Properties

Label 2548.2.l.m.1537.3
Level $2548$
Weight $2$
Character 2548.1537
Analytic conductor $20.346$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(373,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 9x^{10} + 66x^{8} + 127x^{6} + 189x^{4} + 60x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1537.3
Root \(-0.286958 + 0.497025i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1537
Dual form 2548.2.l.m.373.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.573915 q^{3} +(1.45546 + 2.52093i) q^{5} -2.67062 q^{9} +5.47346 q^{11} +(-3.60003 + 0.199516i) q^{13} +(-0.835311 - 1.44680i) q^{15} +(-3.02611 - 5.24138i) q^{17} -0.573915 q^{19} +(-2.67062 + 4.62565i) q^{23} +(-1.73673 + 3.00811i) q^{25} +3.25446 q^{27} +(4.13815 + 7.16749i) q^{29} +(-4.53815 + 7.86030i) q^{31} -3.14130 q^{33} +(1.40142 - 2.42733i) q^{37} +(2.06611 - 0.114505i) q^{39} +(5.22725 + 9.05387i) q^{41} +(-3.63815 + 6.30146i) q^{43} +(-3.88698 - 6.73245i) q^{45} +(-1.28369 - 2.22342i) q^{47} +(1.73673 + 3.00811i) q^{51} +(3.17062 - 5.49168i) q^{53} +(7.96641 + 13.7982i) q^{55} +0.329378 q^{57} +(-2.08799 - 3.61650i) q^{59} -8.61961 q^{61} +(-5.74266 - 8.78503i) q^{65} -14.4853 q^{67} +(1.53271 - 2.65473i) q^{69} +(6.14408 - 10.6419i) q^{71} +(-1.51204 + 2.61892i) q^{73} +(0.996736 - 1.72640i) q^{75} +(1.67062 + 2.89360i) q^{79} +6.14408 q^{81} -13.5240 q^{83} +(8.80877 - 15.2572i) q^{85} +(-2.37495 - 4.11353i) q^{87} +(-7.48701 + 12.9679i) q^{89} +(2.60451 - 4.51115i) q^{93} +(-0.835311 - 1.44680i) q^{95} +(-4.13804 + 7.16729i) q^{97} -14.6175 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{11} + 6 q^{15} + 6 q^{25} + 12 q^{29} + 6 q^{37} + 30 q^{39} - 6 q^{43} - 6 q^{51} + 6 q^{53} + 36 q^{57} + 6 q^{65} - 24 q^{67} - 12 q^{71} - 12 q^{79} - 12 q^{81} + 36 q^{85} - 6 q^{93} + 6 q^{95}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.573915 −0.331350 −0.165675 0.986180i \(-0.552980\pi\)
−0.165675 + 0.986180i \(0.552980\pi\)
\(4\) 0 0
\(5\) 1.45546 + 2.52093i 0.650902 + 1.12739i 0.982904 + 0.184116i \(0.0589424\pi\)
−0.332003 + 0.943278i \(0.607724\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.67062 −0.890207
\(10\) 0 0
\(11\) 5.47346 1.65031 0.825155 0.564906i \(-0.191087\pi\)
0.825155 + 0.564906i \(0.191087\pi\)
\(12\) 0 0
\(13\) −3.60003 + 0.199516i −0.998468 + 0.0553358i
\(14\) 0 0
\(15\) −0.835311 1.44680i −0.215676 0.373562i
\(16\) 0 0
\(17\) −3.02611 5.24138i −0.733940 1.27122i −0.955187 0.296003i \(-0.904346\pi\)
0.221247 0.975218i \(-0.428987\pi\)
\(18\) 0 0
\(19\) −0.573915 −0.131665 −0.0658326 0.997831i \(-0.520970\pi\)
−0.0658326 + 0.997831i \(0.520970\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.67062 + 4.62565i −0.556863 + 0.964515i 0.440893 + 0.897560i \(0.354662\pi\)
−0.997756 + 0.0669554i \(0.978671\pi\)
\(24\) 0 0
\(25\) −1.73673 + 3.00811i −0.347346 + 0.601621i
\(26\) 0 0
\(27\) 3.25446 0.626320
\(28\) 0 0
\(29\) 4.13815 + 7.16749i 0.768435 + 1.33097i 0.938411 + 0.345521i \(0.112298\pi\)
−0.169976 + 0.985448i \(0.554369\pi\)
\(30\) 0 0
\(31\) −4.53815 + 7.86030i −0.815076 + 1.41175i 0.0941981 + 0.995553i \(0.469971\pi\)
−0.909274 + 0.416199i \(0.863362\pi\)
\(32\) 0 0
\(33\) −3.14130 −0.546831
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.40142 2.42733i 0.230392 0.399051i −0.727531 0.686074i \(-0.759332\pi\)
0.957924 + 0.287024i \(0.0926658\pi\)
\(38\) 0 0
\(39\) 2.06611 0.114505i 0.330842 0.0183355i
\(40\) 0 0
\(41\) 5.22725 + 9.05387i 0.816360 + 1.41398i 0.908347 + 0.418217i \(0.137345\pi\)
−0.0919873 + 0.995760i \(0.529322\pi\)
\(42\) 0 0
\(43\) −3.63815 + 6.30146i −0.554813 + 0.960964i 0.443105 + 0.896470i \(0.353877\pi\)
−0.997918 + 0.0644945i \(0.979457\pi\)
\(44\) 0 0
\(45\) −3.88698 6.73245i −0.579437 1.00362i
\(46\) 0 0
\(47\) −1.28369 2.22342i −0.187246 0.324320i 0.757085 0.653316i \(-0.226623\pi\)
−0.944331 + 0.328997i \(0.893289\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.73673 + 3.00811i 0.243191 + 0.421219i
\(52\) 0 0
\(53\) 3.17062 5.49168i 0.435518 0.754340i −0.561819 0.827260i \(-0.689898\pi\)
0.997338 + 0.0729200i \(0.0232318\pi\)
\(54\) 0 0
\(55\) 7.96641 + 13.7982i 1.07419 + 1.86055i
\(56\) 0 0
\(57\) 0.329378 0.0436272
\(58\) 0 0
\(59\) −2.08799 3.61650i −0.271833 0.470829i 0.697498 0.716587i \(-0.254297\pi\)
−0.969331 + 0.245758i \(0.920963\pi\)
\(60\) 0 0
\(61\) −8.61961 −1.10363 −0.551814 0.833967i \(-0.686064\pi\)
−0.551814 + 0.833967i \(0.686064\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.74266 8.78503i −0.712290 1.08965i
\(66\) 0 0
\(67\) −14.4853 −1.76966 −0.884832 0.465910i \(-0.845727\pi\)
−0.884832 + 0.465910i \(0.845727\pi\)
\(68\) 0 0
\(69\) 1.53271 2.65473i 0.184517 0.319592i
\(70\) 0 0
\(71\) 6.14408 10.6419i 0.729169 1.26296i −0.228066 0.973646i \(-0.573240\pi\)
0.957235 0.289311i \(-0.0934263\pi\)
\(72\) 0 0
\(73\) −1.51204 + 2.61892i −0.176971 + 0.306522i −0.940841 0.338847i \(-0.889963\pi\)
0.763871 + 0.645369i \(0.223296\pi\)
\(74\) 0 0
