Properties

Label 4732.2.a.s.1.6
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 19x^{6} - 2x^{5} + 113x^{4} + 40x^{3} - 232x^{2} - 136x + 52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.75101\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.75101 q^{3} +1.38536 q^{5} -1.00000 q^{7} +0.0660200 q^{9} +1.15290 q^{11} +2.42578 q^{15} -1.56249 q^{17} -8.38917 q^{19} -1.75101 q^{21} -2.22134 q^{23} -3.08077 q^{25} -5.13741 q^{27} +2.86981 q^{29} -6.65024 q^{31} +2.01874 q^{33} -1.38536 q^{35} +3.48068 q^{37} -12.5583 q^{41} -6.15682 q^{43} +0.0914616 q^{45} -7.40432 q^{47} +1.00000 q^{49} -2.73593 q^{51} +11.2301 q^{53} +1.59719 q^{55} -14.6895 q^{57} -8.05559 q^{59} +1.65841 q^{61} -0.0660200 q^{63} +3.71128 q^{67} -3.88958 q^{69} +9.93663 q^{71} -3.30200 q^{73} -5.39444 q^{75} -1.15290 q^{77} +4.64811 q^{79} -9.19370 q^{81} -1.82551 q^{83} -2.16462 q^{85} +5.02506 q^{87} +2.37681 q^{89} -11.6446 q^{93} -11.6220 q^{95} -7.54618 q^{97} +0.0761145 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} - 8 q^{7} + 14 q^{9} - 12 q^{11} - 12 q^{15} + 2 q^{17} - 6 q^{19} + 22 q^{25} - 6 q^{27} + 22 q^{29} - 14 q^{31} + 28 q^{33} + 6 q^{35} - 12 q^{37} - 4 q^{41} + 6 q^{43} - 20 q^{45} - 42 q^{47}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.75101 1.01094 0.505472 0.862843i \(-0.331318\pi\)
0.505472 + 0.862843i \(0.331318\pi\)
\(4\) 0 0
\(5\) 1.38536 0.619553 0.309777 0.950809i \(-0.399746\pi\)
0.309777 + 0.950809i \(0.399746\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0.0660200 0.0220067
\(10\) 0 0
\(11\) 1.15290 0.347613 0.173806 0.984780i \(-0.444393\pi\)
0.173806 + 0.984780i \(0.444393\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.42578 0.626333
\(16\) 0 0
\(17\) −1.56249 −0.378960 −0.189480 0.981885i \(-0.560680\pi\)
−0.189480 + 0.981885i \(0.560680\pi\)
\(18\) 0 0
\(19\) −8.38917 −1.92461 −0.962303 0.271978i \(-0.912322\pi\)
−0.962303 + 0.271978i \(0.912322\pi\)
\(20\) 0 0
\(21\) −1.75101 −0.382101
\(22\) 0 0
\(23\) −2.22134 −0.463182 −0.231591 0.972813i \(-0.574393\pi\)
−0.231591 + 0.972813i \(0.574393\pi\)
\(24\) 0 0
\(25\) −3.08077 −0.616154
\(26\) 0 0
\(27\) −5.13741 −0.988696
\(28\) 0 0
\(29\) 2.86981 0.532911 0.266455 0.963847i \(-0.414148\pi\)
0.266455 + 0.963847i \(0.414148\pi\)
\(30\) 0 0
\(31\) −6.65024 −1.19442 −0.597209 0.802086i \(-0.703724\pi\)
−0.597209 + 0.802086i \(0.703724\pi\)
\(32\) 0 0
\(33\) 2.01874 0.351417
\(34\) 0 0
\(35\) −1.38536 −0.234169
\(36\) 0 0
\(37\) 3.48068 0.572220 0.286110 0.958197i \(-0.407638\pi\)
0.286110 + 0.958197i \(0.407638\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.5583 −1.96128 −0.980641 0.195814i \(-0.937265\pi\)
−0.980641 + 0.195814i \(0.937265\pi\)
\(42\) 0 0
\(43\) −6.15682 −0.938906 −0.469453 0.882958i \(-0.655549\pi\)
−0.469453 + 0.882958i \(0.655549\pi\)
\(44\) 0 0
\(45\) 0.0914616 0.0136343
\(46\) 0 0
\(47\) −7.40432 −1.08003 −0.540015 0.841655i \(-0.681582\pi\)
−0.540015 + 0.841655i \(0.681582\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.73593 −0.383107
\(52\) 0 0
\(53\) 11.2301 1.54257 0.771285 0.636490i \(-0.219614\pi\)
0.771285 + 0.636490i \(0.219614\pi\)
\(54\) 0 0
\(55\) 1.59719 0.215365
\(56\) 0 0
\(57\) −14.6895 −1.94567
\(58\) 0 0
\(59\) −8.05559 −1.04875 −0.524374 0.851488i \(-0.675701\pi\)
−0.524374 + 0.851488i \(0.675701\pi\)
\(60\) 0 0
\(61\) 1.65841 0.212338 0.106169 0.994348i \(-0.466142\pi\)
0.106169 + 0.994348i \(0.466142\pi\)
\(62\) 0 0
\(63\) −0.0660200 −0.00831774
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.71128 0.453405 0.226702 0.973964i \(-0.427206\pi\)
0.226702 + 0.973964i \(0.427206\pi\)
\(68\) 0 0
\(69\) −3.88958 −0.468251
\(70\) 0 0
\(71\) 9.93663 1.17926 0.589631 0.807673i \(-0.299273\pi\)
0.589631 + 0.807673i \(0.299273\pi\)
\(72\) 0 0
\(73\) −3.30200 −0.386470 −0.193235 0.981153i \(-0.561898\pi\)
−0.193235 + 0.981153i \(0.561898\pi\)
\(74\) 0 0
\(75\) −5.39444 −0.622897
\(76\) 0 0
\(77\) −1.15290 −0.131385
\(78\) 0 0
\(79\) 4.64811 0.522953 0.261477 0.965210i \(-0.415791\pi\)
0.261477 + 0.965210i \(0.415791\pi\)
\(80\) 0 0
\(81\) −9.19370 −1.02152
\(82\) 0 0
\(83\) −1.82551 −0.200376 −0.100188 0.994969i \(-0.531944\pi\)
−0.100188 + 0.994969i \(0.531944\pi\)
\(84\) 0 0
