.0568996 + 0.0985529i −0.893072 0.449913i \(-0.851455\pi\)
0.836173 + 0.548466i \(0.184788\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −30.2020 + 17.4371i −1.31562 + 0.759573i
\(528\) 0 0
\(529\) 10.8362 + 18.7688i 0.471137 + 0.816034i
\(530\) 0 0
\(531\) −1.30406 0.752898i −0.0565913 0.0326730i
\(532\) 0 0
\(533\) 6.13437 + 26.9161i 0.265709 + 1.16587i
\(534\) 0 0
\(535\) −1.27629 0.736865i −0.0551787 0.0318574i
\(536\) 0 0
\(537\) 5.34511 + 9.25800i 0.230659 + 0.399512i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.7308i 0.633328i 0.948538 + 0.316664i \(0.102563\pi\)
−0.948538 + 0.316664i \(0.897437\pi\)
\(542\) 0 0
\(543\) −1.85952 + 3.22078i −0.0797996 + 0.138217i
\(544\) 0 0
\(545\) −16.6896 −0.714903
\(546\) 0 0
\(547\) −0.154082 −0.00658808 −0.00329404 0.999995i \(-0.501049\pi\)
−0.00329404 + 0.999995i \(0.501049\pi\)
\(548\) 0 0
\(549\) 0.385352 0.667449i 0.0164464 0.0284861i
\(550\) 0 0
\(551\) 20.3151i 0.865454i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.16758 12.4146i −0.304247 0.526971i
\(556\) 0 0
\(557\) −23.3779 13.4972i −0.990552 0.571896i −0.0851130 0.996371i \(-0.527125\pi\)
−0.905439 + 0.424476i \(0.860458\pi\)
\(558\) 0 0
\(559\) −4.68915 + 15.1846i −0.198330 + 0.642241i
\(560\) 0 0
\(561\) 17.5192 + 10.1147i 0.739663 + 0.427044i
\(562\) 0 0
\(563\) 20.2361 + 35.0500i 0.852852 + 1.47718i 0.878624 + 0.477515i \(0.158462\pi\)
−0.0257722 + 0.999668i \(0.508204\pi\)
\(564\) 0 0
\(565\) 18.8326 10.8730i 0.792294 0.457431i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.74231 + 4.74982i −0.114964 + 0.199123i −0.917765 0.397124i \(-0.870008\pi\)
0.802802 + 0.596246i \(0.203342\pi\)
\(570\) 0 0
\(571\) 19.4650 0.814585 0.407293 0.913298i \(-0.366473\pi\)
0.407293 + 0.913298i \(0.366473\pi\)
\(572\) 0 0
\(573\) 46.6126 1.94727
\(574\) 0 0
\(575\) 1.73136 2.99880i 0.0722026 0.125059i
\(576\) 0 0
\(577\) 29.0779i 1.21053i −0.796025 0.605264i \(-0.793068\pi\)
0.796025 0.605264i \(-0.206932\pi\)
\(578\) 0 0
\(579\) −20.8071 + 12.0130i −0.864714 + 0.499243i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.58520 2.64727i −0.189900 0.109639i
\(584\) 0 0
\(585\) −0.936171 0.289099i −0.0387059 0.0119528i
\(586\) 0 0
\(587\) −21.2641 12.2768i −0.877662 0.506718i −0.00777502 0.999970i \(-0.502475\pi\)
−0.869887 + 0.493252i \(0.835808\pi\)
\(588\) 0 0
\(589\) −14.5802 25.2536i −0.600766 1.04056i
\(590\) 0 0
\(591\) −7.94382 + 4.58637i −0.326765 + 0.188658i
\(592\) 0 0
\(593\) 26.6457i 1.09421i 0.837064 + 0.547104i \(0.184270\pi\)
−0.837064 + 0.547104i \(0.815730\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −33.2818 −1.36213
