Properties

Label 2548.2.j.r.1145.3
Level $2548$
Weight $2$
Character 2548.1145
Analytic conductor $20.346$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(1145,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.1145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 10 x^{10} - 8 x^{9} + 80 x^{8} - 56 x^{7} + 220 x^{6} - 240 x^{5} + 484 x^{4} - 336 x^{3} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1145.3
Root \(1.23667 + 2.14198i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1145
Dual form 2548.2.j.r.1353.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.529566 + 0.917235i) q^{3} +(-2.04647 - 3.54459i) q^{5} +(0.939121 + 1.62660i) q^{9} +(-0.926874 + 1.60539i) q^{11} -1.00000 q^{13} +4.33496 q^{15} +(2.46552 - 4.27041i) q^{17} +(-0.788959 - 1.36652i) q^{19} +(-2.15007 - 3.72403i) q^{23} +(-5.87608 + 10.1777i) q^{25} -5.16670 q^{27} +2.35746 q^{29} +(-1.14057 + 1.97552i) q^{31} +(-0.981681 - 1.70032i) q^{33} +(-1.67023 - 2.89292i) q^{37} +(0.529566 - 0.917235i) q^{39} +10.6089 q^{41} -0.0759434 q^{43} +(3.84377 - 6.65760i) q^{45} +(-4.88190 - 8.45570i) q^{47} +(2.61131 + 4.52293i) q^{51} +(-0.984819 + 1.70576i) q^{53} +7.58728 q^{55} +1.67122 q^{57} +(-5.64407 + 9.77581i) q^{59} +(2.23817 + 3.87662i) q^{61} +(2.04647 + 3.54459i) q^{65} +(-4.86365 + 8.42409i) q^{67} +4.55441 q^{69} -12.4059 q^{71} +(-5.48668 + 9.50322i) q^{73} +(-6.22354 - 10.7795i) q^{75} +(3.07735 + 5.33012i) q^{79} +(-0.0812565 + 0.140740i) q^{81} -17.3928 q^{83} -20.1825 q^{85} +(-1.24843 + 2.16234i) q^{87} +(0.629405 + 1.09016i) q^{89} +(-1.20801 - 2.09234i) q^{93} +(-3.22916 + 5.59307i) q^{95} +6.51465 q^{97} -3.48179 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 10 q^{5} - 6 q^{9} + 4 q^{11} - 12 q^{13} + 8 q^{15} - 16 q^{17} - 10 q^{19} + 2 q^{23} - 12 q^{25} - 24 q^{27} + 4 q^{29} - 6 q^{31} - 28 q^{33} - 16 q^{37} + 16 q^{41} + 12 q^{43} - 34 q^{45} - 30 q^{47}+ \cdots - 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.529566 + 0.917235i −0.305745 + 0.529566i −0.977427 0.211274i \(-0.932239\pi\)
0.671682 + 0.740840i \(0.265572\pi\)
\(4\) 0 0
\(5\) −2.04647 3.54459i −0.915210 1.58519i −0.806594 0.591105i \(-0.798692\pi\)
−0.108615 0.994084i \(-0.534642\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.939121 + 1.62660i 0.313040 + 0.542202i
\(10\) 0 0
\(11\) −0.926874 + 1.60539i −0.279463 + 0.484044i −0.971251 0.238056i \(-0.923490\pi\)
0.691788 + 0.722100i \(0.256823\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 4.33496 1.11928
\(16\) 0 0
\(17\) 2.46552 4.27041i 0.597977 1.03573i −0.395142 0.918620i \(-0.629305\pi\)
0.993119 0.117107i \(-0.0373621\pi\)
\(18\) 0 0
\(19\) −0.788959 1.36652i −0.181000 0.313500i 0.761222 0.648492i \(-0.224600\pi\)
−0.942221 + 0.334991i \(0.891267\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.15007 3.72403i −0.448320 0.776513i 0.549957 0.835193i \(-0.314644\pi\)
−0.998277 + 0.0586799i \(0.981311\pi\)
\(24\) 0 0
\(25\) −5.87608 + 10.1777i −1.17522 + 2.03554i
\(26\) 0 0
\(27\) −5.16670 −0.994331
\(28\) 0 0
\(29\) 2.35746 0.437769 0.218884 0.975751i \(-0.429758\pi\)
0.218884 + 0.975751i \(0.429758\pi\)
\(30\) 0 0
\(31\) −1.14057 + 1.97552i −0.204852 + 0.354815i −0.950086 0.311989i \(-0.899005\pi\)
0.745233 + 0.666804i \(0.232338\pi\)
\(32\) 0 0
\(33\) −0.981681 1.70032i −0.170889 0.295988i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.67023 2.89292i −0.274584 0.475593i 0.695446 0.718578i \(-0.255207\pi\)
−0.970030 + 0.242985i \(0.921873\pi\)
\(38\) 0 0
\(39\) 0.529566 0.917235i 0.0847984 0.146875i
\(40\) 0 0
\(41\) 10.6089 1.65684 0.828420 0.560108i \(-0.189240\pi\)
0.828420 + 0.560108i \(0.189240\pi\)
\(42\) 0 0
\(43\) −0.0759434 −0.0115813 −0.00579063 0.999983i \(-0.501843\pi\)
−0.00579063 + 0.999983i \(0.501843\pi\)
\(44\) 0 0
\(45\) 3.84377 6.65760i 0.572995 0.992456i
\(46\) 0 0
\(47\) −4.88190 8.45570i −0.712098 1.23339i −0.964068 0.265655i \(-0.914412\pi\)
0.251970 0.967735i \(-0.418922\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.61131 + 4.52293i 0.365657 + 0.633337i
\(52\) 0 0
\(53\) −0.984819 + 1.70576i −0.135275 + 0.234304i −0.925703 0.378252i \(-0.876525\pi\)
0.790427 + 0.612556i \(0.209859\pi\)
\(54\) 0 0
\(55\) 7.58728 1.02307
\(56\) 0 0
\(57\) 1.67122 0.221359
\(58\) 0 0
\(59\) −5.64407 + 9.77581i −0.734795 + 1.27270i 0.220019 + 0.975496i \(0.429388\pi\)
−0.954813 + 0.297206i \(0.903945\pi\)
\(60\) 0 0
\(61\) 2.23817 + 3.87662i 0.286568 + 0.496351i 0.972988 0.230855i \(-0.0741522\pi\)
−0.686420 + 0.727205i \(0.740819\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.04647 + 3.54459i 0.253833 + 0.439652i
\(66\) 0 0
\(67\) −4.86365 + 8.42409i −0.594190 + 1.02917i 0.399471 + 0.916746i \(0.369194\pi\)
−0.993661 + 0.112421i \(0.964140\pi\)
\(68\) 0 0
\(69\) 4.55441 0.548286
\(70\) 0 0
\(71\) −12.4059 −1.47231 −0.736157 0.676811i \(-0.763362\pi\)
−0.736157 + 0.676811i \(0.763362\pi\)