\(75\) 0.996736 1.72640i 0.115093 0.199347i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.67062 + 2.89360i 0.187960 + 0.325556i 0.944570 0.328311i \(-0.106479\pi\)
−0.756610 + 0.653866i \(0.773146\pi\)
\(80\) 0 0
\(81\) 6.14408 0.682676
\(82\) 0 0
\(83\) −13.5240 −1.48445 −0.742226 0.670149i \(-0.766230\pi\)
−0.742226 + 0.670149i \(0.766230\pi\)
\(84\) 0 0
\(85\) 8.80877 15.2572i 0.955446 1.65488i
\(86\) 0 0
\(87\) −2.37495 4.11353i −0.254621 0.441017i
\(88\) 0 0
\(89\) −7.48701 + 12.9679i −0.793622 + 1.37459i 0.130089 + 0.991502i \(0.458474\pi\)
−0.923711 + 0.383091i \(0.874860\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.60451 4.51115i 0.270075 0.467784i
\(94\) 0 0
\(95\) −0.835311 1.44680i −0.0857011 0.148439i
\(96\) 0 0
\(97\) −4.13804 + 7.16729i −0.420154 + 0.727728i −0.995954 0.0898622i \(-0.971357\pi\)
0.575800 + 0.817591i \(0.304691\pi\)
\(98\) 0 0
\(99\) −14.6175 −1.46912
\(100\) 0 0
\(101\) −16.8503 −1.67666 −0.838332 0.545160i \(-0.816469\pi\)
−0.838332 + 0.545160i \(0.816469\pi\)
\(102\) 0 0
\(103\) −3.00544 5.20557i −0.296135 0.512920i 0.679114 0.734033i \(-0.262364\pi\)
−0.975248 + 0.221113i \(0.929031\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.21019 12.4884i 0.697036 1.20730i −0.272454 0.962169i \(-0.587835\pi\)
0.969490 0.245132i \(-0.0788314\pi\)
\(108\) 0 0
\(109\) −2.23080 + 3.86386i −0.213672 + 0.370090i −0.952861 0.303408i \(-0.901876\pi\)
0.739189 + 0.673498i \(0.235209\pi\)
\(110\) 0 0
\(111\) −0.804296 + 1.39308i −0.0763404 + 0.132225i
\(112\) 0 0
\(113\) −3.17062 + 5.49168i −0.298267 + 0.516614i −0.975740 0.218934i \(-0.929742\pi\)
0.677473 + 0.735548i \(0.263075\pi\)
\(114\) 0 0
\(115\) −15.5479 −1.44985
\(116\) 0 0
\(117\) 9.61431 0.532832i 0.888843 0.0492603i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 18.9588 1.72353
\(122\) 0 0
\(123\) −3.00000 5.19615i −0.270501 0.468521i
\(124\) 0 0
\(125\) 4.44363 0.397450
\(126\) 0 0
\(127\) 2.70309 + 4.68189i 0.239861 + 0.415451i 0.960674 0.277678i \(-0.0895649\pi\)
−0.720814 + 0.693129i \(0.756232\pi\)
\(128\) 0 0
\(129\) 2.08799 3.61650i 0.183837 0.318415i
\(130\) 0 0
\(131\) 7.16211 + 12.4051i 0.625757 + 1.08384i 0.988394 + 0.151912i \(0.0485430\pi\)
−0.362637 + 0.931930i \(0.618124\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.73673 + 8.20426i 0.407673 + 0.706110i
\(136\) 0 0
\(137\) −0.138151 0.239285i −0.0118031 0.0204435i 0.860064 0.510187i \(-0.170424\pi\)
−0.871867 + 0.489743i \(0.837090\pi\)
\(138\) 0 0
\(139\) −3.29240 + 5.70260i −0.279257 + 0.483688i −0.971200 0.238264i \(-0.923422\pi\)
0.691943 + 0.721952i \(0.256755\pi\)
\(140\) 0 0
\(141\) 0.736731 + 1.27606i 0.0620440 + 0.107463i
\(142\) 0 0
\(143\) −19.7046 + 1.09204i −1.64778 + 0.0913212i
\(144\) 0 0
\(145\) −12.0458 + 20.8640i −1.00035 + 1.73266i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.406183 0.0332758 0.0166379 0.999862i \(-0.494704\pi\)
0.0166379 + 0.999862i \(0.494704\pi\)
\(150\) 0 0
\(151\) −7.24266 + 12.5447i −0.589400 + 1.02087i 0.404912 + 0.914356i \(0.367302\pi\)
−0.994311 + 0.106514i \(0.966031\pi\)
\(152\) 0 0
\(153\) 8.08160 + 13.9977i 0.653359 + 1.13165i
\(154\) 0 0
\(155\) −26.4204 −2.12214
\(156\) 0 0
\(157\) 6.45437 11.1793i 0.515115 0.892205i −0.484731 0.874663i \(-0.661083\pi\)
0.999846 0.0175421i \(-0.00558410\pi\)
\(158\) 0 0
\(159\) −1.81967 + 3.15176i −0.144309 + 0.249951i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −17.8938 −1.40155 −0.700777 0.713380i \(-0.747163\pi\)
−0.700777 + 0.713380i \(0.747163\pi\)
\(164\) 0 0
\(165\) −4.57204 7.91901i −0.355933 0.616494i
\(166\) 0 0
\(167\) −0.668433 1.15776i −0.0517249 0.0895901i 0.839004 0.544126i \(-0.183139\pi\)
−0.890729 + 0.454536i \(0.849805\pi\)
\(168\) 0 0
\(169\) 12.9204 1.43653i 0.993876 0.110502i
\(170\) 0 0
\(171\) 1.53271 0.117209
\(172\) 0 0
\(173\) 23.7027 1.80208 0.901042 0.433732i \(-0.142804\pi\)
0.901042 + 0.433732i \(0.142804\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.19833 + 2.07557i 0.0900719 + 0.156009i
\(178\) 0 0
\(179\) −6.46160 −0.482962 −0.241481 0.970405i \(-0.577633\pi\)
−0.241481 + 0.970405i \(0.577633\pi\)
\(180\) 0 0
\(181\) 14.5851 1.08410 0.542050 0.840346i \(-0.317648\pi\)
0.542050 + 0.840346i \(0.317648\pi\)
\(182\) 0 0
\(183\) 4.94692 0.365687
\(184\) 0 0
\(185\) 8.15885 0.599850
\(186\) 0 0
\(187\) −16.5633 28.6885i −1.21123 2.09791i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.132219 −0.00956705 −0.00478352 0.999989i \(-0.501523\pi\)
−0.00478352 + 0.999989i \(0.501523\pi\)
\(192\) 0 0
\(193\) −2.40852 −0.173369 −0.0866846 0.996236i \(-0.527627\pi\)
−0.0866846 + 0.996236i \(0.527627\pi\)
\(194\) 0 0
\(195\) 3.29580 + 5.04186i 0.236017 + 0.361055i
\(196\) 0 0
\(197\) −3.53957 6.13072i −0.252184 0.436796i 0.711943 0.702237i \(-0.247816\pi\)
−0.964127 + 0.265442i \(0.914482\pi\)
\(198\) 0 0
\(199\) −9.67292 16.7540i −0.685695 1.18766i −0.973218 0.229885i \(-0.926165\pi\)
0.287522 0.957774i \(-0.407168\pi\)
\(200\) 0 0
\(201\) 8.31335 0.586378
