Properties

Label 72.2.n.b.13.7
Level $72$
Weight $2$
Character 72.13
Analytic conductor $0.575$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,2,Mod(13,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 72.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + x^{14} + 2 x^{12} - 4 x^{11} - 8 x^{9} + 4 x^{8} - 16 x^{7} - 32 x^{5} + 32 x^{4} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 13.7
Root \(-1.34532 + 0.436011i\) of defining polynomial
Character \(\chi\) \(=\) 72.13
Dual form 72.2.n.b.61.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05026 - 0.947078i) q^{2} +(-1.52768 - 0.816201i) q^{3} +(0.206086 - 1.98935i) q^{4} +(0.602794 + 0.348023i) q^{5} +(-2.37747 + 0.589613i) q^{6} +(0.795065 + 1.37709i) q^{7} +(-1.66763 - 2.28452i) q^{8} +(1.66763 + 2.49379i) q^{9} +O(q^{10})\) \(q+(1.05026 - 0.947078i) q^{2} +(-1.52768 - 0.816201i) q^{3} +(0.206086 - 1.98935i) q^{4} +(0.602794 + 0.348023i) q^{5} +(-2.37747 + 0.589613i) q^{6} +(0.795065 + 1.37709i) q^{7} +(-1.66763 - 2.28452i) q^{8} +(1.66763 + 2.49379i) q^{9} +(0.962695 - 0.205379i) q^{10} +(-2.37222 + 1.36960i) q^{11} +(-1.93855 + 2.87089i) q^{12} +(4.76780 + 2.75269i) q^{13} +(2.13924 + 0.693314i) q^{14} +(-0.636821 - 1.02367i) q^{15} +(-3.91506 - 0.819955i) q^{16} -5.65175 q^{17} +(4.11326 + 1.03975i) q^{18} +0.963328i q^{19} +(0.816569 - 1.12745i) q^{20} +(-0.0906219 - 2.75269i) q^{21} +(-1.19433 + 3.68512i) q^{22} +(3.28857 - 5.69597i) q^{23} +(0.682986 + 4.85114i) q^{24} +(-2.25776 - 3.91055i) q^{25} +(7.61444 - 1.62444i) q^{26} +(-0.512172 - 5.17085i) q^{27} +(2.90338 - 1.29787i) q^{28} +(-2.85076 + 1.64589i) q^{29} +(-1.63832 - 0.471999i) q^{30} +(-3.69844 + 6.40589i) q^{31} +(-4.88838 + 2.84670i) q^{32} +(4.74188 - 0.156108i) q^{33} +(-5.93580 + 5.35265i) q^{34} +1.10680i q^{35} +(5.30471 - 2.80357i) q^{36} -6.25538i q^{37} +(0.912347 + 1.01174i) q^{38} +(-5.03694 - 8.09673i) q^{39} +(-0.210173 - 1.95747i) q^{40} +(-0.931886 + 1.61407i) q^{41} +(-2.70219 - 2.80521i) q^{42} +(2.99838 - 1.73111i) q^{43} +(2.23574 + 5.00145i) q^{44} +(0.137339 + 2.08362i) q^{45} +(-1.94068 - 9.09677i) q^{46} +(3.85668 + 6.67997i) q^{47} +(5.31172 + 4.44811i) q^{48} +(2.23574 - 3.87242i) q^{49} +(-6.07483 - 1.96882i) q^{50} +(8.63408 + 4.61296i) q^{51} +(6.45866 - 8.91756i) q^{52} -2.54179i q^{53} +(-5.43511 - 4.94566i) q^{54} -1.90662 q^{55} +(1.82011 - 4.11282i) q^{56} +(0.786270 - 1.47166i) q^{57} +(-1.43525 + 4.42850i) q^{58} +(4.62019 + 2.66747i) q^{59} +(-2.16768 + 1.05590i) q^{60} +(-7.93715 + 4.58252i) q^{61} +(2.18256 + 10.2305i) q^{62} +(-2.10831 + 4.27921i) q^{63} +(-2.43802 + 7.61945i) q^{64} +(1.91600 + 3.31861i) q^{65} +(4.83235 - 4.65488i) q^{66} +(-5.95780 - 3.43974i) q^{67} +(-1.16474 + 11.2433i) q^{68} +(-9.67295 + 6.01750i) q^{69} +(1.04823 + 1.16243i) q^{70} +3.68351 q^{71} +(2.91612 - 7.96845i) q^{72} +2.83201 q^{73} +(-5.92433 - 6.56976i) q^{74} +(0.257341 + 7.81687i) q^{75} +(1.91640 + 0.198528i) q^{76} +(-3.77214 - 2.17785i) q^{77} +(-12.9583 - 3.73328i) q^{78} +(2.87870 + 4.98605i) q^{79} +(-2.07461 - 1.85680i) q^{80} +(-3.43802 + 8.31745i) q^{81} +(0.549933 + 2.57776i) q^{82} +(5.74968 - 3.31958i) q^{83} +(-5.49476 - 0.387012i) q^{84} +(-3.40684 - 1.96694i) q^{85} +(1.50957 - 4.65781i) q^{86} +(5.69844 - 0.187599i) q^{87} +(7.08487 + 3.13539i) q^{88} -2.98701 q^{89} +(2.11759 + 2.05827i) q^{90} +8.75427i q^{91} +(-10.6536 - 7.71598i) q^{92} +(10.8785 - 6.76749i) q^{93} +(10.3770 + 3.36312i) q^{94} +(-0.335261 + 0.580689i) q^{95} +(9.79138 - 0.358951i) q^{96} +(-1.24837 - 2.16224i) q^{97} +(-1.31938 - 6.18447i) q^{98} +(-7.37150 - 3.63184i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{2} - q^{4} - 7 q^{6} + 6 q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + q^{2} - q^{4} - 7 q^{6} + 6 q^{7} - 2 q^{8} + 2 q^{9} - 16 q^{10} - 16 q^{12} + 16 q^{14} - 10 q^{15} - 9 q^{16} - 28 q^{17} + 4 q^{18} - 8 q^{20} + q^{22} - 10 q^{23} + 7 q^{24} + 2 q^{25} + 28 q^{26} + 4 q^{28} + 22 q^{30} - 10 q^{31} + 11 q^{32} + q^{34} + 27 q^{36} + 23 q^{38} + 2 q^{39} + 6 q^{40} - 8 q^{41} + 8 q^{42} + 18 q^{44} - 20 q^{46} + 6 q^{47} + 39 q^{48} + 18 q^{49} - 23 q^{50} - 8 q^{52} - 29 q^{54} - 4 q^{55} + 10 q^{56} + 10 q^{57} - 14 q^{58} + 6 q^{60} - 52 q^{62} + 2 q^{63} + 26 q^{64} - 14 q^{65} - 72 q^{66} - 39 q^{68} + 72 q^{71} - 77 q^{72} - 44 q^{73} - 38 q^{74} + 5 q^{76} + 10 q^{78} - 30 q^{79} - 96 q^{80} + 10 q^{81} + 38 q^{82} - 28 q^{84} + 7 q^{86} + 42 q^{87} + 31 q^{88} + 64 q^{89} + 64 q^{90} - 30 q^{92} - 12 q^{94} + 44 q^{95} - 26 q^{96} + 66 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.05026 0.947078i 0.742645 0.669685i
\(3\) −1.52768 0.816201i −0.882008 0.471234i
\(4\) 0.206086 1.98935i 0.103043 0.994677i
\(5\) 0.602794 + 0.348023i 0.269578 + 0.155641i 0.628696 0.777651i \(-0.283589\pi\)
−0.359118 + 0.933292i \(0.616922\pi\)
\(6\) −2.37747 + 0.589613i −0.970597 + 0.240708i
\(7\) 0.795065 + 1.37709i 0.300506 + 0.520492i 0.976251 0.216644i \(-0.0695111\pi\)
−0.675745 + 0.737136i \(0.736178\pi\)
\(8\) −1.66763 2.28452i −0.589596 0.807698i
\(9\) 1.66763 + 2.49379i 0.555877 + 0.831265i
\(10\) 0.962695 0.205379i 0.304431 0.0649464i
\(11\) −2.37222 + 1.36960i −0.715252 + 0.412951i −0.813003 0.582260i \(-0.802169\pi\)
0.0977506 + 0.995211i \(0.468835\pi\)
\(12\) −1.93855 + 2.87089i −0.559610 + 0.828756i
\(13\) 4.76780 + 2.75269i 1.32235 + 0.763460i 0.984103 0.177597i \(-0.0568325\pi\)
0.338248 + 0.941057i \(0.390166\pi\)
\(14\) 2.13924 + 0.693314i 0.571735 + 0.185296i
\(15\) −0.636821 1.02367i −0.164427 0.264311i
\(16\) −3.91506 0.819955i −0.978764 0.204989i
\(17\) −5.65175 −1.37075 −0.685375 0.728190i \(-0.740362\pi\)
−0.685375 + 0.728190i \(0.740362\pi\)
\(18\) 4.11326 + 1.03975i 0.969505 + 0.245072i
\(19\) 0.963328i 0.221003i 0.993876 + 0.110501i \(0.0352457\pi\)
