Properties

Label 2548.2.l.a.1537.1
Level $2548$
Weight $2$
Character 2548.1537
Analytic conductor $20.346$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(373,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1537.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1537
Dual form 2548.2.l.a.373.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +(1.00000 + 1.73205i) q^{5} +6.00000 q^{9} -5.00000 q^{11} +(1.00000 + 3.46410i) q^{13} +(-3.00000 - 5.19615i) q^{15} +(1.50000 + 2.59808i) q^{17} +3.00000 q^{19} +(0.500000 - 0.866025i) q^{23} +(0.500000 - 0.866025i) q^{25} -9.00000 q^{27} +(0.500000 + 0.866025i) q^{29} +(-4.00000 + 6.92820i) q^{31} +15.0000 q^{33} +(-1.50000 + 2.59808i) q^{37} +(-3.00000 - 10.3923i) q^{39} +(1.50000 + 2.59808i) q^{41} +(-0.500000 + 0.866025i) q^{43} +(6.00000 + 10.3923i) q^{45} +(2.00000 + 3.46410i) q^{47} +(-4.50000 - 7.79423i) q^{51} +(3.00000 - 5.19615i) q^{53} +(-5.00000 - 8.66025i) q^{55} -9.00000 q^{57} +(2.50000 + 4.33013i) q^{59} +5.00000 q^{61} +(-5.00000 + 5.19615i) q^{65} +7.00000 q^{67} +(-1.50000 + 2.59808i) q^{69} +(5.50000 - 9.52628i) q^{71} +(7.00000 - 12.1244i) q^{73} +(-1.50000 + 2.59808i) q^{75} +(2.00000 + 3.46410i) q^{79} +9.00000 q^{81} -12.0000 q^{83} +(-3.00000 + 5.19615i) q^{85} +(-1.50000 - 2.59808i) q^{87} +(-4.50000 + 7.79423i) q^{89} +(12.0000 - 20.7846i) q^{93} +(3.00000 + 5.19615i) q^{95} +(-0.500000 + 0.866025i) q^{97} -30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 2 q^{5} + 12 q^{9} - 10 q^{11} + 2 q^{13} - 6 q^{15} + 3 q^{17} + 6 q^{19} + q^{23} + q^{25} - 18 q^{27} + q^{29} - 8 q^{31} + 30 q^{33} - 3 q^{37} - 6 q^{39} + 3 q^{41} - q^{43} + 12 q^{45}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 1.00000 + 1.73205i 0.447214 + 0.774597i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 0 0
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) −3.00000 5.19615i −0.774597 1.34164i
\(16\) 0 0
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.500000 0.866025i 0.104257 0.180579i −0.809177 0.587565i \(-0.800087\pi\)
0.913434 + 0.406986i \(0.133420\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 0.500000 + 0.866025i 0.0928477 + 0.160817i 0.908708 0.417432i \(-0.137070\pi\)
−0.815861 + 0.578249i \(0.803736\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) 0 0
\(33\) 15.0000 2.61116
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) −3.00000 10.3923i −0.480384 1.66410i
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0 0
\(43\) −0.500000 + 0.866025i −0.0762493 + 0.132068i −0.901629 0.432511i \(-0.857628\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) 6.00000 + 10.3923i 0.894427 + 1.54919i
\(46\) 0 0
\(47\) 2.00000 + 3.46410i 0.291730 + 0.505291i 0.974219 0.225605i \(-0.0724358\pi\)
−0.682489 + 0.730896i \(0.739102\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.50000 7.79423i −0.630126 1.09141i
\(52\) 0 0
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) 0 0
\(55\) −5.00000 8.66025i −0.674200 1.16775i
\(56\) 0 0
\(57\) −9.00000 −1.19208
\(58\) 0 0
\(59\) 2.50000 + 4.33013i 0.325472 + 0.563735i 0.981608 0.190909i \(-0.0611434\pi\)
−0.656136 + 0.754643i \(0.727810\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.00000 + 5.19615i −0.620174 + 0.644503i
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 0 0
\(69\) −1.50000 + 2.59808i −0.180579 + 0.312772i
\(70\) 0 0
\(71\) 5.50000 9.52628i 0.652730 1.13056i −0.329728 0.944076i \(-0.606957\pi\)
0.982458 0.186485i \(-0.0597097\pi\)
\(72\) 0 0
\(73\) 7.00000 12.1244i 0.819288 1.41905i −0.0869195 0.996215i \(-0.527702\pi\)
0.906208 0.422833i \(-0.138964\pi\)
\(74\) 0 0
\(75\) −1.50000 + 2.59808i −0.173205 + 0.300000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −3.00000 + 5.19615i −0.325396 + 0.563602i
\(86\) 0 0
\(87\) −1.50000 2.59808i −0.160817 0.278543i
\(88\) 0 0
\(89\) −4.50000 + 7.79423i −0.476999 + 0.826187i −0.999653 0.0263586i \(-0.991609\pi\)
0.522654 + 0.852545i \(0.324942\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 12.0000 20.7846i 1.24434 2.15526i
\(94\) 0 0
\(95\) 3.00000 + 5.19615i 0.307794 + 0.533114i
\(96\) 0 0
\(97\) −0.500000 + 0.866025i −0.0507673 + 0.0879316i −0.890292 0.455389i \(-0.849500\pi\)
0.839525 + 0.543321i \(0.182833\pi\)
\(98\) 0 0
\(99\) −30.0000 −3.01511
\(100\) 0 0
\(101\) −19.0000 −1.89057 −0.945285 0.326245i \(-0.894217\pi\)
−0.945285 + 0.326245i \(0.894217\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.50000 + 9.52628i −0.531705 + 0.920940i 0.467610 + 0.883935i \(0.345115\pi\)
−0.999315 + 0.0370053i \(0.988218\pi\)
\(108\) 0 0
\(109\) −5.00000 + 8.66025i −0.478913 + 0.829502i −0.999708 0.0241802i \(-0.992302\pi\)
0.520794 + 0.853682i \(0.325636\pi\)
