Properties

Label 2548.2.i.m.1745.3
Level $2548$
Weight $2$
Character 2548.1745
Analytic conductor $20.346$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(165,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 9x^{10} + 66x^{8} + 127x^{6} + 189x^{4} + 60x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1745.3
Root \(-0.286958 + 0.497025i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1745
Dual form 2548.2.i.m.165.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.286958 + 0.497025i) q^{3} +(-1.45546 + 2.52093i) q^{5} +(1.33531 + 2.31283i) q^{9} +(-2.73673 + 4.74016i) q^{11} +(3.60003 - 0.199516i) q^{13} +(-0.835311 - 1.44680i) q^{15} -6.05222 q^{17} +(-0.286958 - 0.497025i) q^{19} +5.34124 q^{23} +(-1.73673 - 3.00811i) q^{25} -3.25446 q^{27} +(4.13815 + 7.16749i) q^{29} +(4.53815 + 7.86030i) q^{31} +(-1.57065 - 2.72045i) q^{33} -2.80284 q^{37} +(-0.933890 + 1.84656i) q^{39} +(-5.22725 - 9.05387i) q^{41} +(-3.63815 + 6.30146i) q^{43} -7.77397 q^{45} +(1.28369 - 2.22342i) q^{47} +(1.73673 - 3.00811i) q^{51} +(3.17062 + 5.49168i) q^{53} +(-7.96641 - 13.7982i) q^{55} +0.329378 q^{57} -4.17598 q^{59} +(-4.30981 - 7.46480i) q^{61} +(-4.73673 + 9.36581i) q^{65} +(7.24266 - 12.5447i) q^{67} +(-1.53271 + 2.65473i) q^{69} +(6.14408 - 10.6419i) q^{71} +(1.51204 + 2.61892i) q^{73} +1.99347 q^{75} +(1.67062 - 2.89360i) q^{79} +(-3.07204 + 5.32093i) q^{81} +13.5240 q^{83} +(8.80877 - 15.2572i) q^{85} -4.74989 q^{87} -14.9740 q^{89} -5.20902 q^{93} +1.67062 q^{95} +(4.13804 - 7.16729i) q^{97} -14.6175 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{11} + 6 q^{15} + 6 q^{25} + 12 q^{29} - 12 q^{37} - 6 q^{39} - 6 q^{43} - 6 q^{51} + 6 q^{53} + 36 q^{57} - 30 q^{65} + 12 q^{67} - 12 q^{71} - 12 q^{79} + 6 q^{81} + 36 q^{85} + 12 q^{93} - 12 q^{95}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.286958 + 0.497025i −0.165675 + 0.286958i −0.936895 0.349611i \(-0.886314\pi\)
0.771220 + 0.636569i \(0.219647\pi\)
\(4\) 0 0
\(5\) −1.45546 + 2.52093i −0.650902 + 1.12739i 0.332003 + 0.943278i \(0.392276\pi\)
−0.982904 + 0.184116i \(0.941058\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.33531 + 2.31283i 0.445104 + 0.770942i
\(10\) 0 0
\(11\) −2.73673 + 4.74016i −0.825155 + 1.42921i 0.0766449 + 0.997058i \(0.475579\pi\)
−0.901800 + 0.432153i \(0.857754\pi\)
\(12\) 0 0
\(13\) 3.60003 0.199516i 0.998468 0.0553358i
\(14\) 0 0
\(15\) −0.835311 1.44680i −0.215676 0.373562i
\(16\) 0 0
\(17\) −6.05222 −1.46788 −0.733940 0.679214i \(-0.762321\pi\)
−0.733940 + 0.679214i \(0.762321\pi\)
\(18\) 0 0
\(19\) −0.286958 0.497025i −0.0658326 0.114025i 0.831230 0.555928i \(-0.187637\pi\)
−0.897063 + 0.441903i \(0.854304\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.34124 1.11373 0.556863 0.830604i \(-0.312005\pi\)
0.556863 + 0.830604i \(0.312005\pi\)
\(24\) 0 0
\(25\) −1.73673 3.00811i −0.347346 0.601621i
\(26\) 0 0
\(27\) −3.25446 −0.626320
\(28\) 0 0
\(29\) 4.13815 + 7.16749i 0.768435 + 1.33097i 0.938411 + 0.345521i \(0.112298\pi\)
−0.169976 + 0.985448i \(0.554369\pi\)
\(30\) 0 0
\(31\) 4.53815 + 7.86030i 0.815076 + 1.41175i 0.909274 + 0.416199i \(0.136638\pi\)
−0.0941981 + 0.995553i \(0.530029\pi\)
\(32\) 0 0
\(33\) −1.57065 2.72045i −0.273415 0.473569i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.80284 −0.460784 −0.230392 0.973098i \(-0.574001\pi\)
−0.230392 + 0.973098i \(0.574001\pi\)
\(38\) 0 0
\(39\) −0.933890 + 1.84656i −0.149542 + 0.295686i
\(40\) 0 0
\(41\) −5.22725 9.05387i −0.816360 1.41398i −0.908347 0.418217i \(-0.862655\pi\)
0.0919873 0.995760i \(-0.470678\pi\)
\(42\) 0 0
\(43\) −3.63815 + 6.30146i −0.554813 + 0.960964i 0.443105 + 0.896470i \(0.353877\pi\)
−0.997918 + 0.0644945i \(0.979457\pi\)
\(44\) 0 0
\(45\) −7.77397 −1.15887
\(46\) 0 0
\(47\) 1.28369 2.22342i 0.187246 0.324320i −0.757085 0.653316i \(-0.773377\pi\)
0.944331 + 0.328997i \(0.106711\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.73673 3.00811i 0.243191 0.421219i
\(52\) 0 0
\(53\) 3.17062 + 5.49168i 0.435518 + 0.754340i 0.997338 0.0729200i \(-0.0232318\pi\)
−0.561819 + 0.827260i \(0.689898\pi\)
\(54\) 0 0
\(55\) −7.96641 13.7982i −1.07419 1.86055i
\(56\) 0 0
\(57\) 0.329378 0.0436272
\(58\) 0 0
\(59\) −4.17598 −0.543666 −0.271833 0.962344i \(-0.587630\pi\)
−0.271833 + 0.962344i \(0.587630\pi\)
\(60\) 0 0
\(61\) −4.30981 7.46480i −0.551814 0.955770i −0.998144 0.0609014i \(-0.980602\pi\)
0.446330 0.894869i \(-0.352731\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.73673 + 9.36581i −0.587519 + 1.16169i
\(66\) 0 0
\(67\) 7.24266 12.5447i 0.884832 1.53257i 0.0389263 0.999242i \(-0.487606\pi\)
0.845906 0.533332i \(-0.179060\pi\)
\(68\) 0 0
\(69\) −1.53271 + 2.65473i −0.184517 + 0.319592i
\(70\) 0 0
\(71\) 6.14408 10.6419i 0.729169 1.26296i −0.228066 0.973646i \(-0.573240\pi\)
0.957235 0.289311i \(-0.0934263\pi\)
\(72\) 0 0
\(73\) 1.51204 + 2.61892i 0.176971 + 0.306522i 0.940841 0.338847i \(-0.110037\pi\)
−0.763871 + 0.645369i \(0.776704\pi\)
\(74\) 0 0
