Properties

Label 2592.2.d.j.1297.5
Level $2592$
Weight $2$
Character 2592.1297
Analytic conductor $20.697$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2592,2,Mod(1297,2592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2592.1297");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.31435290000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{4} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1297.5
Root \(-0.295065 - 1.38309i\) of defining polynomial
Character \(\chi\) \(=\) 2592.1297
Dual form 2592.2.d.j.1297.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.696047i q^{5} +1.59013 q^{7} +O(q^{10})\) \(q+0.696047i q^{5} +1.59013 q^{7} -2.73921i q^{11} +5.50539i q^{13} -5.65175 q^{17} +0.963328i q^{19} +6.57714 q^{23} +4.51552 q^{25} +3.29178i q^{29} -7.39688 q^{31} +1.10680i q^{35} +6.25538i q^{37} +1.86377 q^{41} +3.46223i q^{43} +7.71337 q^{47} -4.47149 q^{49} +2.54179i q^{53} +1.90662 q^{55} -5.33494i q^{59} +9.16503i q^{61} -3.83201 q^{65} +6.87947i q^{67} -3.68351 q^{71} +2.83201 q^{73} -4.35569i q^{77} +5.75740 q^{79} +6.63916i q^{83} -3.93388i q^{85} -2.98701 q^{89} +8.75427i q^{91} -0.670522 q^{95} +2.49675 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 6 q^{7} - 14 q^{17} - 10 q^{23} - 2 q^{25} - 10 q^{31} + 8 q^{41} + 6 q^{47} - 18 q^{49} + 2 q^{55} + 14 q^{65} - 36 q^{71} - 22 q^{73} - 30 q^{79} + 32 q^{89} + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.696047i 0.311282i 0.987814 + 0.155641i \(0.0497442\pi\)
−0.987814 + 0.155641i \(0.950256\pi\)
\(6\) 0 0
\(7\) 1.59013 0.601012 0.300506 0.953780i \(-0.402844\pi\)
0.300506 + 0.953780i \(0.402844\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 2.73921i − 0.825902i −0.910753 0.412951i \(-0.864498\pi\)
0.910753 0.412951i \(-0.135502\pi\)
\(12\) 0 0
\(13\) 5.50539i 1.52692i 0.645855 + 0.763460i \(0.276501\pi\)
−0.645855 + 0.763460i \(0.723499\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.65175 −1.37075 −0.685375 0.728190i \(-0.740362\pi\)
−0.685375 + 0.728190i \(0.740362\pi\)
\(18\) 0 0
\(19\) 0.963328i 0.221003i 0.993876 + 0.110501i \(0.0352457\pi\)
−0.993876 + 0.110501i \(0.964754\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.57714 1.37143 0.685714 0.727871i \(-0.259490\pi\)
0.685714 + 0.727871i \(0.259490\pi\)
\(24\) 0 0
\(25\) 4.51552 0.903104
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.29178i 0.611268i 0.952149 + 0.305634i \(0.0988684\pi\)
−0.952149 + 0.305634i \(0.901132\pi\)
\(30\) 0 0
\(31\) −7.39688 −1.32852 −0.664259 0.747502i \(-0.731253\pi\)
−0.664259 + 0.747502i \(0.731253\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.10680i 0.187084i
\(36\) 0 0
\(37\) 6.25538i 1.02838i 0.857677 + 0.514189i \(0.171907\pi\)
−0.857677 + 0.514189i \(0.828093\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.86377 0.291072 0.145536 0.989353i \(-0.453509\pi\)
0.145536 + 0.989353i \(0.453509\pi\)
\(42\) 0 0
\(43\) 3.46223i 0.527985i 0.964525 + 0.263992i \(0.0850393\pi\)
−0.964525 + 0.263992i \(0.914961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.71337 1.12511 0.562555 0.826760i \(-0.309818\pi\)
0.562555 + 0.826760i \(0.309818\pi\)
\(48\) 0 0
\(49\) −4.47149 −0.638784
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.54179i 0.349141i 0.984645 + 0.174571i \(0.0558537\pi\)
−0.984645 + 0.174571i \(0.944146\pi\)
\(54\) 0 0
\(55\) 1.90662 0.257088
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 5.33494i − 0.694550i −0.937763 0.347275i \(-0.887107\pi\)
0.937763 0.347275i \(-0.112893\pi\)
\(60\) 0 0
\(61\) 9.16503i 1.17346i 0.809782 + 0.586731i \(0.199585\pi\)
−0.809782 + 0.586731i \(0.800415\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.83201 −0.475302
\(66\) 0 0
\(67\) 6.87947i 0.840461i 0.907417 + 0.420231i \(0.138051\pi\)
−0.907417 + 0.420231i \(0.861949\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.68351 −0.437153 −0.218576 0.975820i \(-0.570141\pi\)
−0.218576 + 0.975820i \(0.570141\pi\)
\(72\) 0 0
\(73\) 2.83201 0.331461 0.165731 0.986171i \(-0.447002\pi\)
0.165731 + 0.986171i \(0.447002\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.35569i − 0.496377i
\(78\) 0 0