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −15.2161 + 26.3551i −1.06274 + 1.84072i
\(206\) 0 0
\(207\) 7.13222 12.3534i 0.495724 0.858618i
\(208\) 0 0
\(209\) −3.14130 −0.217288
\(210\) 0 0
\(211\) 5.43982 + 9.42205i 0.374493 + 0.648641i 0.990251 0.139295i \(-0.0444835\pi\)
−0.615758 + 0.787935i \(0.711150\pi\)
\(212\) 0 0
\(213\) −3.52618 + 6.10753i −0.241610 + 0.418481i
\(214\) 0 0
\(215\) −21.1807 −1.44451
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.867781 1.50304i 0.0586392 0.101566i
\(220\) 0 0
\(221\) 11.9398 + 18.2653i 0.803159 + 1.22866i
\(222\) 0 0
\(223\) −0.192440 0.333316i −0.0128867 0.0223205i 0.859510 0.511119i \(-0.170769\pi\)
−0.872397 + 0.488798i \(0.837435\pi\)
\(224\) 0 0
\(225\) 4.63815 8.03351i 0.309210 0.535568i
\(226\) 0 0
\(227\) 0.822931 + 1.42536i 0.0546199 + 0.0946044i 0.892043 0.451951i \(-0.149272\pi\)
−0.837423 + 0.546556i \(0.815939\pi\)
\(228\) 0 0
\(229\) −4.10010 7.10158i −0.270942 0.469285i 0.698161 0.715941i \(-0.254002\pi\)
−0.969103 + 0.246655i \(0.920669\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.93389 3.34960i −0.126693 0.219439i 0.795700 0.605691i \(-0.207103\pi\)
−0.922394 + 0.386251i \(0.873770\pi\)
\(234\) 0 0
\(235\) 3.73673 6.47221i 0.243757 0.422200i
\(236\) 0 0
\(237\) −0.958795 1.66068i −0.0622804 0.107873i
\(238\) 0 0
\(239\) 9.53840 0.616988 0.308494 0.951226i \(-0.400175\pi\)
0.308494 + 0.951226i \(0.400175\pi\)
\(240\) 0 0
\(241\) 2.96954 + 5.14339i 0.191285 + 0.331315i 0.945676 0.325110i \(-0.105401\pi\)
−0.754392 + 0.656425i \(0.772068\pi\)
\(242\) 0 0
\(243\) −13.2895 −0.852525
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.06611 0.114505i 0.131463 0.00728579i
\(248\) 0 0
\(249\) 7.76163 0.491873
\(250\) 0 0
\(251\) −9.60887 + 16.6430i −0.606506 + 1.05050i 0.385305 + 0.922789i \(0.374096\pi\)
−0.991811 + 0.127711i \(0.959237\pi\)
\(252\) 0 0
\(253\) −14.6175 + 25.3183i −0.918997 + 1.59175i
\(254\) 0 0
\(255\) −5.05549 + 8.75636i −0.316587 + 0.548345i
\(256\) 0 0
\(257\) 1.47410 2.55321i 0.0919516 0.159265i −0.816381 0.577514i \(-0.804023\pi\)
0.908332 + 0.418249i \(0.137356\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −11.0514 19.1416i −0.684067 1.18484i
\(262\) 0 0
\(263\) 12.4853 0.769878 0.384939 0.922942i \(-0.374222\pi\)
0.384939 + 0.922942i \(0.374222\pi\)
\(264\) 0 0
\(265\) 18.4589 1.13392
\(266\) 0 0
\(267\) 4.29691 7.44246i 0.262967 0.455471i
\(268\) 0 0
\(269\) 2.71848 + 4.70855i 0.165749 + 0.287085i 0.936921 0.349541i \(-0.113663\pi\)
−0.771172 + 0.636627i \(0.780329\pi\)
\(270\) 0 0
\(271\) 2.35972 4.08715i 0.143343 0.248277i −0.785411 0.618975i \(-0.787548\pi\)
0.928753 + 0.370698i \(0.120882\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.50593 + 16.4648i −0.573229 + 0.992862i
\(276\) 0 0
\(277\) 9.10568 + 15.7715i 0.547107 + 0.947618i 0.998471 + 0.0552777i \(0.0176044\pi\)
−0.451364 + 0.892340i \(0.649062\pi\)
\(278\) 0 0
\(279\) 12.1197 20.9919i 0.725586 1.25675i
\(280\) 0 0
\(281\) −11.4853 −0.685157 −0.342579 0.939489i \(-0.611300\pi\)
−0.342579 + 0.939489i \(0.611300\pi\)
\(282\) 0 0
\(283\) 5.36108 0.318683 0.159342 0.987224i \(-0.449063\pi\)
0.159342 + 0.987224i \(0.449063\pi\)
\(284\) 0 0
\(285\) 0.479397 + 0.830341i 0.0283971 + 0.0491851i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.81471 + 16.9996i −0.577336 + 0.999975i
\(290\) 0 0
\(291\) 2.37488 4.11342i 0.139218 0.241133i
\(292\) 0 0
\(293\) −6.75996 + 11.7086i −0.394921 + 0.684024i −0.993091 0.117346i \(-0.962561\pi\)
0.598170 + 0.801369i \(0.295895\pi\)
\(294\) 0 0
\(295\) 6.07797 10.5274i 0.353873 0.612927i
\(296\) 0 0
\(297\) 17.8131 1.03362
\(298\) 0 0
\(299\) 8.69142 17.1853i 0.502638 0.993852i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 9.67062 0.555563
\(304\) 0 0
\(305\) −12.5455 21.7295i −0.718353 1.24422i
\(306\) 0 0
\(307\) −24.0503 −1.37262 −0.686312 0.727307i \(-0.740772\pi\)
−0.686312 + 0.727307i \(0.740772\pi\)
\(308\) 0 0
\(309\) 1.72487 + 2.98756i 0.0981242 + 0.169956i
\(310\) 0 0
\(311\) −12.2969 + 21.2988i −0.697292 + 1.20775i 0.272109 + 0.962266i \(0.412279\pi\)
−0.969402 + 0.245480i \(0.921055\pi\)
\(312\) 0 0
\(313\) 14.2111 + 24.6143i 0.803257 + 1.39128i 0.917461 + 0.397825i \(0.130235\pi\)
−0.114204 + 0.993457i \(0.536432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.03840 + 8.72677i 0.282985 + 0.490144i 0.972119 0.234490i \(-0.0753420\pi\)
−0.689134 + 0.724634i \(0.742009\pi\)
\(318\) 0 0
\(319\) 22.6500 + 39.2310i 1.26816 + 2.19651i
\(320\) 0 0
\(321\) −4.13804 + 7.16729i −0.230963 + 0.400039i
\(322\) 0 0
\(323\) 1.73673 + 3.00811i 0.0966343 + 0.167376i
\(324\) 0 0
\(325\) 5.65211 11.1758i 0.313523 0.619920i
\(326\) 0 0
\(327\) 1.28029 2.21753i 0.0708001 0.122629i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.26210 −0.124336 −0.0621681 0.998066i \(-0.519801\pi\)
−0.0621681 + 0.998066i \(0.519801\pi\)
\(332\) 0 0
\(333\) −3.74266 + 6.48248i −0.205097 + 0.355238i
\(334\) 0 0
\(335\) −21.0828 36.5165i −1.15188 1.99511i