\(598\) 0 0
\(599\) 2.19399 0.0896441 0.0448220 0.998995i \(-0.485728\pi\)
0.0448220 + 0.998995i \(0.485728\pi\)
\(600\) 0 0
\(601\) 2.47046 4.27896i 0.100772 0.174542i −0.811231 0.584726i \(-0.801202\pi\)
0.912003 + 0.410184i \(0.134535\pi\)
\(602\) 0 0
\(603\) 2.64051i 0.107530i
\(604\) 0 0
\(605\) 10.0424 5.79800i 0.408283 0.235722i
\(606\) 0 0
\(607\) 4.08158 + 7.06950i 0.165666 + 0.286942i 0.936892 0.349620i \(-0.113689\pi\)
−0.771226 + 0.636562i \(0.780356\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −31.0210 + 28.7648i −1.25497 + 1.16370i
\(612\) 0 0
\(613\) −18.0862 10.4421i −0.730495 0.421751i 0.0881084 0.996111i \(-0.471918\pi\)
−0.818603 + 0.574360i \(0.805251\pi\)
\(614\) 0 0
\(615\) 9.66092 + 16.7332i 0.389566 + 0.674748i
\(616\) 0 0
\(617\) −32.3343 + 18.6682i −1.30173 + 0.751555i −0.980701 0.195514i \(-0.937362\pi\)
−0.321030 + 0.947069i \(0.604029\pi\)
\(618\) 0 0
\(619\) 13.3505i 0.536603i 0.963335 + 0.268302i \(0.0864624\pi\)
−0.963335 + 0.268302i \(0.913538\pi\)
\(620\) 0 0
\(621\) −2.89009 + 5.00579i −0.115976 + 0.200875i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.943131 −0.0377253
\(626\) 0 0
\(627\) −8.45751 + 14.6488i −0.337761 + 0.585018i
\(628\) 0 0
\(629\) 38.5062i 1.53534i
\(630\) 0 0
\(631\) 37.7929 21.8198i 1.50451 0.868631i 0.504527 0.863396i \(-0.331667\pi\)
0.999986 0.00523510i \(-0.00166639\pi\)
\(632\) 0 0
\(633\) 1.28651 + 2.22830i 0.0511341 + 0.0885668i
\(634\) 0 0
\(635\) −1.20623 0.696420i −0.0478680 0.0276366i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.535000 + 0.308882i 0.0211643 + 0.0122192i
\(640\) 0 0
\(641\) −13.0431 22.5914i −0.515173 0.892306i −0.999845 0.0176101i \(-0.994394\pi\)
0.484672 0.874696i \(-0.338939\pi\)
\(642\) 0 0
\(643\) 38.2452 22.0809i 1.50825 0.870786i 0.508291 0.861185i \(-0.330277\pi\)
0.999954 0.00960062i \(-0.00305602\pi\)
\(644\) 0 0
\(645\) 11.1230i 0.437969i
\(646\) 0 0
\(647\) −7.76036 + 13.4413i −0.305091 + 0.528433i −0.977282 0.211945i \(-0.932020\pi\)
0.672190 + 0.740378i \(0.265354\pi\)
\(648\) 0 0
\(649\) 13.0720 0.513121
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.1084 33.0967i 0.747769 1.29517i −0.201121 0.979566i \(-0.564458\pi\)
0.948890 0.315608i \(-0.102208\pi\)
\(654\) 0 0
\(655\) 17.8194i 0.696261i
\(656\) 0 0
\(657\) 2.03066 1.17240i 0.0792236 0.0457397i
\(658\) 0 0
\(659\) −10.2159 17.6944i −0.397955 0.689277i 0.595519 0.803341i \(-0.296946\pi\)
−0.993473 + 0.114064i \(0.963613\pi\)
\(660\) 0 0
\(661\) 7.49575 + 4.32767i 0.291551 + 0.168327i 0.638641 0.769505i \(-0.279497\pi\)
−0.347090 + 0.937832i \(0.612830\pi\)
\(662\) 0 0