\(110\) 0 0
\(111\) 4.50000 7.79423i 0.427121 0.739795i
\(112\) 0 0
\(113\) −5.50000 + 9.52628i −0.517396 + 0.896157i 0.482399 + 0.875951i \(0.339765\pi\)
−0.999796 + 0.0202056i \(0.993568\pi\)
\(114\) 0 0
\(115\) 2.00000 0.186501
\(116\) 0 0
\(117\) 6.00000 + 20.7846i 0.554700 + 1.92154i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) −4.50000 7.79423i −0.405751 0.702782i
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 2.50000 + 4.33013i 0.221839 + 0.384237i 0.955366 0.295423i \(-0.0954607\pi\)
−0.733527 + 0.679660i \(0.762127\pi\)
\(128\) 0 0
\(129\) 1.50000 2.59808i 0.132068 0.228748i
\(130\) 0 0
\(131\) −2.00000 3.46410i −0.174741 0.302660i 0.765331 0.643637i \(-0.222575\pi\)
−0.940072 + 0.340977i \(0.889242\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −9.00000 15.5885i −0.774597 1.34164i
\(136\) 0 0
\(137\) −7.50000 12.9904i −0.640768 1.10984i −0.985262 0.171054i \(-0.945283\pi\)
0.344493 0.938789i \(-0.388051\pi\)
\(138\) 0 0
\(139\) −5.50000 + 9.52628i −0.466504 + 0.808008i −0.999268 0.0382553i \(-0.987820\pi\)
0.532764 + 0.846264i \(0.321153\pi\)
\(140\) 0 0
\(141\) −6.00000 10.3923i −0.505291 0.875190i
\(142\) 0 0
\(143\) −5.00000 17.3205i −0.418121 1.44841i
\(144\) 0 0
\(145\) −1.00000 + 1.73205i −0.0830455 + 0.143839i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0 0
\(153\) 9.00000 + 15.5885i 0.727607 + 1.26025i
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) −11.0000 + 19.0526i −0.877896 + 1.52056i −0.0242497 + 0.999706i \(0.507720\pi\)
−0.853646 + 0.520854i \(0.825614\pi\)
\(158\) 0 0
\(159\) −9.00000 + 15.5885i −0.713746 + 1.23625i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.00000 −0.548282 −0.274141 0.961689i \(-0.588394\pi\)
−0.274141 + 0.961689i \(0.588394\pi\)
\(164\) 0 0
\(165\) 15.0000 + 25.9808i 1.16775 + 2.02260i
\(166\) 0 0
\(167\) −4.50000 7.79423i −0.348220 0.603136i 0.637713 0.770274i \(-0.279881\pi\)
−0.985933 + 0.167139i \(0.946547\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 18.0000 1.37649
\(172\) 0 0
\(173\) −11.0000 −0.836315 −0.418157 0.908375i \(-0.637324\pi\)
−0.418157 + 0.908375i \(0.637324\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −7.50000 12.9904i −0.563735 0.976417i
\(178\) 0 0
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) −15.0000 −1.10883
\(184\) 0 0
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) −7.50000 12.9904i −0.548454 0.949951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.00000 0.0723575 0.0361787 0.999345i \(-0.488481\pi\)
0.0361787 + 0.999345i \(0.488481\pi\)
\(192\) 0 0
\(193\) 11.0000 0.791797 0.395899 0.918294i \(-0.370433\pi\)
0.395899 + 0.918294i \(0.370433\pi\)
\(194\) 0 0
\(195\) 15.0000 15.5885i 1.07417 1.11631i
\(196\) 0 0
\(197\) 4.50000 + 7.79423i 0.320612 + 0.555316i 0.980614 0.195947i \(-0.0627782\pi\)
−0.660003 + 0.751263i \(0.729445\pi\)
\(198\) 0 0
\(199\) −9.50000 16.4545i −0.673437 1.16643i −0.976923 0.213591i \(-0.931484\pi\)
0.303486 0.952836i \(-0.401849\pi\)
\(200\) 0 0
\(201\) −21.0000 −1.48123
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.00000 + 5.19615i −0.209529 + 0.362915i
\(206\) 0 0
\(207\) 3.00000 5.19615i 0.208514 0.361158i
\(208\) 0 0
\(209\) −15.0000 −1.03757
\(210\) 0 0
\(211\) 6.50000 + 11.2583i 0.447478 + 0.775055i 0.998221 0.0596196i \(-0.0189888\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) −16.5000 + 28.5788i −1.13056 + 1.95819i
\(214\) 0 0
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −21.0000 + 36.3731i −1.41905 + 2.45786i
\(220\) 0 0
\(221\) −7.50000 + 7.79423i −0.504505 + 0.524297i
\(222\) 0 0
\(223\) −4.50000 7.79423i −0.301342 0.521940i 0.675098 0.737728i \(-0.264101\pi\)
−0.976440 + 0.215788i \(0.930768\pi\)
\(224\) 0 0
\(225\) 3.00000 5.19615i 0.200000 0.346410i
\(226\) 0 0
\(227\) 10.5000 + 18.1865i 0.696909 + 1.20708i 0.969533 + 0.244962i \(0.0787754\pi\)
−0.272623 + 0.962121i \(0.587891\pi\)
\(228\) 0 0
\(229\) −3.00000 5.19615i −0.198246 0.343371i 0.749714 0.661762i \(-0.230191\pi\)
−0.947960 + 0.318390i \(0.896858\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0000 19.0526i −0.720634 1.24817i −0.960746 0.277429i \(-0.910518\pi\)
0.240112 0.970745i \(-0.422816\pi\)
\(234\) 0 0
\(235\) −4.00000 + 6.92820i −0.260931 + 0.451946i
\(236\) 0 0
\(237\) −6.00000 10.3923i −0.389742 0.675053i
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −10.5000 18.1865i −0.676364 1.17150i −0.976068 0.217465i \(-0.930221\pi\)
0.299704 0.954032i \(-0.403112\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.00000 + 10.3923i 0.190885 + 0.661247i
\(248\) 0 0
\(249\) 36.0000 2.28141
\(250\) 0 0
\(251\) 4.50000 7.79423i 0.284037 0.491967i −0.688338 0.725390i \(-0.741659\pi\)