\(336\) 0 0
\(337\) −0.382454 −0.0208336 −0.0104168 0.999946i \(-0.503316\pi\)
−0.0104168 + 0.999946i \(0.503316\pi\)
\(338\) 0 0
\(339\) 1.81967 3.15176i 0.0988308 0.171180i
\(340\) 0 0
\(341\) −24.8394 + 43.0231i −1.34513 + 2.32983i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 8.92320 0.480409
\(346\) 0 0
\(347\) −1.39432 2.41503i −0.0748509 0.129646i 0.826171 0.563420i \(-0.190515\pi\)
−0.901021 + 0.433775i \(0.857181\pi\)
\(348\) 0 0
\(349\) −2.50333 4.33590i −0.134000 0.232095i 0.791215 0.611538i \(-0.209449\pi\)
−0.925215 + 0.379443i \(0.876116\pi\)
\(350\) 0 0
\(351\) −11.7161 + 0.649316i −0.625361 + 0.0346579i
\(352\) 0 0
\(353\) 24.9678 1.32890 0.664450 0.747333i \(-0.268666\pi\)
0.664450 + 0.747333i \(0.268666\pi\)
\(354\) 0 0
\(355\) 35.7699 1.89847
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.83531 10.1071i −0.307976 0.533430i 0.669944 0.742412i \(-0.266318\pi\)
−0.977919 + 0.208982i \(0.932985\pi\)
\(360\) 0 0
\(361\) −18.6706 −0.982664
\(362\) 0 0
\(363\) −10.8807 −0.571090
\(364\) 0 0
\(365\) −8.80284 −0.460762
\(366\) 0 0
\(367\) 4.13056 0.215613 0.107807 0.994172i \(-0.465617\pi\)
0.107807 + 0.994172i \(0.465617\pi\)
\(368\) 0 0
\(369\) −13.9600 24.1795i −0.726730 1.25873i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 16.1029 0.833775 0.416888 0.908958i \(-0.363121\pi\)
0.416888 + 0.908958i \(0.363121\pi\)
\(374\) 0 0
\(375\) −2.55027 −0.131695
\(376\) 0 0
\(377\) −16.3275 24.9775i −0.840908 1.28641i
\(378\) 0 0
\(379\) 15.3424 + 26.5738i 0.788087 + 1.36501i 0.927138 + 0.374721i \(0.122262\pi\)
−0.139051 + 0.990285i \(0.544405\pi\)
\(380\) 0 0
\(381\) −1.55134 2.68701i −0.0794778 0.137660i
\(382\) 0 0
\(383\) −9.10676 −0.465334 −0.232667 0.972557i \(-0.574745\pi\)
−0.232667 + 0.972557i \(0.574745\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.71613 16.8288i 0.493898 0.855457i
\(388\) 0 0
\(389\) 12.9398 22.4124i 0.656075 1.13636i −0.325548 0.945525i \(-0.605549\pi\)
0.981623 0.190830i \(-0.0611179\pi\)
\(390\) 0 0
\(391\) 32.3264 1.63482
\(392\) 0 0
\(393\) −4.11044 7.11950i −0.207344 0.359131i
\(394\) 0 0
\(395\) −4.86305 + 8.42305i −0.244686 + 0.423809i
\(396\) 0 0
\(397\) 25.3567 1.27262 0.636309 0.771434i \(-0.280460\pi\)
0.636309 + 0.771434i \(0.280460\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.67655 + 2.90388i −0.0837231 + 0.145013i −0.904846 0.425738i \(-0.860014\pi\)
0.821123 + 0.570751i \(0.193348\pi\)
\(402\) 0 0
\(403\) 14.7692 29.2027i 0.735706 1.45469i
\(404\) 0 0
\(405\) 8.94247 + 15.4888i 0.444355 + 0.769645i
\(406\) 0 0
\(407\) 7.67062 13.2859i 0.380219 0.658558i
\(408\) 0 0
\(409\) −7.73399 13.3957i −0.382421 0.662373i 0.608987 0.793181i \(-0.291576\pi\)
−0.991408 + 0.130808i \(0.958243\pi\)
\(410\) 0 0
\(411\) 0.0792872 + 0.137330i 0.00391095 + 0.00677396i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −19.6837 34.0931i −0.966233 1.67356i
\(416\) 0 0
\(417\) 1.88956 3.27281i 0.0925319 0.160270i
\(418\) 0 0
\(419\) −9.74881 16.8854i −0.476260 0.824907i 0.523370 0.852106i \(-0.324675\pi\)
−0.999630 + 0.0271986i \(0.991341\pi\)
\(420\) 0 0
\(421\) 11.1972 0.545716 0.272858 0.962054i \(-0.412031\pi\)
0.272858 + 0.962054i \(0.412031\pi\)
\(422\) 0 0
\(423\) 3.42826 + 5.93792i 0.166688 + 0.288712i
\(424\) 0 0
\(425\) 21.0222 1.01973
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 11.3088 0.626740i 0.545993 0.0302593i
\(430\) 0 0
\(431\) −26.2232 −1.26313 −0.631564 0.775324i \(-0.717587\pi\)
−0.631564 + 0.775324i \(0.717587\pi\)
\(432\) 0 0
\(433\) 15.2851 26.4745i 0.734553 1.27228i −0.220366 0.975417i \(-0.570725\pi\)
0.954919 0.296866i \(-0.0959414\pi\)
\(434\) 0 0
\(435\) 6.91328 11.9742i 0.331467 0.574117i
\(436\) 0 0
\(437\) 1.53271 2.65473i 0.0733195 0.126993i
\(438\) 0 0
\(439\) 12.1424 21.0312i 0.579525 1.00377i −0.416009 0.909360i \(-0.636572\pi\)
0.995534 0.0944056i \(-0.0300951\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.81471 + 4.87521i 0.133731 + 0.231628i 0.925112 0.379695i \(-0.123971\pi\)
−0.791381 + 0.611323i \(0.790638\pi\)
\(444\) 0 0
\(445\) −43.5882 −2.06628
\(446\) 0 0
\(447\) −0.233115 −0.0110259
\(448\) 0 0
\(449\) 5.39432 9.34323i 0.254574 0.440934i −0.710206 0.703994i \(-0.751398\pi\)
0.964780 + 0.263059i \(0.0847315\pi\)
\(450\) 0 0
\(451\) 28.6112 + 49.5560i 1.34725 + 2.33350i
\(452\) 0 0
\(453\) 4.15667 7.19957i 0.195298 0.338265i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.00710 15.6008i 0.421334 0.729773i −0.574736 0.818339i \(-0.694895\pi\)
0.996070 + 0.0885663i \(0.0282285\pi\)
\(458\) 0 0
\(459\) −9.84834 17.0578i −0.459681 0.796191i
\(460\) 0 0
\(461\) 7.35319 12.7361i 0.342472 0.593179i −0.642419 0.766353i \(-0.722069\pi\)
0.984891 + 0.173175i \(0.0554025\pi\)
\(462\) 0 0
\(463\) 34.3792 1.59774 0.798868 0.601507i \(-0.205433\pi\)
0.798868 + 0.601507i \(0.205433\pi\)
\(464\) 0 0
\(465\) 15.1631 0.703170
\(466\) 0 0
\(467\) 2.93363 + 5.08120i 0.135752 + 0.235130i 0.925885 0.377806i \(-0.123322\pi\)