\(85\) −2.16462 −0.234786
\(86\) 0 0
\(87\) 5.02506 0.538743
\(88\) 0 0
\(89\) 2.37681 0.251941 0.125970 0.992034i \(-0.459796\pi\)
0.125970 + 0.992034i \(0.459796\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −11.6446 −1.20749
\(94\) 0 0
\(95\) −11.6220 −1.19240
\(96\) 0 0
\(97\) −7.54618 −0.766199 −0.383099 0.923707i \(-0.625143\pi\)
−0.383099 + 0.923707i \(0.625143\pi\)
\(98\) 0 0
\(99\) 0.0761145 0.00764980
\(100\) 0 0
\(101\) 13.2005 1.31350 0.656751 0.754108i \(-0.271930\pi\)
0.656751 + 0.754108i \(0.271930\pi\)
\(102\) 0 0
\(103\) −5.90120 −0.581463 −0.290731 0.956805i \(-0.593899\pi\)
−0.290731 + 0.956805i \(0.593899\pi\)
\(104\) 0 0
\(105\) −2.42578 −0.236732
\(106\) 0 0
\(107\) 10.1927 0.985363 0.492682 0.870210i \(-0.336017\pi\)
0.492682 + 0.870210i \(0.336017\pi\)
\(108\) 0 0
\(109\) 6.14856 0.588925 0.294463 0.955663i \(-0.404859\pi\)
0.294463 + 0.955663i \(0.404859\pi\)
\(110\) 0 0
\(111\) 6.09469 0.578482
\(112\) 0 0
\(113\) 14.5975 1.37322 0.686609 0.727027i \(-0.259098\pi\)
0.686609 + 0.727027i \(0.259098\pi\)
\(114\) 0 0
\(115\) −3.07737 −0.286966
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.56249 0.143233
\(120\) 0 0
\(121\) −9.67082 −0.879165
\(122\) 0 0
\(123\) −21.9897 −1.98275
\(124\) 0 0
\(125\) −11.1948 −1.00129
\(126\) 0 0
\(127\) 8.72229 0.773978 0.386989 0.922084i \(-0.373515\pi\)
0.386989 + 0.922084i \(0.373515\pi\)
\(128\) 0 0
\(129\) −10.7806 −0.949180
\(130\) 0 0
\(131\) 19.4433 1.69877 0.849385 0.527773i \(-0.176973\pi\)
0.849385 + 0.527773i \(0.176973\pi\)
\(132\) 0 0
\(133\) 8.38917 0.727433
\(134\) 0 0
\(135\) −7.11718 −0.612550
\(136\) 0 0
\(137\) −3.35460 −0.286602 −0.143301 0.989679i \(-0.545772\pi\)
−0.143301 + 0.989679i \(0.545772\pi\)
\(138\) 0 0
\(139\) −7.91259 −0.671137 −0.335568 0.942016i \(-0.608928\pi\)
−0.335568 + 0.942016i \(0.608928\pi\)
\(140\) 0 0
\(141\) −12.9650 −1.09185
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.97573 0.330167
\(146\) 0 0
\(147\) 1.75101 0.144420
\(148\) 0 0
\(149\) 2.36432 0.193693 0.0968464 0.995299i \(-0.469124\pi\)
0.0968464 + 0.995299i \(0.469124\pi\)
\(150\) 0 0
\(151\) −11.5883 −0.943041 −0.471520 0.881855i \(-0.656295\pi\)
−0.471520 + 0.881855i \(0.656295\pi\)
\(152\) 0 0
\(153\) −0.103156 −0.00833965
\(154\) 0 0
\(155\) −9.21299 −0.740005
\(156\) 0 0
\(157\) −9.03642 −0.721184 −0.360592 0.932724i \(-0.617425\pi\)
−0.360592 + 0.932724i \(0.617425\pi\)
\(158\) 0 0
\(159\) 19.6639 1.55945
\(160\) 0 0
\(161\) 2.22134 0.175066
\(162\) 0 0
\(163\) 21.3556 1.67270 0.836351 0.548195i \(-0.184685\pi\)
0.836351 + 0.548195i \(0.184685\pi\)
\(164\) 0 0
\(165\) 2.79668 0.217721
\(166\) 0 0
\(167\) −3.18129 −0.246176 −0.123088 0.992396i \(-0.539280\pi\)
−0.123088 + 0.992396i \(0.539280\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −0.553853 −0.0423542
\(172\) 0 0
\(173\) 5.33904 0.405920 0.202960 0.979187i \(-0.434944\pi\)
0.202960 + 0.979187i \(0.434944\pi\)
\(174\) 0 0
\(175\) 3.08077 0.232884
\(176\) 0 0
\(177\) −14.1054 −1.06023
\(178\) 0 0
\(179\) 9.84558 0.735893 0.367947 0.929847i \(-0.380061\pi\)
0.367947 + 0.929847i \(0.380061\pi\)
\(180\) 0 0
\(181\) −15.1253 −1.12425 −0.562127 0.827051i \(-0.690017\pi\)
−0.562127 + 0.827051i \(0.690017\pi\)
\(182\) 0 0
\(183\) 2.90389 0.214662
\(184\) 0 0
\(185\) 4.82200 0.354521
\(186\) 0 0
\(187\) −1.80140 −0.131731
\(188\) 0 0
\(189\) 5.13741 0.373692
\(190\) 0 0
\(191\) −22.1800 −1.60489 −0.802443 0.596729i \(-0.796467\pi\)
−0.802443 + 0.596729i \(0.796467\pi\)
\(192\) 0 0
\(193\) −6.97186 −0.501846 −0.250923 0.968007i \(-0.580734\pi\)
−0.250923 + 0.968007i \(0.580734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19.7332 −1.40593 −0.702966 0.711223i \(-0.748141\pi\)
−0.702966 + 0.711223i \(0.748141\pi\)
\(198\) 0 0
\(199\) −13.8039 −0.978529 −0.489265 0.872135i \(-0.662735\pi\)
−0.489265 + 0.872135i \(0.662735\pi\)
\(200\) 0 0
\(201\) 6.49847 0.458367
\(202\) 0 0
\(203\) −2.86981 −0.201421
\(204\) 0 0
\(205\) −17.3978 −1.21512
\(206\) 0 0
\(207\) −0.146653 −0.0101931
\(208\) 0 0
\(209\) −9.67188 −0.669018
\(210\) 0 0
\(211\) −9.47437 −0.652242 −0.326121 0.945328i \(-0.605742\pi\)
−0.326121 + 0.945328i \(0.605742\pi\)
\(212\) 0 0
\(213\) 17.3991 1.19217