\(79\) 5.75740 0.647758 0.323879 0.946099i \(-0.395013\pi\)
0.323879 + 0.946099i \(0.395013\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.63916i 0.728743i 0.931254 + 0.364371i \(0.118716\pi\)
−0.931254 + 0.364371i \(0.881284\pi\)
\(84\) 0 0
\(85\) − 3.93388i − 0.426689i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.98701 −0.316622 −0.158311 0.987389i \(-0.550605\pi\)
−0.158311 + 0.987389i \(0.550605\pi\)
\(90\) 0 0
\(91\) 8.75427i 0.917697i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.670522 −0.0687941
\(96\) 0 0
\(97\) 2.49675 0.253506 0.126753 0.991934i \(-0.459544\pi\)
0.126753 + 0.991934i \(0.459544\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 9.49321i − 0.944610i −0.881435 0.472305i \(-0.843422\pi\)
0.881435 0.472305i \(-0.156578\pi\)
\(102\) 0 0
\(103\) 14.7444 1.45281 0.726405 0.687267i \(-0.241190\pi\)
0.726405 + 0.687267i \(0.241190\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 7.83384i − 0.757325i −0.925535 0.378663i \(-0.876384\pi\)
0.925535 0.378663i \(-0.123616\pi\)
\(108\) 0 0
\(109\) − 0.242400i − 0.0232177i −0.999933 0.0116089i \(-0.996305\pi\)
0.999933 0.0116089i \(-0.00369529\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.69578 −0.818030 −0.409015 0.912528i \(-0.634128\pi\)
−0.409015 + 0.912528i \(0.634128\pi\)
\(114\) 0 0
\(115\) 4.57799i 0.426900i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.98701 −0.823838
\(120\) 0 0
\(121\) 3.49675 0.317886
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.62325i 0.592401i
\(126\) 0 0
\(127\) 1.72754 0.153295 0.0766473 0.997058i \(-0.475578\pi\)
0.0766473 + 0.997058i \(0.475578\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.63916i 0.580066i 0.957017 + 0.290033i \(0.0936663\pi\)
−0.957017 + 0.290033i \(0.906334\pi\)
\(132\) 0 0
\(133\) 1.53182i 0.132825i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.62649 −0.309832 −0.154916 0.987928i \(-0.549511\pi\)
−0.154916 + 0.987928i \(0.549511\pi\)
\(138\) 0 0
\(139\) 17.3111i 1.46831i 0.678981 + 0.734155i \(0.262422\pi\)
−0.678981 + 0.734155i \(0.737578\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 15.0804 1.26109
\(144\) 0 0
\(145\) −2.29123 −0.190276
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.6218i 1.77133i 0.464324 + 0.885665i \(0.346297\pi\)
−0.464324 + 0.885665i \(0.653703\pi\)
\(150\) 0 0
\(151\) −12.7004 −1.03354 −0.516771 0.856124i \(-0.672866\pi\)
−0.516771 + 0.856124i \(0.672866\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 5.14857i − 0.413543i
\(156\) 0 0
\(157\) 17.4689i 1.39417i 0.716990 + 0.697083i \(0.245519\pi\)
−0.716990 + 0.697083i \(0.754481\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.4585 0.824245
\(162\) 0 0
\(163\) 8.56748i 0.671057i 0.942030 + 0.335528i \(0.108915\pi\)
−0.942030 + 0.335528i \(0.891085\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.9506 −0.924769 −0.462384 0.886680i \(-0.653006\pi\)
−0.462384 + 0.886680i \(0.653006\pi\)
\(168\) 0 0
\(169\) −17.3093 −1.33148
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.0450i 0.991791i 0.868382 + 0.495895i \(0.165160\pi\)
−0.868382 + 0.495895i \(0.834840\pi\)
\(174\) 0 0
\(175\) 7.18026 0.542777
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.31875i 0.248055i 0.992279 + 0.124028i \(0.0395811\pi\)
−0.992279 + 0.124028i \(0.960419\pi\)
\(180\) 0 0
\(181\) 14.9128i 1.10846i 0.832363 + 0.554231i \(0.186987\pi\)
−0.832363 + 0.554231i \(0.813013\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.35403 −0.320115
\(186\) 0 0
\(187\) 15.4813i 1.13211i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.31767 0.529488 0.264744 0.964319i \(-0.414713\pi\)
0.264744 + 0.964319i \(0.414713\pi\)
\(192\) 0 0
\(193\) 20.4708 1.47352 0.736759 0.676156i \(-0.236355\pi\)
0.736759 + 0.676156i \(0.236355\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 20.5437i − 1.46368i −0.681479 0.731838i \(-0.738663\pi\)
0.681479 0.731838i \(-0.261337\pi\)
\(198\) 0 0
\(199\) −1.95597 −0.138655 −0.0693275 0.997594i \(-0.522085\pi\)
−0.0693275 + 0.997594i \(0.522085\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.23435i 0.367379i
\(204\) 0 0
\(205\) 1.29727i 0.0906054i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.63876 0.182527