−0.790132 + 0.612936i \(0.789988\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −3.70426 + 6.41597i −0.170683 + 0.295632i
\(472\) 0 0
\(473\) −19.9133 + 34.4908i −0.915614 + 1.58589i
\(474\) 0 0
\(475\) 0.996736 1.72640i 0.0457334 0.0792126i
\(476\) 0 0
\(477\) −8.46753 + 14.6662i −0.387702 + 0.671519i
\(478\) 0 0
\(479\) 11.8395 0.540962 0.270481 0.962725i \(-0.412817\pi\)
0.270481 + 0.962725i \(0.412817\pi\)
\(480\) 0 0
\(481\) −4.56086 + 9.01806i −0.207957 + 0.411188i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0910 −1.09392
\(486\) 0 0
\(487\) 1.57321 + 2.72488i 0.0712890 + 0.123476i 0.899466 0.436990i \(-0.143955\pi\)
−0.828177 + 0.560466i \(0.810622\pi\)
\(488\) 0 0
\(489\) 10.2695 0.464405
\(490\) 0 0
\(491\) 17.4410 + 30.2087i 0.787101 + 1.36330i 0.927736 + 0.373237i \(0.121752\pi\)
−0.140635 + 0.990062i \(0.544914\pi\)
\(492\) 0 0
\(493\) 25.0450 43.3792i 1.12797 1.95370i
\(494\) 0 0
\(495\) −21.2753 36.8498i −0.956252 1.65628i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.505932 0.876300i −0.0226486 0.0392286i 0.854479 0.519486i \(-0.173877\pi\)
−0.877128 + 0.480257i \(0.840543\pi\)
\(500\) 0 0
\(501\) 0.383624 + 0.664456i 0.0171390 + 0.0296857i
\(502\) 0 0
\(503\) −3.99810 + 6.92491i −0.178266 + 0.308767i −0.941287 0.337608i \(-0.890382\pi\)
0.763020 + 0.646374i \(0.223716\pi\)
\(504\) 0 0
\(505\) −24.5249 42.4784i −1.09134 1.89026i
\(506\) 0 0
\(507\) −7.41520 + 0.824444i −0.329321 + 0.0366148i
\(508\) 0 0
\(509\) 0.915411 1.58554i 0.0405749 0.0702778i −0.845025 0.534727i \(-0.820414\pi\)
0.885600 + 0.464449i \(0.153748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.86778 −0.0824645
\(514\) 0 0
\(515\) 8.74860 15.1530i 0.385509 0.667721i
\(516\) 0 0
\(517\) −7.02625 12.1698i −0.309014 0.535228i
\(518\) 0 0
\(519\) −13.6033 −0.597120
\(520\) 0 0
\(521\) 11.5058 19.9286i 0.504078 0.873088i −0.495911 0.868373i \(-0.665166\pi\)
0.999989 0.00471473i \(-0.00150075\pi\)
\(522\) 0 0
\(523\) 21.9437 38.0076i 0.959531 1.66196i 0.235889 0.971780i \(-0.424200\pi\)
0.723641 0.690176i \(-0.242467\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 54.9318 2.39287
\(528\) 0 0
\(529\) −2.76444 4.78815i −0.120193 0.208180i
\(530\) 0 0
\(531\) 5.57623 + 9.65832i 0.241988 + 0.419135i
\(532\) 0 0
\(533\) −20.6246 31.5513i −0.893353 1.36664i
\(534\) 0 0
\(535\) 41.9766 1.81481
\(536\) 0 0
\(537\) 3.70841 0.160030
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.20543 7.28402i −0.180806 0.313164i 0.761350 0.648342i \(-0.224537\pi\)
−0.942155 + 0.335177i \(0.891204\pi\)
\(542\) 0 0
\(543\) −8.37059 −0.359216
\(544\) 0 0
\(545\) −12.9874 −0.556317
\(546\) 0 0
\(547\) −22.4853 −0.961403 −0.480702 0.876884i \(-0.659618\pi\)
−0.480702 + 0.876884i \(0.659618\pi\)
\(548\) 0 0
\(549\) 23.0197 0.982458
\(550\) 0 0
\(551\) −2.37495 4.11353i −0.101176 0.175242i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.68249 −0.198760
\(556\) 0 0
\(557\) 44.6317 1.89111 0.945554 0.325465i \(-0.105521\pi\)
0.945554 + 0.325465i \(0.105521\pi\)
\(558\) 0 0
\(559\) 11.8402 23.4113i 0.500787 0.990193i
\(560\) 0 0
\(561\) 9.50593 + 16.4648i 0.401341 + 0.695143i
\(562\) 0 0
\(563\) 11.2588 + 19.5008i 0.474502 + 0.821862i 0.999574 0.0291964i \(-0.00929481\pi\)
−0.525072 + 0.851058i \(0.675961\pi\)
\(564\) 0 0
\(565\) −18.4589 −0.776570
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.7616 25.5679i 0.618840 1.07186i −0.370858 0.928690i \(-0.620936\pi\)
0.989698 0.143172i \(-0.0457303\pi\)
\(570\) 0 0
\(571\) 16.6045 28.7599i 0.694877 1.20356i −0.275345 0.961346i \(-0.588792\pi\)
0.970222 0.242217i \(-0.0778746\pi\)
\(572\) 0 0
\(573\) 0.0758826 0.00317004
\(574\) 0 0
\(575\) −9.27630 16.0670i −0.386849 0.670041i
\(576\) 0 0
\(577\) −1.91963 + 3.32489i −0.0799151 + 0.138417i −0.903213 0.429192i \(-0.858798\pi\)
0.823298 + 0.567609i \(0.192132\pi\)
\(578\) 0 0
\(579\) 1.38229 0.0574459
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 17.3543 30.0585i 0.718741 1.24490i
\(584\) 0 0
\(585\) 15.3365 + 23.4615i 0.634085 + 0.970014i
\(586\) 0 0
\(587\) −12.0292 20.8352i −0.496500 0.859963i 0.503492 0.864000i \(-0.332048\pi\)
−0.999992 + 0.00403710i \(0.998715\pi\)
\(588\) 0 0
\(589\) 2.60451 4.51115i 0.107317 0.185879i
\(590\) 0 0
\(591\) 2.03141 + 3.51851i 0.0835612 + 0.144732i
\(592\) 0 0
\(593\) 13.9566 + 24.1736i 0.573129 + 0.992689i 0.996242 + 0.0866122i \(0.0276041\pi\)
−0.423113 + 0.906077i \(0.639063\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.55144 + 9.61537i 0.227205 + 0.393531i
\(598\) 0 0
\(599\) −13.5851 + 23.5300i −0.555071 + 0.961411i 0.442827 + 0.896607i \(0.353976\pi\)
−0.997898 + 0.0648043i \(0.979358\pi\)
\(600\) 0 0
\(601\) −3.83381 6.64036i −0.156384 0.270866i 0.777178 0.629281i \(-0.216651\pi\)
−0.933562 + 0.358415i \(0.883317\pi\)
\(602\) 0 0
\(603\) 38.6848 1.57537
\(604\) 0 0
\(605\) 27.5938 + 47.7938i 1.12185 + 1.94309i
\(606\) 0 0
\(607\) 10.9193 0.443203 0.221601 0.975137i \(-0.428872\pi\)