\(214\) 0 0
\(215\) −8.52942 −0.581702
\(216\) 0 0
\(217\) 6.65024 0.451448
\(218\) 0 0
\(219\) −5.78182 −0.390699
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.5879 −0.976878 −0.488439 0.872598i \(-0.662434\pi\)
−0.488439 + 0.872598i \(0.662434\pi\)
\(224\) 0 0
\(225\) −0.203392 −0.0135595
\(226\) 0 0
\(227\) −7.16353 −0.475460 −0.237730 0.971331i \(-0.576403\pi\)
−0.237730 + 0.971331i \(0.576403\pi\)
\(228\) 0 0
\(229\) −12.3005 −0.812839 −0.406420 0.913687i \(-0.633223\pi\)
−0.406420 + 0.913687i \(0.633223\pi\)
\(230\) 0 0
\(231\) −2.01874 −0.132823
\(232\) 0 0
\(233\) 18.8037 1.23187 0.615936 0.787796i \(-0.288778\pi\)
0.615936 + 0.787796i \(0.288778\pi\)
\(234\) 0 0
\(235\) −10.2577 −0.669136
\(236\) 0 0
\(237\) 8.13886 0.528676
\(238\) 0 0
\(239\) 1.60295 0.103686 0.0518432 0.998655i \(-0.483490\pi\)
0.0518432 + 0.998655i \(0.483490\pi\)
\(240\) 0 0
\(241\) 18.3657 1.18304 0.591519 0.806291i \(-0.298529\pi\)
0.591519 + 0.806291i \(0.298529\pi\)
\(242\) 0 0
\(243\) −0.685976 −0.0440054
\(244\) 0 0
\(245\) 1.38536 0.0885076
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −3.19649 −0.202569
\(250\) 0 0
\(251\) −14.3646 −0.906683 −0.453341 0.891337i \(-0.649768\pi\)
−0.453341 + 0.891337i \(0.649768\pi\)
\(252\) 0 0
\(253\) −2.56099 −0.161008
\(254\) 0 0
\(255\) −3.79026 −0.237355
\(256\) 0 0
\(257\) 17.3657 1.08324 0.541620 0.840624i \(-0.317811\pi\)
0.541620 + 0.840624i \(0.317811\pi\)
\(258\) 0 0
\(259\) −3.48068 −0.216279
\(260\) 0 0
\(261\) 0.189465 0.0117276
\(262\) 0 0
\(263\) 16.7419 1.03235 0.516175 0.856483i \(-0.327355\pi\)
0.516175 + 0.856483i \(0.327355\pi\)
\(264\) 0 0
\(265\) 15.5577 0.955704
\(266\) 0 0
\(267\) 4.16180 0.254698
\(268\) 0 0
\(269\) 24.7915 1.51156 0.755781 0.654824i \(-0.227257\pi\)
0.755781 + 0.654824i \(0.227257\pi\)
\(270\) 0 0
\(271\) −20.2317 −1.22899 −0.614493 0.788922i \(-0.710639\pi\)
−0.614493 + 0.788922i \(0.710639\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.55182 −0.214183
\(276\) 0 0
\(277\) 11.0533 0.664127 0.332064 0.943257i \(-0.392255\pi\)
0.332064 + 0.943257i \(0.392255\pi\)
\(278\) 0 0
\(279\) −0.439049 −0.0262852
\(280\) 0 0
\(281\) 3.18955 0.190273 0.0951363 0.995464i \(-0.469671\pi\)
0.0951363 + 0.995464i \(0.469671\pi\)
\(282\) 0 0
\(283\) 17.9296 1.06581 0.532903 0.846177i \(-0.321101\pi\)
0.532903 + 0.846177i \(0.321101\pi\)
\(284\) 0 0
\(285\) −20.3503 −1.20545
\(286\) 0 0
\(287\) 12.5583 0.741295
\(288\) 0 0
\(289\) −14.5586 −0.856389
\(290\) 0 0
\(291\) −13.2134 −0.774584
\(292\) 0 0
\(293\) 16.9677 0.991264 0.495632 0.868533i \(-0.334936\pi\)
0.495632 + 0.868533i \(0.334936\pi\)
\(294\) 0 0
\(295\) −11.1599 −0.649755
\(296\) 0 0
\(297\) −5.92293 −0.343683
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.15682 0.354873
\(302\) 0 0
\(303\) 23.1142 1.32788
\(304\) 0 0
\(305\) 2.29750 0.131555
\(306\) 0 0
\(307\) 26.9884 1.54031 0.770155 0.637857i \(-0.220179\pi\)
0.770155 + 0.637857i \(0.220179\pi\)
\(308\) 0 0
\(309\) −10.3330 −0.587826
\(310\) 0 0
\(311\) −28.3781 −1.60918 −0.804588 0.593834i \(-0.797614\pi\)
−0.804588 + 0.593834i \(0.797614\pi\)
\(312\) 0 0
\(313\) −16.6674 −0.942095 −0.471047 0.882108i \(-0.656124\pi\)
−0.471047 + 0.882108i \(0.656124\pi\)
\(314\) 0 0
\(315\) −0.0914616 −0.00515328
\(316\) 0 0
\(317\) −28.7427 −1.61435 −0.807175 0.590312i \(-0.799005\pi\)
−0.807175 + 0.590312i \(0.799005\pi\)
\(318\) 0 0
\(319\) 3.30861 0.185247
\(320\) 0 0
\(321\) 17.8474 0.996147
\(322\) 0 0
\(323\) 13.1080 0.729349
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.7662 0.595370
\(328\) 0 0
\(329\) 7.40432 0.408213
\(330\) 0 0
\(331\) 26.1917 1.43963 0.719814 0.694167i \(-0.244227\pi\)
0.719814 + 0.694167i \(0.244227\pi\)
\(332\) 0 0
\(333\) 0.229794 0.0125927
\(334\) 0 0
\(335\) 5.14147 0.280908
\(336\) 0 0
\(337\) −4.47831 −0.243949 −0.121975 0.992533i \(-0.538923\pi\)
−0.121975 + 0.992533i \(0.538923\pi\)
\(338\) 0 0
\(339\) 25.5603 1.38825
\(340\) 0 0
\(341\) −7.66707 −0.415195
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −5.38849 −0.290106
\(346\) 0 0
\(347\) −26.9212 −1.44520 −0.722602 0.691264i \(-0.757054\pi\)
−0.722602 + 0.691264i \(0.757054\pi\)
\(348\) 0 0
\(349\) 20.7338 1.10986 0.554928 0.831898i \(-0.312746\pi\)