\(72\) 0 0
\(73\) −5.48668 + 9.50322i −0.642168 + 1.11227i 0.342780 + 0.939416i \(0.388631\pi\)
−0.984948 + 0.172852i \(0.944702\pi\)
\(74\) 0 0
\(75\) −6.22354 10.7795i −0.718633 1.24471i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.07735 + 5.33012i 0.346228 + 0.599685i 0.985576 0.169232i \(-0.0541289\pi\)
−0.639348 + 0.768918i \(0.720796\pi\)
\(80\) 0 0
\(81\) −0.0812565 + 0.140740i −0.00902850 + 0.0156378i
\(82\) 0 0
\(83\) −17.3928 −1.90910 −0.954552 0.298045i \(-0.903665\pi\)
−0.954552 + 0.298045i \(0.903665\pi\)
\(84\) 0 0
\(85\) −20.1825 −2.18910
\(86\) 0 0
\(87\) −1.24843 + 2.16234i −0.133845 + 0.231827i
\(88\) 0 0
\(89\) 0.629405 + 1.09016i 0.0667168 + 0.115557i 0.897454 0.441108i \(-0.145414\pi\)
−0.830737 + 0.556664i \(0.812081\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.20801 2.09234i −0.125265 0.216965i
\(94\) 0 0
\(95\) −3.22916 + 5.59307i −0.331305 + 0.573837i
\(96\) 0 0
\(97\) 6.51465 0.661462 0.330731 0.943725i \(-0.392705\pi\)
0.330731 + 0.943725i \(0.392705\pi\)
\(98\) 0 0
\(99\) −3.48179 −0.349933
\(100\) 0 0
\(101\) 0.524655 0.908730i 0.0522052 0.0904220i −0.838742 0.544529i \(-0.816708\pi\)
0.890947 + 0.454107i \(0.150042\pi\)
\(102\) 0 0
\(103\) 4.49293 + 7.78198i 0.442701 + 0.766781i 0.997889 0.0649440i \(-0.0206869\pi\)
−0.555188 + 0.831725i \(0.687354\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.29230 + 14.3627i 0.801647 + 1.38849i 0.918532 + 0.395347i \(0.129376\pi\)
−0.116885 + 0.993145i \(0.537291\pi\)
\(108\) 0 0
\(109\) −4.21792 + 7.30564i −0.404003 + 0.699754i −0.994205 0.107502i \(-0.965715\pi\)
0.590202 + 0.807256i \(0.299048\pi\)
\(110\) 0 0
\(111\) 3.53798 0.335810
\(112\) 0 0
\(113\) −0.951842 −0.0895418 −0.0447709 0.998997i \(-0.514256\pi\)
−0.0447709 + 0.998997i \(0.514256\pi\)
\(114\) 0 0
\(115\) −8.80010 + 15.2422i −0.820614 + 1.42134i
\(116\) 0 0
\(117\) −0.939121 1.62660i −0.0868217 0.150380i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.78181 + 6.55029i 0.343801 + 0.595480i
\(122\) 0 0
\(123\) −5.61813 + 9.73089i −0.506570 + 0.877405i
\(124\) 0 0
\(125\) 27.6362 2.47186
\(126\) 0 0
\(127\) −15.6229 −1.38631 −0.693155 0.720789i \(-0.743780\pi\)
−0.693155 + 0.720789i \(0.743780\pi\)
\(128\) 0 0
\(129\) 0.0402170 0.0696579i 0.00354091 0.00613303i
\(130\) 0 0
\(131\) 5.48466 + 9.49971i 0.479197 + 0.829994i 0.999715 0.0238568i \(-0.00759458\pi\)
−0.520518 + 0.853851i \(0.674261\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 10.5735 + 18.3138i 0.910022 + 1.57620i
\(136\) 0 0
\(137\) 2.20743 3.82338i 0.188593 0.326653i −0.756188 0.654354i \(-0.772941\pi\)
0.944781 + 0.327701i \(0.106274\pi\)
\(138\) 0 0
\(139\) −13.0801 −1.10944 −0.554720 0.832037i \(-0.687175\pi\)
−0.554720 + 0.832037i \(0.687175\pi\)
\(140\) 0 0
\(141\) 10.3411 0.870882
\(142\) 0 0
\(143\) 0.926874 1.60539i 0.0775091 0.134250i
\(144\) 0 0
\(145\) −4.82446 8.35622i −0.400650 0.693946i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.56379 + 9.63677i 0.455803 + 0.789475i 0.998734 0.0503029i \(-0.0160187\pi\)
−0.542931 + 0.839778i \(0.682685\pi\)
\(150\) 0 0
\(151\) 9.32841 16.1573i 0.759135 1.31486i −0.184157 0.982897i \(-0.558956\pi\)
0.943292 0.331963i \(-0.107711\pi\)
\(152\) 0 0
\(153\) 9.26170 0.748764
\(154\) 0 0
\(155\) 9.33657 0.749931
\(156\) 0 0
\(157\) −4.98148 + 8.62817i −0.397565 + 0.688603i −0.993425 0.114486i \(-0.963478\pi\)
0.595860 + 0.803088i \(0.296811\pi\)
\(158\) 0 0
\(159\) −1.04305 1.80662i −0.0827194 0.143274i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.38636 16.2576i −0.735196 1.27340i −0.954637 0.297771i \(-0.903757\pi\)
0.219441 0.975626i \(-0.429577\pi\)
\(164\) 0 0
\(165\) −4.01796 + 6.95932i −0.312798 + 0.541782i
\(166\) 0 0
\(167\) −9.39140 −0.726729 −0.363364 0.931647i \(-0.618372\pi\)
−0.363364 + 0.931647i \(0.618372\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.48185 2.56665i 0.113320 0.196276i
\(172\) 0 0
\(173\) −7.66362 13.2738i −0.582655 1.00919i −0.995163 0.0982337i \(-0.968681\pi\)
0.412509 0.910954i \(-0.364653\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.97781 10.3539i −0.449319 0.778244i
\(178\) 0 0
\(179\) 2.09691 3.63196i 0.156731 0.271466i −0.776957 0.629554i \(-0.783238\pi\)
0.933688 + 0.358088i \(0.116571\pi\)
\(180\) 0 0
\(181\) −22.8843 −1.70097 −0.850487 0.525995i \(-0.823693\pi\)
−0.850487 + 0.525995i \(0.823693\pi\)
\(182\) 0 0
\(183\) −4.74103 −0.350467
\(184\) 0 0
\(185\) −6.83615 + 11.8406i −0.502604 + 0.870535i
\(186\) 0 0
\(187\) 4.57046 + 7.91627i 0.334225 + 0.578895i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.8669 + 22.2861i 0.931015 + 1.61257i 0.781590 + 0.623792i \(0.214409\pi\)
0.149425 + 0.988773i \(0.452258\pi\)
\(192\) 0 0
\(193\) −5.79379 + 10.0351i −0.417046 + 0.722345i −0.995641 0.0932702i \(-0.970268\pi\)
0.578595 + 0.815615i \(0.303601\pi\)
\(194\) 0 0
\(195\) −4.33496 −0.310433
\(196\) 0 0
\(197\) −13.6986 −0.975983 −0.487992 0.872848i \(-0.662270\pi\)