−0.993876 + 0.110501i \(0.964754\pi\)
\(20\) 0.816569 1.12745i 0.182590 0.252105i
\(21\) −0.0906219 2.75269i −0.0197753 0.600687i
\(22\) −1.19433 + 3.68512i −0.254631 + 0.785670i
\(23\) 3.28857 5.69597i 0.685714 1.18769i −0.287498 0.957781i \(-0.592823\pi\)
0.973212 0.229910i \(-0.0738432\pi\)
\(24\) 0.682986 + 4.85114i 0.139414 + 0.990234i
\(25\) −2.25776 3.91055i −0.451552 0.782111i
\(26\) 7.61444 1.62444i 1.49332 0.318580i
\(27\) −0.512172 5.17085i −0.0985676 0.995130i
\(28\) 2.90338 1.29787i 0.548686 0.245274i
\(29\) −2.85076 + 1.64589i −0.529373 + 0.305634i −0.740761 0.671768i \(-0.765535\pi\)
0.211388 + 0.977402i \(0.432202\pi\)
\(30\) −1.63832 0.471999i −0.299115 0.0861749i
\(31\) −3.69844 + 6.40589i −0.664259 + 1.15053i 0.315226 + 0.949017i \(0.397920\pi\)
−0.979486 + 0.201514i \(0.935414\pi\)
\(32\) −4.88838 + 2.84670i −0.864152 + 0.503230i
\(33\) 4.74188 0.156108i 0.825455 0.0271749i
\(34\) −5.93580 + 5.35265i −1.01798 + 0.917971i
\(35\) 1.10680i 0.187084i
\(36\) 5.30471 2.80357i 0.884119 0.467262i
\(37\) 6.25538i 1.02838i −0.857677 0.514189i \(-0.828093\pi\)
0.857677 0.514189i \(-0.171907\pi\)
\(38\) 0.912347 + 1.01174i 0.148002 + 0.164127i
\(39\) −5.03694 8.09673i −0.806556 1.29651i
\(40\) −0.210173 1.95747i −0.0332313 0.309503i
\(41\) −0.931886 + 1.61407i −0.145536 + 0.252076i −0.929573 0.368639i \(-0.879824\pi\)
0.784037 + 0.620714i \(0.213157\pi\)
\(42\) −2.70219 2.80521i −0.416957 0.432854i
\(43\) 2.99838 1.73111i 0.457248 0.263992i −0.253638 0.967299i \(-0.581627\pi\)
0.710886 + 0.703307i \(0.248294\pi\)
\(44\) 2.23574 + 5.00145i 0.337051 + 0.753996i
\(45\) 0.137339 + 2.08362i 0.0204733 + 0.310608i
\(46\) −1.94068 9.09677i −0.286138 1.34125i
\(47\) 3.85668 + 6.67997i 0.562555 + 0.974374i 0.997273 + 0.0738070i \(0.0235149\pi\)
−0.434717 + 0.900567i \(0.643152\pi\)
\(48\) 5.31172 + 4.44811i 0.766680 + 0.642029i
\(49\) 2.23574 3.87242i 0.319392 0.553203i
\(50\) −6.07483 1.96882i −0.859111 0.278433i
\(51\) 8.63408 + 4.61296i 1.20901 + 0.645944i
\(52\) 6.45866 8.91756i 0.895655 1.23664i
\(53\) 2.54179i 0.349141i −0.984645 0.174571i \(-0.944146\pi\)
0.984645 0.174571i \(-0.0558537\pi\)
\(54\) −5.43511 4.94566i −0.739625 0.673019i
\(55\) −1.90662 −0.257088
\(56\) 1.82011 4.11282i 0.243223 0.549598i
\(57\) 0.786270 1.47166i 0.104144 0.194926i
\(58\) −1.43525 + 4.42850i −0.188458 + 0.581491i
\(59\) 4.62019 + 2.66747i 0.601498 + 0.347275i 0.769631 0.638489i \(-0.220440\pi\)
−0.168133 + 0.985764i \(0.553774\pi\)
\(60\) −2.16768 + 1.05590i −0.279847 + 0.136316i
\(61\) −7.93715 + 4.58252i −1.01625 + 0.586731i −0.913015 0.407926i \(-0.866252\pi\)
−0.103233 + 0.994657i \(0.532919\pi\)
\(62\) 2.18256 + 10.2305i 0.277185 + 1.29928i
\(63\) −2.10831 + 4.27921i −0.265622 + 0.539130i
\(64\) −2.43802 + 7.61945i −0.304752 + 0.952432i
\(65\) 1.91600 + 3.31861i 0.237651 + 0.411623i
\(66\) 4.83235 4.65488i 0.594821 0.572976i
\(67\) −5.95780 3.43974i −0.727861 0.420231i 0.0897783 0.995962i \(-0.471384\pi\)
−0.817639 + 0.575731i \(0.804717\pi\)
\(68\) −1.16474 + 11.2433i −0.141246 + 1.36345i
\(69\) −9.67295 + 6.01750i −1.16449 + 0.724422i
\(70\) 1.04823 + 1.16243i 0.125287 + 0.138937i
\(71\) 3.68351 0.437153 0.218576 0.975820i \(-0.429859\pi\)
0.218576 + 0.975820i \(0.429859\pi\)
\(72\) 2.91612 7.96845i 0.343668 0.939091i
\(73\) 2.83201 0.331461 0.165731 0.986171i \(-0.447002\pi\)
0.165731 + 0.986171i \(0.447002\pi\)
\(74\) −5.92433 6.56976i −0.688690 0.763719i
\(75\) 0.257341 + 7.81687i 0.0297151 + 0.902615i
\(76\) 1.91640 + 0.198528i 0.219826 + 0.0227728i
\(77\) −3.77214 2.17785i −0.429875 0.248189i
\(78\) −12.9583 3.73328i −1.46724 0.422711i
\(79\) 2.87870 + 4.98605i 0.323879 + 0.560975i 0.981285 0.192562i \(-0.0616797\pi\)
−0.657406 + 0.753537i \(0.728346\pi\)
\(80\) −2.07461 1.85680i −0.231948 0.207596i
\(81\) −3.43802 + 8.31745i −0.382002 + 0.924162i
\(82\) 0.549933 + 2.57776i 0.0607299 + 0.284666i
\(83\) 5.74968 3.31958i 0.631110 0.364371i −0.150072 0.988675i \(-0.547951\pi\)
0.781182 + 0.624304i \(0.214617\pi\)
\(84\) −5.49476 0.387012i −0.599527 0.0422264i
\(85\) −3.40684 1.96694i −0.369524 0.213345i
\(86\) 1.50957 4.65781i 0.162781 0.502265i
\(87\) 5.69844 0.187599i 0.610937 0.0201128i
\(88\) 7.08487 + 3.13539i 0.755250 + 0.334233i
\(89\) −2.98701 −0.316622 −0.158311 0.987389i \(-0.550605\pi\)
−0.158311 + 0.987389i \(0.550605\pi\)
\(90\) 2.11759 + 2.05827i 0.223214 + 0.216960i
\(91\) 8.75427i 0.917697i
\(92\) −10.6536 7.71598i −1.11071 0.804447i
\(93\) 10.8785 6.76749i 1.12805 0.701756i
\(94\) 10.3770 + 3.36312i 1.07030 + 0.346879i
\(95\) −0.335261 + 0.580689i −0.0343970 + 0.0595774i
\(96\) 9.79138 0.358951i 0.999329 0.0366353i
\(97\) −1.24837 2.16224i −0.126753 0.219543i 0.795664 0.605738i \(-0.207122\pi\)
−0.922417 + 0.386196i \(0.873789\pi\)
\(98\) −1.31938 6.18447i −0.133277 0.624726i
\(99\) −7.37150 3.63184i −0.740864 0.365014i
\(100\) −8.24477 + 3.68557i −0.824477 + 0.368557i
\(101\) 8.22136 4.74661i 0.818056 0.472305i −0.0316896 0.999498i \(-0.510089\pi\)
0.849746 + 0.527193i \(0.176755\pi\)
\(102\) 13.4369 3.33234i 1.33045 0.329951i
\(103\) 7.37220 12.7690i 0.726405 1.25817i −0.231989 0.972719i \(-0.574523\pi\)
0.958393 0.285451i \(-0.0921435\pi\)
\(104\) −1.66237 15.4826i −0.163008 1.51819i
\(105\) 0.903375 1.69085i 0.0881604 0.165010i
\(106\) −2.40727 2.66953i −0.233815 0.259288i
\(107\) 7.83384i 0.757325i −0.925535 0.378663i \(-0.876384\pi\)
0.925535 0.378663i \(-0.123616\pi\)
\(108\) −10.3922 0.0467464i −0.999990 0.00449818i
\(109\) 0.242400i 0.0232177i 0.999933 + 0.0116089i \(0.00369529\pi\)
−0.999933 + 0.0116089i \(0.996305\pi\)
\(110\) −2.00244 + 1.80571i −0.190925 + 0.172168i
\(111\) −5.10565 + 9.55623i −0.484607 + 0.907038i
\(112\) −1.98357 6.04331i −0.187430 0.571039i
\(113\) 4.34789 7.53076i 0.409015 0.708435i −0.585765 0.810481i \(-0.699206\pi\)