\(210\) 0 0
\(211\) − 10.5191i − 0.724165i −0.932146 0.362082i \(-0.882066\pi\)
0.932146 0.362082i \(-0.117934\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.40987 −0.164352
\(216\) 0 0
\(217\) −11.7620 −0.798456
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 31.1151i − 2.09303i
\(222\) 0 0
\(223\) 3.86259 0.258658 0.129329 0.991602i \(-0.458718\pi\)
0.129329 + 0.991602i \(0.458718\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 16.0715i − 1.06670i −0.845894 0.533351i \(-0.820933\pi\)
0.845894 0.533351i \(-0.179067\pi\)
\(228\) 0 0
\(229\) − 8.61775i − 0.569477i −0.958605 0.284739i \(-0.908093\pi\)
0.958605 0.284739i \(-0.0919068\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.1535 1.58235 0.791176 0.611589i \(-0.209469\pi\)
0.791176 + 0.611589i \(0.209469\pi\)
\(234\) 0 0
\(235\) 5.36886i 0.350226i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.02985 −0.260670 −0.130335 0.991470i \(-0.541605\pi\)
−0.130335 + 0.991470i \(0.541605\pi\)
\(240\) 0 0
\(241\) −5.63297 −0.362852 −0.181426 0.983405i \(-0.558071\pi\)
−0.181426 + 0.983405i \(0.558071\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 3.11237i − 0.198842i
\(246\) 0 0
\(247\) −5.30350 −0.337453
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.8828i 0.876276i 0.898908 + 0.438138i \(0.144362\pi\)
−0.898908 + 0.438138i \(0.855638\pi\)
\(252\) 0 0
\(253\) − 18.0161i − 1.13267i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.8508 0.676853 0.338427 0.940993i \(-0.390105\pi\)
0.338427 + 0.940993i \(0.390105\pi\)
\(258\) 0 0
\(259\) 9.94686i 0.618068i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.2101 −1.43120 −0.715598 0.698512i \(-0.753846\pi\)
−0.715598 + 0.698512i \(0.753846\pi\)
\(264\) 0 0
\(265\) −1.76920 −0.108681
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 4.01966i − 0.245083i −0.992463 0.122541i \(-0.960896\pi\)
0.992463 0.122541i \(-0.0391044\pi\)
\(270\) 0 0
\(271\) 6.75621 0.410411 0.205205 0.978719i \(-0.434214\pi\)
0.205205 + 0.978719i \(0.434214\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 12.3689i − 0.745875i
\(276\) 0 0
\(277\) 2.11997i 0.127377i 0.997970 + 0.0636885i \(0.0202864\pi\)
−0.997970 + 0.0636885i \(0.979714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.1160 1.55795 0.778976 0.627054i \(-0.215739\pi\)
0.778976 + 0.627054i \(0.215739\pi\)
\(282\) 0 0
\(283\) − 19.0960i − 1.13514i −0.823326 0.567569i \(-0.807884\pi\)
0.823326 0.567569i \(-0.192116\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.96364 0.174938
\(288\) 0 0
\(289\) 14.9423 0.878956
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.85568i 0.342092i 0.985263 + 0.171046i \(0.0547147\pi\)
−0.985263 + 0.171046i \(0.945285\pi\)
\(294\) 0 0
\(295\) 3.71337 0.216201
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 36.2097i 2.09406i
\(300\) 0 0
\(301\) 5.50539i 0.317325i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.37929 −0.365277
\(306\) 0 0
\(307\) − 13.7071i − 0.782305i −0.920326 0.391152i \(-0.872077\pi\)
0.920326 0.391152i \(-0.127923\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.1596 −1.08644 −0.543221 0.839590i \(-0.682795\pi\)
−0.543221 + 0.839590i \(0.682795\pi\)
\(312\) 0 0
\(313\) 25.2205 1.42555 0.712773 0.701395i \(-0.247439\pi\)
0.712773 + 0.701395i \(0.247439\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.47026i 0.138744i 0.997591 + 0.0693719i \(0.0220995\pi\)
−0.997591 + 0.0693719i \(0.977900\pi\)
\(318\) 0 0
\(319\) 9.01686 0.504847
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 5.44449i − 0.302939i
\(324\) 0 0
\(325\) 24.8597i 1.37897i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.2652 0.676205
\(330\) 0 0
\(331\) − 28.2213i − 1.55118i −0.631235 0.775592i \(-0.717452\pi\)
0.631235 0.775592i \(-0.282548\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.78843 −0.261620
\(336\) 0 0
\(337\) −11.2113 −0.610718 −0.305359 0.952237i \(-0.598777\pi\)
−0.305359 + 0.952237i \(0.598777\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.2616i 1.09723i
\(342\) 0 0
\(343\) −18.2411 −0.984929
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.5887i 1.10526i 0.833428 + 0.552628i \(0.186375\pi\)