−0.487992 + 0.872848i \(0.662270\pi\)
\(198\) 0 0
\(199\) −4.67455 + 8.09656i −0.331370 + 0.573950i −0.982781 0.184775i \(-0.940844\pi\)
0.651411 + 0.758725i \(0.274178\pi\)
\(200\) 0 0
\(201\) −5.15124 8.92222i −0.363341 0.629325i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −21.7109 37.6044i −1.51636 2.62640i
\(206\) 0 0
\(207\) 4.03835 6.99462i 0.280684 0.486160i
\(208\) 0 0
\(209\) 2.92506 0.202331
\(210\) 0 0
\(211\) −1.71265 −0.117904 −0.0589518 0.998261i \(-0.518776\pi\)
−0.0589518 + 0.998261i \(0.518776\pi\)
\(212\) 0 0
\(213\) 6.56976 11.3792i 0.450152 0.779687i
\(214\) 0 0
\(215\) 0.155416 + 0.269188i 0.0105993 + 0.0183585i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −5.81112 10.0652i −0.392679 0.680140i
\(220\) 0 0
\(221\) −2.46552 + 4.27041i −0.165849 + 0.287259i
\(222\) 0 0
\(223\) −14.3065 −0.958033 −0.479017 0.877806i \(-0.659007\pi\)
−0.479017 + 0.877806i \(0.659007\pi\)
\(224\) 0 0
\(225\) −22.0734 −1.47156
\(226\) 0 0
\(227\) 5.69936 9.87158i 0.378280 0.655200i −0.612532 0.790446i \(-0.709849\pi\)
0.990812 + 0.135246i \(0.0431824\pi\)
\(228\) 0 0
\(229\) −11.6079 20.1055i −0.767074 1.32861i −0.939143 0.343527i \(-0.888378\pi\)
0.172069 0.985085i \(-0.444955\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.1264 + 24.4676i 0.925451 + 1.60293i 0.790834 + 0.612031i \(0.209647\pi\)
0.134617 + 0.990898i \(0.457019\pi\)
\(234\) 0 0
\(235\) −19.9813 + 34.6087i −1.30344 + 2.25762i
\(236\) 0 0
\(237\) −6.51863 −0.423430
\(238\) 0 0
\(239\) 27.2744 1.76424 0.882118 0.471028i \(-0.156117\pi\)
0.882118 + 0.471028i \(0.156117\pi\)
\(240\) 0 0
\(241\) 7.60842 13.1782i 0.490101 0.848880i −0.509834 0.860273i \(-0.670293\pi\)
0.999935 + 0.0113926i \(0.00362645\pi\)
\(242\) 0 0
\(243\) −7.83611 13.5725i −0.502687 0.870679i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.788959 + 1.36652i 0.0502002 + 0.0869494i
\(248\) 0 0
\(249\) 9.21061 15.9532i 0.583699 1.01100i
\(250\) 0 0
\(251\) −24.6393 −1.55522 −0.777611 0.628746i \(-0.783568\pi\)
−0.777611 + 0.628746i \(0.783568\pi\)
\(252\) 0 0
\(253\) 7.97137 0.501156
\(254\) 0 0
\(255\) 10.6880 18.5121i 0.669306 1.15927i
\(256\) 0 0
\(257\) −12.8435 22.2456i −0.801155 1.38764i −0.918856 0.394592i \(-0.870886\pi\)
0.117702 0.993049i \(-0.462447\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.21393 + 3.83465i 0.137039 + 0.237359i
\(262\) 0 0
\(263\) 4.91364 8.51068i 0.302988 0.524791i −0.673823 0.738893i \(-0.735349\pi\)
0.976811 + 0.214102i \(0.0686824\pi\)
\(264\) 0 0
\(265\) 8.06161 0.495221
\(266\) 0 0
\(267\) −1.33325 −0.0815933
\(268\) 0 0
\(269\) −12.6669 + 21.9398i −0.772316 + 1.33769i 0.163975 + 0.986465i \(0.447568\pi\)
−0.936291 + 0.351226i \(0.885765\pi\)
\(270\) 0 0
\(271\) −2.91243 5.04447i −0.176917 0.306430i 0.763906 0.645328i \(-0.223279\pi\)
−0.940823 + 0.338898i \(0.889946\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.8928 18.8668i −0.656859 1.13771i
\(276\) 0 0
\(277\) 4.95442 8.58130i 0.297682 0.515600i −0.677923 0.735133i \(-0.737120\pi\)
0.975605 + 0.219532i \(0.0704532\pi\)
\(278\) 0 0
\(279\) −4.28453 −0.256508
\(280\) 0 0
\(281\) 1.88907 0.112693 0.0563463 0.998411i \(-0.482055\pi\)
0.0563463 + 0.998411i \(0.482055\pi\)
\(282\) 0 0
\(283\) −12.1615 + 21.0643i −0.722924 + 1.25214i 0.236898 + 0.971534i \(0.423869\pi\)
−0.959823 + 0.280607i \(0.909464\pi\)
\(284\) 0 0
\(285\) −3.42011 5.92380i −0.202590 0.350895i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.65762 6.33518i −0.215154 0.372658i
\(290\) 0 0
\(291\) −3.44993 + 5.97546i −0.202239 + 0.350288i
\(292\) 0 0
\(293\) 22.2794 1.30158 0.650789 0.759258i \(-0.274438\pi\)
0.650789 + 0.759258i \(0.274438\pi\)
\(294\) 0 0
\(295\) 46.2017 2.68996
\(296\) 0 0
\(297\) 4.78888 8.29458i 0.277879 0.481300i
\(298\) 0 0
\(299\) 2.15007 + 3.72403i 0.124342 + 0.215366i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.555679 + 0.962464i 0.0319229 + 0.0552921i
\(304\) 0 0
\(305\) 9.16069 15.8668i 0.524540 0.908530i
\(306\) 0 0
\(307\) 26.5004 1.51246 0.756228 0.654308i \(-0.227040\pi\)
0.756228 + 0.654308i \(0.227040\pi\)
\(308\) 0 0
\(309\) −9.51720 −0.541415
\(310\) 0 0
\(311\) 7.60511 13.1724i 0.431246 0.746940i −0.565735 0.824587i \(-0.691407\pi\)
0.996981 + 0.0776473i \(0.0247408\pi\)
\(312\) 0 0
\(313\) 11.5772 + 20.0523i 0.654383 + 1.13342i 0.982048 + 0.188630i \(0.0604048\pi\)
−0.327665 + 0.944794i \(0.606262\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.27873 + 16.0712i 0.521146 + 0.902651i 0.999698 + 0.0245915i \(0.00782850\pi\)
−0.478552 + 0.878059i \(0.658838\pi\)
\(318\) 0 0
\(319\) −2.18506 + 3.78464i −0.122340 + 0.211899i
\(320\) 0 0
\(321\) −17.5653 −0.980397
\(322\) 0 0
\(323\) −7.78079 −0.432935
\(324\) 0 0
\(325\) 5.87608 10.1777i 0.325947 0.564556i
\(326\) 0 0
\(327\) −4.46733 7.73763i −0.247044 0.427892i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −11.4393 19.8134i −0.628761 1.08905i −0.987801 0.155723i \(-0.950229\pi\)