0.994780 + 0.102046i \(0.0325391\pi\)
\(114\) −0.567991 2.29028i −0.0531972 0.214505i
\(115\) 3.96466 2.28900i 0.369706 0.213450i
\(116\) 2.68675 + 6.01037i 0.249459 + 0.558049i
\(117\) 1.08629 + 16.4804i 0.100427 + 1.52361i
\(118\) 7.37870 1.57415i 0.679264 0.144912i
\(119\) −4.49350 7.78298i −0.411919 0.713464i
\(120\) −1.27661 + 3.16193i −0.116538 + 0.288644i
\(121\) −1.74837 + 3.02827i −0.158943 + 0.275297i
\(122\) −3.99606 + 12.3299i −0.361786 + 1.11630i
\(123\) 2.74103 1.70519i 0.247151 0.153751i
\(124\) 11.9814 + 8.67767i 1.07596 + 0.779277i
\(125\) 6.62325i 0.592401i
\(126\) 1.83847 + 6.49101i 0.163784 + 0.578265i
\(127\) −1.72754 −0.153295 −0.0766473 0.997058i \(-0.524422\pi\)
−0.0766473 + 0.997058i \(0.524422\pi\)
\(128\) 4.65567 + 10.3114i 0.411507 + 0.911407i
\(129\) −5.99350 + 0.197313i −0.527699 + 0.0173725i
\(130\) 5.15529 + 1.67080i 0.452148 + 0.146539i
\(131\) −5.74968 3.31958i −0.502352 0.290033i 0.227332 0.973817i \(-0.427000\pi\)
−0.729684 + 0.683784i \(0.760333\pi\)
\(132\) 0.666679 9.46544i 0.0580269 0.823861i
\(133\) −1.32659 + 0.765908i −0.115030 + 0.0664127i
\(134\) −9.51493 + 2.02989i −0.821964 + 0.175356i
\(135\) 1.49084 3.29521i 0.128311 0.283606i
\(136\) 9.42503 + 12.9115i 0.808189 + 1.10715i
\(137\) 1.81325 + 3.14063i 0.154916 + 0.268322i 0.933028 0.359803i \(-0.117156\pi\)
−0.778112 + 0.628125i \(0.783823\pi\)
\(138\) −4.46005 + 15.4810i −0.379665 + 1.31783i
\(139\) −14.9919 8.65556i −1.27159 0.734155i −0.296307 0.955093i \(-0.595755\pi\)
−0.975288 + 0.220937i \(0.929088\pi\)
\(140\) 2.20182 + 0.228097i 0.186088 + 0.0192777i
\(141\) −0.439587 13.3527i −0.0370199 1.12450i
\(142\) 3.86864 3.48858i 0.324649 0.292755i
\(143\) −15.0804 −1.26109
\(144\) −4.48407 11.1307i −0.373673 0.927561i
\(145\) −2.29123 −0.190276
\(146\) 2.97434 2.68213i 0.246158 0.221975i
\(147\) −6.57619 + 4.09102i −0.542395 + 0.337421i
\(148\) −12.4442 1.28914i −1.02290 0.105967i
\(149\) 18.7251 + 10.8109i 1.53402 + 0.885665i 0.999171 + 0.0407158i \(0.0129638\pi\)
0.534846 + 0.844949i \(0.320369\pi\)
\(150\) 7.67346 + 7.96602i 0.626536 + 0.650422i
\(151\) −6.35019 10.9988i −0.516771 0.895073i −0.999810 0.0194749i \(-0.993801\pi\)
0.483039 0.875599i \(-0.339533\pi\)
\(152\) 2.20074 1.60648i 0.178503 0.130302i
\(153\) −9.42503 14.0943i −0.761968 1.13946i
\(154\) −6.02431 + 1.28521i −0.485453 + 0.103565i
\(155\) −4.45880 + 2.57429i −0.358139 + 0.206772i
\(156\) −17.1453 + 8.35164i −1.37272 + 0.668666i
\(157\) 15.1285 + 8.73443i 1.20738 + 0.697083i 0.962187 0.272390i \(-0.0878140\pi\)
0.245197 + 0.969473i \(0.421147\pi\)
\(158\) 7.74556 + 2.51029i 0.616203 + 0.199708i
\(159\) −2.07461 + 3.88304i −0.164527 + 0.307945i
\(160\) −3.93741 + 0.0147030i −0.311279 + 0.00116238i
\(161\) 10.4585 0.824245
\(162\) 4.26647 + 11.9915i 0.335206 + 0.942145i
\(163\) 8.56748i 0.671057i 0.942030 + 0.335528i \(0.108915\pi\)
−0.942030 + 0.335528i \(0.891085\pi\)
\(164\) 3.01891 + 2.18649i 0.235738 + 0.170736i
\(165\) 2.91270 + 1.55618i 0.226754 + 0.121149i
\(166\) 2.89475 8.93182i 0.224676 0.693244i
\(167\) −5.97532 + 10.3496i −0.462384 + 0.800873i −0.999079 0.0429032i \(-0.986339\pi\)
0.536695 + 0.843776i \(0.319673\pi\)
\(168\) −6.13744 + 4.79750i −0.473514 + 0.370135i
\(169\) 8.65464 + 14.9903i 0.665741 + 1.15310i
\(170\) −5.44091 + 1.16075i −0.417299 + 0.0890254i
\(171\) −2.40234 + 1.60648i −0.183712 + 0.122850i
\(172\) −2.82587 6.32159i −0.215471 0.482017i
\(173\) −11.2973 + 6.52248i −0.858916 + 0.495895i −0.863649 0.504094i \(-0.831827\pi\)
0.00473326 + 0.999989i \(0.498493\pi\)
\(174\) 5.80716 5.59390i 0.440240 0.424072i
\(175\) 3.59013 6.21829i 0.271388 0.470058i
\(176\) 10.4104 3.41696i 0.784714 0.257563i
\(177\) −4.88100 7.84605i −0.366878 0.589746i
\(178\) −3.13713 + 2.82893i −0.235138 + 0.212037i
\(179\) 3.31875i 0.248055i 0.992279 + 0.124028i \(0.0395811\pi\)
−0.992279 + 0.124028i \(0.960419\pi\)
\(180\) 4.17336 + 0.156188i 0.311064 + 0.0116415i
\(181\) 14.9128i 1.10846i −0.832363 0.554231i \(-0.813013\pi\)
0.832363 0.554231i \(-0.186987\pi\)
\(182\) 8.29098 + 9.19425i 0.614569 + 0.681523i
\(183\) 15.8657 0.522318i 1.17283 0.0386108i
\(184\) −18.4966 + 1.98598i −1.36359 + 0.146409i
\(185\) 2.17702 3.77070i 0.160058 0.277228i
\(186\) 5.01593 17.4104i 0.367786 1.27660i
\(187\) 13.4072 7.74065i 0.980432 0.566053i
\(188\) 14.0836 6.29566i 1.02715 0.459158i
\(189\) 6.71353 4.81647i 0.488337 0.350346i
\(190\) 0.197847 + 0.927391i 0.0143533 + 0.0672800i
\(191\) 3.65884 + 6.33729i 0.264744 + 0.458550i 0.967497 0.252884i \(-0.0813792\pi\)
−0.702752 + 0.711434i \(0.748046\pi\)
\(192\) 9.94353 9.65020i 0.717612 0.696443i
\(193\) −10.2354 + 17.7282i −0.736759 + 1.27610i 0.217189 + 0.976130i \(0.430311\pi\)
−0.953947 + 0.299974i \(0.903022\pi\)
\(194\) −3.35893 1.08861i −0.241157 0.0781576i
\(195\) −0.218387 6.63364i −0.0156390 0.475044i
\(196\) −7.24287 5.24574i −0.517348 0.374696i
\(197\) 20.5437i 1.46368i 0.681479 + 0.731838i \(0.261337\pi\)
−0.681479 + 0.731838i \(0.738663\pi\)
\(198\) −11.1816 + 3.16701i −0.794643 + 0.225070i
\(199\) 1.95597 0.138655 0.0693275 0.997594i \(-0.477915\pi\)
0.0693275 + 0.997594i \(0.477915\pi\)
\(200\) −5.16861 + 11.6792i −0.365476 + 0.825847i
\(201\) 6.29411 + 10.1176i 0.443952 + 0.713640i
\(202\) 4.13915 12.7714i 0.291229 0.898595i
\(203\) −4.53308 2.61718i −0.318160 0.183690i
\(204\) 10.9562 16.2256i 0.767086 1.13602i
\(205\) −1.12347 + 0.648636i −0.0784666 + 0.0453027i
\(206\) −4.35055 20.3928i −0.303117 1.42084i
\(207\) 19.6887 1.29776i 1.36846 0.0902003i
\(208\) −16.4091 14.6863i −1.13777 1.01831i
\(209\) −1.31938 2.28523i −0.0912633 0.158073i
\(210\) −0.652586 2.63139i −0.0450327 0.181583i
\(211\) 9.10981 + 5.25955i 0.627145 + 0.362082i 0.779646 0.626221i \(-0.215399\pi\)
−0.152501 + 0.988303i \(0.548733\pi\)
\(212\) −5.05651 0.523826i −0.347283 0.0359765i