\(75\) 1.99347 0.230186
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.67062 2.89360i 0.187960 0.325556i −0.756610 0.653866i \(-0.773146\pi\)
0.944570 + 0.328311i \(0.106479\pi\)
\(80\) 0 0
\(81\) −3.07204 + 5.32093i −0.341338 + 0.591215i
\(82\) 0 0
\(83\) 13.5240 1.48445 0.742226 0.670149i \(-0.233770\pi\)
0.742226 + 0.670149i \(0.233770\pi\)
\(84\) 0 0
\(85\) 8.80877 15.2572i 0.955446 1.65488i
\(86\) 0 0
\(87\) −4.74989 −0.509242
\(88\) 0 0
\(89\) −14.9740 −1.58724 −0.793622 0.608412i \(-0.791807\pi\)
−0.793622 + 0.608412i \(0.791807\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.20902 −0.540151
\(94\) 0 0
\(95\) 1.67062 0.171402
\(96\) 0 0
\(97\) 4.13804 7.16729i 0.420154 0.727728i −0.575800 0.817591i \(-0.695309\pi\)
0.995954 + 0.0898622i \(0.0286427\pi\)
\(98\) 0 0
\(99\) −14.6175 −1.46912
\(100\) 0 0
\(101\) −8.42513 + 14.5928i −0.838332 + 1.45203i 0.0529563 + 0.998597i \(0.483136\pi\)
−0.891288 + 0.453437i \(0.850198\pi\)
\(102\) 0 0
\(103\) 3.00544 5.20557i 0.296135 0.512920i −0.679114 0.734033i \(-0.737636\pi\)
0.975248 + 0.221113i \(0.0709689\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.4204 −1.39407 −0.697036 0.717036i \(-0.745498\pi\)
−0.697036 + 0.717036i \(0.745498\pi\)
\(108\) 0 0
\(109\) −2.23080 3.86386i −0.213672 0.370090i 0.739189 0.673498i \(-0.235209\pi\)
−0.952861 + 0.303408i \(0.901876\pi\)
\(110\) 0 0
\(111\) 0.804296 1.39308i 0.0763404 0.132225i
\(112\) 0 0
\(113\) −3.17062 + 5.49168i −0.298267 + 0.516614i −0.975740 0.218934i \(-0.929742\pi\)
0.677473 + 0.735548i \(0.263075\pi\)
\(114\) 0 0
\(115\) −7.77397 + 13.4649i −0.724926 + 1.25561i
\(116\) 0 0
\(117\) 5.26860 + 8.05982i 0.487082 + 0.745131i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.47939 16.4188i −0.861763 1.49262i
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) −4.44363 −0.397450
\(126\) 0 0
\(127\) 2.70309 + 4.68189i 0.239861 + 0.415451i 0.960674 0.277678i \(-0.0895649\pi\)
−0.720814 + 0.693129i \(0.756232\pi\)
\(128\) 0 0
\(129\) −2.08799 3.61650i −0.183837 0.318415i
\(130\) 0 0
\(131\) −7.16211 + 12.4051i −0.625757 + 1.08384i 0.362637 + 0.931930i \(0.381876\pi\)
−0.988394 + 0.151912i \(0.951457\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.73673 8.20426i 0.407673 0.706110i
\(136\) 0 0
\(137\) 0.276303 0.0236062 0.0118031 0.999930i \(-0.496243\pi\)
0.0118031 + 0.999930i \(0.496243\pi\)
\(138\) 0 0
\(139\) 3.29240 5.70260i 0.279257 0.483688i −0.691943 0.721952i \(-0.743245\pi\)
0.971200 + 0.238264i \(0.0765784\pi\)
\(140\) 0 0
\(141\) 0.736731 + 1.27606i 0.0620440 + 0.107463i
\(142\) 0 0
\(143\) −8.90657 + 17.6107i −0.744805 + 1.47268i
\(144\) 0 0
\(145\) −24.0917 −2.00070
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.203092 0.351765i −0.0166379 0.0288177i 0.857587 0.514340i \(-0.171963\pi\)
−0.874224 + 0.485522i \(0.838630\pi\)
\(150\) 0 0
\(151\) −7.24266 12.5447i −0.589400 1.02087i −0.994311 0.106514i \(-0.966031\pi\)
0.404912 0.914356i \(-0.367302\pi\)
\(152\) 0 0
\(153\) −8.08160 13.9977i −0.653359 1.13165i
\(154\) 0 0
\(155\) −26.4204 −2.12214
\(156\) 0 0
\(157\) −6.45437 11.1793i −0.515115 0.892205i −0.999846 0.0175421i \(-0.994416\pi\)
0.484731 0.874663i \(-0.338917\pi\)
\(158\) 0 0
\(159\) −3.63933 −0.288618
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.94692 + 15.4965i 0.700777 + 1.21378i 0.968194 + 0.250201i \(0.0804966\pi\)
−0.267417 + 0.963581i \(0.586170\pi\)
\(164\) 0 0
\(165\) 9.14408 0.711866
\(166\) 0 0
\(167\) 0.668433 + 1.15776i 0.0517249 + 0.0895901i 0.890729 0.454536i \(-0.150195\pi\)
−0.839004 + 0.544126i \(0.816861\pi\)
\(168\) 0 0
\(169\) 12.9204 1.43653i 0.993876 0.110502i
\(170\) 0 0
\(171\) 0.766355 1.32737i 0.0586046 0.101506i
\(172\) 0 0
\(173\) 11.8514 + 20.5271i 0.901042 + 1.56065i 0.826144 + 0.563459i \(0.190530\pi\)
0.0748978 + 0.997191i \(0.476137\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.19833 2.07557i 0.0900719 0.156009i
\(178\) 0 0
\(179\) 3.23080 5.59591i 0.241481 0.418258i −0.719655 0.694332i \(-0.755700\pi\)
0.961136 + 0.276074i \(0.0890334\pi\)
\(180\) 0 0
\(181\) −14.5851 −1.08410 −0.542050 0.840346i \(-0.682352\pi\)
−0.542050 + 0.840346i \(0.682352\pi\)
\(182\) 0 0
\(183\) 4.94692 0.365687
\(184\) 0 0
\(185\) 4.07942 7.06577i 0.299925 0.519486i
\(186\) 0 0
\(187\) 16.5633 28.6885i 1.21123 2.09791i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.0661096 + 0.114505i 0.00478352 + 0.00828531i 0.868407 0.495852i \(-0.165144\pi\)
−0.863624 + 0.504137i \(0.831811\pi\)
\(192\) 0 0
\(193\) 1.20426 2.08584i 0.0866846 0.150142i −0.819423 0.573189i \(-0.805706\pi\)
0.906108 + 0.423047i \(0.139039\pi\)
\(194\) 0 0
\(195\) −3.29580 5.04186i −0.236017 0.361055i
\(196\) 0 0
\(197\) −3.53957 6.13072i −0.252184 0.436796i 0.711943 0.702237i \(-0.247816\pi\)
−0.964127 + 0.265442i \(0.914482\pi\)
\(198\) 0 0
\(199\) −19.3458 −1.37139 −0.685695 0.727889i \(-0.740502\pi\)
−0.685695 + 0.727889i \(0.740502\pi\)
\(200\) 0 0
