Properties

Label 2548.2.u.c.1765.6
Level $2548$
Weight $2$
Character 2548.1765
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(589,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1765.6
Root \(1.75101i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1765
Dual form 2548.2.u.c.589.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.875503 + 1.51642i) q^{3} +1.38536i q^{5} +(-0.0330100 + 0.0571750i) q^{9} +(0.998442 - 0.576451i) q^{11} +(1.65348 + 3.20406i) q^{13} +(-2.10079 + 1.21289i) q^{15} +(0.781246 - 1.35316i) q^{17} +(7.26523 + 4.19458i) q^{19} +(-1.11067 - 1.92374i) q^{23} +3.08077 q^{25} +5.13741 q^{27} +(-1.43491 - 2.48533i) q^{29} -6.65024i q^{31} +(1.74828 + 1.00937i) q^{33} +(3.01436 - 1.74034i) q^{37} +(-3.41106 + 5.31253i) q^{39} +(-10.8758 + 6.27917i) q^{41} +(-3.07841 + 5.33196i) q^{43} +(-0.0792081 - 0.0457308i) q^{45} +7.40432i q^{47} +2.73593 q^{51} +11.2301 q^{53} +(0.798593 + 1.38320i) q^{55} +14.6895i q^{57} +(-6.97634 - 4.02779i) q^{59} +(0.829207 - 1.43623i) q^{61} +(-4.43879 + 2.29067i) q^{65} +(-3.21406 + 1.85564i) q^{67} +(1.94479 - 3.36848i) q^{69} +(8.60538 + 4.96832i) q^{71} +3.30200i q^{73} +(2.69722 + 4.67173i) q^{75} +4.64811 q^{79} +(4.59685 + 7.96198i) q^{81} -1.82551i q^{83} +(1.87462 + 1.08231i) q^{85} +(2.51253 - 4.35183i) q^{87} +(-2.05837 + 1.18840i) q^{89} +(10.0845 - 5.82230i) q^{93} +(-5.81102 + 10.0650i) q^{95} +(6.53519 + 3.77309i) q^{97} +0.0761145i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 14 q^{9} + 6 q^{11} - 10 q^{13} + 6 q^{15} - 2 q^{17} - 44 q^{25} + 12 q^{27} - 22 q^{29} - 42 q^{33} + 12 q^{37} + 24 q^{39} - 36 q^{41} + 6 q^{43} + 30 q^{45} - 4 q^{51} + 8 q^{53} - 2 q^{55} + 18 q^{59}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.875503 + 1.51642i 0.505472 + 0.875503i 0.999980 + 0.00632977i \(0.00201484\pi\)
−0.494508 + 0.869173i \(0.664652\pi\)
\(4\) 0 0
\(5\) 1.38536i 0.619553i 0.950809 + 0.309777i \(0.100254\pi\)
−0.950809 + 0.309777i \(0.899746\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.0330100 + 0.0571750i −0.0110033 + 0.0190583i
\(10\) 0 0
\(11\) 0.998442 0.576451i 0.301042 0.173806i −0.341869 0.939748i \(-0.611060\pi\)
0.642911 + 0.765941i \(0.277727\pi\)
\(12\) 0 0
\(13\) 1.65348 + 3.20406i 0.458593 + 0.888647i
\(14\) 0 0
\(15\) −2.10079 + 1.21289i −0.542420 + 0.313167i
\(16\) 0 0
\(17\) 0.781246 1.35316i 0.189480 0.328189i −0.755597 0.655037i \(-0.772653\pi\)
0.945077 + 0.326848i \(0.105986\pi\)
\(18\) 0 0
\(19\) 7.26523 + 4.19458i 1.66676 + 0.962303i 0.969368 + 0.245612i \(0.0789888\pi\)
0.697390 + 0.716692i \(0.254345\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.11067 1.92374i −0.231591 0.401127i 0.726685 0.686970i \(-0.241060\pi\)
−0.958276 + 0.285843i \(0.907726\pi\)
\(24\) 0 0
\(25\) 3.08077 0.616154
\(26\) 0 0
\(27\) 5.13741 0.988696
\(28\) 0 0
\(29\) −1.43491 2.48533i −0.266455 0.461514i 0.701489 0.712681i \(-0.252519\pi\)
−0.967944 + 0.251167i \(0.919186\pi\)
\(30\) 0 0
\(31\) 6.65024i 1.19442i −0.802086 0.597209i \(-0.796276\pi\)
0.802086 0.597209i \(-0.203724\pi\)
\(32\) 0 0
\(33\) 1.74828 + 1.00937i 0.304336 + 0.175708i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.01436 1.74034i 0.495557 0.286110i −0.231320 0.972878i \(-0.574304\pi\)
0.726877 + 0.686768i \(0.240971\pi\)
\(38\) 0 0
\(39\) −3.41106 + 5.31253i −0.546207 + 0.850685i
\(40\) 0 0
\(41\) −10.8758 + 6.27917i −1.69852 + 0.980641i −0.751353 + 0.659901i \(0.770598\pi\)
−0.947167 + 0.320740i \(0.896068\pi\)
\(42\) 0 0
\(43\) −3.07841 + 5.33196i −0.469453 + 0.813116i −0.999390 0.0349208i \(-0.988882\pi\)
0.529937 + 0.848037i \(0.322215\pi\)
\(44\) 0 0
\(45\) −0.0792081 0.0457308i −0.0118076 0.00681715i
\(46\) 0 0
\(47\) 7.40432i 1.08003i 0.841655 + 0.540015i \(0.181582\pi\)
−0.841655 + 0.540015i \(0.818418\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.73593 0.383107
\(52\) 0 0
\(53\) 11.2301 1.54257 0.771285 0.636490i \(-0.219614\pi\)
0.771285 + 0.636490i \(0.219614\pi\)
\(54\) 0 0
\(55\) 0.798593 + 1.38320i 0.107682 + 0.186511i
\(56\) 0 0
\(57\) 14.6895i 1.94567i
\(58\) 0 0
\(59\) −6.97634 4.02779i −0.908243 0.524374i −0.0283773 0.999597i \(-0.509034\pi\)
−0.879865 + 0.475223i \(0.842367\pi\)
\(60\) 0 0
\(61\) 0.829207 1.43623i 0.106169 0.183890i −0.808046 0.589119i \(-0.799475\pi\)
0.914215 + 0.405229i \(0.132808\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.43879 + 2.29067i −0.550564 + 0.284123i
\(66\) 0 0
\(67\) −3.21406 + 1.85564i −0.392660 + 0.226702i −0.683312 0.730126i \(-0.739461\pi\)
0.290652 + 0.956829i \(0.406128\pi\)
\(68\) 0 0
\(69\) 1.94479 3.36848i 0.234125 0.405517i
\(70\) 0 0
\(71\) 8.60538 + 4.96832i 1.02127 + 0.589631i 0.914472 0.404650i \(-0.132607\pi\)
0.106799 + 0.994281i \(0.465940\pi\)
\(72\) 0 0
\(73\) 3.30200i 0.386470i 0.981153 + 0.193235i \(0.0618979\pi\)
−0.981153 + 0.193235i \(0.938102\pi\)
\(74\) 0 0
\(75\) 2.69722 + 4.67173i 0.311448 + 0.539444i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.64811 0.522953 0.261477 0.965210i \(-0.415791\pi\)
0.261477 + 0.965210i \(0.415791\pi\)
\(80\) 0 0