\(213\) −5.62724 3.00649i −0.385572 0.206001i
\(214\) −7.41926 8.22755i −0.507170 0.562424i
\(215\) 2.40987 0.164352
\(216\) −10.9588 + 9.79313i −0.745650 + 0.666338i
\(217\) −11.7620 −0.798456
\(218\) 0.229572 + 0.254583i 0.0155486 + 0.0172425i
\(219\) −4.32641 2.31149i −0.292351 0.156196i
\(220\) −0.392926 + 3.79293i −0.0264911 + 0.255720i
\(221\) −26.9464 15.5575i −1.81261 1.04651i
\(222\) 3.68825 + 14.8720i 0.247539 + 0.998141i
\(223\) 1.93129 + 3.34510i 0.129329 + 0.224004i 0.923417 0.383799i \(-0.125384\pi\)
−0.794088 + 0.607803i \(0.792051\pi\)
\(224\) −7.80675 4.46844i −0.521610 0.298560i
\(225\) 5.98701 12.1517i 0.399134 0.810116i
\(226\) −2.56582 12.0270i −0.170676 0.800027i
\(227\) −13.9183 + 8.03574i −0.923790 + 0.533351i −0.884842 0.465891i \(-0.845734\pi\)
−0.0389481 + 0.999241i \(0.512401\pi\)
\(228\) −2.76561 1.86746i −0.183157 0.123675i
\(229\) −7.46319 4.30888i −0.493182 0.284739i 0.232712 0.972546i \(-0.425240\pi\)
−0.725893 + 0.687807i \(0.758573\pi\)
\(230\) 1.99606 6.15888i 0.131616 0.406105i
\(231\) 3.98507 + 6.40589i 0.262199 + 0.421476i
\(232\) 8.51408 + 3.76788i 0.558977 + 0.247373i
\(233\) 24.1535 1.58235 0.791176 0.611589i \(-0.209469\pi\)
0.791176 + 0.611589i \(0.209469\pi\)
\(234\) 16.7491 + 16.2799i 1.09492 + 1.06425i
\(235\) 5.36886i 0.350226i
\(236\) 6.25870 8.64147i 0.407406 0.562512i
\(237\) −0.328116 9.96670i −0.0213134 0.647407i
\(238\) −12.0904 3.91844i −0.783706 0.253995i
\(239\) −2.01493 + 3.48996i −0.130335 + 0.225746i −0.923806 0.382862i \(-0.874939\pi\)
0.793471 + 0.608608i \(0.208272\pi\)
\(240\) 1.65383 + 4.52989i 0.106754 + 0.292403i
\(241\) 2.81649 + 4.87830i 0.181426 + 0.314239i 0.942366 0.334583i \(-0.108595\pi\)
−0.760940 + 0.648822i \(0.775262\pi\)
\(242\) 1.03177 + 4.83631i 0.0663244 + 0.310890i
\(243\) 12.0409 9.90032i 0.772425 0.635106i
\(244\) 7.48051 + 16.7342i 0.478891 + 1.07130i
\(245\) 2.69539 1.55618i 0.172202 0.0994209i
\(246\) 1.26385 4.38686i 0.0805802 0.279696i
\(247\) −2.65175 + 4.59296i −0.168727 + 0.292243i
\(248\) 20.8020 2.23351i 1.32093 0.141828i
\(249\) −11.4931 + 0.378368i −0.728348 + 0.0239781i
\(250\) −6.27273 6.95612i −0.396722 0.439944i
\(251\) 13.8828i 0.876276i 0.898908 + 0.438138i \(0.144362\pi\)
−0.898908 + 0.438138i \(0.855638\pi\)
\(252\) 8.07837 + 5.07606i 0.508889 + 0.319762i
\(253\) 18.0161i 1.13267i
\(254\) −1.81437 + 1.63612i −0.113843 + 0.102659i
\(255\) 3.59915 + 5.78553i 0.225388 + 0.362304i
\(256\) 14.6553 + 6.42034i 0.915959 + 0.401271i
\(257\) −5.42539 + 9.39705i −0.338427 + 0.586172i −0.984137 0.177410i \(-0.943228\pi\)
0.645710 + 0.763582i \(0.276561\pi\)
\(258\) −6.10786 + 5.88355i −0.380259 + 0.366294i
\(259\) 8.61423 4.97343i 0.535262 0.309034i
\(260\) 6.99676 3.12769i 0.433921 0.193971i
\(261\) −8.85853 4.36448i −0.548329 0.270155i
\(262\) −9.18256 + 1.95898i −0.567300 + 0.121026i
\(263\) −11.6051 20.1005i −0.715598 1.23945i −0.962728 0.270470i \(-0.912821\pi\)
0.247130 0.968982i \(-0.420513\pi\)
\(264\) −8.26433 10.5726i −0.508634 0.650696i
\(265\) 0.884601 1.53217i 0.0543406 0.0941207i
\(266\) −0.667890 + 2.06079i −0.0409509 + 0.126355i
\(267\) 4.56320 + 2.43800i 0.279263 + 0.149203i
\(268\) −8.07067 + 11.1433i −0.492995 + 0.680685i
\(269\) 4.01966i 0.245083i 0.992463 + 0.122541i \(0.0391044\pi\)
−0.992463 + 0.122541i \(0.960896\pi\)
\(270\) −1.55505 4.87276i −0.0946372 0.296547i
\(271\) −6.75621 −0.410411 −0.205205 0.978719i \(-0.565786\pi\)
−0.205205 + 0.978719i \(0.565786\pi\)
\(272\) 22.1269 + 4.63418i 1.34164 + 0.280988i
\(273\) 7.14525 13.3738i 0.432450 0.809417i
\(274\) 4.87880 + 1.58119i 0.294739 + 0.0955233i
\(275\) 10.7118 + 6.18447i 0.645947 + 0.372938i
\(276\) 9.97748 + 20.4830i 0.600574 + 1.23293i
\(277\) −1.83595 + 1.05999i −0.110312 + 0.0636885i −0.554141 0.832423i \(-0.686953\pi\)
0.443829 + 0.896111i \(0.353620\pi\)
\(278\) −23.9428 + 5.10790i −1.43600 + 0.306352i
\(279\) −22.1426 + 1.45950i −1.32564 + 0.0873781i
\(280\) 2.52851 1.84574i 0.151107 0.110304i
\(281\) −13.0580 22.6171i −0.778976 1.34923i −0.932533 0.361086i \(-0.882406\pi\)
0.153557 0.988140i \(-0.450927\pi\)
\(282\) −13.1077 13.6075i −0.780554 0.810313i
\(283\) 16.5376 + 9.54799i 0.983058 + 0.567569i 0.903192 0.429237i \(-0.141217\pi\)
0.0798661 + 0.996806i \(0.474551\pi\)
\(284\) 0.759119 7.32781i 0.0450455 0.434826i
\(285\) 0.986131 0.613468i 0.0584134 0.0363387i
\(286\) −15.8383 + 14.2823i −0.936539 + 0.844531i
\(287\) −2.96364 −0.174938
\(288\) −15.2511 7.44338i −0.898680 0.438605i
\(289\) 14.9423 0.878956
\(290\) −2.40638 + 2.16998i −0.141308 + 0.127425i
\(291\) 0.142290 + 4.32215i 0.00834120 + 0.253369i
\(292\) 0.583636 5.63386i 0.0341547 0.329697i
\(293\) 5.07116 + 2.92784i 0.296261 + 0.171046i 0.640762 0.767740i \(-0.278619\pi\)
−0.344501 + 0.938786i \(0.611952\pi\)
\(294\) −3.03218 + 10.5248i −0.176840 + 0.613818i
\(295\) 1.85668 + 3.21587i 0.108100 + 0.187235i
\(296\) −14.2905 + 10.4317i −0.830619 + 0.606328i
\(297\) 8.29700 + 11.5649i 0.481441 + 0.671065i
\(298\) 29.9049 6.37984i 1.73235 0.369574i
\(299\) 31.3585 18.1048i 1.81351 1.04703i
\(300\) 15.6036 + 1.09900i 0.900872 + 0.0634510i
\(301\) 4.76780 + 2.75269i 0.274812 + 0.158663i
\(302\) −17.0861 5.53751i −0.983195 0.318648i
\(303\) −16.4338 + 0.541021i −0.944098 + 0.0310808i
\(304\) 0.789886 3.77149i 0.0453031 0.216310i
\(305\) −6.37929 −0.365277
\(306\) −23.2471 5.87642i −1.32895 0.335932i
\(307\) 13.7071i 0.782305i −0.920326 0.391152i \(-0.872077\pi\)
0.920326 0.391152i \(-0.127923\pi\)
\(308\) −5.10989 + 7.05530i −0.291163 + 0.402013i
\(309\) −21.6845 + 13.4898i −1.23359 + 0.767409i
\(310\) −2.24484 + 6.92649i −0.127498 + 0.393398i
\(311\) −9.57980 + 16.5927i −0.543221 + 0.940886i 0.455496 + 0.890238i \(0.349462\pi\)
−0.998717 + 0.0506479i \(0.983871\pi\)
\(312\) −10.0973 + 25.0093i −0.571650 + 1.41587i