\(201\) 4.15667 + 7.19957i 0.293189 + 0.507819i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 30.4323 2.12548
\(206\) 0 0
\(207\) 7.13222 + 12.3534i 0.495724 + 0.858618i
\(208\) 0 0
\(209\) 3.14130 0.217288
\(210\) 0 0
\(211\) 5.43982 + 9.42205i 0.374493 + 0.648641i 0.990251 0.139295i \(-0.0444835\pi\)
−0.615758 + 0.787935i \(0.711150\pi\)
\(212\) 0 0
\(213\) 3.52618 + 6.10753i 0.241610 + 0.418481i
\(214\) 0 0
\(215\) −10.5904 18.3431i −0.722257 1.25099i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.73556 −0.117278
\(220\) 0 0
\(221\) −21.7882 + 1.20752i −1.46563 + 0.0812263i
\(222\) 0 0
\(223\) 0.192440 + 0.333316i 0.0128867 + 0.0223205i 0.872397 0.488798i \(-0.162565\pi\)
−0.859510 + 0.511119i \(0.829231\pi\)
\(224\) 0 0
\(225\) 4.63815 8.03351i 0.309210 0.535568i
\(226\) 0 0
\(227\) 1.64586 0.109240 0.0546199 0.998507i \(-0.482605\pi\)
0.0546199 + 0.998507i \(0.482605\pi\)
\(228\) 0 0
\(229\) 4.10010 7.10158i 0.270942 0.469285i −0.698161 0.715941i \(-0.745998\pi\)
0.969103 + 0.246655i \(0.0793315\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.93389 + 3.34960i −0.126693 + 0.219439i −0.922394 0.386251i \(-0.873770\pi\)
0.795700 + 0.605691i \(0.207103\pi\)
\(234\) 0 0
\(235\) 3.73673 + 6.47221i 0.243757 + 0.422200i
\(236\) 0 0
\(237\) 0.958795 + 1.66068i 0.0622804 + 0.107873i
\(238\) 0 0
\(239\) 9.53840 0.616988 0.308494 0.951226i \(-0.400175\pi\)
0.308494 + 0.951226i \(0.400175\pi\)
\(240\) 0 0
\(241\) 5.93907 0.382569 0.191285 0.981535i \(-0.438735\pi\)
0.191285 + 0.981535i \(0.438735\pi\)
\(242\) 0 0
\(243\) −6.64477 11.5091i −0.426262 0.738308i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.13222 1.73205i −0.0720414 0.110208i
\(248\) 0 0
\(249\) −3.88081 + 6.72177i −0.245937 + 0.425975i
\(250\) 0 0
\(251\) 9.60887 16.6430i 0.606506 1.05050i −0.385305 0.922789i \(-0.625904\pi\)
0.991811 0.127711i \(-0.0407628\pi\)
\(252\) 0 0
\(253\) −14.6175 + 25.3183i −0.918997 + 1.59175i
\(254\) 0 0
\(255\) 5.05549 + 8.75636i 0.316587 + 0.548345i
\(256\) 0 0
\(257\) 2.94819 0.183903 0.0919516 0.995763i \(-0.470690\pi\)
0.0919516 + 0.995763i \(0.470690\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −11.0514 + 19.1416i −0.684067 + 1.18484i
\(262\) 0 0
\(263\) −6.24266 + 10.8126i −0.384939 + 0.666734i −0.991761 0.128104i \(-0.959111\pi\)
0.606822 + 0.794838i \(0.292444\pi\)
\(264\) 0 0
\(265\) −18.4589 −1.13392
\(266\) 0 0
\(267\) 4.29691 7.44246i 0.262967 0.455471i
\(268\) 0 0
\(269\) 5.43696 0.331497 0.165749 0.986168i \(-0.446996\pi\)
0.165749 + 0.986168i \(0.446996\pi\)
\(270\) 0 0
\(271\) 4.71943 0.286685 0.143343 0.989673i \(-0.454215\pi\)
0.143343 + 0.989673i \(0.454215\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19.0119 1.14646
\(276\) 0 0
\(277\) −18.2114 −1.09421 −0.547107 0.837062i \(-0.684271\pi\)
−0.547107 + 0.837062i \(0.684271\pi\)
\(278\) 0 0
\(279\) −12.1197 + 20.9919i −0.725586 + 1.25675i
\(280\) 0 0
\(281\) −11.4853 −0.685157 −0.342579 0.939489i \(-0.611300\pi\)
−0.342579 + 0.939489i \(0.611300\pi\)
\(282\) 0 0
\(283\) 2.68054 4.64283i 0.159342 0.275988i −0.775290 0.631606i \(-0.782396\pi\)
0.934631 + 0.355618i \(0.115730\pi\)
\(284\) 0 0
\(285\) −0.479397 + 0.830341i −0.0283971 + 0.0491851i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.6294 1.15467
\(290\) 0 0
\(291\) 2.37488 + 4.11342i 0.139218 + 0.241133i
\(292\) 0 0
\(293\) 6.75996 11.7086i 0.394921 0.684024i −0.598170 0.801369i \(-0.704105\pi\)
0.993091 + 0.117346i \(0.0374385\pi\)
\(294\) 0 0
\(295\) 6.07797 10.5274i 0.353873 0.612927i
\(296\) 0 0
\(297\) 8.90657 15.4266i 0.516812 0.895144i
\(298\) 0 0
\(299\) 19.2286 1.06566i 1.11202 0.0616289i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4.83531 8.37500i −0.277781 0.481131i
\(304\) 0 0
\(305\) 25.0910 1.43671
\(306\) 0 0
\(307\) 24.0503 1.37262 0.686312 0.727307i \(-0.259228\pi\)
0.686312 + 0.727307i \(0.259228\pi\)
\(308\) 0 0
\(309\) 1.72487 + 2.98756i 0.0981242 + 0.169956i
\(310\) 0 0
\(311\) 12.2969 + 21.2988i 0.697292 + 1.20775i 0.969402 + 0.245480i \(0.0789455\pi\)
−0.272109 + 0.962266i \(0.587721\pi\)
\(312\) 0 0
\(313\) −14.2111 + 24.6143i −0.803257 + 1.39128i 0.114204 + 0.993457i \(0.463568\pi\)
−0.917461 + 0.397825i \(0.869765\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.03840 8.72677i 0.282985 0.490144i −0.689134 0.724634i \(-0.742009\pi\)
0.972119 + 0.234490i \(0.0753420\pi\)
\(318\) 0 0
\(319\) −45.3000 −2.53631
\(320\) 0 0
\(321\) 4.13804 7.16729i 0.230963 0.400039i
\(322\) 0 0
\(323\) 1.73673 + 3.00811i 0.0966343 + 0.167376i
\(324\) 0 0
\(325\) −6.85244 10.4828i −0.380105 0.581479i
\(326\) 0 0
\(327\) 2.56058 0.141600
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.13105 + 1.95904i 0.0621681 + 0.107678i 0.895434 0.445194i \(-0.146865\pi\)
−0.833266 + 0.552872i \(0.813532\pi\)
\(332\) 0 0
\(333\) −3.74266 6.48248i −0.205097 0.355238i
\(334\) 0 0
\(335\) 21.0828 + 36.5165i 1.15188 + 1.99511i
\(336\) 0 0
\(337\) −0.382454 −0.0208336 −0.0104168 0.999946i \(-0.503316\pi\)
−0.0104168 + 0.999946i \(0.503316\pi\)