0.972375 + 0.233423i \(0.0749927\pi\)
\(252\) 0 0
\(253\) −2.50000 + 4.33013i −0.157174 + 0.272233i
\(254\) 0 0
\(255\) 9.00000 15.5885i 0.563602 0.976187i
\(256\) 0 0
\(257\) 1.50000 2.59808i 0.0935674 0.162064i −0.815442 0.578838i \(-0.803506\pi\)
0.909010 + 0.416775i \(0.136840\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 + 5.19615i 0.185695 + 0.321634i
\(262\) 0 0
\(263\) 15.0000 0.924940 0.462470 0.886635i \(-0.346963\pi\)
0.462470 + 0.886635i \(0.346963\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 13.5000 23.3827i 0.826187 1.43100i
\(268\) 0 0
\(269\) 7.50000 + 12.9904i 0.457283 + 0.792038i 0.998816 0.0486418i \(-0.0154893\pi\)
−0.541533 + 0.840679i \(0.682156\pi\)
\(270\) 0 0
\(271\) −8.50000 + 14.7224i −0.516338 + 0.894324i 0.483482 + 0.875354i \(0.339372\pi\)
−0.999820 + 0.0189696i \(0.993961\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.50000 + 4.33013i −0.150756 + 0.261116i
\(276\) 0 0
\(277\) 4.50000 + 7.79423i 0.270379 + 0.468310i 0.968959 0.247222i \(-0.0795177\pi\)
−0.698580 + 0.715532i \(0.746184\pi\)
\(278\) 0 0
\(279\) −24.0000 + 41.5692i −1.43684 + 2.48868i
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) −19.0000 −1.12943 −0.564716 0.825285i \(-0.691014\pi\)
−0.564716 + 0.825285i \(0.691014\pi\)
\(284\) 0 0
\(285\) −9.00000 15.5885i −0.533114 0.923381i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 1.50000 2.59808i 0.0879316 0.152302i
\(292\) 0 0
\(293\) 9.50000 16.4545i 0.554996 0.961281i −0.442908 0.896567i \(-0.646053\pi\)
0.997904 0.0647140i \(-0.0206135\pi\)
\(294\) 0 0
\(295\) −5.00000 + 8.66025i −0.291111 + 0.504219i
\(296\) 0 0
\(297\) 45.0000 2.61116
\(298\) 0 0
\(299\) 3.50000 + 0.866025i 0.202410 + 0.0500835i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 57.0000 3.27456
\(304\) 0 0
\(305\) 5.00000 + 8.66025i 0.286299 + 0.495885i
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 12.0000 + 20.7846i 0.682656 + 1.18240i
\(310\) 0 0
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) 7.00000 + 12.1244i 0.395663 + 0.685309i 0.993186 0.116543i \(-0.0371814\pi\)
−0.597522 + 0.801852i \(0.703848\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.0000 25.9808i −0.842484 1.45922i −0.887788 0.460252i \(-0.847759\pi\)
0.0453045 0.998973i \(-0.485574\pi\)
\(318\) 0 0
\(319\) −2.50000 4.33013i −0.139973 0.242441i
\(320\) 0 0
\(321\) 16.5000 28.5788i 0.920940 1.59512i
\(322\) 0 0
\(323\) 4.50000 + 7.79423i 0.250387 + 0.433682i
\(324\) 0 0
\(325\) 3.50000 + 0.866025i 0.194145 + 0.0480384i
\(326\) 0 0
\(327\) 15.0000 25.9808i 0.829502 1.43674i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 17.0000 0.934405 0.467202 0.884150i \(-0.345262\pi\)
0.467202 + 0.884150i \(0.345262\pi\)
\(332\) 0 0
\(333\) −9.00000 + 15.5885i −0.493197 + 0.854242i
\(334\) 0 0
\(335\) 7.00000 + 12.1244i 0.382451 + 0.662424i
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 16.5000 28.5788i 0.896157 1.55219i
\(340\) 0 0
\(341\) 20.0000 34.6410i 1.08306 1.87592i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −6.00000 −0.323029
\(346\) 0 0
\(347\) −16.5000 28.5788i −0.885766 1.53419i −0.844833 0.535031i \(-0.820300\pi\)
−0.0409337 0.999162i \(-0.513033\pi\)
\(348\) 0 0
\(349\) 9.50000 + 16.4545i 0.508523 + 0.880788i 0.999951 + 0.00987003i \(0.00314178\pi\)
−0.491428 + 0.870918i \(0.663525\pi\)
\(350\) 0 0
\(351\) −9.00000 31.1769i −0.480384 1.66410i
\(352\) 0 0
\(353\) −7.00000 −0.372572 −0.186286 0.982496i \(-0.559645\pi\)
−0.186286 + 0.982496i \(0.559645\pi\)
\(354\) 0 0
\(355\) 22.0000 1.16764
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 + 20.7846i 0.633336 + 1.09697i 0.986865 + 0.161546i \(0.0516481\pi\)
−0.353529 + 0.935423i \(0.615019\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) −42.0000 −2.20443
\(364\) 0 0
\(365\) 28.0000 1.46559
\(366\) 0 0
\(367\) −23.0000 −1.20059 −0.600295 0.799779i \(-0.704950\pi\)
−0.600295 + 0.799779i \(0.704950\pi\)
\(368\) 0 0
\(369\) 9.00000 + 15.5885i 0.468521 + 0.811503i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 23.0000 1.19089 0.595447 0.803394i \(-0.296975\pi\)
0.595447 + 0.803394i \(0.296975\pi\)
\(374\) 0 0
\(375\) −36.0000 −1.85903
\(376\) 0 0
\(377\) −2.50000 + 2.59808i −0.128757 + 0.133808i
\(378\) 0 0
\(379\) 2.50000 + 4.33013i 0.128416 + 0.222424i 0.923063 0.384648i \(-0.125677\pi\)
−0.794647 + 0.607072i \(0.792344\pi\)
\(380\) 0 0
\(381\) −7.50000 12.9904i −0.384237 0.665517i
\(382\) 0 0
\(383\) −9.00000 −0.459879 −0.229939 0.973205i \(-0.573853\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.00000 + 5.19615i −0.152499 + 0.264135i
\(388\) 0 0
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) 0 0
\(393\) 6.00000 + 10.3923i 0.302660 + 0.524222i