\(81\) 4.59685 + 7.96198i 0.510761 + 0.884664i
\(82\) 0 0
\(83\) 1.82551i 0.200376i −0.994969 0.100188i \(-0.968056\pi\)
0.994969 0.100188i \(-0.0319445\pi\)
\(84\) 0 0
\(85\) 1.87462 + 1.08231i 0.203331 + 0.117393i
\(86\) 0 0
\(87\) 2.51253 4.35183i 0.269371 0.466565i
\(88\) 0 0
\(89\) −2.05837 + 1.18840i −0.218187 + 0.125970i −0.605111 0.796141i \(-0.706871\pi\)
0.386923 + 0.922112i \(0.373538\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 10.0845 5.82230i 1.04572 0.603744i
\(94\) 0 0
\(95\) −5.81102 + 10.0650i −0.596198 + 1.03265i
\(96\) 0 0
\(97\) 6.53519 + 3.77309i 0.663548 + 0.383099i 0.793627 0.608404i \(-0.208190\pi\)
−0.130080 + 0.991504i \(0.541523\pi\)
\(98\) 0 0
\(99\) 0.0761145i 0.00764980i
\(100\) 0 0
\(101\) −6.60026 11.4320i −0.656751 1.13753i −0.981452 0.191709i \(-0.938597\pi\)
0.324701 0.945817i \(-0.394736\pi\)
\(102\) 0 0
\(103\) −5.90120 −0.581463 −0.290731 0.956805i \(-0.593899\pi\)
−0.290731 + 0.956805i \(0.593899\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.09634 8.82712i −0.492682 0.853350i 0.507283 0.861780i \(-0.330650\pi\)
−0.999964 + 0.00842995i \(0.997317\pi\)
\(108\) 0 0
\(109\) 6.14856i 0.588925i −0.955663 0.294463i \(-0.904859\pi\)
0.955663 0.294463i \(-0.0951407\pi\)
\(110\) 0 0
\(111\) 5.27816 + 3.04734i 0.500980 + 0.289241i
\(112\) 0 0
\(113\) −7.29876 + 12.6418i −0.686609 + 1.18924i 0.286319 + 0.958134i \(0.407568\pi\)
−0.972928 + 0.231108i \(0.925765\pi\)
\(114\) 0 0
\(115\) 2.66508 1.53868i 0.248520 0.143483i
\(116\) 0 0
\(117\) −0.237773 0.0112283i −0.0219822 0.00103806i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.83541 + 8.37517i −0.439583 + 0.761380i
\(122\) 0 0
\(123\) −19.0436 10.9949i −1.71711 0.991373i
\(124\) 0 0
\(125\) 11.1948i 1.00129i
\(126\) 0 0
\(127\) 4.36114 + 7.55372i 0.386989 + 0.670284i 0.992043 0.125900i \(-0.0401818\pi\)
−0.605054 + 0.796184i \(0.706849\pi\)
\(128\) 0 0
\(129\) −10.7806 −0.949180
\(130\) 0 0
\(131\) −19.4433 −1.69877 −0.849385 0.527773i \(-0.823027\pi\)
−0.849385 + 0.527773i \(0.823027\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 7.11718i 0.612550i
\(136\) 0 0
\(137\) 2.90516 + 1.67730i 0.248205 + 0.143301i 0.618942 0.785437i \(-0.287562\pi\)
−0.370737 + 0.928738i \(0.620895\pi\)
\(138\) 0 0
\(139\) −3.95629 + 6.85250i −0.335568 + 0.581222i −0.983594 0.180397i \(-0.942262\pi\)
0.648025 + 0.761619i \(0.275595\pi\)
\(140\) 0 0
\(141\) −11.2280 + 6.48250i −0.945570 + 0.545925i
\(142\) 0 0
\(143\) 3.49789 + 2.24592i 0.292508 + 0.187813i
\(144\) 0 0
\(145\) 3.44308 1.98787i 0.285933 0.165083i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.04756 + 1.18216i 0.167743 + 0.0968464i 0.581521 0.813531i \(-0.302458\pi\)
−0.413778 + 0.910378i \(0.635791\pi\)
\(150\) 0 0
\(151\) 11.5883i 0.943041i −0.881855 0.471520i \(-0.843705\pi\)
0.881855 0.471520i \(-0.156295\pi\)
\(152\) 0 0
\(153\) 0.0515779 + 0.0893355i 0.00416982 + 0.00722235i
\(154\) 0 0
\(155\) 9.21299 0.740005
\(156\) 0 0
\(157\) 9.03642 0.721184 0.360592 0.932724i \(-0.382575\pi\)
0.360592 + 0.932724i \(0.382575\pi\)
\(158\) 0 0
\(159\) 9.83196 + 17.0295i 0.779725 + 1.35052i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −18.4945 10.6778i −1.44860 0.836351i −0.450203 0.892926i \(-0.648648\pi\)
−0.998398 + 0.0565755i \(0.981982\pi\)
\(164\) 0 0
\(165\) −1.39834 + 2.42200i −0.108861 + 0.188552i
\(166\) 0 0
\(167\) 2.75508 1.59065i 0.213194 0.123088i −0.389601 0.920984i \(-0.627387\pi\)
0.602795 + 0.797896i \(0.294054\pi\)
\(168\) 0 0
\(169\) −7.53201 + 10.5957i −0.579385 + 0.815054i
\(170\) 0 0
\(171\) −0.479650 + 0.276926i −0.0366798 + 0.0211771i
\(172\) 0 0
\(173\) −2.66952 + 4.62374i −0.202960 + 0.351537i −0.949481 0.313825i \(-0.898389\pi\)
0.746521 + 0.665362i \(0.231723\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 14.1054i 1.06023i
\(178\) 0 0
\(179\) 4.92279 + 8.52652i 0.367947 + 0.637302i 0.989244 0.146272i \(-0.0467276\pi\)
−0.621298 + 0.783575i \(0.713394\pi\)
\(180\) 0 0
\(181\) −15.1253 −1.12425 −0.562127 0.827051i \(-0.690017\pi\)
−0.562127 + 0.827051i \(0.690017\pi\)
\(182\) 0 0
\(183\) 2.90389 0.214662
\(184\) 0 0
\(185\) 2.41100 + 4.17598i 0.177260 + 0.307024i
\(186\) 0 0
\(187\) 1.80140i 0.131731i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.0900 19.2084i 0.802443 1.38987i −0.115561 0.993300i \(-0.536867\pi\)
0.918004 0.396571i \(-0.129800\pi\)
\(192\) 0 0
\(193\) −6.03781 + 3.48593i −0.434611 + 0.250923i −0.701309 0.712857i \(-0.747401\pi\)
0.266698 + 0.963780i \(0.414067\pi\)
\(194\) 0 0
\(195\) −7.35978 4.72556i −0.527045 0.338404i
\(196\) 0 0
\(197\) 17.0895 9.86660i 1.21757 0.702966i 0.253175 0.967421i \(-0.418525\pi\)
0.964398 + 0.264455i \(0.0851919\pi\)
\(198\) 0 0
\(199\) 6.90193 11.9545i 0.489265 0.847431i −0.510659 0.859783i \(-0.670599\pi\)
0.999924 + 0.0123521i \(0.00393191\pi\)
\(200\) 0 0
\(201\) −5.62784 3.24923i −0.396957 0.229183i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −8.69892 15.0670i −0.607559 1.05232i
\(206\) 0 0
\(207\) 0.146653 0.0101931
\(208\) 0 0
\(209\) 9.67188 0.669018
\(210\) 0 0