0.554928 + 0.831898i \(0.312746\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.3041 0.601655 0.300828 0.953679i \(-0.402737\pi\)
0.300828 + 0.953679i \(0.402737\pi\)
\(354\) 0 0
\(355\) 13.7658 0.730615
\(356\) 0 0
\(357\) 2.73593 0.144801
\(358\) 0 0
\(359\) −17.7453 −0.936559 −0.468279 0.883580i \(-0.655126\pi\)
−0.468279 + 0.883580i \(0.655126\pi\)
\(360\) 0 0
\(361\) 51.3781 2.70411
\(362\) 0 0
\(363\) −16.9337 −0.888786
\(364\) 0 0
\(365\) −4.57447 −0.239439
\(366\) 0 0
\(367\) 9.56310 0.499190 0.249595 0.968350i \(-0.419703\pi\)
0.249595 + 0.968350i \(0.419703\pi\)
\(368\) 0 0
\(369\) −0.829101 −0.0431613
\(370\) 0 0
\(371\) −11.2301 −0.583036
\(372\) 0 0
\(373\) 11.8835 0.615306 0.307653 0.951499i \(-0.400456\pi\)
0.307653 + 0.951499i \(0.400456\pi\)
\(374\) 0 0
\(375\) −19.6022 −1.01225
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 17.2502 0.886085 0.443042 0.896501i \(-0.353899\pi\)
0.443042 + 0.896501i \(0.353899\pi\)
\(380\) 0 0
\(381\) 15.2728 0.782448
\(382\) 0 0
\(383\) −13.0300 −0.665800 −0.332900 0.942962i \(-0.608027\pi\)
−0.332900 + 0.942962i \(0.608027\pi\)
\(384\) 0 0
\(385\) −1.59719 −0.0814002
\(386\) 0 0
\(387\) −0.406473 −0.0206622
\(388\) 0 0
\(389\) −24.1585 −1.22488 −0.612442 0.790516i \(-0.709813\pi\)
−0.612442 + 0.790516i \(0.709813\pi\)
\(390\) 0 0
\(391\) 3.47083 0.175528
\(392\) 0 0
\(393\) 34.0454 1.71736
\(394\) 0 0
\(395\) 6.43932 0.323997
\(396\) 0 0
\(397\) −4.81535 −0.241675 −0.120838 0.992672i \(-0.538558\pi\)
−0.120838 + 0.992672i \(0.538558\pi\)
\(398\) 0 0
\(399\) 14.6895 0.735394
\(400\) 0 0
\(401\) −8.02173 −0.400586 −0.200293 0.979736i \(-0.564189\pi\)
−0.200293 + 0.979736i \(0.564189\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −12.7366 −0.632887
\(406\) 0 0
\(407\) 4.01288 0.198911
\(408\) 0 0
\(409\) −9.96745 −0.492859 −0.246429 0.969161i \(-0.579257\pi\)
−0.246429 + 0.969161i \(0.579257\pi\)
\(410\) 0 0
\(411\) −5.87391 −0.289739
\(412\) 0 0
\(413\) 8.05559 0.396390
\(414\) 0 0
\(415\) −2.52900 −0.124144
\(416\) 0 0
\(417\) −13.8550 −0.678481
\(418\) 0 0
\(419\) −29.6884 −1.45037 −0.725187 0.688552i \(-0.758247\pi\)
−0.725187 + 0.688552i \(0.758247\pi\)
\(420\) 0 0
\(421\) 13.1380 0.640305 0.320152 0.947366i \(-0.396266\pi\)
0.320152 + 0.947366i \(0.396266\pi\)
\(422\) 0 0
\(423\) −0.488833 −0.0237679
\(424\) 0 0
\(425\) 4.81368 0.233498
\(426\) 0 0
\(427\) −1.65841 −0.0802562
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.4025 0.693745 0.346872 0.937912i \(-0.387244\pi\)
0.346872 + 0.937912i \(0.387244\pi\)
\(432\) 0 0
\(433\) −36.3192 −1.74539 −0.872695 0.488266i \(-0.837630\pi\)
−0.872695 + 0.488266i \(0.837630\pi\)
\(434\) 0 0
\(435\) 6.96153 0.333780
\(436\) 0 0
\(437\) 18.6352 0.891443
\(438\) 0 0
\(439\) 20.5444 0.980532 0.490266 0.871573i \(-0.336900\pi\)
0.490266 + 0.871573i \(0.336900\pi\)
\(440\) 0 0
\(441\) 0.0660200 0.00314381
\(442\) 0 0
\(443\) −25.3211 −1.20304 −0.601521 0.798857i \(-0.705439\pi\)
−0.601521 + 0.798857i \(0.705439\pi\)
\(444\) 0 0
\(445\) 3.29274 0.156091
\(446\) 0 0
\(447\) 4.13994 0.195812
\(448\) 0 0
\(449\) 33.6015 1.58575 0.792876 0.609383i \(-0.208583\pi\)
0.792876 + 0.609383i \(0.208583\pi\)
\(450\) 0 0
\(451\) −14.4785 −0.681767
\(452\) 0 0
\(453\) −20.2911 −0.953361
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −37.9955 −1.77735 −0.888677 0.458534i \(-0.848375\pi\)
−0.888677 + 0.458534i \(0.848375\pi\)
\(458\) 0 0
\(459\) 8.02717 0.374676
\(460\) 0 0
\(461\) −36.3513 −1.69305 −0.846525 0.532348i \(-0.821310\pi\)
−0.846525 + 0.532348i \(0.821310\pi\)
\(462\) 0 0
\(463\) −35.3400 −1.64239 −0.821194 0.570649i \(-0.806692\pi\)
−0.821194 + 0.570649i \(0.806692\pi\)
\(464\) 0 0
\(465\) −16.1320 −0.748104
\(466\) 0 0
\(467\) 29.5717 1.36842 0.684208 0.729287i \(-0.260148\pi\)
0.684208 + 0.729287i \(0.260148\pi\)
\(468\) 0 0
\(469\) −3.71128 −0.171371
\(470\) 0 0
\(471\) −15.8228 −0.729077
\(472\) 0 0
\(473\) −7.09820 −0.326376
\(474\) 0 0
\(475\) 25.8451 1.18585
\(476\) 0 0
\(477\) 0.741409 0.0339468
\(478\) 0 0
\(479\) 21.7476 0.993672 0.496836 0.867845i \(-0.334495\pi\)
0.496836 + 0.867845i \(0.334495\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 3.88958 0.176982
\(484\) 0 0