−0.833428 + 0.552628i \(0.813625\pi\)
\(348\) 0 0
\(349\) 3.39445i 0.181701i 0.995865 + 0.0908505i \(0.0289585\pi\)
−0.995865 + 0.0908505i \(0.971041\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.00648 0.0535696 0.0267848 0.999641i \(-0.491473\pi\)
0.0267848 + 0.999641i \(0.491473\pi\)
\(354\) 0 0
\(355\) − 2.56390i − 0.136078i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.4772 −1.66131 −0.830653 0.556791i \(-0.812032\pi\)
−0.830653 + 0.556791i \(0.812032\pi\)
\(360\) 0 0
\(361\) 18.0720 0.951158
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.97121i 0.103178i
\(366\) 0 0
\(367\) −17.3333 −0.904793 −0.452397 0.891817i \(-0.649431\pi\)
−0.452397 + 0.891817i \(0.649431\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.04177i 0.209838i
\(372\) 0 0
\(373\) − 13.0183i − 0.674064i −0.941493 0.337032i \(-0.890577\pi\)
0.941493 0.337032i \(-0.109423\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.1225 −0.933357
\(378\) 0 0
\(379\) − 22.8643i − 1.17446i −0.809421 0.587229i \(-0.800219\pi\)
0.809421 0.587229i \(-0.199781\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 30.0234 1.53412 0.767061 0.641574i \(-0.221718\pi\)
0.767061 + 0.641574i \(0.221718\pi\)
\(384\) 0 0
\(385\) 3.03177 0.154513
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 38.0444i − 1.92893i −0.264218 0.964463i \(-0.585114\pi\)
0.264218 0.964463i \(-0.414886\pi\)
\(390\) 0 0
\(391\) −37.1723 −1.87989
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.00742i 0.201635i
\(396\) 0 0
\(397\) − 37.4510i − 1.87961i −0.341709 0.939806i \(-0.611006\pi\)
0.341709 0.939806i \(-0.388994\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.70804 0.235108 0.117554 0.993066i \(-0.462495\pi\)
0.117554 + 0.993066i \(0.462495\pi\)
\(402\) 0 0
\(403\) − 40.7227i − 2.02854i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.1348 0.849339
\(408\) 0 0
\(409\) −10.7275 −0.530443 −0.265221 0.964188i \(-0.585445\pi\)
−0.265221 + 0.964188i \(0.585445\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 8.48324i − 0.417433i
\(414\) 0 0
\(415\) −4.62117 −0.226844
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 4.12921i − 0.201725i −0.994900 0.100863i \(-0.967840\pi\)
0.994900 0.100863i \(-0.0321602\pi\)
\(420\) 0 0
\(421\) − 15.8565i − 0.772797i −0.922332 0.386399i \(-0.873719\pi\)
0.922332 0.386399i \(-0.126281\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −25.5206 −1.23793
\(426\) 0 0
\(427\) 14.5736i 0.705265i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.1853 −0.779619 −0.389810 0.920895i \(-0.627459\pi\)
−0.389810 + 0.920895i \(0.627459\pi\)
\(432\) 0 0
\(433\) −32.8306 −1.57774 −0.788868 0.614563i \(-0.789332\pi\)
−0.788868 + 0.614563i \(0.789332\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.33594i 0.303089i
\(438\) 0 0
\(439\) 21.8546 1.04307 0.521533 0.853231i \(-0.325360\pi\)
0.521533 + 0.853231i \(0.325360\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 35.1606i − 1.67053i −0.549848 0.835265i \(-0.685314\pi\)
0.549848 0.835265i \(-0.314686\pi\)
\(444\) 0 0
\(445\) − 2.07910i − 0.0985587i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.21851 0.151891 0.0759453 0.997112i \(-0.475803\pi\)
0.0759453 + 0.997112i \(0.475803\pi\)
\(450\) 0 0
\(451\) − 5.10526i − 0.240397i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.09338 −0.285662
\(456\) 0 0
\(457\) −8.11025 −0.379381 −0.189691 0.981844i \(-0.560749\pi\)
−0.189691 + 0.981844i \(0.560749\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.9940i 0.977788i 0.872343 + 0.488894i \(0.162599\pi\)
−0.872343 + 0.488894i \(0.837401\pi\)
\(462\) 0 0
\(463\) −8.90011 −0.413623 −0.206812 0.978381i \(-0.566309\pi\)
−0.206812 + 0.978381i \(0.566309\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 26.0527i − 1.20557i −0.797902 0.602787i \(-0.794057\pi\)
0.797902 0.602787i \(-0.205943\pi\)
\(468\) 0 0
\(469\) 10.9392i 0.505128i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.48375 0.436063
\(474\) 0 0
\(475\) 4.34993i 0.199588i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.4229 0.796071 0.398035 0.917370i \(-0.369692\pi\)
0.398035 + 0.917370i \(0.369692\pi\)