\(211\) 4.73718 + 8.20504i 0.326121 + 0.564859i 0.981739 0.190235i \(-0.0609249\pi\)
−0.655617 + 0.755093i \(0.727592\pi\)
\(212\) 0 0
\(213\) 17.3991i 1.19217i
\(214\) 0 0
\(215\) −7.38670 4.26471i −0.503769 0.290851i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −5.00720 + 2.89091i −0.338355 + 0.195350i
\(220\) 0 0
\(221\) 5.62738 + 0.265740i 0.378538 + 0.0178756i
\(222\) 0 0
\(223\) −12.6335 + 7.29395i −0.846001 + 0.488439i −0.859300 0.511473i \(-0.829100\pi\)
0.0132984 + 0.999912i \(0.495767\pi\)
\(224\) 0 0
\(225\) −0.101696 + 0.176143i −0.00677974 + 0.0117429i
\(226\) 0 0
\(227\) 6.20380 + 3.58176i 0.411760 + 0.237730i 0.691546 0.722333i \(-0.256930\pi\)
−0.279785 + 0.960063i \(0.590263\pi\)
\(228\) 0 0
\(229\) 12.3005i 0.812839i 0.913687 + 0.406420i \(0.133223\pi\)
−0.913687 + 0.406420i \(0.866777\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.8037 −1.23187 −0.615936 0.787796i \(-0.711222\pi\)
−0.615936 + 0.787796i \(0.711222\pi\)
\(234\) 0 0
\(235\) −10.2577 −0.669136
\(236\) 0 0
\(237\) 4.06943 + 7.04846i 0.264338 + 0.457847i
\(238\) 0 0
\(239\) 1.60295i 0.103686i −0.998655 0.0518432i \(-0.983490\pi\)
0.998655 0.0518432i \(-0.0165096\pi\)
\(240\) 0 0
\(241\) 15.9051 + 9.18284i 1.02454 + 0.591519i 0.915416 0.402509i \(-0.131862\pi\)
0.109125 + 0.994028i \(0.465195\pi\)
\(242\) 0 0
\(243\) −0.342988 + 0.594073i −0.0220027 + 0.0381098i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.42679 + 30.2139i −0.0907842 + 1.92246i
\(248\) 0 0
\(249\) 2.76824 1.59824i 0.175430 0.101285i
\(250\) 0 0
\(251\) 7.18228 12.4401i 0.453341 0.785210i −0.545250 0.838274i \(-0.683565\pi\)
0.998591 + 0.0530634i \(0.0168986\pi\)
\(252\) 0 0
\(253\) −2.21788 1.28049i −0.139437 0.0805040i
\(254\) 0 0
\(255\) 3.79026i 0.237355i
\(256\) 0 0
\(257\) −8.68283 15.0391i −0.541620 0.938113i −0.998811 0.0487448i \(-0.984478\pi\)
0.457191 0.889368i \(-0.348855\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.189465 0.0117276
\(262\) 0 0
\(263\) −8.37095 14.4989i −0.516175 0.894042i −0.999824 0.0187793i \(-0.994022\pi\)
0.483648 0.875262i \(-0.339311\pi\)
\(264\) 0 0
\(265\) 15.5577i 0.955704i
\(266\) 0 0
\(267\) −3.60422 2.08090i −0.220575 0.127349i
\(268\) 0 0
\(269\) 12.3957 21.4700i 0.755781 1.30905i −0.189204 0.981938i \(-0.560591\pi\)
0.944985 0.327114i \(-0.106076\pi\)
\(270\) 0 0
\(271\) 17.5211 10.1158i 1.06433 0.614493i 0.137706 0.990473i \(-0.456027\pi\)
0.926628 + 0.375980i \(0.122694\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.07597 1.77591i 0.185488 0.107091i
\(276\) 0 0
\(277\) 5.52664 9.57242i 0.332064 0.575151i −0.650853 0.759204i \(-0.725588\pi\)
0.982916 + 0.184053i \(0.0589218\pi\)
\(278\) 0 0
\(279\) 0.380227 + 0.219524i 0.0227636 + 0.0131426i
\(280\) 0 0
\(281\) 3.18955i 0.190273i 0.995464 + 0.0951363i \(0.0303287\pi\)
−0.995464 + 0.0951363i \(0.969671\pi\)
\(282\) 0 0
\(283\) −8.96481 15.5275i −0.532903 0.923015i −0.999262 0.0384190i \(-0.987768\pi\)
0.466359 0.884596i \(-0.345565\pi\)
\(284\) 0 0
\(285\) −20.3503 −1.20545
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.27931 + 12.6081i 0.428195 + 0.741655i
\(290\) 0 0
\(291\) 13.2134i 0.774584i
\(292\) 0 0
\(293\) 14.6945 + 8.48385i 0.858460 + 0.495632i 0.863496 0.504355i \(-0.168270\pi\)
−0.00503646 + 0.999987i \(0.501603\pi\)
\(294\) 0 0
\(295\) 5.57996 9.66477i 0.324878 0.562705i
\(296\) 0 0
\(297\) 5.12941 2.96147i 0.297639 0.171842i
\(298\) 0 0
\(299\) 4.32730 6.73952i 0.250255 0.389757i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 11.5571 20.0175i 0.663938 1.14997i
\(304\) 0 0
\(305\) 1.98970 + 1.14875i 0.113930 + 0.0657774i
\(306\) 0 0
\(307\) 26.9884i 1.54031i −0.637857 0.770155i \(-0.720179\pi\)
0.637857 0.770155i \(-0.279821\pi\)
\(308\) 0 0
\(309\) −5.16652 8.94868i −0.293913 0.509072i
\(310\) 0 0
\(311\) −28.3781 −1.60918 −0.804588 0.593834i \(-0.797614\pi\)
−0.804588 + 0.593834i \(0.797614\pi\)
\(312\) 0 0
\(313\) 16.6674 0.942095 0.471047 0.882108i \(-0.343876\pi\)
0.471047 + 0.882108i \(0.343876\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.7427i 1.61435i 0.590312 + 0.807175i \(0.299005\pi\)
−0.590312 + 0.807175i \(0.700995\pi\)
\(318\) 0 0
\(319\) −2.86534 1.65430i −0.160428 0.0926233i
\(320\) 0 0
\(321\) 8.92372 15.4563i 0.498073 0.862688i
\(322\) 0 0
\(323\) 11.3519 6.55401i 0.631635 0.364675i
\(324\) 0 0
\(325\) 5.09399 + 9.87097i 0.282564 + 0.547543i
\(326\) 0 0
\(327\) 9.32377 5.38308i 0.515606 0.297685i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 22.6827 + 13.0959i 1.24675 + 0.719814i 0.970461 0.241260i \(-0.0775606\pi\)
0.276293 + 0.961073i \(0.410894\pi\)
\(332\) 0 0
\(333\) 0.229794i 0.0125927i
\(334\) 0 0
\(335\) −2.57073 4.45264i −0.140454 0.243274i
\(336\) 0 0
\(337\) 4.47831 0.243949 0.121975 0.992533i \(-0.461077\pi\)
0.121975 + 0.992533i \(0.461077\pi\)
\(338\) 0 0
\(339\) −25.5603 −1.38825
\(340\) 0 0
\(341\) −3.83353 6.63988i −0.207597 0.359569i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.66657 + 2.69424i 0.251239 + 0.145053i
\(346\) 0 0