\(394\) 0 0
\(395\) −4.00000 + 6.92820i −0.201262 + 0.348596i
\(396\) 0 0
\(397\) 25.0000 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.5000 + 23.3827i −0.674158 + 1.16768i 0.302556 + 0.953131i \(0.402160\pi\)
−0.976714 + 0.214544i \(0.931173\pi\)
\(402\) 0 0
\(403\) −28.0000 6.92820i −1.39478 0.345118i
\(404\) 0 0
\(405\) 9.00000 + 15.5885i 0.447214 + 0.774597i
\(406\) 0 0
\(407\) 7.50000 12.9904i 0.371761 0.643909i
\(408\) 0 0
\(409\) −2.50000 4.33013i −0.123617 0.214111i 0.797574 0.603220i \(-0.206116\pi\)
−0.921192 + 0.389109i \(0.872783\pi\)
\(410\) 0 0
\(411\) 22.5000 + 38.9711i 1.10984 + 1.92230i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 20.7846i −0.589057 1.02028i
\(416\) 0 0
\(417\) 16.5000 28.5788i 0.808008 1.39951i
\(418\) 0 0
\(419\) 7.50000 + 12.9904i 0.366399 + 0.634622i 0.989000 0.147918i \(-0.0472572\pi\)
−0.622601 + 0.782540i \(0.713924\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 12.0000 + 20.7846i 0.583460 + 1.01058i
\(424\) 0 0
\(425\) 3.00000 0.145521
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 15.0000 + 51.9615i 0.724207 + 2.50873i
\(430\) 0 0
\(431\) 3.00000 0.144505 0.0722525 0.997386i \(-0.476981\pi\)
0.0722525 + 0.997386i \(0.476981\pi\)
\(432\) 0 0
\(433\) 9.50000 16.4545i 0.456541 0.790752i −0.542234 0.840227i \(-0.682422\pi\)
0.998775 + 0.0494752i \(0.0157549\pi\)
\(434\) 0 0
\(435\) 3.00000 5.19615i 0.143839 0.249136i
\(436\) 0 0
\(437\) 1.50000 2.59808i 0.0717547 0.124283i
\(438\) 0 0
\(439\) −6.50000 + 11.2583i −0.310228 + 0.537331i −0.978412 0.206666i \(-0.933739\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.00000 10.3923i −0.285069 0.493753i 0.687557 0.726130i \(-0.258683\pi\)
−0.972626 + 0.232377i \(0.925350\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) 63.0000 2.97980
\(448\) 0 0
\(449\) 2.50000 4.33013i 0.117982 0.204351i −0.800986 0.598684i \(-0.795691\pi\)
0.918968 + 0.394332i \(0.129024\pi\)
\(450\) 0 0
\(451\) −7.50000 12.9904i −0.353161 0.611693i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.50000 14.7224i 0.397613 0.688686i −0.595818 0.803120i \(-0.703172\pi\)
0.993431 + 0.114433i \(0.0365053\pi\)
\(458\) 0 0
\(459\) −13.5000 23.3827i −0.630126 1.09141i
\(460\) 0 0
\(461\) −4.50000 + 7.79423i −0.209586 + 0.363013i −0.951584 0.307388i \(-0.900545\pi\)
0.741998 + 0.670402i \(0.233878\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) 48.0000 2.22595
\(466\) 0 0
\(467\) −8.00000 13.8564i −0.370196 0.641198i 0.619400 0.785076i \(-0.287376\pi\)
−0.989595 + 0.143878i \(0.954043\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 33.0000 57.1577i 1.52056 2.63369i
\(472\) 0 0
\(473\) 2.50000 4.33013i 0.114950 0.199099i
\(474\) 0 0
\(475\) 1.50000 2.59808i 0.0688247 0.119208i
\(476\) 0 0
\(477\) 18.0000 31.1769i 0.824163 1.42749i
\(478\) 0 0
\(479\) −3.00000 −0.137073 −0.0685367 0.997649i \(-0.521833\pi\)
−0.0685367 + 0.997649i \(0.521833\pi\)
\(480\) 0 0
\(481\) −10.5000 2.59808i −0.478759 0.118462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −14.5000 25.1147i −0.657058 1.13806i −0.981374 0.192109i \(-0.938467\pi\)
0.324316 0.945949i \(-0.394866\pi\)
\(488\) 0 0
\(489\) 21.0000 0.949653
\(490\) 0 0
\(491\) −15.5000 26.8468i −0.699505 1.21158i −0.968638 0.248476i \(-0.920070\pi\)
0.269133 0.963103i \(-0.413263\pi\)
\(492\) 0 0
\(493\) −1.50000 + 2.59808i −0.0675566 + 0.117011i
\(494\) 0 0
\(495\) −30.0000 51.9615i −1.34840 2.33550i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.00000 3.46410i −0.0895323 0.155074i 0.817781 0.575529i \(-0.195204\pi\)
−0.907314 + 0.420455i \(0.861871\pi\)
\(500\) 0 0
\(501\) 13.5000 + 23.3827i 0.603136 + 1.04466i
\(502\) 0 0
\(503\) −11.5000 + 19.9186i −0.512760 + 0.888126i 0.487131 + 0.873329i \(0.338043\pi\)
−0.999891 + 0.0147968i \(0.995290\pi\)
\(504\) 0 0
\(505\) −19.0000 32.9090i −0.845489 1.46443i
\(506\) 0 0
\(507\) 33.0000 20.7846i 1.46558 0.923077i
\(508\) 0 0
\(509\) −2.50000 + 4.33013i −0.110811 + 0.191930i −0.916097 0.400956i \(-0.868678\pi\)
0.805287 + 0.592886i \(0.202011\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −27.0000 −1.19208
\(514\) 0 0
\(515\) 8.00000 13.8564i 0.352522 0.610586i
\(516\) 0 0
\(517\) −10.0000 17.3205i −0.439799 0.761755i
\(518\) 0 0
\(519\) 33.0000 1.44854
\(520\) 0 0
\(521\) 3.00000 5.19615i 0.131432 0.227648i −0.792797 0.609486i \(-0.791376\pi\)
0.924229 + 0.381839i \(0.124709\pi\)
\(522\) 0 0
\(523\) 7.50000 12.9904i 0.327952 0.568030i −0.654153 0.756362i \(-0.726975\pi\)
0.982105 + 0.188332i \(0.0603082\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) 0 0
\(531\) 15.0000 + 25.9808i 0.650945 + 1.12747i
\(532\) 0 0
\(533\) −7.50000 + 7.79423i −0.324861 + 0.337606i
\(534\) 0 0