\(480\) 0 0
\(481\) −34.4383 −1.57025
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.73785i 0.0789118i
\(486\) 0 0
\(487\) 29.7367 1.34750 0.673750 0.738959i \(-0.264682\pi\)
0.673750 + 0.738959i \(0.264682\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 23.8268i − 1.07529i −0.843171 0.537645i \(-0.819314\pi\)
0.843171 0.537645i \(-0.180686\pi\)
\(492\) 0 0
\(493\) − 18.6043i − 0.837895i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.85726 −0.262734
\(498\) 0 0
\(499\) 19.4708i 0.871632i 0.900036 + 0.435816i \(0.143540\pi\)
−0.900036 + 0.435816i \(0.856460\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.23494 −0.0550631 −0.0275316 0.999621i \(-0.508765\pi\)
−0.0275316 + 0.999621i \(0.508765\pi\)
\(504\) 0 0
\(505\) 6.60772 0.294040
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.453647i 0.0201075i 0.999949 + 0.0100538i \(0.00320027\pi\)
−0.999949 + 0.0100538i \(0.996800\pi\)
\(510\) 0 0
\(511\) 4.50325 0.199212
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.2628i 0.452233i
\(516\) 0 0
\(517\) − 21.1285i − 0.929231i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.0873 −1.27434 −0.637170 0.770724i \(-0.719895\pi\)
−0.637170 + 0.770724i \(0.719895\pi\)
\(522\) 0 0
\(523\) − 2.95874i − 0.129377i −0.997906 0.0646883i \(-0.979395\pi\)
0.997906 0.0646883i \(-0.0206053\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 41.8053 1.82107
\(528\) 0 0
\(529\) 20.2587 0.880815
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.2608i 0.444444i
\(534\) 0 0
\(535\) 5.45272 0.235741
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.2483i 0.527573i
\(540\) 0 0
\(541\) − 14.9753i − 0.643838i −0.946767 0.321919i \(-0.895672\pi\)
0.946767 0.321919i \(-0.104328\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.168722 0.00722724
\(546\) 0 0
\(547\) 18.2132i 0.778741i 0.921081 + 0.389370i \(0.127307\pi\)
−0.921081 + 0.389370i \(0.872693\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.17106 −0.135092
\(552\) 0 0
\(553\) 9.15500 0.389310
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 35.7359i 1.51418i 0.653310 + 0.757090i \(0.273380\pi\)
−0.653310 + 0.757090i \(0.726620\pi\)
\(558\) 0 0
\(559\) −19.0609 −0.806190
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.28675i 0.391390i 0.980665 + 0.195695i \(0.0626962\pi\)
−0.980665 + 0.195695i \(0.937304\pi\)
\(564\) 0 0
\(565\) − 6.05267i − 0.254638i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.3345 0.475168 0.237584 0.971367i \(-0.423644\pi\)
0.237584 + 0.971367i \(0.423644\pi\)
\(570\) 0 0
\(571\) − 43.6296i − 1.82584i −0.408138 0.912920i \(-0.633822\pi\)
0.408138 0.912920i \(-0.366178\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 29.6992 1.23854
\(576\) 0 0
\(577\) 6.98123 0.290632 0.145316 0.989385i \(-0.453580\pi\)
0.145316 + 0.989385i \(0.453580\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.5571i 0.437983i
\(582\) 0 0
\(583\) 6.96248 0.288356
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.48213i 0.350095i 0.984560 + 0.175048i \(0.0560079\pi\)
−0.984560 + 0.175048i \(0.943992\pi\)
\(588\) 0 0
\(589\) − 7.12562i − 0.293606i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.40869 −0.386368 −0.193184 0.981163i \(-0.561881\pi\)
−0.193184 + 0.981163i \(0.561881\pi\)
\(594\) 0 0
\(595\) − 6.25538i − 0.256445i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −29.9247 −1.22269 −0.611344 0.791365i \(-0.709371\pi\)
−0.611344 + 0.791365i \(0.709371\pi\)
\(600\) 0 0
\(601\) −3.63946 −0.148456 −0.0742282 0.997241i \(-0.523649\pi\)
−0.0742282 + 0.997241i \(0.523649\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.43390i 0.0989520i
\(606\) 0 0
\(607\) 7.26716 0.294965 0.147482 0.989065i \(-0.452883\pi\)
0.147482 + 0.989065i \(0.452883\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 42.4651i 1.71795i
\(612\) 0 0
\(613\) − 32.6469i − 1.31859i −0.751882 0.659297i \(-0.770854\pi\)
0.751882 0.659297i \(-0.229146\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −31.3502 −1.26211 −0.631056 0.775737i \(-0.717378\pi\)
−0.631056 + 0.775737i \(0.717378\pi\)
\(618\) 0 0
\(619\) 1.99289i 0.0801010i 0.999198 + 0.0400505i \(0.0127519\pi\)