\(313\) −12.6102 21.8416i −0.712773 1.23456i −0.963812 0.266582i \(-0.914106\pi\)
0.251039 0.967977i \(-0.419228\pi\)
\(314\) 24.1610 5.15444i 1.36348 0.290882i
\(315\) −2.76014 + 1.84574i −0.155516 + 0.103996i
\(316\) 10.5123 4.69919i 0.591362 0.264350i
\(317\) −2.13931 + 1.23513i −0.120156 + 0.0693719i −0.558873 0.829253i \(-0.688766\pi\)
0.438718 + 0.898625i \(0.355433\pi\)
\(318\) 1.49867 + 6.04302i 0.0840412 + 0.338876i
\(319\) 4.50843 7.80883i 0.252424 0.437211i
\(320\) −4.12137 + 3.74447i −0.230392 + 0.209322i
\(321\) −6.39399 + 11.9676i −0.356878 + 0.667967i
\(322\) 10.9841 9.90502i 0.612121 0.551985i
\(323\) 5.44449i 0.302939i
\(324\) 15.8378 + 8.55354i 0.879880 + 0.475197i
\(325\) 24.8597i 1.37897i
\(326\) 8.11408 + 8.99807i 0.449397 + 0.498357i
\(327\) 0.197847 0.370310i 0.0109410 0.0204782i
\(328\) 5.24142 0.562771i 0.289409 0.0310738i
\(329\) −6.13262 + 10.6220i −0.338103 + 0.585611i
\(330\) 4.53292 1.12417i 0.249529 0.0618833i
\(331\) −24.4404 + 14.1107i −1.34336 + 0.775592i −0.987300 0.158869i \(-0.949215\pi\)
−0.356065 + 0.934461i \(0.615882\pi\)
\(332\) −5.41889 12.1223i −0.297400 0.665296i
\(333\) 15.5996 10.4317i 0.854854 0.571651i
\(334\) 3.52621 + 16.5288i 0.192946 + 0.904416i
\(335\) −2.39422 4.14691i −0.130810 0.226570i
\(336\) −1.90229 + 10.8513i −0.103779 + 0.591985i
\(337\) 5.60565 9.70927i 0.305359 0.528897i −0.671982 0.740567i \(-0.734557\pi\)
0.977341 + 0.211670i \(0.0678902\pi\)
\(338\) 23.2866 + 7.54704i 1.26662 + 0.410505i
\(339\) −12.7888 + 7.95587i −0.694593 + 0.432103i
\(340\) −4.61504 + 6.37205i −0.250286 + 0.345573i
\(341\) 20.2616i 1.09723i
\(342\) −1.00162 + 3.96242i −0.0541615 + 0.214263i
\(343\) 18.2411 0.984929
\(344\) −8.95494 3.96298i −0.482818 0.213669i
\(345\) −7.92503 + 0.260901i −0.426669 + 0.0140465i
\(346\) −5.68775 + 17.5497i −0.305776 + 0.943477i
\(347\) −17.8303 10.2943i −0.957180 0.552628i −0.0618763 0.998084i \(-0.519708\pi\)
−0.895304 + 0.445455i \(0.853042\pi\)
\(348\) 0.801166 11.3749i 0.0429470 0.609757i
\(349\) −2.93968 + 1.69723i −0.157358 + 0.0908505i −0.576611 0.817019i \(-0.695625\pi\)
0.419253 + 0.907869i \(0.362292\pi\)
\(350\) −2.11864 9.93094i −0.113246 0.530831i
\(351\) 11.7918 26.0634i 0.629401 1.39116i
\(352\) 7.69748 13.4482i 0.410277 0.716789i
\(353\) −0.503241 0.871639i −0.0267848 0.0463926i 0.852322 0.523017i \(-0.175194\pi\)
−0.879107 + 0.476624i \(0.841860\pi\)
\(354\) −12.5571 3.61770i −0.667404 0.192279i
\(355\) 2.22040 + 1.28195i 0.117847 + 0.0680388i
\(356\) −0.615580 + 5.94222i −0.0326257 + 0.314937i
\(357\) 0.512172 + 15.5575i 0.0271070 + 0.823392i
\(358\) 3.14312 + 3.48555i 0.166119 + 0.184217i
\(359\) 31.4772 1.66131 0.830653 0.556791i \(-0.187968\pi\)
0.830653 + 0.556791i \(0.187968\pi\)
\(360\) 4.53103 3.78846i 0.238806 0.199669i
\(361\) 18.0720 0.951158
\(362\) −14.1236 15.6623i −0.742320 0.823193i
\(363\) 5.14264 3.19921i 0.269918 0.167915i
\(364\) 17.4154 + 1.80413i 0.912812 + 0.0945622i
\(365\) 1.70712 + 0.985604i 0.0893546 + 0.0515889i
\(366\) 16.1684 15.5746i 0.845137 0.814099i
\(367\) −8.66667 15.0111i −0.452397 0.783574i 0.546138 0.837695i \(-0.316098\pi\)
−0.998534 + 0.0541214i \(0.982764\pi\)
\(368\) −17.5454 + 19.6036i −0.914616 + 1.02191i
\(369\) −5.57921 + 0.367747i −0.290442 + 0.0191441i
\(370\) −1.28472 6.02202i −0.0667895 0.313070i
\(371\) 3.50027 2.02088i 0.181725 0.104919i
\(372\) −11.2210 23.0359i −0.581783 1.19436i
\(373\) −11.2742 6.50917i −0.583757 0.337032i 0.178868 0.983873i \(-0.442756\pi\)
−0.762625 + 0.646841i \(0.776090\pi\)
\(374\) 6.75003 20.8274i 0.349036 1.07696i
\(375\) −5.40590 + 10.1182i −0.279160 + 0.522503i
\(376\) 8.82897 19.9504i 0.455319 1.02886i
\(377\) −18.1225 −0.933357
\(378\) 2.48937 11.4168i 0.128039 0.587215i
\(379\) 22.8643i 1.17446i −0.809421 0.587229i \(-0.800219\pi\)
0.809421 0.587229i \(-0.199781\pi\)
\(380\) 1.08610 + 0.786624i 0.0557159 + 0.0403530i
\(381\) 2.63914 + 1.41002i 0.135207 + 0.0722377i
\(382\) 9.84463 + 3.19059i 0.503695 + 0.163245i
\(383\) 15.0117 26.0010i 0.767061 1.32859i −0.172089 0.985081i \(-0.555052\pi\)
0.939150 0.343508i \(-0.111615\pi\)
\(384\) 1.30378 19.5525i 0.0665334 0.997784i
\(385\) −1.51588 2.62559i −0.0772565 0.133812i
\(386\) 6.04020 + 28.3129i 0.307438 + 1.44109i
\(387\) 9.31722 + 4.59047i 0.473621 + 0.233347i
\(388\) −4.55874 + 2.03785i −0.231435 + 0.103456i
\(389\) 32.9474 19.0222i 1.67050 0.964463i 0.703140 0.711051i \(-0.251780\pi\)
0.967358 0.253412i \(-0.0815528\pi\)
\(390\) −6.51193 6.76020i −0.329745 0.342316i
\(391\) −18.5862 + 32.1922i −0.939943 + 1.62803i
\(392\) −12.5750 + 1.35018i −0.635134 + 0.0681943i
\(393\) 6.07425 + 9.76417i 0.306405 + 0.492537i
\(394\) 19.4565 + 21.5762i 0.980203 + 1.08699i
\(395\) 4.00742i 0.201635i
\(396\) −8.74418 + 13.9161i −0.439412 + 0.699308i
\(397\) 37.4510i 1.87961i 0.341709 + 0.939806i \(0.388994\pi\)
−0.341709 + 0.939806i \(0.611006\pi\)
\(398\) 2.05427 1.85246i 0.102971 0.0928553i
\(399\) 2.65175 0.0872987i 0.132753 0.00437040i
\(400\) 5.63278 + 17.1613i 0.281639 + 0.858065i
\(401\) −2.35402 + 4.07728i −0.117554 + 0.203610i −0.918798 0.394728i \(-0.870839\pi\)
0.801244 + 0.598338i \(0.204172\pi\)
\(402\) 16.1926 + 4.66507i 0.807613 + 0.232673i
\(403\) −35.2669 + 20.3613i −1.75677 + 1.01427i
\(404\) −7.74837 17.3334i −0.385496 0.862369i
\(405\) −4.96708 + 3.81720i −0.246816 + 0.189678i
\(406\) −7.23958 + 1.54447i −0.359294 + 0.0766508i
\(407\) 8.56739 + 14.8391i 0.424670 + 0.735549i
\(408\) −3.86006 27.4174i −0.191102 1.35736i
\(409\) 5.36377 9.29032i 0.265221 0.459377i −0.702400 0.711782i \(-0.747888\pi\)
0.967622 + 0.252405i \(0.0812216\pi\)
\(410\) −0.565625 + 1.74525i −0.0279342 + 0.0861917i
\(411\) −0.206675 6.27787i −0.0101945 0.309664i
\(412\) −23.8828 17.2974i −1.17662 0.852183i
\(413\) 8.48324i 0.417433i
\(414\) 19.4491 20.0097i 0.955873 0.983423i
\(415\) 4.62117 0.226844