\(535\) −22.0000 −0.951143
\(536\) 0 0
\(537\) 63.0000 2.71865
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 + 29.4449i 0.730887 + 1.26593i 0.956504 + 0.291718i \(0.0942267\pi\)
−0.225617 + 0.974216i \(0.572440\pi\)
\(542\) 0 0
\(543\) 54.0000 2.31736
\(544\) 0 0
\(545\) −20.0000 −0.856706
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 30.0000 1.28037
\(550\) 0 0
\(551\) 1.50000 + 2.59808i 0.0639021 + 0.110682i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 18.0000 0.764057
\(556\) 0 0
\(557\) −33.0000 −1.39825 −0.699127 0.714997i \(-0.746428\pi\)
−0.699127 + 0.714997i \(0.746428\pi\)
\(558\) 0 0
\(559\) −3.50000 0.866025i −0.148034 0.0366290i
\(560\) 0 0
\(561\) 22.5000 + 38.9711i 0.949951 + 1.64536i
\(562\) 0 0
\(563\) −9.50000 16.4545i −0.400377 0.693474i 0.593394 0.804912i \(-0.297788\pi\)
−0.993771 + 0.111438i \(0.964454\pi\)
\(564\) 0 0
\(565\) −22.0000 −0.925547
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.50000 + 6.06218i −0.146728 + 0.254140i −0.930016 0.367519i \(-0.880207\pi\)
0.783289 + 0.621658i \(0.213541\pi\)
\(570\) 0 0
\(571\) −6.00000 + 10.3923i −0.251092 + 0.434904i −0.963827 0.266529i \(-0.914123\pi\)
0.712735 + 0.701434i \(0.247456\pi\)
\(572\) 0 0
\(573\) −3.00000 −0.125327
\(574\) 0 0
\(575\) −0.500000 0.866025i −0.0208514 0.0361158i
\(576\) 0 0
\(577\) 3.00000 5.19615i 0.124892 0.216319i −0.796799 0.604245i \(-0.793475\pi\)
0.921691 + 0.387926i \(0.126808\pi\)
\(578\) 0 0
\(579\) −33.0000 −1.37143
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −15.0000 + 25.9808i −0.621237 + 1.07601i
\(584\) 0 0
\(585\) −30.0000 + 31.1769i −1.24035 + 1.28901i
\(586\) 0 0
\(587\) −12.5000 21.6506i −0.515930 0.893617i −0.999829 0.0184934i \(-0.994113\pi\)
0.483899 0.875124i \(-0.339220\pi\)
\(588\) 0 0
\(589\) −12.0000 + 20.7846i −0.494451 + 0.856415i
\(590\) 0 0
\(591\) −13.5000 23.3827i −0.555316 0.961835i
\(592\) 0 0
\(593\) −17.0000 29.4449i −0.698106 1.20916i −0.969122 0.246581i \(-0.920693\pi\)
0.271016 0.962575i \(-0.412640\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 28.5000 + 49.3634i 1.16643 + 2.02031i
\(598\) 0 0
\(599\) 10.0000 17.3205i 0.408589 0.707697i −0.586143 0.810208i \(-0.699354\pi\)
0.994732 + 0.102511i \(0.0326876\pi\)
\(600\) 0 0
\(601\) 9.50000 + 16.4545i 0.387513 + 0.671192i 0.992114 0.125336i \(-0.0400009\pi\)
−0.604601 + 0.796528i \(0.706668\pi\)
\(602\) 0 0
\(603\) 42.0000 1.71037
\(604\) 0 0
\(605\) 14.0000 + 24.2487i 0.569181 + 0.985850i
\(606\) 0 0
\(607\) 27.0000 1.09590 0.547948 0.836512i \(-0.315409\pi\)
0.547948 + 0.836512i \(0.315409\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.0000 + 10.3923i −0.404557 + 0.420428i
\(612\) 0 0
\(613\) 11.0000 0.444286 0.222143 0.975014i \(-0.428695\pi\)
0.222143 + 0.975014i \(0.428695\pi\)
\(614\) 0 0
\(615\) 9.00000 15.5885i 0.362915 0.628587i
\(616\) 0 0
\(617\) −3.50000 + 6.06218i −0.140905 + 0.244054i −0.927838 0.372985i \(-0.878334\pi\)
0.786933 + 0.617039i \(0.211668\pi\)
\(618\) 0 0
\(619\) −10.0000 + 17.3205i −0.401934 + 0.696170i −0.993959 0.109749i \(-0.964995\pi\)
0.592025 + 0.805919i \(0.298329\pi\)
\(620\) 0 0
\(621\) −4.50000 + 7.79423i −0.180579 + 0.312772i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 45.0000 1.79713
\(628\) 0 0
\(629\) −9.00000 −0.358854
\(630\) 0 0
\(631\) −18.5000 + 32.0429i −0.736473 + 1.27561i 0.217601 + 0.976038i \(0.430177\pi\)
−0.954074 + 0.299571i \(0.903156\pi\)
\(632\) 0 0
\(633\) −19.5000 33.7750i −0.775055 1.34244i
\(634\) 0 0
\(635\) −5.00000 + 8.66025i −0.198419 + 0.343672i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 33.0000 57.1577i 1.30546 2.26112i
\(640\) 0 0
\(641\) 2.50000 + 4.33013i 0.0987441 + 0.171030i 0.911165 0.412042i \(-0.135184\pi\)
−0.812421 + 0.583071i \(0.801851\pi\)
\(642\) 0 0
\(643\) −15.5000 + 26.8468i −0.611260 + 1.05873i 0.379768 + 0.925082i \(0.376004\pi\)
−0.991028 + 0.133652i \(0.957330\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) 29.0000 1.14011 0.570054 0.821607i \(-0.306922\pi\)
0.570054 + 0.821607i \(0.306922\pi\)
\(648\) 0 0
\(649\) −12.5000 21.6506i −0.490668 0.849862i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.50000 + 2.59808i −0.0586995 + 0.101671i −0.893882 0.448303i \(-0.852029\pi\)
0.835182 + 0.549973i \(0.185362\pi\)
\(654\) 0 0
\(655\) 4.00000 6.92820i 0.156293 0.270707i
\(656\) 0 0
\(657\) 42.0000 72.7461i 1.63858 2.83810i
\(658\) 0 0
\(659\) −16.5000 + 28.5788i −0.642749 + 1.11327i 0.342068 + 0.939675i \(0.388873\pi\)
−0.984817 + 0.173598i \(0.944461\pi\)
\(660\) 0 0
\(661\) 37.0000 1.43913 0.719567 0.694423i \(-0.244340\pi\)
0.719567 + 0.694423i \(0.244340\pi\)
\(662\) 0 0