0.221601 + 0.975137i \(0.428872\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.06494 + 7.74826i 0.204906 + 0.313461i
\(612\) 0 0
\(613\) −5.23837 −0.211576 −0.105788 0.994389i \(-0.533736\pi\)
−0.105788 + 0.994389i \(0.533736\pi\)
\(614\) 0 0
\(615\) 8.73276 15.1256i 0.352139 0.609923i
\(616\) 0 0
\(617\) −22.7209 + 39.3537i −0.914709 + 1.58432i −0.107381 + 0.994218i \(0.534246\pi\)
−0.807327 + 0.590104i \(0.799087\pi\)
\(618\) 0 0
\(619\) −14.0979 + 24.4183i −0.566643 + 0.981455i 0.430252 + 0.902709i \(0.358425\pi\)
−0.996895 + 0.0787458i \(0.974908\pi\)
\(620\) 0 0
\(621\) −8.69142 + 15.0540i −0.348775 + 0.604095i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.1512 + 26.2426i 0.606047 + 1.04970i
\(626\) 0 0
\(627\) 1.80284 0.0719985
\(628\) 0 0
\(629\) −16.9634 −0.676376
\(630\) 0 0
\(631\) −3.48650 + 6.03879i −0.138795 + 0.240400i −0.927041 0.374960i \(-0.877656\pi\)
0.788246 + 0.615361i \(0.210990\pi\)
\(632\) 0 0
\(633\) −3.12200 5.40746i −0.124088 0.214927i
\(634\) 0 0
\(635\) −7.86849 + 13.6286i −0.312251 + 0.540835i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −16.4085 + 28.4204i −0.649111 + 1.12429i
\(640\) 0 0
\(641\) 0.498830 + 0.864000i 0.0197026 + 0.0341259i 0.875709 0.482840i \(-0.160395\pi\)
−0.856006 + 0.516966i \(0.827061\pi\)
\(642\) 0 0
\(643\) 1.81626 3.14586i 0.0716264 0.124061i −0.827988 0.560746i \(-0.810514\pi\)
0.899614 + 0.436685i \(0.143848\pi\)
\(644\) 0 0
\(645\) 12.1559 0.478640
\(646\) 0 0
\(647\) −33.7005 −1.32490 −0.662452 0.749104i \(-0.730484\pi\)
−0.662452 + 0.749104i \(0.730484\pi\)
\(648\) 0 0
\(649\) −11.4285 19.7948i −0.448609 0.777014i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.63815 + 14.9617i −0.338037 + 0.585497i −0.984063 0.177818i \(-0.943096\pi\)
0.646026 + 0.763315i \(0.276430\pi\)
\(654\) 0 0
\(655\) −20.8483 + 36.1104i −0.814612 + 1.41095i
\(656\) 0 0
\(657\) 4.03808 6.99416i 0.157540 0.272868i
\(658\) 0 0
\(659\) −5.34124 + 9.25130i −0.208065 + 0.360380i −0.951105 0.308868i \(-0.900050\pi\)
0.743040 + 0.669247i \(0.233383\pi\)
\(660\) 0 0
\(661\) 10.1455 0.394615 0.197307 0.980342i \(-0.436780\pi\)
0.197307 + 0.980342i \(0.436780\pi\)
\(662\) 0 0
\(663\) −6.85244 10.4828i −0.266127 0.407117i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −44.2057 −1.71165
\(668\) 0 0
\(669\) 0.110444 + 0.191295i 0.00427002 + 0.00739589i
\(670\) 0 0
\(671\) −47.1791 −1.82133
\(672\) 0 0
\(673\) 7.69716 + 13.3319i 0.296704 + 0.513906i 0.975380 0.220532i \(-0.0707793\pi\)
−0.678676 + 0.734438i \(0.737446\pi\)
\(674\) 0 0
\(675\) −5.65211 + 9.78975i −0.217550 + 0.376808i
\(676\) 0 0
\(677\) 7.48701 + 12.9679i 0.287749 + 0.498396i 0.973272 0.229655i \(-0.0737597\pi\)
−0.685523 + 0.728051i \(0.740426\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.472293 0.818035i −0.0180983 0.0313472i
\(682\) 0 0
\(683\) 16.4280 + 28.4541i 0.628598 + 1.08876i 0.987833 + 0.155517i \(0.0497044\pi\)
−0.359235 + 0.933247i \(0.616962\pi\)
\(684\) 0 0
\(685\) 0.402148 0.696541i 0.0153653 0.0266135i
\(686\) 0 0
\(687\) 2.35311 + 4.07570i 0.0897767 + 0.155498i
\(688\) 0 0
\(689\) −10.3186 + 20.4028i −0.393109 + 0.777284i
\(690\) 0 0
\(691\) 3.08473 5.34290i 0.117349 0.203254i −0.801368 0.598172i \(-0.795894\pi\)
0.918716 + 0.394919i \(0.129227\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.1678 −0.727077
\(696\) 0 0
\(697\) 31.6365 54.7960i 1.19832 2.07555i
\(698\) 0 0
\(699\) 1.10989 + 1.92238i 0.0419799 + 0.0727112i
\(700\) 0 0
\(701\) 9.52326 0.359689 0.179844 0.983695i \(-0.442441\pi\)
0.179844 + 0.983695i \(0.442441\pi\)
\(702\) 0 0
\(703\) −0.804296 + 1.39308i −0.0303346 + 0.0525411i
\(704\) 0 0
\(705\) −2.14457 + 3.71450i −0.0807690 + 0.139896i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 32.8242 1.23274 0.616370 0.787457i \(-0.288603\pi\)
0.616370 + 0.787457i \(0.288603\pi\)
\(710\) 0 0
\(711\) −4.46160 7.72771i −0.167323 0.289812i
\(712\) 0 0
\(713\) −24.2394 41.9838i −0.907771 1.57231i
\(714\) 0 0
\(715\) −31.4323 48.0846i −1.17550 1.79826i
\(716\) 0 0
\(717\) −5.47423 −0.204439
\(718\) 0 0
\(719\) 3.25446 0.121371 0.0606853 0.998157i \(-0.480671\pi\)
0.0606853 + 0.998157i \(0.480671\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.70426 2.95187i −0.0633822 0.109781i
\(724\) 0 0
\(725\) −28.7474 −1.06765
\(726\) 0 0
\(727\) 21.3325 0.791179 0.395589 0.918427i \(-0.370540\pi\)
0.395589 + 0.918427i \(0.370540\pi\)
\(728\) 0 0
\(729\) −10.8052 −0.400192
\(730\) 0 0
\(731\) 44.0378 1.62880
\(732\) 0 0
\(733\) 7.68489 + 13.3106i 0.283848 + 0.491639i 0.972329 0.233615i \(-0.0750555\pi\)
−0.688481 + 0.725254i \(0.741722\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −79.2849 −2.92050
\(738\) 0 0
\(739\) −3.74024 −0.137587 −0.0687935 0.997631i \(-0.521915\pi\)
−0.0687935 + 0.997631i \(0.521915\pi\)
\(740\) 0 0
\(741\) −1.18577 + 0.0657163i −0.0435604 + 0.00241415i
\(742\) 0 0
\(743\) 10.1647 + 17.6058i 0.372906 + 0.645893i 0.990011 0.140988i \(-0.0450280\pi\)
−0.617105 + 0.786881i \(0.711695\pi\)
\(744\) 0 0