\(663\) −29.6921 32.0210i −1.15314 1.24359i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.06495 3.57660i −0.0799551 0.138486i
\(668\) 0 0
\(669\) 0.471625 0.272293i 0.0182341 0.0105275i
\(670\) 0 0
\(671\) 6.69058i 0.258287i
\(672\) 0 0
\(673\) −13.0726 + 22.6424i −0.503912 + 0.872801i 0.496078 + 0.868278i \(0.334773\pi\)
−0.999990 + 0.00452265i \(0.998560\pi\)
\(674\) 0 0
\(675\) −15.0752 −0.580244
\(676\) 0 0
\(677\) −0.319797 −0.0122908 −0.00614539 0.999981i \(-0.501956\pi\)
−0.00614539 + 0.999981i \(0.501956\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4.50258i 0.172539i
\(682\) 0 0
\(683\) 4.50473 2.60081i 0.172369 0.0995170i −0.411334 0.911485i \(-0.634937\pi\)
0.583702 + 0.811968i \(0.301604\pi\)
\(684\) 0 0
\(685\) 13.1201 + 22.7247i 0.501293 + 0.868265i
\(686\) 0 0
\(687\) 11.3658 + 6.56204i 0.433632 + 0.250357i
\(688\) 0 0
\(689\) 7.77113 + 8.38066i 0.296056 + 0.319278i
\(690\) 0 0
\(691\) −5.48965 3.16945i −0.208836 0.120572i 0.391934 0.919993i \(-0.371806\pi\)
−0.600770 + 0.799422i \(0.705139\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.6262 6.71239i 0.441007 0.254616i
\(696\) 0 0
\(697\) 51.9012i 1.96590i
\(698\) 0 0
\(699\) −21.8746 + 37.8879i −0.827373 + 1.43305i
\(700\) 0 0
\(701\) 39.6964 1.49931 0.749655 0.661828i \(-0.230219\pi\)
0.749655 + 0.661828i \(0.230219\pi\)
\(702\) 0 0
\(703\) 32.1973 1.21434
\(704\) 0 0
\(705\) −14.8048 + 25.6426i −0.557581 + 0.965758i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 26.3165 15.1938i 0.988337 0.570617i 0.0835602 0.996503i \(-0.473371\pi\)
0.904777 + 0.425886i \(0.140038\pi\)
\(710\) 0 0
\(711\) −1.10308 1.91059i −0.0413688 0.0716528i
\(712\) 0 0
\(713\) −5.13385 2.96403i −0.192264 0.111004i
\(714\) 0 0
\(715\) 8.29305 1.89004i 0.310142 0.0706836i
\(716\) 0 0
\(717\) −2.23408 1.28985i −0.0834333 0.0481702i
\(718\) 0 0
\(719\) 11.1395 + 19.2941i 0.415432 + 0.719550i 0.995474 0.0950371i \(-0.0302970\pi\)
−0.580041 + 0.814587i \(0.696964\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 19.6233i 0.729798i
\(724\) 0 0
\(725\) 5.38554 9.32803i 0.200014 0.346434i
\(726\) 0 0
\(727\) 39.0166 1.44705 0.723523 0.690300i \(-0.242522\pi\)
0.723523 + 0.690300i \(0.242522\pi\)
\(728\) 0 0
\(729\) 25.0534 0.927903
\(730\) 0 0
\(731\) −14.9390 + 25.8751i −0.552539 + 0.957026i
\(732\) 0 0
\(733\) 35.7643i 1.32098i −0.750834 0.660491i \(-0.770348\pi\)
0.750834 0.660491i \(-0.229652\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.4613 19.8515i −0.422182 0.731241i
\(738\) 0 0
\(739\) −16.9984 9.81403i −0.625297 0.361015i 0.153632 0.988128i \(-0.450903\pi\)
−0.778928 + 0.627113i \(0.784236\pi\)