0.359040 0.933322i \(-0.383104\pi\)
\(332\) 0 0
\(333\) 3.13709 5.43360i 0.171912 0.297760i
\(334\) 0 0
\(335\) 39.8133 2.17523
\(336\) 0 0
\(337\) 10.9953 0.598950 0.299475 0.954104i \(-0.403188\pi\)
0.299475 + 0.954104i \(0.403188\pi\)
\(338\) 0 0
\(339\) 0.504063 0.873063i 0.0273769 0.0474182i
\(340\) 0 0
\(341\) −2.11433 3.66212i −0.114497 0.198315i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.32046 16.1435i −0.501797 0.869138i
\(346\) 0 0
\(347\) −2.86219 + 4.95746i −0.153650 + 0.266130i −0.932567 0.360998i \(-0.882436\pi\)
0.778916 + 0.627128i \(0.215770\pi\)
\(348\) 0 0
\(349\) −11.2570 −0.602575 −0.301287 0.953533i \(-0.597416\pi\)
−0.301287 + 0.953533i \(0.597416\pi\)
\(350\) 0 0
\(351\) 5.16670 0.275778
\(352\) 0 0
\(353\) −6.62507 + 11.4750i −0.352617 + 0.610750i −0.986707 0.162509i \(-0.948041\pi\)
0.634090 + 0.773259i \(0.281375\pi\)
\(354\) 0 0
\(355\) 25.3884 + 43.9740i 1.34748 + 2.33390i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.12057 3.67294i −0.111919 0.193850i 0.804625 0.593784i \(-0.202367\pi\)
−0.916544 + 0.399934i \(0.869033\pi\)
\(360\) 0 0
\(361\) 8.25509 14.2982i 0.434478 0.752539i
\(362\) 0 0
\(363\) −8.01086 −0.420461
\(364\) 0 0
\(365\) 44.9133 2.35087
\(366\) 0 0
\(367\) 5.10148 8.83602i 0.266295 0.461237i −0.701607 0.712564i \(-0.747534\pi\)
0.967902 + 0.251328i \(0.0808671\pi\)
\(368\) 0 0
\(369\) 9.96308 + 17.2566i 0.518657 + 0.898341i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.80991 15.2592i −0.456160 0.790092i 0.542594 0.839995i \(-0.317442\pi\)
−0.998754 + 0.0499028i \(0.984109\pi\)
\(374\) 0 0
\(375\) −14.6352 + 25.3489i −0.755758 + 1.30901i
\(376\) 0 0
\(377\) −2.35746 −0.121415
\(378\) 0 0
\(379\) −23.5661 −1.21051 −0.605255 0.796032i \(-0.706929\pi\)
−0.605255 + 0.796032i \(0.706929\pi\)
\(380\) 0 0
\(381\) 8.27336 14.3299i 0.423857 0.734142i
\(382\) 0 0
\(383\) 3.65908 + 6.33771i 0.186970 + 0.323842i 0.944239 0.329262i \(-0.106800\pi\)
−0.757269 + 0.653104i \(0.773467\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.0713200 0.123530i −0.00362540 0.00627937i
\(388\) 0 0
\(389\) 17.6488 30.5686i 0.894830 1.54989i 0.0608152 0.998149i \(-0.480630\pi\)
0.834015 0.551742i \(-0.186037\pi\)
\(390\) 0 0
\(391\) −21.2042 −1.07234
\(392\) 0 0
\(393\) −11.6180 −0.586048
\(394\) 0 0
\(395\) 12.5954 21.8159i 0.633743 1.09768i
\(396\) 0 0
\(397\) −9.70140 16.8033i −0.486899 0.843334i 0.512987 0.858396i \(-0.328539\pi\)
−0.999887 + 0.0150620i \(0.995205\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.66322 15.0051i −0.432621 0.749321i 0.564478 0.825448i \(-0.309078\pi\)
−0.997098 + 0.0761277i \(0.975744\pi\)
\(402\) 0 0
\(403\) 1.14057 1.97552i 0.0568158 0.0984078i
\(404\) 0 0
\(405\) 0.665156 0.0330519
\(406\) 0 0
\(407\) 6.19237 0.306944
\(408\) 0 0
\(409\) 0.189328 0.327925i 0.00936166 0.0162149i −0.861307 0.508086i \(-0.830353\pi\)
0.870668 + 0.491871i \(0.163687\pi\)
\(410\) 0 0
\(411\) 2.33795 + 4.04946i 0.115323 + 0.199745i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 35.5938 + 61.6502i 1.74723 + 3.02629i
\(416\) 0 0
\(417\) 6.92678 11.9975i 0.339206 0.587521i
\(418\) 0 0
\(419\) 13.0797 0.638986 0.319493 0.947589i \(-0.396487\pi\)
0.319493 + 0.947589i \(0.396487\pi\)
\(420\) 0 0
\(421\) −15.5509 −0.757904 −0.378952 0.925416i \(-0.623715\pi\)
−0.378952 + 0.925416i \(0.623715\pi\)
\(422\) 0 0
\(423\) 9.16939 15.8818i 0.445831 0.772202i
\(424\) 0 0
\(425\) 28.9753 + 50.1866i 1.40551 + 2.43441i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.981681 + 1.70032i 0.0473960 + 0.0820923i
\(430\) 0 0
\(431\) 1.87660 3.25036i 0.0903925 0.156564i −0.817284 0.576235i \(-0.804521\pi\)
0.907676 + 0.419671i \(0.137855\pi\)
\(432\) 0 0
\(433\) −22.8084 −1.09610 −0.548051 0.836445i \(-0.684630\pi\)
−0.548051 + 0.836445i \(0.684630\pi\)
\(434\) 0 0
\(435\) 10.2195 0.489987
\(436\) 0 0
\(437\) −3.39263 + 5.87621i −0.162291 + 0.281097i
\(438\) 0 0
\(439\) 11.2076 + 19.4121i 0.534908 + 0.926488i 0.999168 + 0.0407886i \(0.0129870\pi\)
−0.464260 + 0.885699i \(0.653680\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.38208 4.12589i −0.113176 0.196027i 0.803873 0.594801i \(-0.202769\pi\)
−0.917049 + 0.398774i \(0.869436\pi\)
\(444\) 0 0
\(445\) 2.57612 4.46197i 0.122120 0.211518i
\(446\) 0 0
\(447\) −11.7856 −0.557438
\(448\) 0 0
\(449\) −38.0709 −1.79668 −0.898338 0.439305i \(-0.855225\pi\)
−0.898338 + 0.439305i \(0.855225\pi\)
\(450\) 0 0
\(451\) −9.83316 + 17.0315i −0.463025 + 0.801983i
\(452\) 0 0
\(453\) 9.88001 + 17.1127i 0.464203 + 0.804023i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.297125 0.514636i −0.0138989 0.0240737i 0.858992 0.511989i \(-0.171091\pi\)
−0.872891 + 0.487915i \(0.837758\pi\)
\(458\) 0 0
\(459\) −12.7386 + 22.0639i −0.594588 + 1.02986i
\(460\) 0 0
\(461\) 20.5070 0.955106 0.477553 0.878603i \(-0.341524\pi\)