\(745\) 0.591183 + 1.02396i 0.0216593 + 0.0375150i
\(746\) 0 0
\(747\) 36.1175 1.32147
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −17.9806 + 31.1433i −0.656120 + 1.13643i 0.325492 + 0.945545i \(0.394470\pi\)
−0.981612 + 0.190888i \(0.938863\pi\)
\(752\) 0 0
\(753\) 5.51467 9.55169i 0.200966 0.348083i
\(754\) 0 0
\(755\) −42.1656 −1.53456
\(756\) 0 0
\(757\) −6.73790 11.6704i −0.244893 0.424167i 0.717208 0.696859i \(-0.245420\pi\)
−0.962102 + 0.272691i \(0.912086\pi\)
\(758\) 0 0
\(759\) 8.38923 14.5306i 0.304510 0.527426i
\(760\) 0 0
\(761\) 24.0422 0.871528 0.435764 0.900061i \(-0.356478\pi\)
0.435764 + 0.900061i \(0.356478\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −23.5249 + 40.7463i −0.850545 + 1.47319i
\(766\) 0 0
\(767\) 8.23837 + 12.6029i 0.297470 + 0.455065i
\(768\) 0 0
\(769\) 6.95104 + 12.0396i 0.250661 + 0.434157i 0.963708 0.266959i \(-0.0860188\pi\)
−0.713047 + 0.701116i \(0.752685\pi\)
\(770\) 0 0
\(771\) −0.846006 + 1.46532i −0.0304682 + 0.0527724i
\(772\) 0 0
\(773\) 18.5188 + 32.0756i 0.666076 + 1.15368i 0.978992 + 0.203897i \(0.0653609\pi\)
−0.312916 + 0.949781i \(0.601306\pi\)
\(774\) 0 0
\(775\) −15.7631 27.3025i −0.566227 0.980734i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.00000 5.19615i −0.107486 0.186171i
\(780\) 0 0
\(781\) 33.6294 58.2478i 1.20335 2.08427i
\(782\) 0 0
\(783\) 13.4674 + 23.3263i 0.481287 + 0.833613i
\(784\) 0 0
\(785\) 37.5763 1.34116
\(786\) 0 0
\(787\) −22.5590 39.0733i −0.804140 1.39281i −0.916870 0.399186i \(-0.869293\pi\)
0.112730 0.993626i \(-0.464040\pi\)
\(788\) 0 0
\(789\) −7.16552 −0.255099
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 31.0308 1.71975i 1.10194 0.0610701i
\(794\) 0 0
\(795\) −10.5938 −0.375724
\(796\) 0 0
\(797\) −2.52197 + 4.36817i −0.0893326 + 0.154729i −0.907229 0.420637i \(-0.861807\pi\)
0.817897 + 0.575365i \(0.195140\pi\)
\(798\) 0 0
\(799\) −7.76920 + 13.4567i −0.274855 + 0.476062i
\(800\) 0 0
\(801\) 19.9950 34.6323i 0.706488 1.22367i
\(802\) 0 0
\(803\) −8.27608 + 14.3346i −0.292056 + 0.505857i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.56018 2.70231i −0.0549208 0.0951257i
\(808\) 0 0
\(809\) −31.5526 −1.10933 −0.554665 0.832074i \(-0.687154\pi\)
−0.554665 + 0.832074i \(0.687154\pi\)
\(810\) 0 0
\(811\) 10.7526 0.377576 0.188788 0.982018i \(-0.439544\pi\)
0.188788 + 0.982018i \(0.439544\pi\)
\(812\) 0 0
\(813\) −1.35428 + 2.34568i −0.0474966 + 0.0822665i
\(814\) 0 0
\(815\) −26.0438 45.1092i −0.912274 1.58011i
\(816\) 0 0
\(817\) 2.08799 3.61650i 0.0730495 0.126525i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.57204 2.72286i 0.0548646 0.0950283i −0.837289 0.546761i \(-0.815861\pi\)
0.892153 + 0.451733i \(0.149194\pi\)
\(822\) 0 0
\(823\) 22.9251 + 39.7075i 0.799120 + 1.38412i 0.920190 + 0.391473i \(0.128034\pi\)
−0.121069 + 0.992644i \(0.538632\pi\)
\(824\) 0 0
\(825\) 5.45560 9.44937i 0.189940 0.328985i
\(826\) 0 0
\(827\) 31.5882 1.09843 0.549215 0.835681i \(-0.314927\pi\)
0.549215 + 0.835681i \(0.314927\pi\)
\(828\) 0 0
\(829\) 44.6680 1.55138 0.775692 0.631111i \(-0.217401\pi\)
0.775692 + 0.631111i \(0.217401\pi\)
\(830\) 0 0
\(831\) −5.22589 9.05150i −0.181284 0.313993i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.94575 3.37015i 0.0673356 0.116629i
\(836\) 0 0
\(837\) −14.7692 + 25.5810i −0.510498 + 0.884209i
\(838\) 0 0
\(839\) 17.5262 30.3562i 0.605071 1.04801i −0.386969 0.922093i \(-0.626478\pi\)
0.992040 0.125921i \(-0.0401886\pi\)
\(840\) 0 0
\(841\) −19.7486 + 34.2056i −0.680986 + 1.17950i
\(842\) 0 0
\(843\) 6.59160 0.227027
\(844\) 0 0
\(845\) 22.4265 + 30.4806i 0.771495 + 1.04856i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.07680 −0.105596
\(850\) 0 0
\(851\) 7.48533 + 12.9650i 0.256594 + 0.444433i
\(852\) 0 0
\(853\) 40.4398 1.38463 0.692317 0.721594i \(-0.256590\pi\)
0.692317 + 0.721594i \(0.256590\pi\)
\(854\) 0 0
\(855\) 2.23080 + 3.86386i 0.0762917 + 0.132141i
\(856\) 0 0
\(857\) −8.28927 + 14.3574i −0.283156 + 0.490441i −0.972160 0.234317i \(-0.924715\pi\)
0.689004 + 0.724757i \(0.258048\pi\)
\(858\) 0 0
\(859\) 5.82592 + 10.0908i 0.198778 + 0.344293i 0.948132 0.317876i \(-0.102969\pi\)
−0.749355 + 0.662169i \(0.769636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.18529 + 8.98119i 0.176509 + 0.305723i 0.940683 0.339288i \(-0.110186\pi\)
−0.764173 + 0.645011i \(0.776853\pi\)
\(864\) 0 0
\(865\) 34.4984 + 59.7529i 1.17298 + 2.03166i
\(866\) 0 0
\(867\) 5.63281 9.75631i 0.191300 0.331342i
\(868\) 0 0
\(869\) 9.14408 + 15.8380i 0.310192 + 0.537268i
\(870\) 0 0
\(871\) 52.1476 2.89005i 1.76695 0.0979257i
\(872\) 0 0
\(873\) 11.0511 19.1411i 0.374024 0.647829i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −17.2644 −0.582979 −0.291489 0.956574i \(-0.594151\pi\)
−0.291489 + 0.956574i \(0.594151\pi\)
\(878\) 0 0
\(879\) 3.87965 6.71974i 0.130857 0.226651i
\(880\) 0 0
\(881\) 20.0309 + 34.6945i 0.674857 + 1.16889i 0.976511 + 0.215470i \(0.0691282\pi\)
−0.301653 + 0.953418i \(0.597538\pi\)