\(663\) 22.5000 23.3827i 0.873828 0.908108i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.00000 0.0387202
\(668\) 0 0
\(669\) 13.5000 + 23.3827i 0.521940 + 0.904027i
\(670\) 0 0
\(671\) −25.0000 −0.965114
\(672\) 0 0
\(673\) −3.50000 6.06218i −0.134915 0.233680i 0.790650 0.612268i \(-0.209743\pi\)
−0.925565 + 0.378589i \(0.876409\pi\)
\(674\) 0 0
\(675\) −4.50000 + 7.79423i −0.173205 + 0.300000i
\(676\) 0 0
\(677\) −3.00000 5.19615i −0.115299 0.199704i 0.802600 0.596518i \(-0.203449\pi\)
−0.917899 + 0.396813i \(0.870116\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −31.5000 54.5596i −1.20708 2.09073i
\(682\) 0 0
\(683\) 5.50000 + 9.52628i 0.210452 + 0.364513i 0.951856 0.306546i \(-0.0991732\pi\)
−0.741404 + 0.671059i \(0.765840\pi\)
\(684\) 0 0
\(685\) 15.0000 25.9808i 0.573121 0.992674i
\(686\) 0 0
\(687\) 9.00000 + 15.5885i 0.343371 + 0.594737i
\(688\) 0 0
\(689\) 21.0000 + 5.19615i 0.800036 + 0.197958i
\(690\) 0 0
\(691\) −2.50000 + 4.33013i −0.0951045 + 0.164726i −0.909652 0.415371i \(-0.863652\pi\)
0.814548 + 0.580097i \(0.196985\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.0000 −0.834508
\(696\) 0 0
\(697\) −4.50000 + 7.79423i −0.170450 + 0.295227i
\(698\) 0 0
\(699\) 33.0000 + 57.1577i 1.24817 + 2.16190i
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −4.50000 + 7.79423i −0.169721 + 0.293965i
\(704\) 0 0
\(705\) 12.0000 20.7846i 0.451946 0.782794i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.00000 −0.0375558 −0.0187779 0.999824i \(-0.505978\pi\)
−0.0187779 + 0.999824i \(0.505978\pi\)
\(710\) 0 0
\(711\) 12.0000 + 20.7846i 0.450035 + 0.779484i
\(712\) 0 0
\(713\) 4.00000 + 6.92820i 0.149801 + 0.259463i
\(714\) 0 0
\(715\) 25.0000 25.9808i 0.934947 0.971625i
\(716\) 0 0
\(717\) −72.0000 −2.68889
\(718\) 0 0
\(719\) −17.0000 −0.633993 −0.316997 0.948427i \(-0.602674\pi\)
−0.316997 + 0.948427i \(0.602674\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 31.5000 + 54.5596i 1.17150 + 2.02909i
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −3.00000 −0.110959
\(732\) 0 0
\(733\) 7.00000 + 12.1244i 0.258551 + 0.447823i 0.965854 0.259087i \(-0.0834217\pi\)
−0.707303 + 0.706910i \(0.750088\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35.0000 −1.28924
\(738\) 0 0
\(739\) 15.0000 0.551784 0.275892 0.961189i \(-0.411027\pi\)
0.275892 + 0.961189i \(0.411027\pi\)
\(740\) 0 0
\(741\) −9.00000 31.1769i −0.330623 1.14531i
\(742\) 0 0
\(743\) 14.5000 + 25.1147i 0.531953 + 0.921370i 0.999304 + 0.0372984i \(0.0118752\pi\)
−0.467351 + 0.884072i \(0.654791\pi\)
\(744\) 0 0
\(745\) −21.0000 36.3731i −0.769380 1.33261i
\(746\) 0 0
\(747\) −72.0000 −2.63434
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.50000 7.79423i 0.164207 0.284415i −0.772166 0.635421i \(-0.780827\pi\)
0.936374 + 0.351005i \(0.114160\pi\)
\(752\) 0 0
\(753\) −13.5000 + 23.3827i −0.491967 + 0.852112i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.50000 2.59808i −0.0545184 0.0944287i 0.837478 0.546471i \(-0.184029\pi\)
−0.891997 + 0.452042i \(0.850696\pi\)
\(758\) 0 0
\(759\) 7.50000 12.9904i 0.272233 0.471521i
\(760\) 0 0
\(761\) −27.0000 −0.978749 −0.489375 0.872074i \(-0.662775\pi\)
−0.489375 + 0.872074i \(0.662775\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −18.0000 + 31.1769i −0.650791 + 1.12720i
\(766\) 0 0
\(767\) −12.5000 + 12.9904i −0.451349 + 0.469055i
\(768\) 0 0
\(769\) −10.5000 18.1865i −0.378640 0.655823i 0.612225 0.790684i \(-0.290275\pi\)
−0.990865 + 0.134860i \(0.956941\pi\)
\(770\) 0 0
\(771\) −4.50000 + 7.79423i −0.162064 + 0.280702i
\(772\) 0 0
\(773\) −0.500000 0.866025i −0.0179838 0.0311488i 0.856893 0.515494i \(-0.172391\pi\)
−0.874877 + 0.484345i \(0.839058\pi\)
\(774\) 0 0
\(775\) 4.00000 + 6.92820i 0.143684 + 0.248868i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.50000 + 7.79423i 0.161229 + 0.279257i
\(780\) 0 0
\(781\) −27.5000 + 47.6314i −0.984027 + 1.70439i
\(782\) 0 0
\(783\) −4.50000 7.79423i −0.160817 0.278543i
\(784\) 0 0
\(785\) −44.0000 −1.57043
\(786\) 0 0
\(787\) −3.50000 6.06218i −0.124762 0.216093i 0.796878 0.604140i \(-0.206483\pi\)
−0.921640 + 0.388047i \(0.873150\pi\)
\(788\) 0 0
\(789\) −45.0000 −1.60204
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.00000 + 17.3205i 0.177555 + 0.615069i
\(794\) 0 0
\(795\) −36.0000 −1.27679
\(796\) 0 0
\(797\) 13.5000 23.3827i 0.478195 0.828257i −0.521493 0.853256i \(-0.674625\pi\)
0.999687 + 0.0249984i \(0.00795805\pi\)
\(798\) 0 0
\(799\) −6.00000 + 10.3923i −0.212265 + 0.367653i
\(800\) 0 0
\(801\) −27.0000 + 46.7654i −0.953998 + 1.65237i
\(802\) 0 0
\(803\) −35.0000 + 60.6218i −1.23512 + 2.13930i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −22.5000 38.9711i −0.792038 1.37185i
\(808\) 0 0