\(416\) −31.1430 + 0.116294i −1.52691 + 0.00570177i
\(417\) 15.8382 + 25.4594i 0.775598 + 1.24675i
\(418\) −3.54998 1.15053i −0.173635 0.0562742i
\(419\) 3.57600 + 2.06460i 0.174699 + 0.100863i 0.584800 0.811178i \(-0.301173\pi\)
−0.410101 + 0.912040i \(0.634506\pi\)
\(420\) −3.17752 2.14559i −0.155047 0.104694i
\(421\) 13.7321 7.92824i 0.669262 0.386399i −0.126535 0.991962i \(-0.540386\pi\)
0.795797 + 0.605563i \(0.207052\pi\)
\(422\) 14.5489 3.10381i 0.708227 0.151091i
\(423\) −10.2270 + 20.7575i −0.497251 + 1.00926i
\(424\) −5.80675 + 4.23876i −0.282001 + 0.205852i
\(425\) 12.7603 + 22.1015i 0.618965 + 1.07208i
\(426\) −8.75744 + 2.17185i −0.424299 + 0.105226i
\(427\) −12.6211 7.28679i −0.610778 0.352633i
\(428\) −15.5843 1.61444i −0.753294 0.0780370i
\(429\) 23.0381 + 12.3086i 1.11229 + 0.594267i
\(430\) 2.53099 2.28234i 0.122055 0.110064i
\(431\) 16.1853 0.779619 0.389810 0.920895i \(-0.372541\pi\)
0.389810 + 0.920895i \(0.372541\pi\)
\(432\) −2.23468 + 20.6641i −0.107516 + 0.994203i
\(433\) −32.8306 −1.57774 −0.788868 0.614563i \(-0.789332\pi\)
−0.788868 + 0.614563i \(0.789332\pi\)
\(434\) −12.3531 + 11.1395i −0.592969 + 0.534714i
\(435\) 3.50027 + 1.87011i 0.167825 + 0.0896647i
\(436\) 0.482219 + 0.0499552i 0.0230941 + 0.00239242i
\(437\) 5.48709 + 3.16797i 0.262483 + 0.151545i
\(438\) −6.73300 + 1.66979i −0.321715 + 0.0797855i
\(439\) 10.9273 + 18.9267i 0.521533 + 0.903321i 0.999686 + 0.0250450i \(0.00797290\pi\)
−0.478154 + 0.878276i \(0.658694\pi\)
\(440\) 3.17953 + 4.35569i 0.151578 + 0.207650i
\(441\) 13.3854 0.882284i 0.637401 0.0420135i
\(442\) −43.0349 + 9.18095i −2.04696 + 0.436693i
\(443\) −30.4500 + 17.5803i −1.44672 + 0.835265i −0.998284 0.0585501i \(-0.981352\pi\)
−0.448436 + 0.893815i \(0.648019\pi\)
\(444\) 17.9585 + 12.1263i 0.852274 + 0.575491i
\(445\) −1.80055 1.03955i −0.0853543 0.0492793i
\(446\) 5.19643 + 1.68413i 0.246058 + 0.0797459i
\(447\) −19.7821 31.7991i −0.935660 1.50405i
\(448\) −12.4311 + 2.70058i −0.587313 + 0.127591i
\(449\) 3.21851 0.151891 0.0759453 0.997112i \(-0.475803\pi\)
0.0759453 + 0.997112i \(0.475803\pi\)
\(450\) −5.22075 18.4326i −0.246108 0.868923i
\(451\) 5.10526i 0.240397i
\(452\) −14.0853 10.2015i −0.662518 0.479837i
\(453\) 0.723798 + 21.9858i 0.0340070 + 1.03298i
\(454\) −7.00735 + 21.6213i −0.328871 + 1.01474i
\(455\) −3.04669 + 5.27703i −0.142831 + 0.247391i
\(456\) −4.67324 + 0.657940i −0.218844 + 0.0308109i
\(457\) 4.05512 + 7.02368i 0.189691 + 0.328554i 0.945147 0.326645i \(-0.105918\pi\)
−0.755456 + 0.655199i \(0.772585\pi\)
\(458\) −11.9191 + 2.54279i −0.556944 + 0.118817i
\(459\) 2.89467 + 29.2243i 0.135112 + 1.36408i
\(460\) −3.73657 8.35884i −0.174218 0.389733i
\(461\) −18.1813 + 10.4970i −0.846789 + 0.488894i −0.859566 0.511024i \(-0.829266\pi\)
0.0127771 + 0.999918i \(0.495933\pi\)
\(462\) 10.2522 + 2.95366i 0.476977 + 0.137417i
\(463\) −4.45005 + 7.70772i −0.206812 + 0.358208i −0.950708 0.310086i \(-0.899642\pi\)
0.743897 + 0.668294i \(0.232975\pi\)
\(464\) 12.5105 4.10625i 0.580783 0.190628i
\(465\) 8.91276 0.293419i 0.413319 0.0136070i
\(466\) 25.3675 22.8753i 1.17513 1.05968i
\(467\) 26.0527i 1.20557i −0.797902 0.602787i \(-0.794057\pi\)
0.797902 0.602787i \(-0.205943\pi\)
\(468\) 33.0092 + 1.23537i 1.52585 + 0.0571049i
\(469\) 10.9392i 0.505128i
\(470\) 5.08473 + 5.63869i 0.234541 + 0.260094i
\(471\) −15.9825 25.6913i −0.736433 1.18379i
\(472\) −1.61090 15.0033i −0.0741477 0.690581i
\(473\) −4.74188 + 8.21317i −0.218032 + 0.377642i
\(474\) −9.78385 10.1569i −0.449387 0.466520i
\(475\) 3.76715 2.17496i 0.172849 0.0997942i
\(476\) −16.4091 + 7.33521i −0.752112 + 0.336209i
\(477\) 6.33869 4.23876i 0.290229 0.194080i
\(478\) 1.18907 + 5.57365i 0.0543866 + 0.254933i
\(479\) 8.71143 + 15.0886i 0.398035 + 0.689418i 0.993483 0.113976i \(-0.0363588\pi\)
−0.595448 + 0.803394i \(0.703025\pi\)
\(480\) 6.02711 + 3.19126i 0.275099 + 0.145660i
\(481\) 17.2191 29.8244i 0.785125 1.35988i
\(482\) 7.57817 + 2.45604i 0.345176 + 0.111870i
\(483\) −15.9773 8.53624i −0.726991 0.388412i
\(484\) 5.66399 + 4.10221i 0.257454 + 0.186464i
\(485\) 1.73785i 0.0789118i
\(486\) 3.26970 21.8016i 0.148317 0.988940i
\(487\) −29.7367 −1.34750 −0.673750 0.738959i \(-0.735318\pi\)
−0.673750 + 0.738959i \(0.735318\pi\)
\(488\) 23.7051 + 10.4906i 1.07308 + 0.474887i
\(489\) 6.99279 13.0884i 0.316225 0.591878i
\(490\) 1.35703 4.18714i 0.0613042 0.189156i
\(491\) 20.6346 + 11.9134i 0.931229 + 0.537645i 0.887200 0.461385i \(-0.152647\pi\)
0.0440286 + 0.999030i \(0.485981\pi\)
\(492\) −2.82733 5.80430i −0.127466 0.261678i
\(493\) 16.1118 9.30215i 0.725639 0.418948i
\(494\) 1.56487 + 7.33521i 0.0704070 + 0.330027i
\(495\) −3.17953 4.75471i −0.142909 0.213708i
\(496\) 19.7321 22.0469i 0.885999 0.989933i
\(497\) 2.92863 + 5.07254i 0.131367 + 0.227534i
\(498\) −11.7124 + 11.2823i −0.524846 + 0.505571i
\(499\) −16.8622 9.73540i −0.754856 0.435816i 0.0725899 0.997362i \(-0.476874\pi\)
−0.827446 + 0.561546i \(0.810207\pi\)
\(500\) −13.1760 1.36496i −0.589248 0.0610427i
\(501\) 17.5757 10.9338i 0.785226 0.488485i
\(502\) 13.1481 + 14.5806i 0.586830 + 0.650762i
\(503\) 1.23494 0.0550631 0.0275316 0.999621i \(-0.491235\pi\)
0.0275316 + 0.999621i \(0.491235\pi\)
\(504\) 13.2918 2.31967i 0.592064 0.103326i
\(505\) 6.60772 0.294040
\(506\) 17.0627 + 18.9216i 0.758529 + 0.841168i
\(507\) −0.986461 29.9643i −0.0438103 1.33076i
\(508\) −0.356022 + 3.43669i −0.0157959 + 0.152479i
\(509\) 0.392870 + 0.226823i 0.0174136 + 0.0100538i 0.508682 0.860955i \(-0.330133\pi\)
−0.491268 + 0.871009i \(0.663466\pi\)
\(510\) 9.25939 + 2.66762i 0.410013 + 0.118124i
\(511\) 2.25163 + 3.89993i 0.0996061 + 0.172523i
\(512\) 21.4725 7.13674i 0.948958 0.315403i
\(513\) 4.98123 0.493390i 0.219927 0.0217837i
\(514\) 3.20168 + 15.0076i 0.141220 + 0.661957i
\(515\) 8.88784 5.13140i 0.391645 0.226116i