\(882\) 0 0
\(883\) −46.3554 −1.55998 −0.779992 0.625789i \(-0.784777\pi\)
−0.779992 + 0.625789i \(0.784777\pi\)
\(884\) 0 0
\(885\) −3.48824 + 6.04181i −0.117256 + 0.203093i
\(886\) 0 0
\(887\) 13.9393 24.1437i 0.468037 0.810665i −0.531295 0.847187i \(-0.678295\pi\)
0.999333 + 0.0365221i \(0.0116279\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 33.6294 1.12663
\(892\) 0 0
\(893\) 0.736731 + 1.27606i 0.0246538 + 0.0427016i
\(894\) 0 0
\(895\) −9.40460 16.2892i −0.314361 0.544489i
\(896\) 0 0
\(897\) −4.98814 + 9.86290i −0.166549 + 0.329313i
\(898\) 0 0
\(899\) −75.1182 −2.50533
\(900\) 0 0
\(901\) −38.3786 −1.27858
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 21.2280 + 36.7680i 0.705642 + 1.22221i
\(906\) 0 0
\(907\) −41.7593 −1.38659 −0.693297 0.720652i \(-0.743843\pi\)
−0.693297 + 0.720652i \(0.743843\pi\)
\(908\) 0 0
\(909\) 45.0007 1.49258
\(910\) 0 0
\(911\) −42.8384 −1.41930 −0.709650 0.704554i \(-0.751147\pi\)
−0.709650 + 0.704554i \(0.751147\pi\)
\(912\) 0 0
\(913\) −74.0231 −2.44981
\(914\) 0 0
\(915\) 7.20005 + 12.4709i 0.238026 + 0.412274i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 46.4465 1.53213 0.766064 0.642765i \(-0.222213\pi\)
0.766064 + 0.642765i \(0.222213\pi\)
\(920\) 0 0
\(921\) 13.8028 0.454819
\(922\) 0 0
\(923\) −19.9956 + 39.5368i −0.658165 + 1.30137i
\(924\) 0 0
\(925\) 4.86778 + 8.43124i 0.160052 + 0.277218i
\(926\) 0 0
\(927\) 8.02639 + 13.9021i 0.263621 + 0.456605i
\(928\) 0 0
\(929\) 24.9746 0.819389 0.409695 0.912223i \(-0.365635\pi\)
0.409695 + 0.912223i \(0.365635\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 7.05737 12.2237i 0.231048 0.400187i
\(934\) 0 0
\(935\) 48.2145 83.5099i 1.57678 2.73107i
\(936\) 0 0
\(937\) 14.1697 0.462905 0.231452 0.972846i \(-0.425652\pi\)
0.231452 + 0.972846i \(0.425652\pi\)
\(938\) 0 0
\(939\) −8.15595 14.1265i −0.266159 0.461001i
\(940\) 0 0
\(941\) 13.3841 23.1819i 0.436308 0.755708i −0.561093 0.827753i \(-0.689619\pi\)
0.997401 + 0.0720448i \(0.0229525\pi\)
\(942\) 0 0
\(943\) −55.8401 −1.81840
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.18413 2.05096i 0.0384789 0.0666474i −0.846145 0.532953i \(-0.821082\pi\)
0.884623 + 0.466306i \(0.154415\pi\)
\(948\) 0 0
\(949\) 4.92086 9.72988i 0.159738 0.315845i
\(950\) 0 0
\(951\) −2.89161 5.00842i −0.0937670 0.162409i
\(952\) 0 0
\(953\) 22.8483 39.5745i 0.740130 1.28194i −0.212305 0.977203i \(-0.568097\pi\)
0.952436 0.304740i \(-0.0985696\pi\)
\(954\) 0 0
\(955\) −0.192440 0.333316i −0.00622721 0.0107858i
\(956\) 0 0
\(957\) −12.9992 22.5152i −0.420204 0.727815i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.6896 44.4957i −0.828696 1.43534i
\(962\) 0 0
\(963\) −19.2557 + 33.3518i −0.620506 + 1.07475i
\(964\) 0 0
\(965\) −3.50551 6.07172i −0.112846 0.195456i
\(966\) 0 0
\(967\) −44.2968 −1.42449 −0.712244 0.701932i \(-0.752321\pi\)
−0.712244 + 0.701932i \(0.752321\pi\)
\(968\) 0 0
\(969\) −0.996736 1.72640i −0.0320198 0.0554599i
\(970\) 0 0
\(971\) −18.1235 −0.581610 −0.290805 0.956782i \(-0.593923\pi\)
−0.290805 + 0.956782i \(0.593923\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.24383 + 6.41394i −0.103886 + 0.205411i
\(976\) 0 0
\(977\) −41.4180 −1.32508 −0.662540 0.749026i \(-0.730522\pi\)
−0.662540 + 0.749026i \(0.730522\pi\)
\(978\) 0 0
\(979\) −40.9799 + 70.9792i −1.30972 + 2.26851i
\(980\) 0 0
\(981\) 5.95762 10.3189i 0.190212 0.329457i
\(982\) 0 0
\(983\) 3.87039 6.70371i 0.123446 0.213815i −0.797678 0.603083i \(-0.793939\pi\)
0.921124 + 0.389268i \(0.127272\pi\)
\(984\) 0 0
\(985\) 10.3034 17.8460i 0.328294 0.568622i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.4323 33.6576i −0.617910 1.07025i
\(990\) 0 0
\(991\) 17.3673 0.551691 0.275845 0.961202i \(-0.411042\pi\)
0.275845 + 0.961202i \(0.411042\pi\)
\(992\) 0 0
\(993\) 1.29825 0.0411988
\(994\) 0 0
\(995\) 28.1571 48.7696i 0.892641 1.54610i
\(996\) 0 0
\(997\) 2.10459 + 3.64525i 0.0666529 + 0.115446i 0.897426 0.441165i \(-0.145435\pi\)
−0.830773 + 0.556611i \(0.812101\pi\)
\(998\) 0 0
\(999\) 4.56086 7.89964i 0.144299 0.249934i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.l.m.1537.3 12
7.2 even 3 2548.2.i.m.1745.4 12
7.3 odd 6 2548.2.k.g.393.3 12
7.4 even 3 2548.2.k.g.393.4 yes 12
7.5 odd 6 2548.2.i.m.1745.3 12
7.6 odd 2 inner 2548.2.l.m.1537.4 12
13.9 even 3 2548.2.i.m.165.4 12
91.9 even 3 inner 2548.2.l.m.373.3 12
91.48 odd 6 2548.2.i.m.165.3 12
91.61 odd 6 inner 2548.2.l.m.373.4 12
91.74 even 3 2548.2.k.g.1569.4 yes 12
91.87 odd 6 2548.2.k.g.1569.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2548.2.i.m.165.3 12 91.48 odd 6
2548.2.i.m.165.4 12 13.9 even 3
2548.2.i.m.1745.3 12 7.5 odd 6
2548.2.i.m.1745.4 12 7.2 even 3
2548.2.k.g.393.3 12 7.3 odd 6
2548.2.k.g.393.4 yes 12 7.4 even 3
2548.2.k.g.1569.3 yes 12 91.87 odd 6
2548.2.k.g.1569.4 yes 12 91.74 even 3
2548.2.l.m.373.3 12 91.9 even 3 inner
2548.2.l.m.373.4 12 91.61 odd 6 inner
2548.2.l.m.1537.3 12 1.1 even 1 trivial
2548.2.l.m.1537.4 12 7.6 odd 2 inner