0.477553 + 0.878603i \(0.341524\pi\)
\(462\) 0 0
\(463\) −4.95253 −0.230164 −0.115082 0.993356i \(-0.536713\pi\)
−0.115082 + 0.993356i \(0.536713\pi\)
\(464\) 0 0
\(465\) −4.94432 + 8.56382i −0.229288 + 0.397138i
\(466\) 0 0
\(467\) 0.763766 + 1.32288i 0.0353429 + 0.0612157i 0.883156 0.469080i \(-0.155414\pi\)
−0.847813 + 0.530295i \(0.822081\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.27604 9.13836i −0.243107 0.421074i
\(472\) 0 0
\(473\) 0.0703899 0.121919i 0.00323653 0.00560584i
\(474\) 0 0
\(475\) 18.5440 0.850855
\(476\) 0 0
\(477\) −3.69945 −0.169386
\(478\) 0 0
\(479\) −8.85321 + 15.3342i −0.404514 + 0.700638i −0.994265 0.106947i \(-0.965893\pi\)
0.589751 + 0.807585i \(0.299226\pi\)
\(480\) 0 0
\(481\) 1.67023 + 2.89292i 0.0761559 + 0.131906i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.3320 23.0918i −0.605377 1.04854i
\(486\) 0 0
\(487\) 5.34073 9.25042i 0.242012 0.419177i −0.719275 0.694725i \(-0.755526\pi\)
0.961287 + 0.275548i \(0.0888594\pi\)
\(488\) 0 0
\(489\) 19.8828 0.899130
\(490\) 0 0
\(491\) 26.1047 1.17809 0.589045 0.808101i \(-0.299504\pi\)
0.589045 + 0.808101i \(0.299504\pi\)
\(492\) 0 0
\(493\) 5.81236 10.0673i 0.261776 0.453409i
\(494\) 0 0
\(495\) 7.12537 + 12.3415i 0.320262 + 0.554710i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.3821 + 24.9105i 0.643830 + 1.11515i 0.984570 + 0.174989i \(0.0559889\pi\)
−0.340740 + 0.940157i \(0.610678\pi\)
\(500\) 0 0
\(501\) 4.97336 8.61412i 0.222194 0.384851i
\(502\) 0 0
\(503\) 15.9492 0.711138 0.355569 0.934650i \(-0.384287\pi\)
0.355569 + 0.934650i \(0.384287\pi\)
\(504\) 0 0
\(505\) −4.29477 −0.191115
\(506\) 0 0
\(507\) −0.529566 + 0.917235i −0.0235188 + 0.0407358i
\(508\) 0 0
\(509\) 4.02583 + 6.97294i 0.178442 + 0.309070i 0.941347 0.337440i \(-0.109561\pi\)
−0.762905 + 0.646510i \(0.776228\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.07631 + 7.06038i 0.179974 + 0.311723i
\(514\) 0 0
\(515\) 18.3893 31.8512i 0.810329 1.40353i
\(516\) 0 0
\(517\) 18.0996 0.796021
\(518\) 0 0
\(519\) 16.2336 0.712574
\(520\) 0 0
\(521\) −18.0748 + 31.3065i −0.791873 + 1.37156i 0.132933 + 0.991125i \(0.457560\pi\)
−0.924806 + 0.380439i \(0.875773\pi\)
\(522\) 0 0
\(523\) 20.8748 + 36.1563i 0.912793 + 1.58100i 0.810101 + 0.586290i \(0.199412\pi\)
0.102692 + 0.994713i \(0.467254\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.62420 + 9.74140i 0.244994 + 0.424342i
\(528\) 0 0
\(529\) 2.25442 3.90477i 0.0980182 0.169772i
\(530\) 0 0
\(531\) −21.2018 −0.920081
\(532\) 0 0
\(533\) −10.6089 −0.459525
\(534\) 0 0
\(535\) 33.9399 58.7856i 1.46735 2.54152i
\(536\) 0 0
\(537\) 2.22091 + 3.84673i 0.0958392 + 0.165998i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5.32904 + 9.23017i 0.229113 + 0.396836i 0.957546 0.288282i \(-0.0930840\pi\)
−0.728432 + 0.685118i \(0.759751\pi\)
\(542\) 0 0
\(543\) 12.1187 20.9902i 0.520064 0.900778i
\(544\) 0 0
\(545\) 34.5274 1.47899
\(546\) 0 0
\(547\) −36.4994 −1.56060 −0.780301 0.625404i \(-0.784934\pi\)
−0.780301 + 0.625404i \(0.784934\pi\)
\(548\) 0 0
\(549\) −4.20382 + 7.28123i −0.179415 + 0.310755i
\(550\) 0 0
\(551\) −1.85994 3.22150i −0.0792359 0.137241i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.24038 12.5407i −0.307337 0.532323i
\(556\) 0 0
\(557\) 13.4844 23.3556i 0.571352 0.989610i −0.425076 0.905158i \(-0.639753\pi\)
0.996428 0.0844522i \(-0.0269140\pi\)
\(558\) 0 0
\(559\) 0.0759434 0.00321206
\(560\) 0 0
\(561\) −9.68144 −0.408751
\(562\) 0 0
\(563\) −3.83407 + 6.64080i −0.161587 + 0.279877i −0.935438 0.353491i \(-0.884995\pi\)
0.773851 + 0.633368i \(0.218328\pi\)
\(564\) 0 0
\(565\) 1.94792 + 3.37389i 0.0819495 + 0.141941i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.4284 38.8472i −0.940249 1.62856i −0.764996 0.644035i \(-0.777259\pi\)
−0.175253 0.984524i \(-0.556074\pi\)
\(570\) 0 0
\(571\) −14.3661 + 24.8827i −0.601201 + 1.04131i 0.391439 + 0.920204i \(0.371977\pi\)
−0.992640 + 0.121106i \(0.961356\pi\)
\(572\) 0 0
\(573\) −27.2554 −1.13861
\(574\) 0 0
\(575\) 50.5359 2.10749
\(576\) 0 0
\(577\) 7.92616 13.7285i 0.329970 0.571526i −0.652535 0.757758i \(-0.726295\pi\)
0.982506 + 0.186233i \(0.0596279\pi\)
\(578\) 0 0
\(579\) −6.13638 10.6285i −0.255019 0.441706i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.82561 3.16204i −0.0756089 0.130958i
\(584\) 0 0
\(585\) −3.84377 + 6.65760i −0.158920 + 0.275258i
\(586\) 0 0
\(587\) 13.7379 0.567023 0.283511 0.958969i \(-0.408501\pi\)
0.283511 + 0.958969i \(0.408501\pi\)
\(588\) 0 0
\(589\) 3.59945 0.148313
\(590\) 0 0
\(591\) 7.25430 12.5648i 0.298402 0.516847i
\(592\) 0 0
\(593\) −12.3698 21.4252i −0.507969 0.879828i −0.999957 0.00922599i \(-0.997063\pi\)
0.491989 0.870602i \(-0.336270\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.95096 8.57532i −0.202629 0.350964i
\(598\) 0 0
\(599\) 3.79554 6.57407i 0.155082 0.268609i −0.778007 0.628255i \(-0.783769\pi\)
0.933089 + 0.359646i \(0.117103\pi\)