\(347\) 13.4606 23.3144i 0.722602 1.25158i −0.237351 0.971424i \(-0.576279\pi\)
0.959953 0.280160i \(-0.0903874\pi\)
\(348\) 0 0
\(349\) −17.9560 + 10.3669i −0.961164 + 0.554928i −0.896531 0.442981i \(-0.853921\pi\)
−0.0646328 + 0.997909i \(0.520588\pi\)
\(350\) 0 0
\(351\) 8.49461 + 16.4606i 0.453409 + 0.878601i
\(352\) 0 0
\(353\) 9.78961 5.65204i 0.521049 0.300828i −0.216315 0.976324i \(-0.569404\pi\)
0.737364 + 0.675496i \(0.236070\pi\)
\(354\) 0 0
\(355\) −6.88292 + 11.9216i −0.365308 + 0.632731i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.7453i 0.936559i −0.883580 0.468279i \(-0.844874\pi\)
0.883580 0.468279i \(-0.155126\pi\)
\(360\) 0 0
\(361\) 25.6891 + 44.4948i 1.35206 + 2.34183i
\(362\) 0 0
\(363\) −16.9337 −0.888786
\(364\) 0 0
\(365\) −4.57447 −0.239439
\(366\) 0 0
\(367\) 4.78155 + 8.28189i 0.249595 + 0.432311i 0.963413 0.268020i \(-0.0863692\pi\)
−0.713819 + 0.700331i \(0.753036\pi\)
\(368\) 0 0
\(369\) 0.829101i 0.0431613i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.94176 + 10.2914i −0.307653 + 0.532870i −0.977848 0.209314i \(-0.932877\pi\)
0.670196 + 0.742184i \(0.266210\pi\)
\(374\) 0 0
\(375\) −16.9760 + 9.80108i −0.876635 + 0.506125i
\(376\) 0 0
\(377\) 5.59056 8.70697i 0.287928 0.448432i
\(378\) 0 0
\(379\) −14.9391 + 8.62512i −0.767372 + 0.443042i −0.831936 0.554871i \(-0.812768\pi\)
0.0645643 + 0.997914i \(0.479434\pi\)
\(380\) 0 0
\(381\) −7.63639 + 13.2266i −0.391224 + 0.677620i
\(382\) 0 0
\(383\) 11.2843 + 6.51499i 0.576600 + 0.332900i 0.759781 0.650179i \(-0.225306\pi\)
−0.183181 + 0.983079i \(0.558639\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.203236 0.352016i −0.0103311 0.0178940i
\(388\) 0 0
\(389\) 24.1585 1.22488 0.612442 0.790516i \(-0.290187\pi\)
0.612442 + 0.790516i \(0.290187\pi\)
\(390\) 0 0
\(391\) −3.47083 −0.175528
\(392\) 0 0
\(393\) −17.0227 29.4841i −0.858680 1.48728i
\(394\) 0 0
\(395\) 6.43932i 0.323997i
\(396\) 0 0
\(397\) −4.17021 2.40767i −0.209297 0.120838i 0.391688 0.920098i \(-0.371891\pi\)
−0.600985 + 0.799261i \(0.705225\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.94702 + 4.01086i −0.346918 + 0.200293i −0.663327 0.748330i \(-0.730856\pi\)
0.316409 + 0.948623i \(0.397523\pi\)
\(402\) 0 0
\(403\) 21.3078 10.9960i 1.06142 0.547751i
\(404\) 0 0
\(405\) −11.0302 + 6.36831i −0.548097 + 0.316444i
\(406\) 0 0
\(407\) 2.00644 3.47526i 0.0994555 0.172262i
\(408\) 0 0
\(409\) 8.63206 + 4.98372i 0.426828 + 0.246429i 0.697994 0.716103i \(-0.254076\pi\)
−0.271166 + 0.962532i \(0.587409\pi\)
\(410\) 0 0
\(411\) 5.87391i 0.289739i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.52900 0.124144
\(416\) 0 0
\(417\) −13.8550 −0.678481
\(418\) 0 0
\(419\) −14.8442 25.7109i −0.725187 1.25606i −0.958897 0.283754i \(-0.908420\pi\)
0.233710 0.972306i \(-0.424913\pi\)
\(420\) 0 0
\(421\) 13.1380i 0.640305i −0.947366 0.320152i \(-0.896266\pi\)
0.947366 0.320152i \(-0.103734\pi\)
\(422\) 0 0
\(423\) −0.423342 0.244416i −0.0205836 0.0118839i
\(424\) 0 0
\(425\) 2.40684 4.16877i 0.116749 0.202215i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.343336 + 7.27056i −0.0165764 + 0.351026i
\(430\) 0 0
\(431\) −12.4729 + 7.20126i −0.600800 + 0.346872i −0.769356 0.638820i \(-0.779423\pi\)
0.168556 + 0.985692i \(0.446090\pi\)
\(432\) 0 0
\(433\) 18.1596 31.4534i 0.872695 1.51155i 0.0134964 0.999909i \(-0.495704\pi\)
0.859198 0.511643i \(-0.170963\pi\)
\(434\) 0 0
\(435\) 6.02886 + 3.48076i 0.289062 + 0.166890i
\(436\) 0 0
\(437\) 18.6352i 0.891443i
\(438\) 0 0
\(439\) −10.2722 17.7920i −0.490266 0.849166i 0.509671 0.860369i \(-0.329767\pi\)
−0.999937 + 0.0112036i \(0.996434\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.3211 −1.20304 −0.601521 0.798857i \(-0.705439\pi\)
−0.601521 + 0.798857i \(0.705439\pi\)
\(444\) 0 0
\(445\) −1.64637 2.85160i −0.0780454 0.135179i
\(446\) 0 0
\(447\) 4.13994i 0.195812i
\(448\) 0 0
\(449\) −29.0997 16.8007i −1.37330 0.792876i −0.381959 0.924179i \(-0.624751\pi\)
−0.991342 + 0.131303i \(0.958084\pi\)
\(450\) 0 0
\(451\) −7.23926 + 12.5388i −0.340883 + 0.590427i
\(452\) 0 0
\(453\) 17.5726 10.1456i 0.825635 0.476680i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 32.9050 18.9977i 1.53923 0.888677i 0.540350 0.841441i \(-0.318292\pi\)
0.998884 0.0472361i \(-0.0150413\pi\)
\(458\) 0 0
\(459\) 4.01359 6.95174i 0.187338 0.324479i
\(460\) 0 0
\(461\) 31.4812 + 18.1757i 1.46623 + 0.846525i 0.999287 0.0377645i \(-0.0120237\pi\)
0.466938 + 0.884290i \(0.345357\pi\)
\(462\) 0 0
\(463\) 35.3400i 1.64239i −0.570649 0.821194i \(-0.693308\pi\)
0.570649 0.821194i \(-0.306692\pi\)
\(464\) 0 0
\(465\) 8.06600 + 13.9707i 0.374052 + 0.647877i
\(466\) 0 0
\(467\) 29.5717 1.36842 0.684208 0.729287i \(-0.260148\pi\)
0.684208 + 0.729287i \(0.260148\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 7.91141 + 13.7030i 0.364538 + 0.631399i
\(472\) 0 0
\(473\) 7.09820i 0.326376i
\(474\) 0 0
\(475\) 22.3825 + 12.9225i 1.02698 + 0.592927i
\(476\) 0 0
\(477\) −0.370705 + 0.642079i −0.0169734 + 0.0293988i
\(478\) 0 0
\(479\) −18.8339 + 10.8738i −0.860545 + 0.496836i −0.864195 0.503157i \(-0.832172\pi\)