\(485\) −10.4542 −0.474701
\(486\) 0 0
\(487\) −30.0473 −1.36157 −0.680786 0.732482i \(-0.738362\pi\)
−0.680786 + 0.732482i \(0.738362\pi\)
\(488\) 0 0
\(489\) 37.3938 1.69101
\(490\) 0 0
\(491\) −40.1797 −1.81329 −0.906643 0.421898i \(-0.861364\pi\)
−0.906643 + 0.421898i \(0.861364\pi\)
\(492\) 0 0
\(493\) −4.48406 −0.201952
\(494\) 0 0
\(495\) 0.105446 0.00473946
\(496\) 0 0
\(497\) −9.93663 −0.445719
\(498\) 0 0
\(499\) −11.7400 −0.525554 −0.262777 0.964857i \(-0.584638\pi\)
−0.262777 + 0.964857i \(0.584638\pi\)
\(500\) 0 0
\(501\) −5.57046 −0.248870
\(502\) 0 0
\(503\) −33.3929 −1.48892 −0.744459 0.667669i \(-0.767292\pi\)
−0.744459 + 0.667669i \(0.767292\pi\)
\(504\) 0 0
\(505\) 18.2875 0.813784
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.7826 0.921172 0.460586 0.887615i \(-0.347639\pi\)
0.460586 + 0.887615i \(0.347639\pi\)
\(510\) 0 0
\(511\) 3.30200 0.146072
\(512\) 0 0
\(513\) 43.0986 1.90285
\(514\) 0 0
\(515\) −8.17531 −0.360247
\(516\) 0 0
\(517\) −8.53645 −0.375433
\(518\) 0 0
\(519\) 9.34869 0.410362
\(520\) 0 0
\(521\) 7.50239 0.328686 0.164343 0.986403i \(-0.447450\pi\)
0.164343 + 0.986403i \(0.447450\pi\)
\(522\) 0 0
\(523\) 7.32578 0.320334 0.160167 0.987090i \(-0.448797\pi\)
0.160167 + 0.987090i \(0.448797\pi\)
\(524\) 0 0
\(525\) 5.39444 0.235433
\(526\) 0 0
\(527\) 10.3909 0.452637
\(528\) 0 0
\(529\) −18.0656 −0.785462
\(530\) 0 0
\(531\) −0.531830 −0.0230794
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 14.1206 0.610485
\(536\) 0 0
\(537\) 17.2397 0.743947
\(538\) 0 0
\(539\) 1.15290 0.0496590
\(540\) 0 0
\(541\) 11.6924 0.502698 0.251349 0.967897i \(-0.419126\pi\)
0.251349 + 0.967897i \(0.419126\pi\)
\(542\) 0 0
\(543\) −26.4844 −1.13656
\(544\) 0 0
\(545\) 8.51799 0.364871
\(546\) 0 0
\(547\) 5.10513 0.218280 0.109140 0.994026i \(-0.465190\pi\)
0.109140 + 0.994026i \(0.465190\pi\)
\(548\) 0 0
\(549\) 0.109488 0.00467285
\(550\) 0 0
\(551\) −24.0753 −1.02564
\(552\) 0 0
\(553\) −4.64811 −0.197658
\(554\) 0 0
\(555\) 8.44336 0.358401
\(556\) 0 0
\(557\) 12.5336 0.531065 0.265532 0.964102i \(-0.414452\pi\)
0.265532 + 0.964102i \(0.414452\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −3.15426 −0.133173
\(562\) 0 0
\(563\) 3.90630 0.164631 0.0823155 0.996606i \(-0.473768\pi\)
0.0823155 + 0.996606i \(0.473768\pi\)
\(564\) 0 0
\(565\) 20.2229 0.850782
\(566\) 0 0
\(567\) 9.19370 0.386099
\(568\) 0 0
\(569\) −46.1329 −1.93399 −0.966996 0.254793i \(-0.917993\pi\)
−0.966996 + 0.254793i \(0.917993\pi\)
\(570\) 0 0
\(571\) 30.1160 1.26031 0.630157 0.776467i \(-0.282990\pi\)
0.630157 + 0.776467i \(0.282990\pi\)
\(572\) 0 0
\(573\) −38.8372 −1.62245
\(574\) 0 0
\(575\) 6.84345 0.285391
\(576\) 0 0
\(577\) 25.6300 1.06699 0.533496 0.845803i \(-0.320878\pi\)
0.533496 + 0.845803i \(0.320878\pi\)
\(578\) 0 0
\(579\) −12.2078 −0.507338
\(580\) 0 0
\(581\) 1.82551 0.0757351
\(582\) 0 0
\(583\) 12.9472 0.536217
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.1805 −0.544018 −0.272009 0.962295i \(-0.587688\pi\)
−0.272009 + 0.962295i \(0.587688\pi\)
\(588\) 0 0
\(589\) 55.7900 2.29878
\(590\) 0 0
\(591\) −34.5529 −1.42132
\(592\) 0 0
\(593\) −6.53704 −0.268444 −0.134222 0.990951i \(-0.542854\pi\)
−0.134222 + 0.990951i \(0.542854\pi\)
\(594\) 0 0
\(595\) 2.16462 0.0887408
\(596\) 0 0
\(597\) −24.1706 −0.989238
\(598\) 0 0
\(599\) 12.4244 0.507649 0.253824 0.967250i \(-0.418311\pi\)
0.253824 + 0.967250i \(0.418311\pi\)
\(600\) 0 0
\(601\) −18.5404 −0.756278 −0.378139 0.925749i \(-0.623436\pi\)
−0.378139 + 0.925749i \(0.623436\pi\)
\(602\) 0 0
\(603\) 0.245018 0.00997792
\(604\) 0 0
\(605\) −13.3976 −0.544690
\(606\) 0 0
\(607\) 15.7445 0.639050 0.319525 0.947578i \(-0.396477\pi\)
0.319525 + 0.947578i \(0.396477\pi\)
\(608\) 0 0
\(609\) −5.02506 −0.203626
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −19.2599 −0.777901 −0.388950 0.921259i \(-0.627162\pi\)
−0.388950 + 0.921259i \(0.627162\pi\)
\(614\) 0 0
\(615\) −30.4637 −1.22842
\(616\) 0 0
\(617\) 43.4020 1.74730 0.873649 0.486557i \(-0.161748\pi\)
0.873649 + 0.486557i \(0.161748\pi\)
\(618\) 0 0
\(619\) −13.3880 −0.538109 −0.269054 0.963125i \(-0.586711\pi\)
−0.269054 + 0.963125i \(0.586711\pi\)
\(620\) 0 0
\(621\) 11.4120 0.457946