\(338\) 0 0
\(339\) −1.81967 3.15176i −0.0988308 0.171180i
\(340\) 0 0
\(341\) −49.6788 −2.69026
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −4.46160 7.72771i −0.240204 0.416046i
\(346\) 0 0
\(347\) 2.78864 0.149702 0.0748509 0.997195i \(-0.476152\pi\)
0.0748509 + 0.997195i \(0.476152\pi\)
\(348\) 0 0
\(349\) 2.50333 + 4.33590i 0.134000 + 0.232095i 0.925215 0.379443i \(-0.123884\pi\)
−0.791215 + 0.611538i \(0.790551\pi\)
\(350\) 0 0
\(351\) −11.7161 + 0.649316i −0.625361 + 0.0346579i
\(352\) 0 0
\(353\) 12.4839 21.6227i 0.664450 1.15086i −0.314984 0.949097i \(-0.601999\pi\)
0.979434 0.201764i \(-0.0646675\pi\)
\(354\) 0 0
\(355\) 17.8849 + 30.9776i 0.949234 + 1.64412i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.83531 + 10.1071i −0.307976 + 0.533430i −0.977919 0.208982i \(-0.932985\pi\)
0.669944 + 0.742412i \(0.266318\pi\)
\(360\) 0 0
\(361\) 9.33531 16.1692i 0.491332 0.851012i
\(362\) 0 0
\(363\) 10.8807 0.571090
\(364\) 0 0
\(365\) −8.80284 −0.460762
\(366\) 0 0
\(367\) 2.06528 3.57717i 0.107807 0.186727i −0.807075 0.590449i \(-0.798951\pi\)
0.914881 + 0.403723i \(0.132284\pi\)
\(368\) 0 0
\(369\) 13.9600 24.1795i 0.726730 1.25873i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.05144 13.9455i −0.416888 0.722070i 0.578737 0.815514i \(-0.303546\pi\)
−0.995625 + 0.0934438i \(0.970212\pi\)
\(374\) 0 0
\(375\) 1.27513 2.20860i 0.0658476 0.114051i
\(376\) 0 0
\(377\) 16.3275 + 24.9775i 0.840908 + 1.28641i
\(378\) 0 0
\(379\) 15.3424 + 26.5738i 0.788087 + 1.36501i 0.927138 + 0.374721i \(0.122262\pi\)
−0.139051 + 0.990285i \(0.544405\pi\)
\(380\) 0 0
\(381\) −3.10269 −0.158956
\(382\) 0 0
\(383\) −4.55338 7.88668i −0.232667 0.402991i 0.725925 0.687774i \(-0.241412\pi\)
−0.958592 + 0.284783i \(0.908078\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −19.4323 −0.987797
\(388\) 0 0
\(389\) 12.9398 + 22.4124i 0.656075 + 1.13636i 0.981623 + 0.190830i \(0.0611179\pi\)
−0.325548 + 0.945525i \(0.605549\pi\)
\(390\) 0 0
\(391\) −32.3264 −1.63482
\(392\) 0 0
\(393\) −4.11044 7.11950i −0.207344 0.359131i
\(394\) 0 0
\(395\) 4.86305 + 8.42305i 0.244686 + 0.423809i
\(396\) 0 0
\(397\) 12.6784 + 21.9596i 0.636309 + 1.10212i 0.986236 + 0.165342i \(0.0528729\pi\)
−0.349927 + 0.936777i \(0.613794\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.35311 0.167446 0.0837231 0.996489i \(-0.473319\pi\)
0.0837231 + 0.996489i \(0.473319\pi\)
\(402\) 0 0
\(403\) 17.9057 + 27.3919i 0.891947 + 1.36449i
\(404\) 0 0
\(405\) −8.94247 15.4888i −0.444355 0.769645i
\(406\) 0 0
\(407\) 7.67062 13.2859i 0.380219 0.658558i
\(408\) 0 0
\(409\) −15.4680 −0.764842 −0.382421 0.923988i \(-0.624910\pi\)
−0.382421 + 0.923988i \(0.624910\pi\)
\(410\) 0 0
\(411\) −0.0792872 + 0.137330i −0.00391095 + 0.00677396i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −19.6837 + 34.0931i −0.966233 + 1.67356i
\(416\) 0 0
\(417\) 1.88956 + 3.27281i 0.0925319 + 0.160270i
\(418\) 0 0
\(419\) 9.74881 + 16.8854i 0.476260 + 0.824907i 0.999630 0.0271986i \(-0.00865865\pi\)
−0.523370 + 0.852106i \(0.675325\pi\)
\(420\) 0 0
\(421\) 11.1972 0.545716 0.272858 0.962054i \(-0.412031\pi\)
0.272858 + 0.962054i \(0.412031\pi\)
\(422\) 0 0
\(423\) 6.85652 0.333375
\(424\) 0 0
\(425\) 10.5111 + 18.2057i 0.509863 + 0.883108i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.19716 9.48031i −0.299202 0.457714i
\(430\) 0 0
\(431\) 13.1116 22.7100i 0.631564 1.09390i −0.355668 0.934612i \(-0.615747\pi\)
0.987232 0.159289i \(-0.0509201\pi\)
\(432\) 0 0
\(433\) −15.2851 + 26.4745i −0.734553 + 1.27228i 0.220366 + 0.975417i \(0.429275\pi\)
−0.954919 + 0.296866i \(0.904059\pi\)
\(434\) 0 0
\(435\) 6.91328 11.9742i 0.331467 0.574117i
\(436\) 0 0
\(437\) −1.53271 2.65473i −0.0733195 0.126993i
\(438\) 0 0
\(439\) 24.2848 1.15905 0.579525 0.814955i \(-0.303238\pi\)
0.579525 + 0.814955i \(0.303238\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.81471 4.87521i 0.133731 0.231628i −0.791381 0.611323i \(-0.790638\pi\)
0.925112 + 0.379695i \(0.123971\pi\)
\(444\) 0 0
\(445\) 21.7941 37.7485i 1.03314 1.78945i
\(446\) 0 0
\(447\) 0.233115 0.0110259
\(448\) 0 0
\(449\) 5.39432 9.34323i 0.254574 0.440934i −0.710206 0.703994i \(-0.751398\pi\)
0.964780 + 0.263059i \(0.0847315\pi\)
\(450\) 0 0
\(451\) 57.2224 2.69450
\(452\) 0 0
\(453\) 8.31335 0.390595
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.0142 −0.842669 −0.421334 0.906905i \(-0.638438\pi\)
−0.421334 + 0.906905i \(0.638438\pi\)
\(458\) 0 0
\(459\) 19.6967 0.919363
\(460\) 0 0
\(461\) −7.35319 + 12.7361i −0.342472 + 0.593179i −0.984891 0.173175i \(-0.944598\pi\)
0.642419 + 0.766353i \(0.277931\pi\)
\(462\) 0 0
\(463\) 34.3792 1.59774 0.798868 0.601507i \(-0.205433\pi\)
0.798868 + 0.601507i \(0.205433\pi\)
\(464\) 0 0
\(465\) 7.58153 13.1316i 0.351585 0.608963i
\(466\) 0 0
\(467\) −2.93363 + 5.08120i −0.135752 + 0.235130i −0.925885 0.377806i \(-0.876678\pi\)
0.790132 + 0.612936i \(0.210012\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 7.40852 0.341367