0.00364974 + 0.999993i \(0.498838\pi\)
\(480\) 0 0
\(481\) 10.5603 + 6.78057i 0.481510 + 0.309167i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.22710 + 9.05361i −0.237350 + 0.411103i
\(486\) 0 0
\(487\) −26.0217 15.0236i −1.17916 0.680786i −0.223337 0.974741i \(-0.571695\pi\)
−0.955819 + 0.293955i \(0.905028\pi\)
\(488\) 0 0
\(489\) 37.3938i 1.69101i
\(490\) 0 0
\(491\) −20.0899 34.7967i −0.906643 1.57035i −0.818696 0.574227i \(-0.805303\pi\)
−0.0879471 0.996125i \(-0.528031\pi\)
\(492\) 0 0
\(493\) −4.48406 −0.201952
\(494\) 0 0
\(495\) −0.105446 −0.00473946
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 11.7400i 0.525554i 0.964857 + 0.262777i \(0.0846383\pi\)
−0.964857 + 0.262777i \(0.915362\pi\)
\(500\) 0 0
\(501\) 4.82416 + 2.78523i 0.215528 + 0.124435i
\(502\) 0 0
\(503\) −16.6965 + 28.9191i −0.744459 + 1.28944i 0.205989 + 0.978554i \(0.433959\pi\)
−0.950447 + 0.310886i \(0.899374\pi\)
\(504\) 0 0
\(505\) 15.8375 9.14376i 0.704758 0.406892i
\(506\) 0 0
\(507\) −22.6618 2.14509i −1.00644 0.0952667i
\(508\) 0 0
\(509\) 17.9983 10.3913i 0.797759 0.460586i −0.0449282 0.998990i \(-0.514306\pi\)
0.842687 + 0.538404i \(0.180973\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 37.3245 + 21.5493i 1.64792 + 0.951425i
\(514\) 0 0
\(515\) 8.17531i 0.360247i
\(516\) 0 0
\(517\) 4.26822 + 7.39278i 0.187716 + 0.325134i
\(518\) 0 0
\(519\) −9.34869 −0.410362
\(520\) 0 0
\(521\) −7.50239 −0.328686 −0.164343 0.986403i \(-0.552550\pi\)
−0.164343 + 0.986403i \(0.552550\pi\)
\(522\) 0 0
\(523\) 3.66289 + 6.34431i 0.160167 + 0.277417i 0.934928 0.354836i \(-0.115463\pi\)
−0.774762 + 0.632254i \(0.782130\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.99882 5.19547i −0.391995 0.226318i
\(528\) 0 0
\(529\) 9.03282 15.6453i 0.392731 0.680230i
\(530\) 0 0
\(531\) 0.460578 0.265915i 0.0199874 0.0115397i
\(532\) 0 0
\(533\) −38.1018 24.4644i −1.65037 1.05967i
\(534\) 0 0
\(535\) 12.2288 7.06028i 0.528696 0.305243i
\(536\) 0 0
\(537\) −8.61983 + 14.9300i −0.371973 + 0.644277i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.6924i 0.502698i 0.967897 + 0.251349i \(0.0808741\pi\)
−0.967897 + 0.251349i \(0.919126\pi\)
\(542\) 0 0
\(543\) −13.2422 22.9362i −0.568278 0.984287i
\(544\) 0 0
\(545\) 8.51799 0.364871
\(546\) 0 0
\(547\) 5.10513 0.218280 0.109140 0.994026i \(-0.465190\pi\)
0.109140 + 0.994026i \(0.465190\pi\)
\(548\) 0 0
\(549\) 0.0547442 + 0.0948197i 0.00233643 + 0.00404681i
\(550\) 0 0
\(551\) 24.0753i 1.02564i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.22168 + 7.31216i −0.179200 + 0.310384i
\(556\) 0 0
\(557\) 10.8544 6.26679i 0.459916 0.265532i −0.252093 0.967703i \(-0.581119\pi\)
0.712009 + 0.702171i \(0.247786\pi\)
\(558\) 0 0
\(559\) −22.1740 1.04712i −0.937860 0.0442884i
\(560\) 0 0
\(561\) 2.73167 1.57713i 0.115331 0.0665865i
\(562\) 0 0
\(563\) −1.95315 + 3.38296i −0.0823155 + 0.142575i −0.904244 0.427016i \(-0.859565\pi\)
0.821929 + 0.569590i \(0.192898\pi\)
\(564\) 0 0
\(565\) −17.5135 10.1114i −0.736799 0.425391i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.0664 39.9523i −0.966996 1.67489i −0.704155 0.710046i \(-0.748674\pi\)
−0.262841 0.964839i \(-0.584659\pi\)
\(570\) 0 0
\(571\) −30.1160 −1.26031 −0.630157 0.776467i \(-0.717010\pi\)
−0.630157 + 0.776467i \(0.717010\pi\)
\(572\) 0 0
\(573\) 38.8372 1.62245
\(574\) 0 0
\(575\) −3.42172 5.92660i −0.142696 0.247156i
\(576\) 0 0
\(577\) 25.6300i 1.06699i 0.845803 + 0.533496i \(0.179122\pi\)
−0.845803 + 0.533496i \(0.820878\pi\)
\(578\) 0 0
\(579\) −10.5722 6.10388i −0.439367 0.253669i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 11.2126 6.47358i 0.464377 0.268108i
\(584\) 0 0
\(585\) 0.0155553 0.329403i 0.000643133 0.0136191i
\(586\) 0 0
\(587\) −11.4147 + 6.59025i −0.471133 + 0.272009i −0.716714 0.697367i \(-0.754355\pi\)
0.245581 + 0.969376i \(0.421021\pi\)
\(588\) 0 0
\(589\) 27.8950 48.3155i 1.14939 1.99081i
\(590\) 0 0
\(591\) 29.9237 + 17.2765i 1.23090 + 0.710659i
\(592\) 0 0
\(593\) 6.53704i 0.268444i 0.990951 + 0.134222i \(0.0428536\pi\)
−0.990951 + 0.134222i \(0.957146\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.1706 0.989238
\(598\) 0 0
\(599\) 12.4244 0.507649 0.253824 0.967250i \(-0.418311\pi\)
0.253824 + 0.967250i \(0.418311\pi\)
\(600\) 0 0
\(601\) −9.27019 16.0564i −0.378139 0.654956i 0.612653 0.790352i \(-0.290102\pi\)
−0.990791 + 0.135397i \(0.956769\pi\)
\(602\) 0 0
\(603\) 0.245018i 0.00997792i
\(604\) 0 0
\(605\) −11.6027 6.69880i −0.471715 0.272345i
\(606\) 0 0
\(607\) 7.87226 13.6351i 0.319525 0.553434i −0.660864 0.750506i \(-0.729810\pi\)
0.980389 + 0.197072i \(0.0631433\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −23.7239 + 12.2429i −0.959766 + 0.495294i
\(612\) 0 0
\(613\) 16.6796 9.62996i 0.673682 0.388950i −0.123788 0.992309i \(-0.539504\pi\)
0.797470 + 0.603358i \(0.206171\pi\)
\(614\) 0 0
\(615\) 15.2319 26.3824i 0.614208 1.06384i
\(616\) 0 0
\(617\) 37.5872 + 21.7010i 1.51320 + 0.873649i 0.999881 + 0.0154532i \(0.00491911\pi\)
0.513323 + 0.858195i \(0.328414\pi\)