\(600\) 0 0
\(601\) −13.8456 −0.564772 −0.282386 0.959301i \(-0.591126\pi\)
−0.282386 + 0.959301i \(0.591126\pi\)
\(602\) 0 0
\(603\) −18.2702 −0.744021
\(604\) 0 0
\(605\) 15.4787 26.8099i 0.629300 1.08998i
\(606\) 0 0
\(607\) 5.17955 + 8.97125i 0.210232 + 0.364132i 0.951787 0.306760i \(-0.0992449\pi\)
−0.741555 + 0.670892i \(0.765912\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.88190 + 8.45570i 0.197501 + 0.342081i
\(612\) 0 0
\(613\) −8.69396 + 15.0584i −0.351146 + 0.608202i −0.986450 0.164059i \(-0.947541\pi\)
0.635305 + 0.772262i \(0.280875\pi\)
\(614\) 0 0
\(615\) 45.9894 1.85447
\(616\) 0 0
\(617\) −11.9371 −0.480571 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(618\) 0 0
\(619\) 6.82038 11.8133i 0.274134 0.474815i −0.695782 0.718253i \(-0.744942\pi\)
0.969916 + 0.243438i \(0.0782754\pi\)
\(620\) 0 0
\(621\) 11.1087 + 19.2409i 0.445779 + 0.772111i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.1763 47.0708i −1.08705 1.88283i
\(626\) 0 0
\(627\) −1.54901 + 2.68297i −0.0618616 + 0.107147i
\(628\) 0 0
\(629\) −16.4720 −0.656780
\(630\) 0 0
\(631\) 19.7012 0.784293 0.392146 0.919903i \(-0.371733\pi\)
0.392146 + 0.919903i \(0.371733\pi\)
\(632\) 0 0
\(633\) 0.906960 1.57090i 0.0360484 0.0624377i
\(634\) 0 0
\(635\) 31.9718 + 55.3768i 1.26876 + 2.19756i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −11.6507 20.1796i −0.460893 0.798291i
\(640\) 0 0
\(641\) −5.79181 + 10.0317i −0.228763 + 0.396229i −0.957442 0.288627i \(-0.906801\pi\)
0.728679 + 0.684856i \(0.240135\pi\)
\(642\) 0 0
\(643\) −40.5221 −1.59803 −0.799017 0.601308i \(-0.794646\pi\)
−0.799017 + 0.601308i \(0.794646\pi\)
\(644\) 0 0
\(645\) −0.329212 −0.0129627
\(646\) 0 0
\(647\) −10.3842 + 17.9859i −0.408244 + 0.707100i −0.994693 0.102887i \(-0.967192\pi\)
0.586449 + 0.809986i \(0.300525\pi\)
\(648\) 0 0
\(649\) −10.4627 18.1219i −0.410696 0.711346i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.59800 11.4281i −0.258200 0.447215i 0.707560 0.706653i \(-0.249796\pi\)
−0.965760 + 0.259438i \(0.916463\pi\)
\(654\) 0 0
\(655\) 22.4484 38.8818i 0.877131 1.51924i
\(656\) 0 0
\(657\) −20.6106 −0.804097
\(658\) 0 0
\(659\) 39.0259 1.52023 0.760117 0.649787i \(-0.225142\pi\)
0.760117 + 0.649787i \(0.225142\pi\)
\(660\) 0 0
\(661\) −15.6248 + 27.0630i −0.607736 + 1.05263i 0.383877 + 0.923384i \(0.374589\pi\)
−0.991613 + 0.129245i \(0.958745\pi\)
\(662\) 0 0
\(663\) −2.61131 4.52293i −0.101415 0.175656i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.06869 8.77923i −0.196260 0.339933i
\(668\) 0 0
\(669\) 7.57622 13.1224i 0.292914 0.507341i
\(670\) 0 0
\(671\) −8.29800 −0.320341
\(672\) 0 0
\(673\) −10.7294 −0.413589 −0.206795 0.978384i \(-0.566303\pi\)
−0.206795 + 0.978384i \(0.566303\pi\)
\(674\) 0 0
\(675\) 30.3599 52.5850i 1.16855 2.02400i
\(676\) 0 0
\(677\) −1.72736 2.99188i −0.0663880 0.114987i 0.830921 0.556391i \(-0.187814\pi\)
−0.897309 + 0.441403i \(0.854481\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.03637 + 10.4553i 0.231314 + 0.400648i
\(682\) 0 0
\(683\) 21.3342 36.9519i 0.816329 1.41392i −0.0920400 0.995755i \(-0.529339\pi\)
0.908369 0.418169i \(-0.137328\pi\)
\(684\) 0 0
\(685\) −18.0697 −0.690409
\(686\) 0 0
\(687\) 24.5887 0.938116
\(688\) 0 0
\(689\) 0.984819 1.70576i 0.0375186 0.0649841i
\(690\) 0 0
\(691\) 11.2766 + 19.5317i 0.428983 + 0.743021i 0.996783 0.0801457i \(-0.0255386\pi\)
−0.567800 + 0.823167i \(0.692205\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 26.7681 + 46.3636i 1.01537 + 1.75867i
\(696\) 0 0
\(697\) 26.1566 45.3046i 0.990753 1.71603i
\(698\) 0 0
\(699\) −29.9234 −1.13181
\(700\) 0 0
\(701\) 17.6163 0.665358 0.332679 0.943040i \(-0.392047\pi\)
0.332679 + 0.943040i \(0.392047\pi\)
\(702\) 0 0
\(703\) −2.63548 + 4.56479i −0.0993991 + 0.172164i
\(704\) 0 0
\(705\) −21.1629 36.6551i −0.797039 1.38051i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3.74412 6.48501i −0.140614 0.243550i 0.787114 0.616807i \(-0.211574\pi\)
−0.927728 + 0.373257i \(0.878241\pi\)
\(710\) 0 0
\(711\) −5.78000 + 10.0112i −0.216767 + 0.375451i
\(712\) 0 0
\(713\) 9.80920 0.367358
\(714\) 0 0
\(715\) −7.58728 −0.283748
\(716\) 0 0
\(717\) −14.4436 + 25.0171i −0.539406 + 0.934279i
\(718\) 0 0
\(719\) −22.4592 38.9005i −0.837588 1.45074i −0.891906 0.452220i \(-0.850632\pi\)
0.0543187 0.998524i \(-0.482701\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 8.05831 + 13.9574i 0.299692 + 0.519082i
\(724\) 0 0
\(725\) −13.8526 + 23.9934i −0.514473 + 0.891093i
\(726\) 0 0
\(727\) 30.1822 1.11939 0.559697 0.828697i \(-0.310917\pi\)
0.559697 + 0.828697i \(0.310917\pi\)
\(728\) 0 0
\(729\) 16.1114 0.596718
\(730\) 0 0
\(731\) −0.187240 + 0.324310i −0.00692533 + 0.0119950i
\(732\) 0 0
\(733\) −23.8346 41.2827i −0.880350 1.52481i −0.850952 0.525243i \(-0.823975\pi\)
−0.0293973 0.999568i \(-0.509359\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.01598 15.6161i −0.332108 0.575228i