\(472\) 0 0
\(473\) −19.9133 34.4908i −0.915614 1.58589i
\(474\) 0 0
\(475\) −0.996736 + 1.72640i −0.0457334 + 0.0792126i
\(476\) 0 0
\(477\) −8.46753 + 14.6662i −0.387702 + 0.671519i
\(478\) 0 0
\(479\) 5.91976 10.2533i 0.270481 0.468487i −0.698504 0.715606i \(-0.746151\pi\)
0.968985 + 0.247119i \(0.0794840\pi\)
\(480\) 0 0
\(481\) −10.0903 + 0.559211i −0.460078 + 0.0254978i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.0455 + 20.8634i 0.546958 + 0.947359i
\(486\) 0 0
\(487\) −3.14642 −0.142578 −0.0712890 0.997456i \(-0.522711\pi\)
−0.0712890 + 0.997456i \(0.522711\pi\)
\(488\) 0 0
\(489\) −10.2695 −0.464405
\(490\) 0 0
\(491\) 17.4410 + 30.2087i 0.787101 + 1.36330i 0.927736 + 0.373237i \(0.121752\pi\)
−0.140635 + 0.990062i \(0.544914\pi\)
\(492\) 0 0
\(493\) −25.0450 43.3792i −1.12797 1.95370i
\(494\) 0 0
\(495\) 21.2753 36.8498i 0.956252 1.65628i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.505932 + 0.876300i −0.0226486 + 0.0392286i −0.877128 0.480257i \(-0.840543\pi\)
0.854479 + 0.519486i \(0.173877\pi\)
\(500\) 0 0
\(501\) −0.767247 −0.0342781
\(502\) 0 0
\(503\) 3.99810 6.92491i 0.178266 0.308767i −0.763020 0.646374i \(-0.776284\pi\)
0.941287 + 0.337608i \(0.109618\pi\)
\(504\) 0 0
\(505\) −24.5249 42.4784i −1.09134 1.89026i
\(506\) 0 0
\(507\) −2.99361 + 6.83398i −0.132951 + 0.303508i
\(508\) 0 0
\(509\) 1.83082 0.0811498 0.0405749 0.999177i \(-0.487081\pi\)
0.0405749 + 0.999177i \(0.487081\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.933890 + 1.61755i 0.0412323 + 0.0714164i
\(514\) 0 0
\(515\) 8.74860 + 15.1530i 0.385509 + 0.667721i
\(516\) 0 0
\(517\) 7.02625 + 12.1698i 0.309014 + 0.535228i
\(518\) 0 0
\(519\) −13.6033 −0.597120
\(520\) 0 0
\(521\) −11.5058 19.9286i −0.504078 0.873088i −0.999989 0.00471473i \(-0.998499\pi\)
0.495911 0.868373i \(-0.334834\pi\)
\(522\) 0 0
\(523\) 43.8874 1.91906 0.959531 0.281604i \(-0.0908664\pi\)
0.959531 + 0.281604i \(0.0908664\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −27.4659 47.5723i −1.19643 2.07228i
\(528\) 0 0
\(529\) 5.52888 0.240386
\(530\) 0 0
\(531\) −5.57623 9.65832i −0.241988 0.419135i
\(532\) 0 0
\(533\) −20.6246 31.5513i −0.893353 1.36664i
\(534\) 0 0
\(535\) 20.9883 36.3528i 0.907404 1.57167i
\(536\) 0 0
\(537\) 1.85420 + 3.21158i 0.0800148 + 0.138590i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.20543 + 7.28402i −0.180806 + 0.313164i −0.942155 0.335177i \(-0.891204\pi\)
0.761350 + 0.648342i \(0.224537\pi\)
\(542\) 0 0
\(543\) 4.18529 7.24914i 0.179608 0.311091i
\(544\) 0 0
\(545\) 12.9874 0.556317
\(546\) 0 0
\(547\) −22.4853 −0.961403 −0.480702 0.876884i \(-0.659618\pi\)
−0.480702 + 0.876884i \(0.659618\pi\)
\(548\) 0 0
\(549\) 11.5099 19.9357i 0.491229 0.850833i
\(550\) 0 0
\(551\) 2.37495 4.11353i 0.101176 0.175242i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.34124 + 4.05515i 0.0993802 + 0.172132i
\(556\) 0 0
\(557\) −22.3159 + 38.6522i −0.945554 + 1.63775i −0.190916 + 0.981606i \(0.561146\pi\)
−0.754638 + 0.656141i \(0.772188\pi\)
\(558\) 0 0
\(559\) −11.8402 + 23.4113i −0.500787 + 0.990193i
\(560\) 0 0
\(561\) 9.50593 + 16.4648i 0.401341 + 0.695143i
\(562\) 0 0
\(563\) 22.5176 0.949004 0.474502 0.880254i \(-0.342628\pi\)
0.474502 + 0.880254i \(0.342628\pi\)
\(564\) 0 0
\(565\) −9.22943 15.9858i −0.388285 0.672529i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.5233 −1.23768 −0.618840 0.785517i \(-0.712397\pi\)
−0.618840 + 0.785517i \(0.712397\pi\)
\(570\) 0 0
\(571\) 16.6045 + 28.7599i 0.694877 + 1.20356i 0.970222 + 0.242217i \(0.0778746\pi\)
−0.275345 + 0.961346i \(0.588792\pi\)
\(572\) 0 0
\(573\) −0.0758826 −0.00317004
\(574\) 0 0
\(575\) −9.27630 16.0670i −0.386849 0.670041i
\(576\) 0 0
\(577\) 1.91963 + 3.32489i 0.0799151 + 0.138417i 0.903213 0.429192i \(-0.141202\pi\)
−0.823298 + 0.567609i \(0.807868\pi\)
\(578\) 0 0
\(579\) 0.691144 + 1.19710i 0.0287229 + 0.0497496i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −34.7086 −1.43748
\(584\) 0 0
\(585\) −27.9865 + 1.55103i −1.15710 + 0.0641272i
\(586\) 0 0
\(587\) 12.0292 + 20.8352i 0.496500 + 0.859963i 0.999992 0.00403710i \(-0.00128505\pi\)
−0.503492 + 0.864000i \(0.667952\pi\)
\(588\) 0 0
\(589\) 2.60451 4.51115i 0.107317 0.185879i
\(590\) 0 0
\(591\) 4.06283 0.167122
\(592\) 0 0
\(593\) −13.9566 + 24.1736i −0.573129 + 0.992689i 0.423113 + 0.906077i \(0.360937\pi\)
−0.996242 + 0.0866122i \(0.972396\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.55144 9.61537i 0.227205 0.393531i
\(598\) 0 0
\(599\) −13.5851 23.5300i −0.555071 0.961411i −0.997898 0.0648043i \(-0.979358\pi\)
0.442827 0.896607i \(-0.353976\pi\)
\(600\) 0 0
\(601\) 3.83381 + 6.64036i 0.156384 + 0.270866i 0.933562 0.358415i \(-0.116683\pi\)
−0.777178 + 0.629281i \(0.783349\pi\)
\(602\) 0 0
\(603\) 38.6848 1.57537
\(604\) 0 0
\(605\) 55.1875 2.24369
\(606\) 0 0
\(607\) 5.45967 + 9.45643i 0.221601 + 0.383825i 0.955294 0.295656i \(-0.0955383\pi\)