\(809\) −45.0000 −1.58212 −0.791058 0.611741i \(-0.790469\pi\)
−0.791058 + 0.611741i \(0.790469\pi\)
\(810\) 0 0
\(811\) 40.0000 1.40459 0.702295 0.711886i \(-0.252159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(812\) 0 0
\(813\) 25.5000 44.1673i 0.894324 1.54901i
\(814\) 0 0
\(815\) −7.00000 12.1244i −0.245199 0.424698i
\(816\) 0 0
\(817\) −1.50000 + 2.59808i −0.0524784 + 0.0908952i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.5000 + 40.7032i −0.820156 + 1.42055i 0.0854103 + 0.996346i \(0.472780\pi\)
−0.905566 + 0.424205i \(0.860553\pi\)
\(822\) 0 0
\(823\) 1.50000 + 2.59808i 0.0522867 + 0.0905632i 0.890984 0.454034i \(-0.150016\pi\)
−0.838697 + 0.544598i \(0.816682\pi\)
\(824\) 0 0
\(825\) 7.50000 12.9904i 0.261116 0.452267i
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) −31.0000 −1.07667 −0.538337 0.842729i \(-0.680947\pi\)
−0.538337 + 0.842729i \(0.680947\pi\)
\(830\) 0 0
\(831\) −13.5000 23.3827i −0.468310 0.811136i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.00000 15.5885i 0.311458 0.539461i
\(836\) 0 0
\(837\) 36.0000 62.3538i 1.24434 2.15526i
\(838\) 0 0
\(839\) −21.5000 + 37.2391i −0.742262 + 1.28564i 0.209200 + 0.977873i \(0.432914\pi\)
−0.951463 + 0.307763i \(0.900419\pi\)
\(840\) 0 0
\(841\) 14.0000 24.2487i 0.482759 0.836162i
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) 0 0
\(845\) −23.0000 12.1244i −0.791224 0.417091i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 57.0000 1.95623
\(850\) 0 0
\(851\) 1.50000 + 2.59808i 0.0514193 + 0.0890609i
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 18.0000 + 31.1769i 0.615587 + 1.06623i
\(856\) 0 0
\(857\) −1.00000 + 1.73205i −0.0341593 + 0.0591657i −0.882600 0.470125i \(-0.844209\pi\)
0.848440 + 0.529291i \(0.177542\pi\)
\(858\) 0 0
\(859\) −14.0000 24.2487i −0.477674 0.827355i 0.521999 0.852946i \(-0.325187\pi\)
−0.999672 + 0.0255910i \(0.991853\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −8.00000 13.8564i −0.272323 0.471678i 0.697133 0.716942i \(-0.254459\pi\)
−0.969456 + 0.245264i \(0.921125\pi\)
\(864\) 0 0
\(865\) −11.0000 19.0526i −0.374011 0.647806i
\(866\) 0 0
\(867\) −12.0000 + 20.7846i −0.407541 + 0.705882i
\(868\) 0 0
\(869\) −10.0000 17.3205i −0.339227 0.587558i
\(870\) 0 0
\(871\) 7.00000 + 24.2487i 0.237186 + 0.821636i
\(872\) 0 0
\(873\) −3.00000 + 5.19615i −0.101535 + 0.175863i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −45.0000 −1.51954 −0.759771 0.650191i \(-0.774689\pi\)
−0.759771 + 0.650191i \(0.774689\pi\)
\(878\) 0 0
\(879\) −28.5000 + 49.3634i −0.961281 + 1.66499i
\(880\) 0 0
\(881\) 25.5000 + 44.1673i 0.859117 + 1.48803i 0.872772 + 0.488127i \(0.162320\pi\)
−0.0136556 + 0.999907i \(0.504347\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 15.0000 25.9808i 0.504219 0.873334i
\(886\) 0 0
\(887\) −26.5000 + 45.8993i −0.889783 + 1.54115i −0.0496513 + 0.998767i \(0.515811\pi\)
−0.840132 + 0.542383i \(0.817522\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −45.0000 −1.50756
\(892\) 0 0
\(893\) 6.00000 + 10.3923i 0.200782 + 0.347765i
\(894\) 0 0
\(895\) −21.0000 36.3731i −0.701953 1.21582i
\(896\) 0 0
\(897\) −10.5000 2.59808i −0.350585 0.0867472i
\(898\) 0 0
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.0000 31.1769i −0.598340 1.03636i
\(906\) 0 0
\(907\) 3.00000 0.0996134 0.0498067 0.998759i \(-0.484139\pi\)
0.0498067 + 0.998759i \(0.484139\pi\)
\(908\) 0 0
\(909\) −114.000 −3.78114
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 60.0000 1.98571
\(914\) 0 0
\(915\) −15.0000 25.9808i −0.495885 0.858898i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 33.0000 1.08857 0.544285 0.838901i \(-0.316801\pi\)
0.544285 + 0.838901i \(0.316801\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) 38.5000 + 9.52628i 1.26724 + 0.313561i
\(924\) 0 0
\(925\) 1.50000 + 2.59808i 0.0493197 + 0.0854242i
\(926\) 0 0
\(927\) −24.0000 41.5692i −0.788263 1.36531i
\(928\) 0 0
\(929\) 21.0000 0.688988 0.344494 0.938789i \(-0.388051\pi\)
0.344494 + 0.938789i \(0.388051\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 36.0000 62.3538i 1.17859 2.04137i
\(934\) 0 0
\(935\) 15.0000 25.9808i 0.490552 0.849662i
\(936\) 0 0
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) 0 0
\(939\) −21.0000 36.3731i −0.685309 1.18699i
\(940\) 0 0
\(941\) −25.0000 + 43.3013i −0.814977 + 1.41158i 0.0943679 + 0.995537i \(0.469917\pi\)
−0.909345 + 0.416044i \(0.863416\pi\)
\(942\) 0 0
\(943\) 3.00000 0.0976934
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.5000 + 23.3827i −0.438691 + 0.759835i −0.997589 0.0694014i \(-0.977891\pi\)
0.558898 + 0.829237i \(0.311224\pi\)
\(948\) 0 0
\(949\) 49.0000 + 12.1244i 1.59061 + 0.393573i
\(950\) 0 0