\(618\) 0 0
\(619\) 13.3880i 0.538109i 0.963125 + 0.269054i \(0.0867111\pi\)
−0.963125 + 0.269054i \(0.913289\pi\)
\(620\) 0 0
\(621\) −5.70598 9.88305i −0.228973 0.396593i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.105015 −0.00420059
\(626\) 0 0
\(627\) 8.46776 + 14.6666i 0.338170 + 0.585727i
\(628\) 0 0
\(629\) 5.43854i 0.216849i
\(630\) 0 0
\(631\) 13.1568 + 7.59606i 0.523762 + 0.302394i 0.738473 0.674283i \(-0.235547\pi\)
−0.214710 + 0.976678i \(0.568881\pi\)
\(632\) 0 0
\(633\) −8.29484 + 14.3671i −0.329690 + 0.571040i
\(634\) 0 0
\(635\) −10.4646 + 6.04177i −0.415277 + 0.239760i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.568127 + 0.328008i −0.0224747 + 0.0129758i
\(640\) 0 0
\(641\) −17.9671 + 31.1199i −0.709658 + 1.22916i 0.255326 + 0.966855i \(0.417817\pi\)
−0.964984 + 0.262309i \(0.915516\pi\)
\(642\) 0 0
\(643\) −7.72476 4.45989i −0.304635 0.175881i 0.339888 0.940466i \(-0.389611\pi\)
−0.644523 + 0.764585i \(0.722944\pi\)
\(644\) 0 0
\(645\) 14.9351i 0.588068i
\(646\) 0 0
\(647\) −4.88360 8.45865i −0.191994 0.332544i 0.753917 0.656970i \(-0.228162\pi\)
−0.945911 + 0.324426i \(0.894829\pi\)
\(648\) 0 0
\(649\) −9.28730 −0.364558
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.26858 14.3216i −0.323575 0.560448i 0.657648 0.753325i \(-0.271551\pi\)
−0.981223 + 0.192877i \(0.938218\pi\)
\(654\) 0 0
\(655\) 26.9361i 1.05248i
\(656\) 0 0
\(657\) −0.188792 0.108999i −0.00736547 0.00425245i
\(658\) 0 0
\(659\) −7.82010 + 13.5448i −0.304628 + 0.527631i −0.977178 0.212420i \(-0.931865\pi\)
0.672550 + 0.740051i \(0.265199\pi\)
\(660\) 0 0
\(661\) 21.9320 12.6624i 0.853056 0.492512i −0.00862494 0.999963i \(-0.502745\pi\)
0.861681 + 0.507451i \(0.169412\pi\)
\(662\) 0 0
\(663\) 4.52381 + 8.76610i 0.175690 + 0.340447i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.18742 + 5.52077i −0.123417 + 0.213765i
\(668\) 0 0
\(669\) −22.1213 12.7717i −0.855259 0.493784i
\(670\) 0 0
\(671\) 1.91199i 0.0738114i
\(672\) 0 0
\(673\) −4.08919 7.08268i −0.157627 0.273017i 0.776386 0.630258i \(-0.217051\pi\)
−0.934012 + 0.357241i \(0.883718\pi\)
\(674\) 0 0
\(675\) 15.8272 0.609189
\(676\) 0 0
\(677\) −44.9616 −1.72801 −0.864007 0.503480i \(-0.832053\pi\)
−0.864007 + 0.503480i \(0.832053\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 12.5434i 0.480663i
\(682\) 0 0
\(683\) 17.7090 + 10.2243i 0.677616 + 0.391222i 0.798956 0.601389i \(-0.205386\pi\)
−0.121340 + 0.992611i \(0.538719\pi\)
\(684\) 0 0
\(685\) −2.32367 + 4.02471i −0.0887827 + 0.153776i
\(686\) 0 0
\(687\) −18.6526 + 10.7691i −0.711643 + 0.410867i
\(688\) 0 0
\(689\) 18.5687 + 35.9818i 0.707411 + 1.37080i
\(690\) 0 0
\(691\) 29.1943 16.8554i 1.11061 0.641208i 0.171619 0.985163i \(-0.445100\pi\)
0.938986 + 0.343955i \(0.111767\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.49320 5.48090i −0.360098 0.207902i
\(696\) 0 0
\(697\) 19.6223i 0.743248i
\(698\) 0 0
\(699\) −16.4627 28.5142i −0.622676 1.07851i
\(700\) 0 0
\(701\) −29.6172 −1.11862 −0.559312 0.828957i \(-0.688935\pi\)
−0.559312 + 0.828957i \(0.688935\pi\)
\(702\) 0 0
\(703\) 29.2000 1.10130
\(704\) 0 0
\(705\) −8.98062 15.5549i −0.338230 0.585831i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.59653 + 4.96321i 0.322849 + 0.186397i 0.652662 0.757649i \(-0.273652\pi\)
−0.329813 + 0.944046i \(0.606986\pi\)
\(710\) 0 0
\(711\) −0.153434 + 0.265756i −0.00575423 + 0.00996661i
\(712\) 0 0
\(713\) −12.7933 + 7.38623i −0.479114 + 0.276616i
\(714\) 0 0
\(715\) −3.11141 + 4.84584i −0.116360 + 0.181224i
\(716\) 0 0
\(717\) 2.43074 1.40339i 0.0907778 0.0524106i
\(718\) 0 0
\(719\) 10.3425 17.9138i 0.385711 0.668071i −0.606157 0.795345i \(-0.707290\pi\)
0.991868 + 0.127274i \(0.0406229\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 32.1584i 1.19598i
\(724\) 0 0
\(725\) −4.42061 7.65673i −0.164177 0.284364i
\(726\) 0 0
\(727\) −4.83449 −0.179301 −0.0896506 0.995973i \(-0.528575\pi\)
−0.0896506 + 0.995973i \(0.528575\pi\)
\(728\) 0 0
\(729\) 26.3800 0.977035
\(730\) 0 0
\(731\) 4.80999 + 8.33115i 0.177904 + 0.308139i
\(732\) 0 0
\(733\) 12.7037i 0.469223i 0.972089 + 0.234612i \(0.0753819\pi\)
−0.972089 + 0.234612i \(0.924618\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.13937 + 3.70549i −0.0788046 + 0.136494i
\(738\) 0 0
\(739\) −2.23852 + 1.29241i −0.0823451 + 0.0475420i −0.540607 0.841275i \(-0.681805\pi\)
0.458262 + 0.888817i \(0.348472\pi\)
\(740\) 0 0
\(741\) −47.0660 + 24.2888i −1.72901 + 0.892270i
\(742\) 0 0
\(743\) 9.98318 5.76379i 0.366247 0.211453i −0.305570 0.952169i \(-0.598847\pi\)
0.671818 + 0.740717i \(0.265514\pi\)
\(744\) 0 0
\(745\) −1.63772 + 2.83662i −0.0600015 + 0.103926i
\(746\) 0 0
\(747\) 0.104374 + 0.0602602i 0.00381884 + 0.00220481i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −3.50269 6.06684i −0.127815 0.221382i 0.795015 0.606590i \(-0.207463\pi\)
−0.922830 + 0.385208i \(0.874130\pi\)
\(752\) 0 0
\(753\) 25.1524 0.916605
\(754\) 0 0
\(755\) 16.0540 0.584264
\(756\) 0 0
\(757\) 8.60091 + 14.8972i 0.312605 + 0.541449i 0.978926 0.204217i \(-0.0654649\pi\)