\(738\) 0 0
\(739\) 1.62084 2.80737i 0.0596234 0.103271i −0.834673 0.550746i \(-0.814343\pi\)
0.894296 + 0.447475i \(0.147677\pi\)
\(740\) 0 0
\(741\) −1.67122 −0.0613939
\(742\) 0 0
\(743\) 13.5278 0.496286 0.248143 0.968723i \(-0.420180\pi\)
0.248143 + 0.968723i \(0.420180\pi\)
\(744\) 0 0
\(745\) 22.7723 39.4427i 0.834311 1.44507i
\(746\) 0 0
\(747\) −16.3339 28.2911i −0.597626 1.03512i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.29338 + 12.6325i 0.266139 + 0.460966i 0.967861 0.251484i \(-0.0809186\pi\)
−0.701722 + 0.712451i \(0.747585\pi\)
\(752\) 0 0
\(753\) 13.0481 22.6001i 0.475501 0.823592i
\(754\) 0 0
\(755\) −76.3612 −2.77907
\(756\) 0 0
\(757\) 15.6796 0.569884 0.284942 0.958545i \(-0.408026\pi\)
0.284942 + 0.958545i \(0.408026\pi\)
\(758\) 0 0
\(759\) −4.22136 + 7.31161i −0.153226 + 0.265395i
\(760\) 0 0
\(761\) 17.5026 + 30.3154i 0.634468 + 1.09893i 0.986628 + 0.162991i \(0.0521141\pi\)
−0.352160 + 0.935940i \(0.614553\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −18.9538 32.8289i −0.685276 1.18693i
\(766\) 0 0
\(767\) 5.64407 9.77581i 0.203795 0.352984i
\(768\) 0 0
\(769\) 12.5842 0.453797 0.226899 0.973918i \(-0.427141\pi\)
0.226899 + 0.973918i \(0.427141\pi\)
\(770\) 0 0
\(771\) 27.2059 0.979796
\(772\) 0 0
\(773\) −11.7129 + 20.2873i −0.421283 + 0.729683i −0.996065 0.0886233i \(-0.971753\pi\)
0.574783 + 0.818306i \(0.305087\pi\)
\(774\) 0 0
\(775\) −13.4042 23.2167i −0.481492 0.833968i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.37002 14.4973i −0.299887 0.519420i
\(780\) 0 0
\(781\) 11.4987 19.9164i 0.411457 0.712665i
\(782\) 0 0
\(783\) −12.1803 −0.435287
\(784\) 0 0
\(785\) 40.7778 1.45542
\(786\) 0 0
\(787\) 1.11136 1.92494i 0.0396158 0.0686166i −0.845538 0.533916i \(-0.820720\pi\)
0.885153 + 0.465299i \(0.154053\pi\)
\(788\) 0 0
\(789\) 5.20419 + 9.01392i 0.185274 + 0.320904i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.23817 3.87662i −0.0794797 0.137663i
\(794\) 0 0
\(795\) −4.26915 + 7.39439i −0.151411 + 0.262252i
\(796\) 0 0
\(797\) −24.4865 −0.867355 −0.433678 0.901068i \(-0.642784\pi\)
−0.433678 + 0.901068i \(0.642784\pi\)
\(798\) 0 0
\(799\) −48.1458 −1.70327
\(800\) 0 0
\(801\) −1.18217 + 2.04759i −0.0417701 + 0.0723479i
\(802\) 0 0
\(803\) −10.1709 17.6166i −0.358924 0.621675i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −13.4159 23.2371i −0.472263 0.817984i
\(808\) 0 0
\(809\) −14.2010 + 24.5968i −0.499279 + 0.864777i −1.00000 0.000831996i \(-0.999735\pi\)
0.500720 + 0.865609i \(0.333069\pi\)
\(810\) 0 0
\(811\) 7.34230 0.257823 0.128912 0.991656i \(-0.458852\pi\)
0.128912 + 0.991656i \(0.458852\pi\)
\(812\) 0 0
\(813\) 6.16928 0.216366
\(814\) 0 0
\(815\) −38.4178 + 66.5416i −1.34572 + 2.33085i
\(816\) 0 0
\(817\) 0.0599162 + 0.103778i 0.00209620 + 0.00363073i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0207 + 17.3564i 0.349726 + 0.605744i 0.986201 0.165554i \(-0.0529412\pi\)
−0.636474 + 0.771298i \(0.719608\pi\)
\(822\) 0 0
\(823\) 6.35704 11.0107i 0.221593 0.383810i −0.733699 0.679474i \(-0.762208\pi\)
0.955292 + 0.295665i \(0.0955412\pi\)
\(824\) 0 0
\(825\) 23.0738 0.803325
\(826\) 0 0
\(827\) 13.4132 0.466423 0.233212 0.972426i \(-0.425076\pi\)
0.233212 + 0.972426i \(0.425076\pi\)
\(828\) 0 0
\(829\) 17.7630 30.7665i 0.616936 1.06856i −0.373106 0.927789i \(-0.621707\pi\)
0.990042 0.140775i \(-0.0449595\pi\)
\(830\) 0 0
\(831\) 5.24738 + 9.08872i 0.182029 + 0.315284i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 19.2192 + 33.2887i 0.665109 + 1.15200i
\(836\) 0 0
\(837\) 5.89298 10.2069i 0.203691 0.352803i
\(838\) 0 0
\(839\) −43.6914 −1.50840 −0.754198 0.656647i \(-0.771974\pi\)
−0.754198 + 0.656647i \(0.771974\pi\)
\(840\) 0 0
\(841\) −23.4424 −0.808359
\(842\) 0 0
\(843\) −1.00039 + 1.73272i −0.0344552 + 0.0596781i
\(844\) 0 0
\(845\) −2.04647 3.54459i −0.0704007 0.121938i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −12.8806 22.3098i −0.442061 0.765672i
\(850\) 0 0
\(851\) −7.18221 + 12.4400i −0.246203 + 0.426436i
\(852\) 0 0
\(853\) 19.7458 0.676082 0.338041 0.941131i \(-0.390236\pi\)
0.338041 + 0.941131i \(0.390236\pi\)
\(854\) 0 0
\(855\) −12.1303 −0.414847
\(856\) 0 0
\(857\) 17.1319 29.6732i 0.585213 1.01362i −0.409636 0.912249i \(-0.634344\pi\)
0.994849 0.101369i \(-0.0323224\pi\)
\(858\) 0 0
\(859\) −0.506046 0.876497i −0.0172661 0.0299057i 0.857263 0.514878i \(-0.172163\pi\)
−0.874529 + 0.484973i \(0.838830\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.2149 17.6928i −0.347720 0.602268i 0.638124 0.769933i \(-0.279711\pi\)
−0.985844 + 0.167665i \(0.946377\pi\)
\(864\) 0 0
\(865\) −31.3668 + 54.3288i −1.06650 + 1.84724i
\(866\) 0 0
\(867\) 7.74780 0.263129
\(868\) 0 0
\(869\) −11.4092 −0.387032
\(870\) 0 0
\(871\) 4.86365 8.42409i 0.164799 0.285439i
\(872\) 0 0