\(516\) −0.842650 + 11.9639i −0.0370956 + 0.526680i
\(517\) −18.2978 10.5643i −0.804737 0.464615i
\(518\) 4.33694 13.3817i 0.190554 0.587960i
\(519\) 22.5823 0.743436i 0.991254 0.0326332i
\(520\) 4.38624 9.91136i 0.192349 0.434642i
\(521\) −29.0873 −1.27434 −0.637170 0.770724i \(-0.719895\pi\)
−0.637170 + 0.770724i \(0.719895\pi\)
\(522\) −13.4373 + 3.80588i −0.588132 + 0.166579i
\(523\) 2.95874i 0.129377i −0.997906 0.0646883i \(-0.979395\pi\)
0.997906 0.0646883i \(-0.0206053\pi\)
\(524\) −7.78875 + 10.7540i −0.340253 + 0.469792i
\(525\) −10.5600 + 6.56930i −0.460874 + 0.286708i
\(526\) −31.2251 10.1199i −1.36148 0.441247i
\(527\) 20.9026 36.2044i 0.910534 1.57709i
\(528\) −18.6927 3.27695i −0.813496 0.142611i
\(529\) −10.1294 17.5446i −0.440407 0.762808i
\(530\) −0.522029 2.44697i −0.0226755 0.106289i
\(531\) 1.05265 + 15.9702i 0.0456813 + 0.693046i
\(532\) 1.25027 + 2.79690i 0.0542061 + 0.121261i
\(533\) −8.88610 + 5.13039i −0.384900 + 0.222222i
\(534\) 7.10152 1.76118i 0.307313 0.0762136i
\(535\) 2.72636 4.72219i 0.117871 0.204158i
\(536\) 2.07728 + 19.3469i 0.0897246 + 0.835658i
\(537\) 2.70877 5.07000i 0.116892 0.218787i
\(538\) 3.80693 + 4.22168i 0.164128 + 0.182010i
\(539\) 12.2483i 0.527573i
\(540\) −6.24809 3.64491i −0.268875 0.156852i
\(541\) 14.9753i 0.643838i 0.946767 + 0.321919i \(0.104328\pi\)
−0.946767 + 0.321919i \(0.895672\pi\)
\(542\) −7.09577 + 6.39866i −0.304789 + 0.274846i
\(543\) −12.1719 + 22.7821i −0.522345 + 0.977672i
\(544\) 27.6279 16.0888i 1.18454 0.689803i
\(545\) −0.0843608 + 0.146117i −0.00361362 + 0.00625897i
\(546\) −5.16163 20.8130i −0.220897 0.890715i
\(547\) 15.7731 9.10661i 0.674409 0.389370i −0.123336 0.992365i \(-0.539359\pi\)
0.797745 + 0.602995i \(0.206026\pi\)
\(548\) 6.62152 2.95995i 0.282857 0.126443i
\(549\) −24.6641 12.1517i −1.05264 0.518621i
\(550\) 17.1074 3.64964i 0.729460 0.155621i
\(551\) −1.58553 2.74622i −0.0675459 0.116993i
\(552\) 29.8780 + 12.0630i 1.27169 + 0.513437i
\(553\) −4.57750 + 7.92846i −0.194655 + 0.337153i
\(554\) −0.924333 + 2.85205i −0.0392711 + 0.121172i
\(555\) −6.40345 + 3.98356i −0.271811 + 0.169093i
\(556\) −20.3086 + 28.0404i −0.861276 + 1.18918i
\(557\) 35.7359i 1.51418i −0.653310 0.757090i \(-0.726620\pi\)
0.653310 0.757090i \(-0.273380\pi\)
\(558\) −21.8732 + 22.5036i −0.925966 + 0.952654i
\(559\) 19.0609 0.806190
\(560\) 0.907529 4.33320i 0.0383501 0.183111i
\(561\) −26.7999 + 0.882284i −1.13149 + 0.0372501i
\(562\) −35.1345 11.3869i −1.48206 0.480327i
\(563\) −8.04256 4.64337i −0.338953 0.195695i 0.320856 0.947128i \(-0.396030\pi\)
−0.659809 + 0.751433i \(0.729363\pi\)
\(564\) −26.6539 1.87731i −1.12233 0.0790489i
\(565\) 5.24176 3.02633i 0.220523 0.127319i
\(566\) 26.4114 5.63454i 1.11016 0.236838i
\(567\) −14.1873 + 1.87845i −0.595813 + 0.0788873i
\(568\) −6.14274 8.41504i −0.257744 0.353087i
\(569\) −5.66727 9.81599i −0.237584 0.411508i 0.722436 0.691437i \(-0.243022\pi\)
−0.960021 + 0.279930i \(0.909689\pi\)
\(570\) 0.454691 1.57824i 0.0190449 0.0661053i
\(571\) 37.7843 + 21.8148i 1.58122 + 0.912920i 0.994681 + 0.103002i \(0.0328448\pi\)
0.586543 + 0.809918i \(0.300489\pi\)
\(572\) −3.10785 + 30.0002i −0.129946 + 1.25437i
\(573\) −0.417036 12.6677i −0.0174219 0.529201i
\(574\) −3.11258 + 2.80680i −0.129917 + 0.117153i
\(575\) −29.6992 −1.23854
\(576\) −23.0671 + 6.62652i −0.961128 + 0.276105i
\(577\) 6.98123 0.290632 0.145316 0.989385i \(-0.453580\pi\)
0.145316 + 0.989385i \(0.453580\pi\)
\(578\) 15.6932 14.1515i 0.652752 0.588624i
\(579\) 30.1062 18.7289i 1.25117 0.778348i
\(580\) −0.472190 + 4.55807i −0.0196066 + 0.189264i
\(581\) 9.14274 + 5.27856i 0.379305 + 0.218992i
\(582\) 4.24285 + 4.40461i 0.175872 + 0.182577i
\(583\) 3.48124 + 6.02968i 0.144178 + 0.249724i
\(584\) −4.72274 6.46976i −0.195428 0.267721i
\(585\) −5.08076 + 10.3123i −0.210063 + 0.426363i
\(586\) 8.09892 1.72780i 0.334563 0.0713749i
\(587\) 7.34574 4.24107i 0.303191 0.175048i −0.340684 0.940178i \(-0.610659\pi\)
0.643876 + 0.765130i \(0.277325\pi\)
\(588\) 6.78322 + 13.9255i 0.279735 + 0.574276i
\(589\) −6.17097 3.56281i −0.254270 0.146803i
\(590\) 4.99568 + 1.61907i 0.205669 + 0.0666561i
\(591\) 16.7678 31.3842i 0.689734 1.29097i
\(592\) −5.12913 + 24.4902i −0.210806 + 1.00654i
\(593\) −9.40869 −0.386368 −0.193184 0.981163i \(-0.561881\pi\)
−0.193184 + 0.981163i \(0.561881\pi\)
\(594\) 19.6669 + 4.28826i 0.806942 + 0.175950i
\(595\) 6.25538i 0.256445i
\(596\) 25.3657 35.0228i 1.03902 1.43459i
\(597\) −2.98810 1.59647i −0.122295 0.0653390i
\(598\) 15.7878 48.7137i 0.645613 1.99205i
\(599\) −14.9623 + 25.9155i −0.611344 + 1.05888i 0.379670 + 0.925122i \(0.376038\pi\)
−0.991014 + 0.133757i \(0.957296\pi\)
\(600\) 17.4286 13.6236i 0.711520 0.556179i
\(601\) 1.81973 + 3.15186i 0.0742282 + 0.128567i 0.900750 0.434337i \(-0.143017\pi\)
−0.826522 + 0.562904i \(0.809684\pi\)
\(602\) 7.61444 1.62444i 0.310342 0.0662074i
\(603\) −1.35741 20.5937i −0.0552781 0.838641i
\(604\) −23.1893 + 10.3661i −0.943558 + 0.421789i
\(605\) −2.10782 + 1.21695i −0.0856950 + 0.0494760i
\(606\) −16.7474 + 16.1323i −0.680315 + 0.655331i
\(607\) 3.63358 6.29355i 0.147482 0.255447i −0.782814 0.622256i \(-0.786216\pi\)
0.930296 + 0.366809i \(0.119550\pi\)
\(608\) −2.74231 4.70912i −0.111215 0.190980i
\(609\) 4.78897 + 7.69812i 0.194059 + 0.311944i
\(610\) −6.69990 + 6.04169i −0.271271 + 0.244621i
\(611\) 42.4651i 1.71795i
\(612\) −29.9809 + 15.8451i −1.21191 + 0.640499i
\(613\) 32.6469i 1.31859i 0.751882 + 0.659297i \(0.229146\pi\)
−0.751882 + 0.659297i \(0.770854\pi\)
\(614\) −12.9817 14.3960i −0.523898 0.580975i
\(615\) 2.24572 0.0739319i 0.0905563 0.00298122i
\(616\) 1.31521 + 12.2494i 0.0529915 + 0.493541i
\(617\) 15.6751 27.1501i 0.631056 1.09302i −0.356280 0.934379i \(-0.615955\pi\)
0.987336 0.158642i \(-0.0507115\pi\)