\(740\) 0 0
\(741\) 26.7746 24.8273i 0.983589 0.912052i
\(742\) 0 0
\(743\) −20.5695 11.8758i −0.754621 0.435681i 0.0727399 0.997351i \(-0.476826\pi\)
−0.827361 + 0.561670i \(0.810159\pi\)
\(744\) 0 0
\(745\) 1.33017 + 2.30392i 0.0487337 + 0.0844092i
\(746\) 0 0
\(747\) 1.11984 0.646542i 0.0409729 0.0236557i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.26053 + 14.3077i −0.301431 + 0.522094i −0.976460 0.215697i \(-0.930798\pi\)
0.675029 + 0.737791i \(0.264131\pi\)
\(752\) 0 0
\(753\) 28.6449 1.04388
\(754\) 0 0
\(755\) 2.35426 0.0856801
\(756\) 0 0
\(757\) −5.76790 + 9.99030i −0.209638 + 0.363104i −0.951601 0.307338i \(-0.900562\pi\)
0.741963 + 0.670441i \(0.233895\pi\)
\(758\) 0 0
\(759\) 3.43868i 0.124816i
\(760\) 0 0
\(761\) −10.5574 + 6.09530i −0.382704 + 0.220954i −0.678994 0.734144i \(-0.737584\pi\)
0.296290 + 0.955098i \(0.404251\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.59527 0.921029i −0.0576771 0.0332999i
\(766\) 0 0
\(767\) −26.9618 8.32607i −0.973535 0.300637i
\(768\) 0 0
\(769\) −12.3254 7.11605i −0.444464 0.256611i 0.261026 0.965332i \(-0.415939\pi\)
−0.705489 + 0.708721i \(0.749273\pi\)
\(770\) 0 0
\(771\) −24.4787 42.3983i −0.881579 1.52694i
\(772\) 0 0
\(773\) 40.0536 23.1250i 1.44063 0.831748i 0.442738 0.896651i \(-0.354007\pi\)
0.997892 + 0.0649035i \(0.0206740\pi\)
\(774\) 0 0
\(775\) 15.4608i 0.555370i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −43.3976 −1.55488
\(780\) 0 0
\(781\) −5.36289 −0.191899
\(782\) 0 0
\(783\) −8.98989 + 15.5710i −0.321273 + 0.556460i
\(784\) 0 0
\(785\) 13.5940i 0.485189i
\(786\) 0 0
\(787\) 27.3472 15.7889i 0.974822 0.562814i 0.0741191 0.997249i \(-0.476385\pi\)
0.900703 + 0.434436i \(0.143052\pi\)
\(788\) 0 0
\(789\) −18.0466 31.2576i −0.642476 1.11280i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.26149 13.7997i 0.151330 0.490043i
\(794\) 0 0
\(795\) 6.92764 + 3.99968i 0.245698 + 0.141854i
\(796\) 0 0
\(797\) 2.40382 + 4.16354i 0.0851477 + 0.147480i 0.905454 0.424444i \(-0.139530\pi\)
−0.820306 + 0.571924i \(0.806197\pi\)
\(798\) 0 0
\(799\) −68.8797 + 39.7677i −2.43679 + 1.40688i
\(800\) 0 0
\(801\) 1.38303i 0.0488671i
\(802\) 0 0
\(803\) −10.1778 + 17.6284i −0.359165 + 0.622092i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 16.2482 0.571964
\(808\) 0 0
\(809\) 0.758121 1.31310i 0.0266541 0.0461663i −0.852391 0.522905i \(-0.824848\pi\)
0.879045 + 0.476739i \(0.158181\pi\)
\(810\) 0 0
\(811\) 44.4771i 1.56180i 0.624654 + 0.780901i \(0.285240\pi\)
−0.624654 + 0.780901i \(0.714760\pi\)
\(812\) 0 0
\(813\) −2.80104 + 1.61718i −0.0982366 + 0.0567169i
\(814\) 0 0