\(873\) 6.11804 + 10.5968i 0.207064 + 0.358646i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.53799 7.86002i −0.153237 0.265414i 0.779179 0.626802i \(-0.215636\pi\)
−0.932416 + 0.361388i \(0.882303\pi\)
\(878\) 0 0
\(879\) −11.7984 + 20.4355i −0.397951 + 0.689271i
\(880\) 0 0
\(881\) −51.7776 −1.74443 −0.872215 0.489122i \(-0.837317\pi\)
−0.872215 + 0.489122i \(0.837317\pi\)
\(882\) 0 0
\(883\) −35.7639 −1.20355 −0.601776 0.798665i \(-0.705540\pi\)
−0.601776 + 0.798665i \(0.705540\pi\)
\(884\) 0 0
\(885\) −24.4668 + 42.3778i −0.822443 + 1.42451i
\(886\) 0 0
\(887\) −10.1538 17.5869i −0.340932 0.590512i 0.643674 0.765300i \(-0.277409\pi\)
−0.984606 + 0.174788i \(0.944076\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.150629 0.260897i −0.00504627 0.00874039i
\(892\) 0 0
\(893\) −7.70324 + 13.3424i −0.257779 + 0.446486i
\(894\) 0 0
\(895\) −17.1651 −0.573766
\(896\) 0 0
\(897\) −4.55441 −0.152067
\(898\) 0 0
\(899\) −2.68884 + 4.65721i −0.0896779 + 0.155327i
\(900\) 0 0
\(901\) 4.85619 + 8.41117i 0.161783 + 0.280217i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 46.8320 + 81.1154i 1.55675 + 2.69637i
\(906\) 0 0
\(907\) −23.4334 + 40.5878i −0.778092 + 1.34770i 0.154948 + 0.987923i \(0.450479\pi\)
−0.933040 + 0.359773i \(0.882854\pi\)
\(908\) 0 0
\(909\) 1.97086 0.0653693
\(910\) 0 0
\(911\) −8.34268 −0.276405 −0.138203 0.990404i \(-0.544133\pi\)
−0.138203 + 0.990404i \(0.544133\pi\)
\(912\) 0 0
\(913\) 16.1209 27.9222i 0.533524 0.924091i
\(914\) 0 0
\(915\) 9.70238 + 16.8050i 0.320751 + 0.555557i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −15.1506 26.2416i −0.499772 0.865630i 0.500228 0.865894i \(-0.333249\pi\)
−1.00000 0.000263625i \(0.999916\pi\)
\(920\) 0 0
\(921\) −14.0337 + 24.3071i −0.462426 + 0.800945i
\(922\) 0 0
\(923\) 12.4059 0.408346
\(924\) 0 0
\(925\) 39.2576 1.29078
\(926\) 0 0
\(927\) −8.43880 + 14.6164i −0.277167 + 0.480067i
\(928\) 0 0
\(929\) 2.42971 + 4.20839i 0.0797163 + 0.138073i 0.903128 0.429372i \(-0.141265\pi\)
−0.823411 + 0.567445i \(0.807932\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 8.05480 + 13.9513i 0.263702 + 0.456746i
\(934\) 0 0
\(935\) 18.7066 32.4008i 0.611772 1.05962i
\(936\) 0 0
\(937\) 46.8284 1.52982 0.764909 0.644139i \(-0.222784\pi\)
0.764909 + 0.644139i \(0.222784\pi\)
\(938\) 0 0
\(939\) −24.5236 −0.800297
\(940\) 0 0
\(941\) 6.23344 10.7966i 0.203204 0.351960i −0.746355 0.665548i \(-0.768198\pi\)
0.949559 + 0.313588i \(0.101531\pi\)
\(942\) 0 0
\(943\) −22.8100 39.5080i −0.742794 1.28656i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.1950 48.8352i −0.916215 1.58693i −0.805113 0.593121i \(-0.797895\pi\)
−0.111101 0.993809i \(-0.535438\pi\)
\(948\) 0 0
\(949\) 5.48668 9.50322i 0.178105 0.308487i
\(950\) 0 0
\(951\) −19.6548 −0.637350
\(952\) 0 0
\(953\) −11.8704 −0.384521 −0.192260 0.981344i \(-0.561582\pi\)
−0.192260 + 0.981344i \(0.561582\pi\)
\(954\) 0 0
\(955\) 52.6634 91.2157i 1.70415 2.95167i
\(956\) 0 0
\(957\) −2.31427 4.00843i −0.0748097 0.129574i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8982 + 22.3403i 0.416071 + 0.720656i
\(962\) 0 0
\(963\) −15.5749 + 26.9766i −0.501895 + 0.869308i
\(964\) 0 0
\(965\) 47.4273 1.52674
\(966\) 0 0
\(967\) −56.7542 −1.82509 −0.912546 0.408973i \(-0.865887\pi\)
−0.912546 + 0.408973i \(0.865887\pi\)
\(968\) 0 0
\(969\) 4.12044 7.13681i 0.132368 0.229267i
\(970\) 0 0
\(971\) −9.76952 16.9213i −0.313519 0.543031i 0.665603 0.746306i \(-0.268175\pi\)
−0.979122 + 0.203276i \(0.934841\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 6.22354 + 10.7795i 0.199313 + 0.345220i
\(976\) 0 0
\(977\) 12.4128 21.4996i 0.397121 0.687833i −0.596249 0.802800i \(-0.703343\pi\)
0.993369 + 0.114967i \(0.0366761\pi\)
\(978\) 0 0
\(979\) −2.33352 −0.0745796
\(980\) 0 0
\(981\) −15.8445 −0.505877
\(982\) 0 0
\(983\) −0.608688 + 1.05428i −0.0194141 + 0.0336263i −0.875569 0.483093i \(-0.839513\pi\)
0.856155 + 0.516719i \(0.172847\pi\)
\(984\) 0 0
\(985\) 28.0337 + 48.5559i 0.893229 + 1.54712i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.163283 + 0.282815i 0.00519211 + 0.00899300i
\(990\) 0 0
\(991\) 27.2971 47.2799i 0.867120 1.50190i 0.00219393 0.999998i \(-0.499302\pi\)
0.864926 0.501899i \(-0.167365\pi\)
\(992\) 0 0
\(993\) 24.2314 0.768961
\(994\) 0 0
\(995\) 38.2653 1.21309
\(996\) 0 0
\(997\) 13.7445 23.8062i 0.435294 0.753951i −0.562026 0.827120i \(-0.689978\pi\)
0.997320 + 0.0731687i \(0.0233111\pi\)
\(998\) 0 0
\(999\) 8.62957 + 14.9468i 0.273027 + 0.472897i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.j.r.1145.3 12
7.2 even 3 inner 2548.2.j.r.1353.3 12
7.3 odd 6 2548.2.a.r.1.3 6
7.4 even 3 2548.2.a.s.1.4 yes 6
7.5 odd 6 2548.2.j.s.1353.4 12
7.6 odd 2 2548.2.j.s.1145.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2548.2.a.r.1.3 6 7.3 odd 6
2548.2.a.s.1.4 yes 6 7.4 even 3
2548.2.j.r.1145.3 12 1.1 even 1 trivial
2548.2.j.r.1353.3 12 7.2 even 3 inner
2548.2.j.s.1145.4 12 7.6 odd 2
2548.2.j.s.1353.4 12 7.5 odd 6