−0.999198 + 0.0400505i \(0.987248\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.74973 −0.190294
\(624\) 0 0
\(625\) 17.9675 0.718700
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 35.3538i − 1.40965i
\(630\) 0 0
\(631\) 15.4643 0.615623 0.307812 0.951447i \(-0.400403\pi\)
0.307812 + 0.951447i \(0.400403\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.20245i 0.0477178i
\(636\) 0 0
\(637\) − 24.6173i − 0.975372i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.7275 0.976679 0.488340 0.872654i \(-0.337603\pi\)
0.488340 + 0.872654i \(0.337603\pi\)
\(642\) 0 0
\(643\) − 46.2084i − 1.82228i −0.412096 0.911141i \(-0.635203\pi\)
0.412096 0.911141i \(-0.364797\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.36971 0.250419 0.125210 0.992130i \(-0.460040\pi\)
0.125210 + 0.992130i \(0.460040\pi\)
\(648\) 0 0
\(649\) −14.6135 −0.573630
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 36.8174i − 1.44078i −0.693571 0.720389i \(-0.743963\pi\)
0.693571 0.720389i \(-0.256037\pi\)
\(654\) 0 0
\(655\) −4.62117 −0.180564
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 7.46589i − 0.290830i −0.989371 0.145415i \(-0.953548\pi\)
0.989371 0.145415i \(-0.0464517\pi\)
\(660\) 0 0
\(661\) − 2.90965i − 0.113172i −0.998398 0.0565862i \(-0.981978\pi\)
0.998398 0.0565862i \(-0.0180216\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.06622 −0.0413461
\(666\) 0 0
\(667\) 21.6505i 0.838310i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.1049 0.969165
\(672\) 0 0
\(673\) −42.1054 −1.62304 −0.811522 0.584323i \(-0.801360\pi\)
−0.811522 + 0.584323i \(0.801360\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.0983i 1.46424i 0.681177 + 0.732119i \(0.261468\pi\)
−0.681177 + 0.732119i \(0.738532\pi\)
\(678\) 0 0
\(679\) 3.97015 0.152360
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 47.0728i − 1.80119i −0.434659 0.900595i \(-0.643131\pi\)
0.434659 0.900595i \(-0.356869\pi\)
\(684\) 0 0
\(685\) − 2.52421i − 0.0964450i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13.9935 −0.533111
\(690\) 0 0
\(691\) − 3.90892i − 0.148702i −0.997232 0.0743512i \(-0.976311\pi\)
0.997232 0.0743512i \(-0.0236886\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.0494 −0.457058
\(696\) 0 0
\(697\) −10.5336 −0.398987
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 16.4480i − 0.621231i −0.950536 0.310615i \(-0.899465\pi\)
0.950536 0.310615i \(-0.100535\pi\)
\(702\) 0 0
\(703\) −6.02598 −0.227274
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 15.0954i − 0.567722i
\(708\) 0 0
\(709\) − 7.90745i − 0.296971i −0.988915 0.148485i \(-0.952560\pi\)
0.988915 0.148485i \(-0.0474398\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −48.6503 −1.82197
\(714\) 0 0
\(715\) 10.4967i 0.392553i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 37.0556 1.38194 0.690970 0.722884i \(-0.257184\pi\)
0.690970 + 0.722884i \(0.257184\pi\)
\(720\) 0 0
\(721\) 23.4455 0.873156
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.8641i 0.552038i
\(726\) 0 0
\(727\) 5.66934 0.210264 0.105132 0.994458i \(-0.466473\pi\)
0.105132 + 0.994458i \(0.466473\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 19.5676i − 0.723735i
\(732\) 0 0
\(733\) − 12.5335i − 0.462937i −0.972842 0.231469i \(-0.925647\pi\)
0.972842 0.231469i \(-0.0743530\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.8443 0.694139
\(738\) 0 0
\(739\) 1.83358i 0.0674492i 0.999431 + 0.0337246i \(0.0107369\pi\)
−0.999431 + 0.0337246i \(0.989263\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.3177 −1.14893 −0.574467 0.818528i \(-0.694791\pi\)
−0.574467 + 0.818528i \(0.694791\pi\)
\(744\) 0 0
\(745\) −15.0498 −0.551382
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 12.4568i − 0.455162i
\(750\) 0 0
\(751\) 7.28932 0.265991 0.132996 0.991117i \(-0.457540\pi\)
0.132996 + 0.991117i \(0.457540\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 8.84005i − 0.321722i
\(756\) 0 0
\(757\) − 12.8156i − 0.465792i −0.972502 0.232896i \(-0.925180\pi\)
0.972502 0.232896i \(-0.0748202\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.1600 −0.912050 −0.456025 0.889967i \(-0.650727\pi\)