\(815\) 1.98825 + 3.44375i 0.0696454 + 0.120629i
\(816\) 0 0
\(817\) −21.6357 12.4914i −0.756937 0.437018i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.8647 6.27272i −0.379179 0.218919i 0.298282 0.954478i \(-0.403586\pi\)
−0.677461 + 0.735559i \(0.736920\pi\)
\(822\) 0 0
\(823\) 19.3302 + 33.4809i 0.673808 + 1.16707i 0.976816 + 0.214082i \(0.0686760\pi\)
−0.303007 + 0.952988i \(0.597991\pi\)
\(824\) 0 0
\(825\) −7.76682 + 4.48418i −0.270406 + 0.156119i
\(826\) 0 0
\(827\) 10.4039i 0.361780i 0.983503 + 0.180890i \(0.0578977\pi\)
−0.983503 + 0.180890i \(0.942102\pi\)
\(828\) 0 0
\(829\) −8.96371 + 15.5256i −0.311323 + 0.539227i −0.978649 0.205539i \(-0.934105\pi\)
0.667326 + 0.744765i \(0.267439\pi\)
\(830\) 0 0
\(831\) −14.4633 −0.501727
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 3.12129 5.40622i 0.108017 0.187090i
\(836\) 0 0
\(837\) 25.8082i 0.892063i
\(838\) 0 0
\(839\) 8.61866 4.97598i 0.297549 0.171790i −0.343792 0.939046i \(-0.611712\pi\)
0.641341 + 0.767256i \(0.278378\pi\)
\(840\) 0 0
\(841\) 8.07680 + 13.9894i 0.278510 + 0.482394i
\(842\) 0 0
\(843\) 24.9024 + 14.3774i 0.857683 + 0.495184i
\(844\) 0 0
\(845\) −18.3088 1.38384i −0.629841 0.0476055i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 9.99773 + 17.3166i 0.343121 + 0.594303i
\(850\) 0 0
\(851\) 5.66851 3.27272i 0.194314 0.112187i
\(852\) 0 0
\(853\) 21.5922i 0.739302i −0.929171 0.369651i \(-0.879477\pi\)
0.929171 0.369651i \(-0.120523\pi\)
\(854\) 0 0
\(855\) 0.770125 1.33390i 0.0263377 0.0456183i
\(856\) 0 0
\(857\) 3.97270 0.135705 0.0678524 0.997695i \(-0.478385\pi\)
0.0678524 + 0.997695i \(0.478385\pi\)
\(858\) 0 0
\(859\) 49.8039 1.69929 0.849644 0.527357i \(-0.176817\pi\)
0.849644 + 0.527357i \(0.176817\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.3284i 0.385624i 0.981236 + 0.192812i \(0.0617607\pi\)
−0.981236 + 0.192812i \(0.938239\pi\)
\(864\) 0 0
\(865\) −22.6398 + 13.0711i −0.769777 + 0.444431i
\(866\) 0 0
\(867\) −25.8625 44.7951i −0.878336 1.52132i
\(868\) 0 0
\(869\) 16.5861 + 9.57598i 0.562644 + 0.324843i
\(870\) 0 0
\(871\) 10.9954 + 48.2452i 0.372565 + 1.63473i
\(872\) 0 0
\(873\) 0.397805 + 0.229673i 0.0134636 + 0.00777324i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.51904 + 2.60907i −0.152597 + 0.0881019i −0.574354 0.818607i \(-0.694747\pi\)
0.421757 + 0.906709i \(0.361413\pi\)
\(878\) 0 0
\(879\) 26.7283i 0.901522i
\(880\) 0 0
\(881\) 16.4160 28.4334i 0.553070 0.957946i −0.444981 0.895540i \(-0.646789\pi\)
0.998051 0.0624056i \(-0.0198772\pi\)
\(882\) 0 0
\(883\) 45.6813 1.53730 0.768648 0.639672i \(-0.220930\pi\)