−0.733693 + 0.679481i \(0.762205\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.17772 8.26050i 0.169013 0.334184i
\(612\) 0 0
\(613\) 2.61919 4.53656i 0.105788 0.183230i −0.808272 0.588809i \(-0.799597\pi\)
0.914060 + 0.405579i \(0.132930\pi\)
\(614\) 0 0
\(615\) −8.73276 + 15.1256i −0.352139 + 0.609923i
\(616\) 0 0
\(617\) −22.7209 + 39.3537i −0.914709 + 1.58432i −0.107381 + 0.994218i \(0.534246\pi\)
−0.807327 + 0.590104i \(0.799087\pi\)
\(618\) 0 0
\(619\) 14.0979 + 24.4183i 0.566643 + 0.981455i 0.996895 + 0.0787458i \(0.0250915\pi\)
−0.430252 + 0.902709i \(0.641575\pi\)
\(620\) 0 0
\(621\) −17.3828 −0.697549
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.1512 26.2426i 0.606047 1.04970i
\(626\) 0 0
\(627\) −0.901420 + 1.56131i −0.0359993 + 0.0623526i
\(628\) 0 0
\(629\) 16.9634 0.676376
\(630\) 0 0
\(631\) −3.48650 + 6.03879i −0.138795 + 0.240400i −0.927041 0.374960i \(-0.877656\pi\)
0.788246 + 0.615361i \(0.210990\pi\)
\(632\) 0 0
\(633\) −6.24399 −0.248176
\(634\) 0 0
\(635\) −15.7370 −0.624503
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 32.8170 1.29822
\(640\) 0 0
\(641\) −0.997661 −0.0394052 −0.0197026 0.999806i \(-0.506272\pi\)
−0.0197026 + 0.999806i \(0.506272\pi\)
\(642\) 0 0
\(643\) −1.81626 + 3.14586i −0.0716264 + 0.124061i −0.899614 0.436685i \(-0.856152\pi\)
0.827988 + 0.560746i \(0.189486\pi\)
\(644\) 0 0
\(645\) 12.1559 0.478640
\(646\) 0 0
\(647\) −16.8503 + 29.1855i −0.662452 + 1.14740i 0.317517 + 0.948253i \(0.397151\pi\)
−0.979969 + 0.199149i \(0.936182\pi\)
\(648\) 0 0
\(649\) 11.4285 19.7948i 0.448609 0.777014i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.2763 0.676074 0.338037 0.941133i \(-0.390237\pi\)
0.338037 + 0.941133i \(0.390237\pi\)
\(654\) 0 0
\(655\) −20.8483 36.1104i −0.814612 1.41095i
\(656\) 0 0
\(657\) −4.03808 + 6.99416i −0.157540 + 0.272868i
\(658\) 0 0
\(659\) −5.34124 + 9.25130i −0.208065 + 0.360380i −0.951105 0.308868i \(-0.900050\pi\)
0.743040 + 0.669247i \(0.233383\pi\)
\(660\) 0 0
\(661\) 5.07276 8.78627i 0.197307 0.341746i −0.750347 0.661044i \(-0.770114\pi\)
0.947654 + 0.319298i \(0.103447\pi\)
\(662\) 0 0
\(663\) 5.65211 11.1758i 0.219510 0.434031i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 22.1029 + 38.2833i 0.855827 + 1.48234i
\(668\) 0 0
\(669\) −0.220888 −0.00854004
\(670\) 0 0
\(671\) 47.1791 1.82133
\(672\) 0 0
\(673\) 7.69716 + 13.3319i 0.296704 + 0.513906i 0.975380 0.220532i \(-0.0707793\pi\)
−0.678676 + 0.734438i \(0.737446\pi\)
\(674\) 0 0
\(675\) 5.65211 + 9.78975i 0.217550 + 0.376808i
\(676\) 0 0
\(677\) −7.48701 + 12.9679i −0.287749 + 0.498396i −0.973272 0.229655i \(-0.926240\pi\)
0.685523 + 0.728051i \(0.259574\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.472293 + 0.818035i −0.0180983 + 0.0313472i
\(682\) 0 0
\(683\) −32.8559 −1.25720 −0.628598 0.777730i \(-0.716371\pi\)
−0.628598 + 0.777730i \(0.716371\pi\)
\(684\) 0 0
\(685\) −0.402148 + 0.696541i −0.0153653 + 0.0266135i
\(686\) 0 0
\(687\) 2.35311 + 4.07570i 0.0897767 + 0.155498i
\(688\) 0 0
\(689\) 12.5100 + 19.1376i 0.476593 + 0.729084i
\(690\) 0 0
\(691\) 6.16945 0.234697 0.117349 0.993091i \(-0.462561\pi\)
0.117349 + 0.993091i \(0.462561\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.58391 + 16.5998i 0.363538 + 0.629667i
\(696\) 0 0
\(697\) 31.6365 + 54.7960i 1.19832 + 2.07555i
\(698\) 0 0
\(699\) −1.10989 1.92238i −0.0419799 0.0727112i
\(700\) 0 0
\(701\) 9.52326 0.359689 0.179844 0.983695i \(-0.442441\pi\)
0.179844 + 0.983695i \(0.442441\pi\)
\(702\) 0 0
\(703\) 0.804296 + 1.39308i 0.0303346 + 0.0525411i
\(704\) 0 0
\(705\) −4.28913 −0.161538
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −16.4121 28.4266i −0.616370 1.06758i −0.990143 0.140064i \(-0.955269\pi\)
0.373773 0.927520i \(-0.378064\pi\)
\(710\) 0 0
\(711\) 8.92320 0.334646
\(712\) 0 0
\(713\) 24.2394 + 41.9838i 0.907771 + 1.57231i
\(714\) 0 0
\(715\) −31.4323 48.0846i −1.17550 1.79826i
\(716\) 0 0
\(717\) −2.73712 + 4.74082i −0.102219 + 0.177049i
\(718\) 0 0
\(719\) 1.62723 + 2.81844i 0.0606853 + 0.105110i 0.894772 0.446523i \(-0.147338\pi\)
−0.834087 + 0.551634i \(0.814005\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.70426 + 2.95187i −0.0633822 + 0.109781i
\(724\) 0 0
\(725\) 14.3737 24.8960i 0.533826 0.924614i
\(726\) 0 0
\(727\) −21.3325 −0.791179 −0.395589 0.918427i \(-0.629460\pi\)
−0.395589 + 0.918427i \(0.629460\pi\)
\(728\) 0 0
\(729\) −10.8052 −0.400192
\(730\) 0 0
\(731\) 22.0189 38.1379i 0.814399 1.41058i
\(732\) 0 0
\(733\) −7.68489 + 13.3106i −0.283848 + 0.491639i −0.972329 0.233615i \(-0.924944\pi\)
0.688481 + 0.725254i \(0.258278\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 39.6424 + 68.6627i 1.46025 + 2.52922i
\(738\) 0 0
\(739\) 1.87012 3.23914i 0.0687935 0.119154i −0.829577 0.558392i \(-0.811418\pi\)
0.898370 + 0.439239i \(0.144752\pi\)
\(740\) 0 0
\(741\) 1.18577 0.0657163i 0.0435604 0.00241415i
\(742\) 0 0
\(743\) 10.1647 + 17.6058i 0.372906 + 0.645893i 0.990011 0.140988i \(-0.0450280\pi\)
−0.617105 + 0.786881i \(0.711695\pi\)