\(622\) 0 0
\(623\) −2.37681 −0.0952247
\(624\) 0 0
\(625\) −0.105015 −0.00420059
\(626\) 0 0
\(627\) −16.9355 −0.676339
\(628\) 0 0
\(629\) −5.43854 −0.216849
\(630\) 0 0
\(631\) −15.1921 −0.604789 −0.302394 0.953183i \(-0.597786\pi\)
−0.302394 + 0.953183i \(0.597786\pi\)
\(632\) 0 0
\(633\) −16.5897 −0.659380
\(634\) 0 0
\(635\) 12.0835 0.479520
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.656016 0.0259516
\(640\) 0 0
\(641\) −35.9342 −1.41932 −0.709658 0.704546i \(-0.751151\pi\)
−0.709658 + 0.704546i \(0.751151\pi\)
\(642\) 0 0
\(643\) 8.91979 0.351762 0.175881 0.984411i \(-0.443723\pi\)
0.175881 + 0.984411i \(0.443723\pi\)
\(644\) 0 0
\(645\) −14.9351 −0.588068
\(646\) 0 0
\(647\) 9.76721 0.383989 0.191994 0.981396i \(-0.438505\pi\)
0.191994 + 0.981396i \(0.438505\pi\)
\(648\) 0 0
\(649\) −9.28730 −0.364558
\(650\) 0 0
\(651\) 11.6446 0.456388
\(652\) 0 0
\(653\) 16.5372 0.647149 0.323575 0.946203i \(-0.395115\pi\)
0.323575 + 0.946203i \(0.395115\pi\)
\(654\) 0 0
\(655\) 26.9361 1.05248
\(656\) 0 0
\(657\) −0.217998 −0.00850491
\(658\) 0 0
\(659\) 15.6402 0.609256 0.304628 0.952471i \(-0.401468\pi\)
0.304628 + 0.952471i \(0.401468\pi\)
\(660\) 0 0
\(661\) −25.3249 −0.985024 −0.492512 0.870306i \(-0.663921\pi\)
−0.492512 + 0.870306i \(0.663921\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 11.6220 0.450683
\(666\) 0 0
\(667\) −6.37484 −0.246835
\(668\) 0 0
\(669\) −25.5435 −0.987568
\(670\) 0 0
\(671\) 1.91199 0.0738114
\(672\) 0 0
\(673\) −8.17838 −0.315253 −0.157627 0.987499i \(-0.550384\pi\)
−0.157627 + 0.987499i \(0.550384\pi\)
\(674\) 0 0
\(675\) 15.8272 0.609189
\(676\) 0 0
\(677\) 44.9616 1.72801 0.864007 0.503480i \(-0.167947\pi\)
0.864007 + 0.503480i \(0.167947\pi\)
\(678\) 0 0
\(679\) 7.54618 0.289596
\(680\) 0 0
\(681\) −12.5434 −0.480663
\(682\) 0 0
\(683\) −20.4486 −0.782444 −0.391222 0.920296i \(-0.627947\pi\)
−0.391222 + 0.920296i \(0.627947\pi\)
\(684\) 0 0
\(685\) −4.64733 −0.177565
\(686\) 0 0
\(687\) −21.5382 −0.821734
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 33.7107 1.28242 0.641208 0.767367i \(-0.278433\pi\)
0.641208 + 0.767367i \(0.278433\pi\)
\(692\) 0 0
\(693\) −0.0761145 −0.00289135
\(694\) 0 0
\(695\) −10.9618 −0.415805
\(696\) 0 0
\(697\) 19.6223 0.743248
\(698\) 0 0
\(699\) 32.9254 1.24535
\(700\) 0 0
\(701\) 29.6172 1.11862 0.559312 0.828957i \(-0.311065\pi\)
0.559312 + 0.828957i \(0.311065\pi\)
\(702\) 0 0
\(703\) −29.2000 −1.10130
\(704\) 0 0
\(705\) −17.9612 −0.676459
\(706\) 0 0
\(707\) −13.2005 −0.496457
\(708\) 0 0
\(709\) −9.92641 −0.372794 −0.186397 0.982474i \(-0.559681\pi\)
−0.186397 + 0.982474i \(0.559681\pi\)
\(710\) 0 0
\(711\) 0.306868 0.0115085
\(712\) 0 0
\(713\) 14.7725 0.553233
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.80678 0.104821
\(718\) 0 0
\(719\) −20.6850 −0.771422 −0.385711 0.922620i \(-0.626044\pi\)
−0.385711 + 0.922620i \(0.626044\pi\)
\(720\) 0 0
\(721\) 5.90120 0.219772
\(722\) 0 0
\(723\) 32.1584 1.19598
\(724\) 0 0
\(725\) −8.84123 −0.328355
\(726\) 0 0
\(727\) −4.83449 −0.179301 −0.0896506 0.995973i \(-0.528575\pi\)
−0.0896506 + 0.995973i \(0.528575\pi\)
\(728\) 0 0
\(729\) 26.3800 0.977035
\(730\) 0 0
\(731\) 9.61998 0.355808
\(732\) 0 0
\(733\) 12.7037 0.469223 0.234612 0.972089i \(-0.424618\pi\)
0.234612 + 0.972089i \(0.424618\pi\)
\(734\) 0 0
\(735\) 2.42578 0.0894762
\(736\) 0 0
\(737\) 4.27874 0.157609
\(738\) 0 0
\(739\) −2.58482 −0.0950840 −0.0475420 0.998869i \(-0.515139\pi\)
−0.0475420 + 0.998869i \(0.515139\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.5276 −0.422906 −0.211453 0.977388i \(-0.567820\pi\)
−0.211453 + 0.977388i \(0.567820\pi\)
\(744\) 0 0
\(745\) 3.27544 0.120003
\(746\) 0 0
\(747\) −0.120520 −0.00440961
\(748\) 0 0
\(749\) −10.1927 −0.372432
\(750\) 0 0
\(751\) −7.00538 −0.255630 −0.127815 0.991798i \(-0.540796\pi\)
−0.127815 + 0.991798i \(0.540796\pi\)
\(752\) 0 0
\(753\) −25.1524 −0.916605
\(754\) 0 0
\(755\) −16.0540 −0.584264
\(756\) 0 0
\(757\) −17.2018 −0.625211 −0.312605 0.949883i \(-0.601202\pi\)
−0.312605 + 0.949883i \(0.601202\pi\)
\(758\) 0 0
\(759\) −4.48431 −0.162770
\(760\) 0 0
\(761\) −34.5530 −1.25255 −0.626274 0.779603i \(-0.715421\pi\)
−0.626274 + 0.779603i \(0.715421\pi\)