0.768648 + 0.639672i \(0.220930\pi\)
\(884\) 0 0
\(885\) −19.7501 −0.663891
\(886\) 0 0
\(887\) −3.32423 + 5.75774i −0.111617 + 0.193326i −0.916422 0.400213i \(-0.868936\pi\)
0.804805 + 0.593539i \(0.202270\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 13.7998 7.96732i 0.462311 0.266915i
\(892\) 0 0
\(893\) −33.2521 57.5943i −1.11274 1.92732i
\(894\) 0 0
\(895\) 7.31833 + 4.22524i 0.244625 + 0.141234i
\(896\) 0 0
\(897\) 2.19023 7.09251i 0.0731298 0.236812i
\(898\) 0 0
\(899\) −15.9693 9.21988i −0.532606 0.307500i
\(900\) 0 0
\(901\) 10.7437 + 18.6086i 0.357924 + 0.619943i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.93985i 0.0977239i
\(906\) 0 0
\(907\) 12.3589 21.4063i 0.410372 0.710785i −0.584558 0.811352i \(-0.698732\pi\)
0.994930 + 0.100567i \(0.0320655\pi\)
\(908\) 0 0
\(909\) −1.91494 −0.0635147
\(910\) 0 0
\(911\) −14.4092 −0.477397 −0.238698 0.971094i \(-0.576721\pi\)
−0.238698 + 0.971094i \(0.576721\pi\)
\(912\) 0 0
\(913\) −5.61270 + 9.72149i −0.185753 + 0.321734i
\(914\) 0 0
\(915\) 10.1086i 0.334180i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.86666 + 3.23315i 0.0615754 + 0.106652i 0.895170 0.445725i \(-0.147054\pi\)
−0.833594 + 0.552377i \(0.813721\pi\)
\(920\) 0 0
\(921\) 16.2137 + 9.36098i 0.534259 + 0.308455i
\(922\) 0 0
\(923\) 11.0613 + 3.41583i 0.364087 + 0.112434i
\(924\) 0 0
\(925\) 14.7839 + 8.53550i 0.486092 + 0.280645i
\(926\) 0 0
\(927\) 1.41657 + 2.45358i 0.0465264 + 0.0805861i
\(928\) 0 0
\(929\) 22.0407 12.7252i 0.723130 0.417500i −0.0927733 0.995687i \(-0.529573\pi\)
0.815904 + 0.578188i \(0.196240\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −8.64624 + 14.9757i −0.283065 + 0.490283i
\(934\) 0 0
\(935\) 15.9911 0.522966
\(936\) 0 0
\(937\) −25.0364 −0.817905 −0.408952 0.912556i \(-0.634106\pi\)
−0.408952 + 0.912556i \(0.634106\pi\)
\(938\) 0 0
\(939\) 28.1727 48.7966i 0.919382 1.59242i
\(940\) 0 0
\(941\) 12.3808i 0.403604i 0.979426 + 0.201802i \(0.0646797\pi\)
−0.979426 + 0.201802i \(0.935320\pi\)
\(942\) 0 0
\(943\) −7.64039 + 4.41118i −0.248805 + 0.143648i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.5614 + 10.1391i 0.570669 + 0.329476i 0.757417 0.652932i \(-0.226461\pi\)
−0.186747 + 0.982408i \(0.559795\pi\)
\(948\) 0 0
\(949\) 32.2205 29.8771i 1.04592 0.969851i
\(950\) 0 0
\(951\) 3.46228 + 1.99895i 0.112272 + 0.0648204i
\(952\) 0 0
\(953\) −0.542566 0.939751i −0.0175754 0.0304415i 0.857104 0.515144i \(-0.172261\pi\)
−0.874679 + 0.484702i \(0.838928\pi\)
\(954\) 0 0
\(955\) 31.9101 18.4233i 1.03259 0.596164i
\(956\) 0 0
\(957\) 10.6963i 0.345763i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 4.53154 0.146179