\(744\) 0 0
\(745\) 1.18237 0.0433186
\(746\) 0 0
\(747\) 18.0587 + 31.2787i 0.660735 + 1.14443i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 35.9611 1.31224 0.656120 0.754656i \(-0.272196\pi\)
0.656120 + 0.754656i \(0.272196\pi\)
\(752\) 0 0
\(753\) 5.51467 + 9.55169i 0.200966 + 0.348083i
\(754\) 0 0
\(755\) 42.1656 1.53456
\(756\) 0 0
\(757\) −6.73790 11.6704i −0.244893 0.424167i 0.717208 0.696859i \(-0.245420\pi\)
−0.962102 + 0.272691i \(0.912086\pi\)
\(758\) 0 0
\(759\) −8.38923 14.5306i −0.304510 0.527426i
\(760\) 0 0
\(761\) 12.0211 + 20.8211i 0.435764 + 0.754765i 0.997358 0.0726478i \(-0.0231449\pi\)
−0.561594 + 0.827413i \(0.689812\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 47.0498 1.70109
\(766\) 0 0
\(767\) −15.0336 + 0.833175i −0.542833 + 0.0300842i
\(768\) 0 0
\(769\) −6.95104 12.0396i −0.250661 0.434157i 0.713047 0.701116i \(-0.247315\pi\)
−0.963708 + 0.266959i \(0.913981\pi\)
\(770\) 0 0
\(771\) −0.846006 + 1.46532i −0.0304682 + 0.0527724i
\(772\) 0 0
\(773\) 37.0377 1.33215 0.666076 0.745884i \(-0.267972\pi\)
0.666076 + 0.745884i \(0.267972\pi\)
\(774\) 0 0
\(775\) 15.7631 27.3025i 0.566227 0.980734i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.00000 + 5.19615i −0.107486 + 0.186171i
\(780\) 0 0
\(781\) 33.6294 + 58.2478i 1.20335 + 2.08427i
\(782\) 0 0
\(783\) −13.4674 23.3263i −0.481287 0.833613i
\(784\) 0 0
\(785\) 37.5763 1.34116
\(786\) 0 0
\(787\) −45.1179 −1.60828 −0.804140 0.594440i \(-0.797374\pi\)
−0.804140 + 0.594440i \(0.797374\pi\)
\(788\) 0 0
\(789\) −3.58276 6.20552i −0.127550 0.220922i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −17.0048 26.0136i −0.603857 0.923770i
\(794\) 0 0
\(795\) 5.29691 9.17451i 0.187862 0.325387i
\(796\) 0 0
\(797\) 2.52197 4.36817i 0.0893326 0.154729i −0.817897 0.575365i \(-0.804860\pi\)
0.907229 + 0.420637i \(0.138193\pi\)
\(798\) 0 0
\(799\) −7.76920 + 13.4567i −0.274855 + 0.476062i
\(800\) 0 0
\(801\) −19.9950 34.6323i −0.706488 1.22367i
\(802\) 0 0
\(803\) −16.5522 −0.584113
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.56018 + 2.70231i −0.0549208 + 0.0951257i
\(808\) 0 0
\(809\) 15.7763 27.3254i 0.554665 0.960708i −0.443264 0.896391i \(-0.646180\pi\)
0.997929 0.0643174i \(-0.0204870\pi\)
\(810\) 0 0
\(811\) −10.7526 −0.377576 −0.188788 0.982018i \(-0.560456\pi\)
−0.188788 + 0.982018i \(0.560456\pi\)
\(812\) 0 0
\(813\) −1.35428 + 2.34568i −0.0474966 + 0.0822665i
\(814\) 0 0
\(815\) −52.0876 −1.82455
\(816\) 0 0
\(817\) 4.17598 0.146099
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.14408 −0.109729 −0.0548646 0.998494i \(-0.517473\pi\)
−0.0548646 + 0.998494i \(0.517473\pi\)
\(822\) 0 0
\(823\) −45.8503 −1.59824 −0.799120 0.601171i \(-0.794701\pi\)
−0.799120 + 0.601171i \(0.794701\pi\)
\(824\) 0 0
\(825\) −5.45560 + 9.44937i −0.189940 + 0.328985i
\(826\) 0 0
\(827\) 31.5882 1.09843 0.549215 0.835681i \(-0.314927\pi\)
0.549215 + 0.835681i \(0.314927\pi\)
\(828\) 0 0
\(829\) 22.3340 38.6837i 0.775692 1.34354i −0.158712 0.987325i \(-0.550734\pi\)
0.934404 0.356214i \(-0.115933\pi\)
\(830\) 0 0
\(831\) 5.22589 9.05150i 0.181284 0.313993i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −3.89151 −0.134671
\(836\) 0 0
\(837\) −14.7692 25.5810i −0.510498 0.884209i
\(838\) 0 0
\(839\) −17.5262 + 30.3562i −0.605071 + 1.04801i 0.386969 + 0.922093i \(0.373522\pi\)
−0.992040 + 0.125921i \(0.959811\pi\)
\(840\) 0 0
\(841\) −19.7486 + 34.2056i −0.680986 + 1.17950i
\(842\) 0 0
\(843\) 3.29580 5.70849i 0.113513 0.196611i
\(844\) 0 0
\(845\) −15.1837 + 34.6622i −0.522336 + 1.19242i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.53840 + 2.66459i 0.0527978 + 0.0914485i
\(850\) 0 0
\(851\) −14.9707 −0.513187
\(852\) 0 0
\(853\) −40.4398 −1.38463 −0.692317 0.721594i \(-0.743410\pi\)
−0.692317 + 0.721594i \(0.743410\pi\)
\(854\) 0 0
\(855\) 2.23080 + 3.86386i 0.0762917 + 0.132141i
\(856\) 0 0
\(857\) 8.28927 + 14.3574i 0.283156 + 0.490441i 0.972160 0.234317i \(-0.0752852\pi\)
−0.689004 + 0.724757i \(0.741952\pi\)
\(858\) 0 0
\(859\) −5.82592 + 10.0908i −0.198778 + 0.344293i −0.948132 0.317876i \(-0.897031\pi\)
0.749355 + 0.662169i \(0.230364\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.18529 8.98119i 0.176509 0.305723i −0.764173 0.645011i \(-0.776853\pi\)
0.940683 + 0.339288i \(0.110186\pi\)
\(864\) 0 0
\(865\) −68.9967 −2.34596
\(866\) 0 0
\(867\) −5.63281 + 9.75631i −0.191300 + 0.331342i
\(868\) 0 0
\(869\) 9.14408 + 15.8380i 0.310192 + 0.537268i
\(870\) 0 0
\(871\) 23.5709 46.6061i 0.798670 1.57919i
\(872\) 0 0
\(873\) 22.1023 0.748048
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.63222 + 14.9514i 0.291489 + 0.504874i 0.974162 0.225850i \(-0.0725159\pi\)
−0.682673 + 0.730724i \(0.739183\pi\)
\(878\) 0 0
\(879\) 3.87965 + 6.71974i 0.130857 + 0.226651i
\(880\) 0 0
\(881\) −20.0309 34.6945i −0.674857 1.16889i −0.976511 0.215470i \(-0.930872\pi\)
0.301653 0.953418i \(-0.402462\pi\)
\(882\) 0 0
\(883\) −46.3554 −1.55998 −0.779992 0.625789i \(-0.784777\pi\)