−0.456025 + 0.889967i \(0.650727\pi\)
\(762\) 0 0
\(763\) − 0.385447i − 0.0139541i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29.3709 1.06052
\(768\) 0 0
\(769\) 21.4636 0.773996 0.386998 0.922081i \(-0.373512\pi\)
0.386998 + 0.922081i \(0.373512\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.2122i 0.726981i 0.931598 + 0.363491i \(0.118415\pi\)
−0.931598 + 0.363491i \(0.881585\pi\)
\(774\) 0 0
\(775\) −33.4007 −1.19979
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.79542i 0.0643277i
\(780\) 0 0
\(781\) 10.0899i 0.361045i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.1591 −0.433978
\(786\) 0 0
\(787\) 20.2911i 0.723299i 0.932314 + 0.361649i \(0.117786\pi\)
−0.932314 + 0.361649i \(0.882214\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.8274 −0.491646
\(792\) 0 0
\(793\) −50.4570 −1.79178
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33.3429i 1.18107i 0.807013 + 0.590533i \(0.201083\pi\)
−0.807013 + 0.590533i \(0.798917\pi\)
\(798\) 0 0
\(799\) −43.5940 −1.54224
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 7.75745i − 0.273754i
\(804\) 0 0
\(805\) 7.27960i 0.256572i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.6920 1.07907 0.539536 0.841962i \(-0.318600\pi\)
0.539536 + 0.841962i \(0.318600\pi\)
\(810\) 0 0
\(811\) − 49.5457i − 1.73978i −0.493241 0.869892i \(-0.664188\pi\)
0.493241 0.869892i \(-0.335812\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.96337 −0.208888
\(816\) 0 0
\(817\) −3.33526 −0.116686
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 38.0750i − 1.32883i −0.747365 0.664414i \(-0.768681\pi\)
0.747365 0.664414i \(-0.231319\pi\)
\(822\) 0 0
\(823\) 22.5252 0.785178 0.392589 0.919714i \(-0.371579\pi\)
0.392589 + 0.919714i \(0.371579\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.5317i 1.16601i 0.812468 + 0.583006i \(0.198124\pi\)
−0.812468 + 0.583006i \(0.801876\pi\)
\(828\) 0 0
\(829\) 37.7559i 1.31132i 0.755058 + 0.655658i \(0.227609\pi\)
−0.755058 + 0.655658i \(0.772391\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.2717 0.875614
\(834\) 0 0
\(835\) − 8.31821i − 0.287863i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.8121 −0.683989 −0.341994 0.939702i \(-0.611102\pi\)
−0.341994 + 0.939702i \(0.611102\pi\)
\(840\) 0 0
\(841\) 18.1642 0.626352
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 12.0481i − 0.414466i
\(846\) 0 0
\(847\) 5.56028 0.191053
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 41.1425i 1.41035i
\(852\) 0 0
\(853\) − 6.87537i − 0.235408i −0.993049 0.117704i \(-0.962447\pi\)
0.993049 0.117704i \(-0.0375534\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.74632 0.264609 0.132305 0.991209i \(-0.457762\pi\)
0.132305 + 0.991209i \(0.457762\pi\)
\(858\) 0 0
\(859\) 0.686576i 0.0234257i 0.999931 + 0.0117128i \(0.00372839\pi\)
−0.999931 + 0.0117128i \(0.996272\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 42.9194 1.46099 0.730496 0.682917i \(-0.239289\pi\)
0.730496 + 0.682917i \(0.239289\pi\)
\(864\) 0 0
\(865\) −9.07991 −0.308726
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 15.7707i − 0.534984i
\(870\) 0 0
\(871\) −37.8742 −1.28332
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.5318i 0.356040i
\(876\) 0 0
\(877\) − 17.0328i − 0.575157i −0.957757 0.287578i \(-0.907150\pi\)
0.957757 0.287578i \(-0.0928501\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.90546 −0.266342 −0.133171 0.991093i \(-0.542516\pi\)
−0.133171 + 0.991093i \(0.542516\pi\)
\(882\) 0 0
\(883\) − 7.53298i − 0.253505i −0.991934 0.126752i \(-0.959545\pi\)
0.991934 0.126752i \(-0.0404554\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.0544 0.471900 0.235950 0.971765i \(-0.424180\pi\)
0.235950 + 0.971765i \(0.424180\pi\)
\(888\) 0 0
\(889\) 2.74702 0.0921320
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.43051i 0.248652i
\(894\) 0 0
\(895\) −2.31001 −0.0772150
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 24.3489i − 0.812081i
\(900\) 0 0
\(901\) − 14.3655i − 0.478585i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.3800 −0.345043
\(906\) 0 0
\(907\) − 45.9522i − 1.52582i −0.646505 0.762910i \(-0.723770\pi\)