\(951\) 45.0000 + 77.9423i 1.45922 + 2.52745i
\(952\) 0 0
\(953\) 0.500000 0.866025i 0.0161966 0.0280533i −0.857814 0.513961i \(-0.828178\pi\)
0.874010 + 0.485908i \(0.161511\pi\)
\(954\) 0 0
\(955\) 1.00000 + 1.73205i 0.0323592 + 0.0560478i
\(956\) 0 0
\(957\) 7.50000 + 12.9904i 0.242441 + 0.419919i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) 0 0
\(963\) −33.0000 + 57.1577i −1.06341 + 1.84188i
\(964\) 0 0
\(965\) 11.0000 + 19.0526i 0.354103 + 0.613324i
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) −13.5000 23.3827i −0.433682 0.751160i
\(970\) 0 0
\(971\) 15.0000 0.481373 0.240686 0.970603i \(-0.422627\pi\)
0.240686 + 0.970603i \(0.422627\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −10.5000 2.59808i −0.336269 0.0832050i
\(976\) 0 0
\(977\) 39.0000 1.24772 0.623860 0.781536i \(-0.285563\pi\)
0.623860 + 0.781536i \(0.285563\pi\)
\(978\) 0 0
\(979\) 22.5000 38.9711i 0.719103 1.24552i
\(980\) 0 0
\(981\) −30.0000 + 51.9615i −0.957826 + 1.65900i
\(982\) 0 0
\(983\) −8.00000 + 13.8564i −0.255160 + 0.441951i −0.964939 0.262474i \(-0.915462\pi\)
0.709779 + 0.704425i \(0.248795\pi\)
\(984\) 0 0
\(985\) −9.00000 + 15.5885i −0.286764 + 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.500000 + 0.866025i 0.0158991 + 0.0275380i
\(990\) 0 0
\(991\) 27.0000 0.857683 0.428842 0.903380i \(-0.358922\pi\)
0.428842 + 0.903380i \(0.358922\pi\)
\(992\) 0 0
\(993\) −51.0000 −1.61844
\(994\) 0 0
\(995\) 19.0000 32.9090i 0.602340 1.04328i
\(996\) 0 0
\(997\) 17.5000 + 30.3109i 0.554231 + 0.959955i 0.997963 + 0.0637961i \(0.0203207\pi\)
−0.443732 + 0.896159i \(0.646346\pi\)
\(998\) 0 0
\(999\) 13.5000 23.3827i 0.427121 0.739795i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.l.a.1537.1 2
7.2 even 3 2548.2.i.h.1745.1 2
7.3 odd 6 52.2.e.a.29.1 yes 2
7.4 even 3 2548.2.k.d.393.1 2
7.5 odd 6 2548.2.i.a.1745.1 2
7.6 odd 2 2548.2.l.h.1537.1 2
13.9 even 3 2548.2.i.h.165.1 2
21.17 even 6 468.2.l.a.289.1 2
28.3 even 6 208.2.i.d.81.1 2
35.3 even 12 1300.2.bb.f.549.2 4
35.17 even 12 1300.2.bb.f.549.1 4
35.24 odd 6 1300.2.i.f.601.1 2
56.3 even 6 832.2.i.a.705.1 2
56.45 odd 6 832.2.i.j.705.1 2
84.59 odd 6 1872.2.t.f.289.1 2
91.3 odd 6 676.2.a.e.1.1 1
91.9 even 3 inner 2548.2.l.a.373.1 2
91.10 odd 6 676.2.a.d.1.1 1
91.17 odd 6 676.2.e.a.529.1 2
91.24 even 12 676.2.d.d.337.2 2
91.31 even 12 676.2.h.b.361.1 4
91.38 odd 6 676.2.e.a.653.1 2
91.45 even 12 676.2.h.b.485.1 4
91.48 odd 6 2548.2.i.a.165.1 2
91.59 even 12 676.2.h.b.485.2 4
91.61 odd 6 2548.2.l.h.373.1 2
91.73 even 12 676.2.h.b.361.2 4
91.74 even 3 2548.2.k.d.1569.1 2
91.80 even 12 676.2.d.d.337.1 2
91.87 odd 6 52.2.e.a.9.1 2
273.80 odd 12 6084.2.b.l.4393.2 2
273.101 even 6 6084.2.a.k.1.1 1
273.185 even 6 6084.2.a.f.1.1 1
273.206 odd 12 6084.2.b.l.4393.1 2
273.269 even 6 468.2.l.a.217.1 2
364.3 even 6 2704.2.a.b.1.1 1
364.87 even 6 208.2.i.d.113.1 2
364.115 odd 12 2704.2.f.a.337.2 2
364.171 odd 12 2704.2.f.a.337.1 2
364.283 even 6 2704.2.a.a.1.1 1
455.87 even 12 1300.2.bb.f.1049.2 4
455.178 even 12 1300.2.bb.f.1049.1 4
455.269 odd 6 1300.2.i.f.1101.1 2
728.269 odd 6 832.2.i.j.321.1 2
728.451 even 6 832.2.i.a.321.1 2
1092.815 odd 6 1872.2.t.f.1153.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.e.a.9.1 2 91.87 odd 6
52.2.e.a.29.1 yes 2 7.3 odd 6
208.2.i.d.81.1 2 28.3 even 6
208.2.i.d.113.1 2 364.87 even 6
468.2.l.a.217.1 2 273.269 even 6
468.2.l.a.289.1 2 21.17 even 6
676.2.a.d.1.1 1 91.10 odd 6
676.2.a.e.1.1 1 91.3 odd 6
676.2.d.d.337.1 2 91.80 even 12
676.2.d.d.337.2 2 91.24 even 12
676.2.e.a.529.1 2 91.17 odd 6
676.2.e.a.653.1 2 91.38 odd 6
676.2.h.b.361.1 4 91.31 even 12
676.2.h.b.361.2 4 91.73 even 12
676.2.h.b.485.1 4 91.45 even 12
676.2.h.b.485.2 4 91.59 even 12
832.2.i.a.321.1 2 728.451 even 6
832.2.i.a.705.1 2 56.3 even 6
832.2.i.j.321.1 2 728.269 odd 6
832.2.i.j.705.1 2 56.45 odd 6
1300.2.i.f.601.1 2 35.24 odd 6
1300.2.i.f.1101.1 2 455.269 odd 6
1300.2.bb.f.549.1 4 35.17 even 12
1300.2.bb.f.549.2 4 35.3 even 12
1300.2.bb.f.1049.1 4 455.178 even 12
1300.2.bb.f.1049.2 4 455.87 even 12
1872.2.t.f.289.1 2 84.59 odd 6
1872.2.t.f.1153.1 2 1092.815 odd 6
2548.2.i.a.165.1 2 91.48 odd 6
2548.2.i.a.1745.1 2 7.5 odd 6
2548.2.i.h.165.1 2 13.9 even 3
2548.2.i.h.1745.1 2 7.2 even 3
2548.2.k.d.393.1 2 7.4 even 3
2548.2.k.d.1569.1 2 91.74 even 3
2548.2.l.a.373.1 2 91.9 even 3 inner
2548.2.l.a.1537.1 2 1.1 even 1 trivial
2548.2.l.h.373.1 2 91.61 odd 6
2548.2.l.h.1537.1 2 7.6 odd 2
2704.2.a.a.1.1 1 364.283 even 6
2704.2.a.b.1.1 1 364.3 even 6
2704.2.f.a.337.1 2 364.171 odd 12
2704.2.f.a.337.2 2 364.115 odd 12
6084.2.a.f.1.1 1 273.185 even 6
6084.2.a.k.1.1 1 273.101 even 6
6084.2.b.l.4393.1 2 273.206 odd 12
6084.2.b.l.4393.2 2 273.80 odd 12