−0.779992 + 0.625789i \(0.784777\pi\)
\(884\) 0 0
\(885\) 3.48824 + 6.04181i 0.117256 + 0.203093i
\(886\) 0 0
\(887\) 27.8787 0.936075 0.468037 0.883709i \(-0.344961\pi\)
0.468037 + 0.883709i \(0.344961\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −16.8147 29.1239i −0.563314 0.975688i
\(892\) 0 0
\(893\) −1.47346 −0.0493075
\(894\) 0 0
\(895\) 9.40460 + 16.2892i 0.314361 + 0.544489i
\(896\) 0 0
\(897\) −4.98814 + 9.86290i −0.166549 + 0.329313i
\(898\) 0 0
\(899\) −37.5591 + 65.0543i −1.25267 + 2.16968i
\(900\) 0 0
\(901\) −19.1893 33.2369i −0.639289 1.10728i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 21.2280 36.7680i 0.705642 1.22221i
\(906\) 0 0
\(907\) 20.8796 36.1646i 0.693297 1.20083i −0.277454 0.960739i \(-0.589491\pi\)
0.970751 0.240087i \(-0.0771760\pi\)
\(908\) 0 0
\(909\) −45.0007 −1.49258
\(910\) 0 0
\(911\) −42.8384 −1.41930 −0.709650 0.704554i \(-0.751147\pi\)
−0.709650 + 0.704554i \(0.751147\pi\)
\(912\) 0 0
\(913\) −37.0116 + 64.1059i −1.22490 + 2.12160i
\(914\) 0 0
\(915\) −7.20005 + 12.4709i −0.238026 + 0.412274i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −23.2232 40.2238i −0.766064 1.32686i −0.939682 0.342048i \(-0.888879\pi\)
0.173619 0.984813i \(-0.444454\pi\)
\(920\) 0 0
\(921\) −6.90142 + 11.9536i −0.227410 + 0.393885i
\(922\) 0 0
\(923\) 19.9956 39.5368i 0.658165 1.30137i
\(924\) 0 0
\(925\) 4.86778 + 8.43124i 0.160052 + 0.277218i
\(926\) 0 0
\(927\) 16.0528 0.527242
\(928\) 0 0
\(929\) 12.4873 + 21.6286i 0.409695 + 0.709612i 0.994855 0.101305i \(-0.0323019\pi\)
−0.585161 + 0.810917i \(0.698969\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −14.1147 −0.462096
\(934\) 0 0
\(935\) 48.2145 + 83.5099i 1.57678 + 2.73107i
\(936\) 0 0
\(937\) −14.1697 −0.462905 −0.231452 0.972846i \(-0.574348\pi\)
−0.231452 + 0.972846i \(0.574348\pi\)
\(938\) 0 0
\(939\) −8.15595 14.1265i −0.266159 0.461001i
\(940\) 0 0
\(941\) −13.3841 23.1819i −0.436308 0.755708i 0.561093 0.827753i \(-0.310381\pi\)
−0.997401 + 0.0720448i \(0.977048\pi\)
\(942\) 0 0
\(943\) −27.9200 48.3589i −0.909201 1.57478i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.36825 −0.0769578 −0.0384789 0.999259i \(-0.512251\pi\)
−0.0384789 + 0.999259i \(0.512251\pi\)
\(948\) 0 0
\(949\) 5.96589 + 9.12652i 0.193661 + 0.296260i
\(950\) 0 0
\(951\) 2.89161 + 5.00842i 0.0937670 + 0.162409i
\(952\) 0 0
\(953\) 22.8483 39.5745i 0.740130 1.28194i −0.212305 0.977203i \(-0.568097\pi\)
0.952436 0.304740i \(-0.0985696\pi\)
\(954\) 0 0
\(955\) −0.384880 −0.0124544
\(956\) 0 0
\(957\) 12.9992 22.5152i 0.420204 0.727815i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.6896 + 44.4957i −0.828696 + 1.43534i
\(962\) 0 0
\(963\) −19.2557 33.3518i −0.620506 1.07475i
\(964\) 0 0
\(965\) 3.50551 + 6.07172i 0.112846 + 0.195456i
\(966\) 0 0
\(967\) −44.2968 −1.42449 −0.712244 0.701932i \(-0.752321\pi\)
−0.712244 + 0.701932i \(0.752321\pi\)
\(968\) 0 0
\(969\) −1.99347 −0.0640396
\(970\) 0 0
\(971\) −9.06174 15.6954i −0.290805 0.503689i 0.683195 0.730236i \(-0.260590\pi\)
−0.974000 + 0.226547i \(0.927256\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 7.17655 0.397730i 0.229834 0.0127375i
\(976\) 0 0
\(977\) 20.7090 35.8691i 0.662540 1.14755i −0.317406 0.948290i \(-0.602812\pi\)
0.979946 0.199264i \(-0.0638550\pi\)
\(978\) 0 0
\(979\) 40.9799 70.9792i 1.30972 2.26851i
\(980\) 0 0
\(981\) 5.95762 10.3189i 0.190212 0.329457i
\(982\) 0 0
\(983\) −3.87039 6.70371i −0.123446 0.213815i 0.797678 0.603083i \(-0.206061\pi\)
−0.921124 + 0.389268i \(0.872728\pi\)
\(984\) 0 0
\(985\) 20.6068 0.656588
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.4323 + 33.6576i −0.617910 + 1.07025i
\(990\) 0 0
\(991\) −8.68366 + 15.0405i −0.275845 + 0.477778i −0.970348 0.241712i \(-0.922291\pi\)
0.694503 + 0.719490i \(0.255624\pi\)
\(992\) 0 0
\(993\) −1.29825 −0.0411988
\(994\) 0 0
\(995\) 28.1571 48.7696i 0.892641 1.54610i
\(996\) 0 0
\(997\) 4.20917 0.133306 0.0666529 0.997776i \(-0.478768\pi\)
0.0666529 + 0.997776i \(0.478768\pi\)
\(998\) 0 0
\(999\) 9.12172 0.288598
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.i.m.1745.3 12
7.2 even 3 2548.2.k.g.393.3 12
7.3 odd 6 2548.2.l.m.1537.3 12
7.4 even 3 2548.2.l.m.1537.4 12
7.5 odd 6 2548.2.k.g.393.4 yes 12
7.6 odd 2 inner 2548.2.i.m.1745.4 12
13.9 even 3 2548.2.l.m.373.4 12
91.9 even 3 2548.2.k.g.1569.3 yes 12
91.48 odd 6 2548.2.l.m.373.3 12
91.61 odd 6 2548.2.k.g.1569.4 yes 12
91.74 even 3 inner 2548.2.i.m.165.3 12
91.87 odd 6 inner 2548.2.i.m.165.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2548.2.i.m.165.3 12 91.74 even 3 inner
2548.2.i.m.165.4 12 91.87 odd 6 inner
2548.2.i.m.1745.3 12 1.1 even 1 trivial
2548.2.i.m.1745.4 12 7.6 odd 2 inner
2548.2.k.g.393.3 12 7.2 even 3
2548.2.k.g.393.4 yes 12 7.5 odd 6
2548.2.k.g.1569.3 yes 12 91.9 even 3
2548.2.k.g.1569.4 yes 12 91.61 odd 6
2548.2.l.m.373.3 12 91.48 odd 6
2548.2.l.m.373.4 12 13.9 even 3
2548.2.l.m.1537.3 12 7.3 odd 6
2548.2.l.m.1537.4 12 7.4 even 3