−0.666320 + 0.745666i \(0.732132\pi\)
\(758\) 0 0
\(759\) 4.48431i 0.162770i
\(760\) 0 0
\(761\) −29.9238 17.2765i −1.08474 0.626274i −0.152567 0.988293i \(-0.548754\pi\)
−0.932170 + 0.362020i \(0.882087\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.123762 + 0.0714541i −0.00447463 + 0.00258343i
\(766\) 0 0
\(767\) 1.37005 29.0125i 0.0494697 1.04758i
\(768\) 0 0
\(769\) −9.48253 + 5.47474i −0.341949 + 0.197424i −0.661133 0.750268i \(-0.729924\pi\)
0.319185 + 0.947693i \(0.396591\pi\)
\(770\) 0 0
\(771\) 15.2037 26.3335i 0.547547 0.948379i
\(772\) 0 0
\(773\) −19.0556 11.0018i −0.685384 0.395707i 0.116496 0.993191i \(-0.462834\pi\)
−0.801880 + 0.597484i \(0.796167\pi\)
\(774\) 0 0
\(775\) 20.4878i 0.735945i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −105.354 −3.77470
\(780\) 0 0
\(781\) 11.4560 0.409926
\(782\) 0 0
\(783\) −7.37171 12.7682i −0.263443 0.456297i
\(784\) 0 0
\(785\) 12.5187i 0.446812i
\(786\) 0 0
\(787\) −34.0548 19.6616i −1.21392 0.700859i −0.250312 0.968165i \(-0.580533\pi\)
−0.963612 + 0.267306i \(0.913866\pi\)
\(788\) 0 0
\(789\) 14.6576 25.3877i 0.521824 0.903826i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.97284 + 0.282054i 0.212102 + 0.0100160i
\(794\) 0 0
\(795\) −23.5920 + 13.6208i −0.836721 + 0.483081i
\(796\) 0 0
\(797\) 27.2620 47.2192i 0.965669 1.67259i 0.257863 0.966181i \(-0.416982\pi\)
0.707806 0.706407i \(-0.249685\pi\)
\(798\) 0 0
\(799\) 10.0192 + 5.78460i 0.354454 + 0.204644i
\(800\) 0 0
\(801\) 0.156917i 0.00554438i
\(802\) 0 0
\(803\) 1.90344 + 3.29685i 0.0671709 + 0.116343i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 43.4100 1.52810
\(808\) 0 0
\(809\) −1.56318 2.70751i −0.0549586 0.0951911i 0.837237 0.546840i \(-0.184169\pi\)
−0.892196 + 0.451649i \(0.850836\pi\)
\(810\) 0 0
\(811\) 4.48741i 0.157574i −0.996891 0.0787872i \(-0.974895\pi\)
0.996891 0.0787872i \(-0.0251048\pi\)
\(812\) 0 0
\(813\) 30.6796 + 17.7129i 1.07598 + 0.621218i
\(814\) 0 0
\(815\) 14.7926 25.6216i 0.518164 0.897486i
\(816\) 0 0
\(817\) −44.7307 + 25.8253i −1.56493 + 0.903512i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.3797 + 12.3436i −0.746158 + 0.430795i −0.824304 0.566147i \(-0.808433\pi\)
0.0781459 + 0.996942i \(0.475100\pi\)
\(822\) 0 0
\(823\) −5.50672 + 9.53791i −0.191952 + 0.332471i −0.945897 0.324467i \(-0.894815\pi\)
0.753945 + 0.656938i \(0.228148\pi\)
\(824\) 0 0
\(825\) 5.38604 + 3.10963i 0.187518 + 0.108263i
\(826\) 0 0
\(827\) 23.8575i 0.829605i −0.909911 0.414803i \(-0.863851\pi\)
0.909911 0.414803i \(-0.136149\pi\)
\(828\) 0 0
\(829\) −10.2157 17.6941i −0.354806 0.614541i 0.632279 0.774741i \(-0.282120\pi\)
−0.987085 + 0.160199i \(0.948786\pi\)
\(830\) 0 0
\(831\) 19.3544 0.671395
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.20362 + 3.81679i 0.0762595 + 0.132085i
\(836\) 0 0
\(837\) 34.1650i 1.18092i
\(838\) 0 0
\(839\) −21.0080 12.1290i −0.725276 0.418738i 0.0914153 0.995813i \(-0.470861\pi\)
−0.816692 + 0.577074i \(0.804194\pi\)
\(840\) 0 0
\(841\) 10.3821 17.9823i 0.358003 0.620080i
\(842\) 0 0
\(843\) −4.83668 + 2.79246i −0.166584 + 0.0961775i
\(844\) 0 0
\(845\) −14.6789 10.4346i −0.504969 0.358960i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 15.6974 27.1888i 0.538734 0.933115i
\(850\) 0 0
\(851\) −6.69592 3.86589i −0.229533 0.132521i
\(852\) 0 0
\(853\) 51.8470i 1.77521i −0.460608 0.887604i \(-0.652369\pi\)
0.460608 0.887604i \(-0.347631\pi\)
\(854\) 0 0
\(855\) −0.383643 0.664490i −0.0131203 0.0227251i
\(856\) 0 0
\(857\) 26.9054 0.919071 0.459536 0.888159i \(-0.348016\pi\)
0.459536 + 0.888159i \(0.348016\pi\)
\(858\) 0 0
\(859\) −33.4509 −1.14133 −0.570665 0.821183i \(-0.693315\pi\)
−0.570665 + 0.821183i \(0.693315\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.94352i 0.202320i 0.994870 + 0.101160i \(0.0322554\pi\)
−0.994870 + 0.101160i \(0.967745\pi\)
\(864\) 0 0
\(865\) −6.40557 3.69825i −0.217796 0.125744i
\(866\) 0 0
\(867\) −12.7461 + 22.0769i −0.432881 + 0.749771i
\(868\) 0 0
\(869\) 4.64087 2.67941i 0.157431 0.0908926i
\(870\) 0 0
\(871\) −11.2600 7.22978i −0.381529 0.244972i
\(872\) 0 0
\(873\) −0.431453 + 0.249099i −0.0146025 + 0.00843074i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 43.0073 + 24.8303i 1.45225 + 0.838458i 0.998609 0.0527255i \(-0.0167908\pi\)
0.453643 + 0.891184i \(0.350124\pi\)
\(878\) 0 0
\(879\) 29.7105i 1.00211i
\(880\) 0 0
\(881\) 10.6452 + 18.4381i 0.358647 + 0.621195i 0.987735 0.156139i \(-0.0499049\pi\)
−0.629088 + 0.777334i \(0.716572\pi\)
\(882\) 0 0
\(883\) −32.8053 −1.10399 −0.551993 0.833848i \(-0.686133\pi\)
−0.551993 + 0.833848i \(0.686133\pi\)
\(884\) 0 0
\(885\) 19.5411 0.656866
\(886\) 0 0
\(887\) −8.61790 14.9266i −0.289361 0.501187i 0.684297 0.729204i \(-0.260109\pi\)
−0.973657 + 0.228016i \(0.926776\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.17938 + 5.29972i 0.307521 + 0.177547i
\(892\) 0 0
\(893\) −31.0580 + 53.7941i −1.03932 + 1.80015i
\(894\) 0 0
\(895\) −11.8123 + 6.81985i −0.394843 + 0.227963i
\(896\) 0 0
\(897\) 14.0085 + 0.661520i 0.467730 + 0.0220875i