\(762\) 0 0
\(763\) −6.14856 −0.222593
\(764\) 0 0
\(765\) −0.142908 −0.00516686
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −10.9495 −0.394848 −0.197424 0.980318i \(-0.563258\pi\)
−0.197424 + 0.980318i \(0.563258\pi\)
\(770\) 0 0
\(771\) 30.4074 1.09509
\(772\) 0 0
\(773\) 22.0036 0.791413 0.395707 0.918377i \(-0.370500\pi\)
0.395707 + 0.918377i \(0.370500\pi\)
\(774\) 0 0
\(775\) 20.4878 0.735945
\(776\) 0 0
\(777\) −6.09469 −0.218646
\(778\) 0 0
\(779\) 105.354 3.77470
\(780\) 0 0
\(781\) 11.4560 0.409926
\(782\) 0 0
\(783\) −14.7434 −0.526887
\(784\) 0 0
\(785\) −12.5187 −0.446812
\(786\) 0 0
\(787\) −39.3231 −1.40172 −0.700859 0.713300i \(-0.747200\pi\)
−0.700859 + 0.713300i \(0.747200\pi\)
\(788\) 0 0
\(789\) 29.3152 1.04365
\(790\) 0 0
\(791\) −14.5975 −0.519028
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 27.2417 0.966162
\(796\) 0 0
\(797\) −54.5240 −1.93134 −0.965669 0.259775i \(-0.916352\pi\)
−0.965669 + 0.259775i \(0.916352\pi\)
\(798\) 0 0
\(799\) 11.5692 0.409289
\(800\) 0 0
\(801\) 0.156917 0.00554438
\(802\) 0 0
\(803\) −3.80688 −0.134342
\(804\) 0 0
\(805\) 3.07737 0.108463
\(806\) 0 0
\(807\) 43.4100 1.52810
\(808\) 0 0
\(809\) 3.12637 0.109917 0.0549586 0.998489i \(-0.482497\pi\)
0.0549586 + 0.998489i \(0.482497\pi\)
\(810\) 0 0
\(811\) −4.48741 −0.157574 −0.0787872 0.996891i \(-0.525105\pi\)
−0.0787872 + 0.996891i \(0.525105\pi\)
\(812\) 0 0
\(813\) −35.4258 −1.24244
\(814\) 0 0
\(815\) 29.5853 1.03633
\(816\) 0 0
\(817\) 51.6506 1.80702
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.6872 0.861589 0.430795 0.902450i \(-0.358233\pi\)
0.430795 + 0.902450i \(0.358233\pi\)
\(822\) 0 0
\(823\) −11.0134 −0.383904 −0.191952 0.981404i \(-0.561482\pi\)
−0.191952 + 0.981404i \(0.561482\pi\)
\(824\) 0 0
\(825\) −6.21926 −0.216527
\(826\) 0 0
\(827\) −23.8575 −0.829605 −0.414803 0.909911i \(-0.636149\pi\)
−0.414803 + 0.909911i \(0.636149\pi\)
\(828\) 0 0
\(829\) 20.4314 0.709611 0.354806 0.934940i \(-0.384547\pi\)
0.354806 + 0.934940i \(0.384547\pi\)
\(830\) 0 0
\(831\) 19.3544 0.671395
\(832\) 0 0
\(833\) −1.56249 −0.0541372
\(834\) 0 0
\(835\) −4.40725 −0.152519
\(836\) 0 0
\(837\) 34.1650 1.18092
\(838\) 0 0
\(839\) −24.2579 −0.837477 −0.418738 0.908107i \(-0.637528\pi\)
−0.418738 + 0.908107i \(0.637528\pi\)
\(840\) 0 0
\(841\) −20.7642 −0.716006
\(842\) 0 0
\(843\) 5.58492 0.192355
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9.67082 0.332293
\(848\) 0 0
\(849\) 31.3949 1.07747
\(850\) 0 0
\(851\) −7.73178 −0.265042
\(852\) 0 0
\(853\) 51.8470 1.77521 0.887604 0.460608i \(-0.152369\pi\)
0.887604 + 0.460608i \(0.152369\pi\)
\(854\) 0 0
\(855\) −0.767287 −0.0262407
\(856\) 0 0
\(857\) 26.9054 0.919071 0.459536 0.888159i \(-0.348016\pi\)
0.459536 + 0.888159i \(0.348016\pi\)
\(858\) 0 0
\(859\) 33.4509 1.14133 0.570665 0.821183i \(-0.306685\pi\)
0.570665 + 0.821183i \(0.306685\pi\)
\(860\) 0 0
\(861\) 21.9897 0.749407
\(862\) 0 0
\(863\) −5.94352 −0.202320 −0.101160 0.994870i \(-0.532255\pi\)
−0.101160 + 0.994870i \(0.532255\pi\)
\(864\) 0 0
\(865\) 7.39651 0.251489
\(866\) 0 0
\(867\) −25.4922 −0.865761
\(868\) 0 0
\(869\) 5.35881 0.181785
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.498199 −0.0168615
\(874\) 0 0
\(875\) 11.1948 0.378453
\(876\) 0 0
\(877\) 49.6605 1.67692 0.838458 0.544966i \(-0.183458\pi\)
0.838458 + 0.544966i \(0.183458\pi\)
\(878\) 0 0
\(879\) 29.7105 1.00211
\(880\) 0 0
\(881\) −21.2905 −0.717294 −0.358647 0.933473i \(-0.616762\pi\)
−0.358647 + 0.933473i \(0.616762\pi\)
\(882\) 0 0
\(883\) 32.8053 1.10399 0.551993 0.833848i \(-0.313867\pi\)
0.551993 + 0.833848i \(0.313867\pi\)
\(884\) 0 0
\(885\) −19.5411 −0.656866
\(886\) 0 0
\(887\) −17.2358 −0.578721 −0.289361 0.957220i \(-0.593443\pi\)
−0.289361 + 0.957220i \(0.593443\pi\)
\(888\) 0 0
\(889\) −8.72229 −0.292536
\(890\) 0 0
\(891\) −10.5994 −0.355094
\(892\) 0 0
\(893\) 62.1161 2.07863
\(894\) 0 0
\(895\) 13.6397 0.455925
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19.0849 −0.636518
\(900\) 0 0
\(901\) −17.5469 −0.584572
\(902\) 0 0
\(903\) 10.7806 0.358756
\(904\) 0 0
\(905\) −20.9540 −0.696535
\(906\) 0 0
\(907\) −34.6356 −1.15006 −0.575028 0.818134i \(-0.695009\pi\)