\(962\) 0 0
\(963\) 0.200759 0.00646935
\(964\) 0 0
\(965\) −9.49611 + 16.4477i −0.305691 + 0.529472i
\(966\) 0 0
\(967\) 6.19597i 0.199249i 0.995025 + 0.0996245i \(0.0317642\pi\)
−0.995025 + 0.0996245i \(0.968236\pi\)
\(968\) 0 0
\(969\) 59.4509 34.3240i 1.90984 1.10265i
\(970\) 0 0
\(971\) 21.5123 + 37.2605i 0.690364 + 1.19575i 0.971719 + 0.236142i \(0.0758829\pi\)
−0.281355 + 0.959604i \(0.590784\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 18.8757 4.30190i 0.604507 0.137771i
\(976\) 0 0
\(977\) −49.7684 28.7338i −1.59223 0.919275i −0.992923 0.118756i \(-0.962109\pi\)
−0.599307 0.800519i \(-0.704557\pi\)
\(978\) 0 0
\(979\) 6.00315 + 10.3978i 0.191861 + 0.332314i
\(980\) 0 0
\(981\) 1.96894 1.13677i 0.0628634 0.0362942i
\(982\) 0 0
\(983\) 5.12560i 0.163481i −0.996654 0.0817406i \(-0.973952\pi\)
0.996654 0.0817406i \(-0.0260479\pi\)
\(984\) 0 0
\(985\) −3.62546 + 6.27949i −0.115517 + 0.200081i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.07878 −0.161496
\(990\) 0 0
\(991\) −17.7691 + 30.7771i −0.564456 + 0.977666i 0.432645 + 0.901565i \(0.357580\pi\)
−0.997100 + 0.0761011i \(0.975753\pi\)
\(992\) 0 0
\(993\) 37.6204i 1.19385i
\(994\) 0 0
\(995\) −22.7841 + 13.1544i −0.722305 + 0.417023i
\(996\) 0 0
\(997\) −20.5543 35.6011i −0.650961 1.12750i −0.982890 0.184193i \(-0.941033\pi\)
0.331929 0.943304i \(-0.392301\pi\)
\(998\) 0 0
\(999\) −24.6783 14.2480i −0.780786 0.450787i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.u.d.589.3 18
7.2 even 3 2548.2.bb.f.1733.3 18
7.3 odd 6 364.2.bq.a.121.3 yes 18
7.4 even 3 2548.2.bq.f.1941.7 18
7.5 odd 6 364.2.bb.a.277.7 yes 18
7.6 odd 2 2548.2.u.e.589.7 18
13.10 even 6 inner 2548.2.u.d.1765.3 18
21.5 even 6 3276.2.hi.i.1369.7 18
21.17 even 6 3276.2.fe.i.2305.3 18
91.10 odd 6 364.2.bb.a.205.7 18
91.23 even 6 2548.2.bq.f.361.7 18
91.62 odd 6 2548.2.u.e.1765.7 18
91.75 odd 6 364.2.bq.a.361.3 yes 18
91.88 even 6 2548.2.bb.f.569.3 18
273.101 even 6 3276.2.hi.i.1297.7 18
273.257 even 6 3276.2.fe.i.361.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.bb.a.205.7 18 91.10 odd 6
364.2.bb.a.277.7 yes 18 7.5 odd 6
364.2.bq.a.121.3 yes 18 7.3 odd 6
364.2.bq.a.361.3 yes 18 91.75 odd 6
2548.2.u.d.589.3 18 1.1 even 1 trivial
2548.2.u.d.1765.3 18 13.10 even 6 inner
2548.2.u.e.589.7 18 7.6 odd 2
2548.2.u.e.1765.7 18 91.62 odd 6
2548.2.bb.f.569.3 18 91.88 even 6
2548.2.bb.f.1733.3 18 7.2 even 3
2548.2.bq.f.361.7 18 91.23 even 6
2548.2.bq.f.1941.7 18 7.4 even 3
3276.2.fe.i.361.3 18 273.257 even 6
3276.2.fe.i.2305.3 18 21.17 even 6
3276.2.hi.i.1297.7 18 273.101 even 6
3276.2.hi.i.1369.7 18 21.5 even 6