\(898\) 0 0
\(899\) −16.5280 + 9.54247i −0.551241 + 0.318259i
\(900\) 0 0
\(901\) 8.77345 15.1961i 0.292286 0.506254i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.9540i 0.696535i
\(906\) 0 0
\(907\) −17.3178 29.9953i −0.575028 0.995978i −0.996039 0.0889223i \(-0.971658\pi\)
0.421010 0.907056i \(-0.361676\pi\)
\(908\) 0 0
\(909\) 0.871499 0.0289058
\(910\) 0 0
\(911\) −7.85153 −0.260133 −0.130066 0.991505i \(-0.541519\pi\)
−0.130066 + 0.991505i \(0.541519\pi\)
\(912\) 0 0
\(913\) −1.05232 1.82267i −0.0348267 0.0603216i
\(914\) 0 0
\(915\) 4.02294i 0.132994i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 18.3659 31.8106i 0.605834 1.04934i −0.386085 0.922463i \(-0.626173\pi\)
0.991919 0.126872i \(-0.0404937\pi\)
\(920\) 0 0
\(921\) 40.9256 23.6284i 1.34854 0.778583i
\(922\) 0 0
\(923\) −1.68997 + 35.7872i −0.0556260 + 1.17795i
\(924\) 0 0
\(925\) 9.28654 5.36159i 0.305339 0.176288i
\(926\) 0 0
\(927\) 0.194799 0.337401i 0.00639803 0.0110817i
\(928\) 0 0
\(929\) −28.6355 16.5327i −0.939501 0.542421i −0.0496975 0.998764i \(-0.515826\pi\)
−0.889804 + 0.456343i \(0.849159\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −24.8451 43.0330i −0.813393 1.40884i
\(934\) 0 0
\(935\) 2.49559 0.0816146
\(936\) 0 0
\(937\) 45.8626 1.49826 0.749132 0.662421i \(-0.230471\pi\)
0.749132 + 0.662421i \(0.230471\pi\)
\(938\) 0 0
\(939\) 14.5923 + 25.2746i 0.476202 + 0.824806i
\(940\) 0 0
\(941\) 5.77729i 0.188334i −0.995556 0.0941671i \(-0.969981\pi\)
0.995556 0.0941671i \(-0.0300188\pi\)
\(942\) 0 0
\(943\) 24.1590 + 13.9482i 0.786724 + 0.454215i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.0487521 + 0.0281471i −0.00158423 + 0.000914656i −0.500792 0.865568i \(-0.666958\pi\)
0.499208 + 0.866482i \(0.333624\pi\)
\(948\) 0 0
\(949\) −10.5798 + 5.45979i −0.343435 + 0.177232i
\(950\) 0 0
\(951\) −43.5858 + 25.1643i −1.41337 + 0.816008i
\(952\) 0 0
\(953\) −20.0778 + 34.7758i −0.650385 + 1.12650i 0.332645 + 0.943052i \(0.392059\pi\)
−0.983030 + 0.183447i \(0.941274\pi\)
\(954\) 0 0
\(955\) 26.6106 + 15.3636i 0.861099 + 0.497156i
\(956\) 0 0
\(957\) 5.79339i 0.187274i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.2257 −0.426634
\(962\) 0 0
\(963\) 0.672920 0.0216846
\(964\) 0 0
\(965\) −4.82928 8.36456i −0.155460 0.269265i
\(966\) 0 0
\(967\) 32.3647i 1.04078i 0.853929 + 0.520390i \(0.174213\pi\)
−0.853929 + 0.520390i \(0.825787\pi\)
\(968\) 0 0
\(969\) 19.8772 + 11.4761i 0.638547 + 0.368665i
\(970\) 0 0
\(971\) −15.3459 + 26.5799i −0.492473 + 0.852989i −0.999962 0.00866935i \(-0.997240\pi\)
0.507489 + 0.861658i \(0.330574\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −10.5087 + 16.3667i −0.336547 + 0.524153i
\(976\) 0 0
\(977\) 4.87565 2.81496i 0.155986 0.0900585i −0.419975 0.907536i \(-0.637961\pi\)
0.575961 + 0.817477i \(0.304628\pi\)
\(978\) 0 0
\(979\) −1.37011 + 2.37310i −0.0437890 + 0.0758447i
\(980\) 0 0
\(981\) 0.351544 + 0.202964i 0.0112239 + 0.00648014i
\(982\) 0 0
\(983\) 6.66363i 0.212537i −0.994337 0.106268i \(-0.966110\pi\)
0.994337 0.106268i \(-0.0338903\pi\)
\(984\) 0 0
\(985\) 13.6688 + 23.6751i 0.435525 + 0.754351i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.6764 0.434884
\(990\) 0 0
\(991\) 26.4156 + 45.7532i 0.839120 + 1.45340i 0.890631 + 0.454726i \(0.150263\pi\)
−0.0515115 + 0.998672i \(0.516404\pi\)
\(992\) 0 0
\(993\) 45.8618i 1.45538i
\(994\) 0 0
\(995\) 16.5613 + 9.56167i 0.525029 + 0.303125i
\(996\) 0 0
\(997\) −7.31833 + 12.6757i −0.231774 + 0.401444i −0.958330 0.285663i \(-0.907786\pi\)
0.726556 + 0.687107i \(0.241120\pi\)
\(998\) 0 0
\(999\) 15.4860 8.94085i 0.489955 0.282876i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.u.c.1765.6 16
7.2 even 3 2548.2.bq.c.361.3 16
7.3 odd 6 2548.2.bb.d.569.3 16
7.4 even 3 2548.2.bb.c.569.6 16
7.5 odd 6 2548.2.bq.e.361.6 16
7.6 odd 2 364.2.u.a.309.3 yes 16
13.4 even 6 inner 2548.2.u.c.589.6 16
21.20 even 2 3276.2.cf.c.1765.6 16
28.27 even 2 1456.2.cc.f.673.6 16
91.4 even 6 2548.2.bq.c.1941.3 16
91.17 odd 6 2548.2.bq.e.1941.6 16
91.30 even 6 2548.2.bb.c.1733.6 16
91.41 even 12 4732.2.a.t.1.6 8
91.55 odd 6 4732.2.g.k.337.11 16
91.62 odd 6 4732.2.g.k.337.12 16
91.69 odd 6 364.2.u.a.225.3 16
91.76 even 12 4732.2.a.s.1.6 8
91.82 odd 6 2548.2.bb.d.1733.3 16
273.251 even 6 3276.2.cf.c.2773.3 16
364.251 even 6 1456.2.cc.f.225.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.3 16 91.69 odd 6
364.2.u.a.309.3 yes 16 7.6 odd 2
1456.2.cc.f.225.6 16 364.251 even 6
1456.2.cc.f.673.6 16 28.27 even 2
2548.2.u.c.589.6 16 13.4 even 6 inner
2548.2.u.c.1765.6 16 1.1 even 1 trivial
2548.2.bb.c.569.6 16 7.4 even 3
2548.2.bb.c.1733.6 16 91.30 even 6
2548.2.bb.d.569.3 16 7.3 odd 6
2548.2.bb.d.1733.3 16 91.82 odd 6
2548.2.bq.c.361.3 16 7.2 even 3
2548.2.bq.c.1941.3 16 91.4 even 6
2548.2.bq.e.361.6 16 7.5 odd 6
2548.2.bq.e.1941.6 16 91.17 odd 6
3276.2.cf.c.1765.6 16 21.20 even 2
3276.2.cf.c.2773.3 16 273.251 even 6
4732.2.a.s.1.6 8 91.76 even 12
4732.2.a.t.1.6 8 91.41 even 12
4732.2.g.k.337.11 16 91.55 odd 6
4732.2.g.k.337.12 16 91.62 odd 6