0.646505 0.762910i \(-0.276230\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.5822 1.70899 0.854497 0.519456i \(-0.173865\pi\)
0.854497 + 0.519456i \(0.173865\pi\)
\(912\) 0 0
\(913\) 18.1860 0.601870
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.5571i 0.348627i
\(918\) 0 0
\(919\) 21.2048 0.699481 0.349741 0.936847i \(-0.386270\pi\)
0.349741 + 0.936847i \(0.386270\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 20.2792i − 0.667497i
\(924\) 0 0
\(925\) 28.2463i 0.928732i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.41033 −0.111889 −0.0559446 0.998434i \(-0.517817\pi\)
−0.0559446 + 0.998434i \(0.517817\pi\)
\(930\) 0 0
\(931\) − 4.30751i − 0.141173i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.7757 −0.352403
\(936\) 0 0
\(937\) 29.4448 0.961919 0.480959 0.876743i \(-0.340288\pi\)
0.480959 + 0.876743i \(0.340288\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.8670i 1.52782i 0.645323 + 0.763910i \(0.276723\pi\)
−0.645323 + 0.763910i \(0.723277\pi\)
\(942\) 0 0
\(943\) 12.2583 0.399185
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.4679i 1.18505i 0.805553 + 0.592524i \(0.201869\pi\)
−0.805553 + 0.592524i \(0.798131\pi\)
\(948\) 0 0
\(949\) 15.5913i 0.506115i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.0590 1.23285 0.616426 0.787413i \(-0.288580\pi\)
0.616426 + 0.787413i \(0.288580\pi\)
\(954\) 0 0
\(955\) 5.09344i 0.164820i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.76659 −0.186213
\(960\) 0 0
\(961\) 23.7138 0.764962
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.2486i 0.458679i
\(966\) 0 0
\(967\) 22.9728 0.738756 0.369378 0.929279i \(-0.379571\pi\)
0.369378 + 0.929279i \(0.379571\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 53.8829i − 1.72919i −0.502474 0.864593i \(-0.667577\pi\)
0.502474 0.864593i \(-0.332423\pi\)
\(972\) 0 0
\(973\) 27.5269i 0.882473i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38.2048 −1.22228 −0.611140 0.791523i \(-0.709289\pi\)
−0.611140 + 0.791523i \(0.709289\pi\)
\(978\) 0 0
\(979\) 8.18203i 0.261499i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48.6614 −1.55206 −0.776028 0.630698i \(-0.782769\pi\)
−0.776028 + 0.630698i \(0.782769\pi\)
\(984\) 0 0
\(985\) 14.2994 0.455615
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22.7715i 0.724093i
\(990\) 0 0
\(991\) 12.7822 0.406040 0.203020 0.979175i \(-0.434924\pi\)
0.203020 + 0.979175i \(0.434924\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1.36145i − 0.0431608i
\(996\) 0 0
\(997\) 24.3827i 0.772209i 0.922455 + 0.386104i \(0.126180\pi\)
−0.922455 + 0.386104i \(0.873820\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.2.d.j.1297.5 8
3.2 odd 2 2592.2.d.k.1297.4 8
4.3 odd 2 648.2.d.j.325.5 8
8.3 odd 2 648.2.d.j.325.6 8
8.5 even 2 inner 2592.2.d.j.1297.4 8
9.2 odd 6 864.2.r.b.145.5 16
9.4 even 3 288.2.r.b.241.7 16
9.5 odd 6 864.2.r.b.721.4 16
9.7 even 3 288.2.r.b.49.2 16
12.11 even 2 648.2.d.k.325.4 8
24.5 odd 2 2592.2.d.k.1297.5 8
24.11 even 2 648.2.d.k.325.3 8
36.7 odd 6 72.2.n.b.13.1 16
36.11 even 6 216.2.n.b.37.8 16
36.23 even 6 216.2.n.b.181.2 16
36.31 odd 6 72.2.n.b.61.7 yes 16
72.5 odd 6 864.2.r.b.721.5 16
72.11 even 6 216.2.n.b.37.2 16
72.13 even 6 288.2.r.b.241.2 16
72.29 odd 6 864.2.r.b.145.4 16
72.43 odd 6 72.2.n.b.13.7 yes 16
72.59 even 6 216.2.n.b.181.8 16
72.61 even 6 288.2.r.b.49.7 16
72.67 odd 6 72.2.n.b.61.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.n.b.13.1 16 36.7 odd 6
72.2.n.b.13.7 yes 16 72.43 odd 6
72.2.n.b.61.1 yes 16 72.67 odd 6
72.2.n.b.61.7 yes 16 36.31 odd 6
216.2.n.b.37.2 16 72.11 even 6
216.2.n.b.37.8 16 36.11 even 6
216.2.n.b.181.2 16 36.23 even 6
216.2.n.b.181.8 16 72.59 even 6
288.2.r.b.49.2 16 9.7 even 3
288.2.r.b.49.7 16 72.61 even 6
288.2.r.b.241.2 16 72.13 even 6
288.2.r.b.241.7 16 9.4 even 3
648.2.d.j.325.5 8 4.3 odd 2
648.2.d.j.325.6 8 8.3 odd 2
648.2.d.k.325.3 8 24.11 even 2
648.2.d.k.325.4 8 12.11 even 2
864.2.r.b.145.4 16 72.29 odd 6
864.2.r.b.145.5 16 9.2 odd 6
864.2.r.b.721.4 16 9.5 odd 6
864.2.r.b.721.5 16 72.5 odd 6
2592.2.d.j.1297.4 8 8.5 even 2 inner
2592.2.d.j.1297.5 8 1.1 even 1 trivial
2592.2.d.k.1297.4 8 3.2 odd 2
2592.2.d.k.1297.5 8 24.5 odd 2