−0.575028 + 0.818134i \(0.695009\pi\)
\(908\) 0 0
\(909\) 0.871499 0.0289058
\(910\) 0 0
\(911\) −7.85153 −0.260133 −0.130066 0.991505i \(-0.541519\pi\)
−0.130066 + 0.991505i \(0.541519\pi\)
\(912\) 0 0
\(913\) −2.10464 −0.0696533
\(914\) 0 0
\(915\) 4.02294 0.132994
\(916\) 0 0
\(917\) −19.4433 −0.642075
\(918\) 0 0
\(919\) −36.7317 −1.21167 −0.605834 0.795591i \(-0.707160\pi\)
−0.605834 + 0.795591i \(0.707160\pi\)
\(920\) 0 0
\(921\) 47.2568 1.55717
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −10.7232 −0.352576
\(926\) 0 0
\(927\) −0.389597 −0.0127961
\(928\) 0 0
\(929\) 33.0655 1.08484 0.542421 0.840107i \(-0.317508\pi\)
0.542421 + 0.840107i \(0.317508\pi\)
\(930\) 0 0
\(931\) −8.38917 −0.274944
\(932\) 0 0
\(933\) −49.6902 −1.62679
\(934\) 0 0
\(935\) −2.49559 −0.0816146
\(936\) 0 0
\(937\) −45.8626 −1.49826 −0.749132 0.662421i \(-0.769529\pi\)
−0.749132 + 0.662421i \(0.769529\pi\)
\(938\) 0 0
\(939\) −29.1846 −0.952404
\(940\) 0 0
\(941\) −5.77729 −0.188334 −0.0941671 0.995556i \(-0.530019\pi\)
−0.0941671 + 0.995556i \(0.530019\pi\)
\(942\) 0 0
\(943\) 27.8964 0.908431
\(944\) 0 0
\(945\) 7.11718 0.231522
\(946\) 0 0
\(947\) −0.0562941 −0.00182931 −0.000914656 1.00000i \(-0.500291\pi\)
−0.000914656 1.00000i \(0.500291\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −50.3286 −1.63202
\(952\) 0 0
\(953\) −40.1557 −1.30077 −0.650385 0.759605i \(-0.725392\pi\)
−0.650385 + 0.759605i \(0.725392\pi\)
\(954\) 0 0
\(955\) −30.7273 −0.994312
\(956\) 0 0
\(957\) 5.79339 0.187274
\(958\) 0 0
\(959\) 3.35460 0.108326
\(960\) 0 0
\(961\) 13.2257 0.426634
\(962\) 0 0
\(963\) 0.672920 0.0216846
\(964\) 0 0
\(965\) −9.65856 −0.310920
\(966\) 0 0
\(967\) −32.3647 −1.04078 −0.520390 0.853929i \(-0.674213\pi\)
−0.520390 + 0.853929i \(0.674213\pi\)
\(968\) 0 0
\(969\) 22.9522 0.737331
\(970\) 0 0
\(971\) −30.6918 −0.984947 −0.492473 0.870328i \(-0.663907\pi\)
−0.492473 + 0.870328i \(0.663907\pi\)
\(972\) 0 0
\(973\) 7.91259 0.253666
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.62992 −0.180117 −0.0900585 0.995936i \(-0.528705\pi\)
−0.0900585 + 0.995936i \(0.528705\pi\)
\(978\) 0 0
\(979\) 2.74022 0.0875779
\(980\) 0 0
\(981\) 0.405928 0.0129603
\(982\) 0 0
\(983\) 6.66363 0.212537 0.106268 0.994337i \(-0.466110\pi\)
0.106268 + 0.994337i \(0.466110\pi\)
\(984\) 0 0
\(985\) −27.3376 −0.871050
\(986\) 0 0
\(987\) 12.9650 0.412681
\(988\) 0 0
\(989\) 13.6764 0.434884
\(990\) 0 0
\(991\) −52.8312 −1.67824 −0.839120 0.543946i \(-0.816929\pi\)
−0.839120 + 0.543946i \(0.816929\pi\)
\(992\) 0 0
\(993\) 45.8618 1.45538
\(994\) 0 0
\(995\) −19.1233 −0.606251
\(996\) 0 0
\(997\) −14.6367 −0.463548 −0.231774 0.972770i \(-0.574453\pi\)
−0.231774 + 0.972770i \(0.574453\pi\)
\(998\) 0 0
\(999\) −17.8817 −0.565752
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.s.1.6 8
13.5 odd 4 4732.2.g.k.337.11 16
13.6 odd 12 364.2.u.a.309.3 yes 16
13.8 odd 4 4732.2.g.k.337.12 16
13.11 odd 12 364.2.u.a.225.3 16
13.12 even 2 4732.2.a.t.1.6 8
39.11 even 12 3276.2.cf.c.2773.3 16
39.32 even 12 3276.2.cf.c.1765.6 16
52.11 even 12 1456.2.cc.f.225.6 16
52.19 even 12 1456.2.cc.f.673.6 16
91.6 even 12 2548.2.u.c.1765.6 16
91.11 odd 12 2548.2.bq.e.1941.6 16
91.19 even 12 2548.2.bq.c.361.3 16
91.24 even 12 2548.2.bq.c.1941.3 16
91.32 odd 12 2548.2.bb.d.569.3 16
91.37 odd 12 2548.2.bb.d.1733.3 16
91.45 even 12 2548.2.bb.c.569.6 16
91.58 odd 12 2548.2.bq.e.361.6 16
91.76 even 12 2548.2.u.c.589.6 16
91.89 even 12 2548.2.bb.c.1733.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.3 16 13.11 odd 12
364.2.u.a.309.3 yes 16 13.6 odd 12
1456.2.cc.f.225.6 16 52.11 even 12
1456.2.cc.f.673.6 16 52.19 even 12
2548.2.u.c.589.6 16 91.76 even 12
2548.2.u.c.1765.6 16 91.6 even 12
2548.2.bb.c.569.6 16 91.45 even 12
2548.2.bb.c.1733.6 16 91.89 even 12
2548.2.bb.d.569.3 16 91.32 odd 12
2548.2.bb.d.1733.3 16 91.37 odd 12
2548.2.bq.c.361.3 16 91.19 even 12
2548.2.bq.c.1941.3 16 91.24 even 12
2548.2.bq.e.361.6 16 91.58 odd 12
2548.2.bq.e.1941.6 16 91.11 odd 12
3276.2.cf.c.1765.6 16 39.32 even 12
3276.2.cf.c.2773.3 16 39.11 even 12
4732.2.a.s.1.6 8 1.1 even 1 trivial
4732.2.a.t.1.6 8 13.12 even 2
4732.2.g.k.337.11 16 13.5 odd 4
4732.2.g.k.337.12 16 13.8 odd 4