\(618\) −9.99840 + 34.7047i −0.402194 + 1.39603i
\(619\) 1.72589 0.996445i 0.0693695 0.0400505i −0.464914 0.885356i \(-0.653915\pi\)
0.534284 + 0.845305i \(0.320581\pi\)
\(620\) 4.20227 + 9.40065i 0.168767 + 0.377539i
\(621\) −31.1373 14.0874i −1.24950 0.565307i
\(622\) 5.65332 + 26.4994i 0.226677 + 1.06253i
\(623\) −2.37486 4.11339i −0.0951469 0.164799i
\(624\) 13.0810 + 35.8292i 0.523658 + 1.43432i
\(625\) −8.98375 + 15.5603i −0.359350 + 0.622413i
\(626\) −33.9297 10.9964i −1.35610 0.439505i
\(627\) 0.150383 + 4.56798i 0.00600574 + 0.182428i
\(628\) 20.4936 28.2959i 0.817785 1.12913i
\(629\) 35.3538i 1.40965i
\(630\) −1.15080 + 4.55257i −0.0458490 + 0.181379i
\(631\) −15.4643 −0.615623 −0.307812 0.951447i \(-0.599597\pi\)
−0.307812 + 0.951447i \(0.599597\pi\)
\(632\) 6.59010 14.8913i 0.262140 0.592345i
\(633\) −9.62404 15.4704i −0.382521 0.614892i
\(634\) −1.07706 + 3.32330i −0.0427756 + 0.131985i
\(635\) −1.04135 0.601225i −0.0413248 0.0238589i
\(636\) 7.29720 + 4.92737i 0.289353 + 0.195383i
\(637\) 21.3192 12.3086i 0.844697 0.487686i
\(638\) −2.66056 12.4711i −0.105332 0.493737i
\(639\) 6.14274 + 9.18592i 0.243003 + 0.363390i
\(640\) −0.782194 + 7.83593i −0.0309189 + 0.309742i
\(641\) −12.3638 21.4147i −0.488340 0.845829i 0.511570 0.859241i \(-0.329064\pi\)
−0.999910 + 0.0134123i \(0.995731\pi\)
\(642\) 4.61893 + 18.6247i 0.182295 + 0.735058i
\(643\) 40.0176 + 23.1042i 1.57814 + 0.911141i 0.995119 + 0.0986850i \(0.0314636\pi\)
0.583023 + 0.812456i \(0.301870\pi\)
\(644\) 2.15535 20.8057i 0.0849326 0.819858i
\(645\) −3.68152 1.96694i −0.144960 0.0774482i
\(646\) −5.15636 5.71812i −0.202874 0.224976i
\(647\) −6.36971 −0.250419 −0.125210 0.992130i \(-0.539960\pi\)
−0.125210 + 0.992130i \(0.539960\pi\)
\(648\) 24.7347 6.01624i 0.971670 0.236340i
\(649\) −14.6135 −0.573630
\(650\) −23.5441 26.1091i −0.923474 1.02408i
\(651\) 17.9686 + 9.60016i 0.704245 + 0.376260i
\(652\) 17.0438 + 1.76564i 0.667485 + 0.0691476i
\(653\) −31.8848 18.4087i −1.24775 0.720389i −0.277090 0.960844i \(-0.589370\pi\)
−0.970660 + 0.240455i \(0.922703\pi\)
\(654\) −0.142922 0.576298i −0.00558870 0.0225350i
\(655\) −2.31058 4.00205i −0.0902820 0.156373i
\(656\) 4.97185 5.55509i 0.194118 0.216890i
\(657\) 4.72274 + 7.06244i 0.184252 + 0.275532i
\(658\) 3.61904 + 16.9639i 0.141085 + 0.661323i
\(659\) −6.46565 + 3.73294i −0.251866 + 0.145415i −0.620618 0.784113i \(-0.713118\pi\)
0.368752 + 0.929528i \(0.379785\pi\)
\(660\) 3.69606 5.47369i 0.143869 0.213063i
\(661\) −2.51984 1.45483i −0.0980102 0.0565862i 0.450194 0.892931i \(-0.351355\pi\)
−0.548204 + 0.836345i \(0.684688\pi\)
\(662\) −12.3048 + 37.9668i −0.478240 + 1.47562i
\(663\) 28.4675 + 45.7607i 1.10559 + 1.77720i
\(664\) −17.1720 7.59940i −0.666402 0.294914i
\(665\) −1.06622 −0.0413461
\(666\) 6.50404 25.7300i 0.252026 0.997017i
\(667\) 21.6505i 0.838310i
\(668\) 19.3575 + 14.0199i 0.748965 + 0.542447i
\(669\) −0.220130 6.68657i −0.00851071 0.258518i
\(670\) −6.44199 2.08781i −0.248876 0.0806592i
\(671\) 12.5525 21.7415i 0.484582 0.839321i
\(672\) 8.27909 + 13.1982i 0.319373 + 0.509133i
\(673\) 21.0527 + 36.4643i 0.811522 + 1.40560i 0.911799 + 0.410637i \(0.134694\pi\)
−0.100277 + 0.994960i \(0.531973\pi\)
\(674\) −3.30806 15.5062i −0.127422 0.597278i
\(675\) −19.0645 + 13.6774i −0.733794 + 0.526444i
\(676\) 31.6046 14.1279i 1.21556 0.543379i
\(677\) −32.9941 + 19.0492i −1.26807 + 0.732119i −0.974622 0.223858i \(-0.928135\pi\)
−0.293445 + 0.955976i \(0.594802\pi\)
\(678\) −5.89673 + 20.4677i −0.226463 + 0.786058i
\(679\) 1.98507 3.43825i 0.0761801 0.131948i
\(680\) 1.18785 + 11.0631i 0.0455518 + 0.424251i
\(681\) 27.8215 0.915918i 1.06612 0.0350981i
\(682\) −19.1893 21.2799i −0.734796 0.814849i
\(683\) 47.0728i 1.80119i −0.434659 0.900595i \(-0.643131\pi\)
0.434659 0.900595i \(-0.356869\pi\)
\(684\) 2.70076 + 5.11018i 0.103266 + 0.195393i
\(685\) 2.52421i 0.0964450i
\(686\) 19.1579 17.2758i 0.731453 0.659593i
\(687\) 7.88448 + 12.6741i 0.300812 + 0.483546i
\(688\) −13.1582 + 4.31887i −0.501653 + 0.164656i
\(689\) 6.99676 12.1187i 0.266555 0.461687i
\(690\) −8.07623 + 7.77963i −0.307457 + 0.296166i
\(691\) −3.38522 + 1.95446i −0.128780 + 0.0743512i −0.563006 0.826453i \(-0.690355\pi\)
0.434226 + 0.900804i \(0.357022\pi\)
\(692\) 10.6473 + 23.8185i 0.404750 + 0.905442i
\(693\) −0.859436 13.0388i −0.0326473 0.495302i
\(694\) −28.4760 + 6.07498i −1.08093 + 0.230603i
\(695\) −6.02468 10.4350i −0.228529 0.395824i
\(696\) −9.93146 12.7053i −0.376451 0.481594i
\(697\) 5.26678 9.12234i 0.199494 0.345533i
\(698\) −1.48002 + 4.56664i −0.0560196 + 0.172850i
\(699\) −36.8990 19.7142i −1.39565 0.745658i
\(700\) −11.6305 8.42354i −0.439591 0.318380i
\(701\) 16.4480i 0.621231i 0.950536 + 0.310615i \(0.100535\pi\)
−0.950536 + 0.310615i \(0.899465\pi\)
\(702\) −12.2997 38.5411i −0.464221 1.45464i
\(703\) 6.02598 0.227274
\(704\) −4.65211 21.4142i −0.175333 0.807076i
\(705\) 4.38207 8.20192i 0.165038 0.308902i
\(706\) −1.35404 0.438838i −0.0509601 0.0165159i
\(707\) 13.0730 + 7.54772i 0.491662 + 0.283861i
\(708\) −16.6145 + 8.09307i −0.624410 + 0.304156i
\(709\) 6.84805 3.95372i 0.257184 0.148485i −0.365865 0.930668i \(-0.619227\pi\)
0.623049 + 0.782183i \(0.285894\pi\)
\(710\) 3.54610 0.756515i 0.133083 0.0283915i
\(711\) −7.63358 + 15.4938i −0.286282 + 0.581062i
\(712\) 4.98123 + 6.82387i 0.186679 + 0.255735i
\(713\) 24.3251 + 42.1324i 0.910984 + 1.57787i
\(714\) 15.2721 + 15.8544i 0.571544 + 0.593334i
\(715\) −9.09037 5.24833i −0.339961 0.196276i
\(716\) 6.60217 + 0.683947i 0.246735 + 0.0255603i
\(717\) 5.92668 3.68696i 0.221336 0.137692i
\(718\) 33.0592 29.8114i 1.23376 1.11255i
\(719\) −37.0556 −1.38194 −0.690970 0.722884i \(-0.742816\pi\)
−0.690970 + 0.722884i \(0.742816\pi\)
\(720\) 1.17078 8.27010i 0.0436325 0.308208i
\(721\) 23.4455 0.873156
\(722\) 18.9803 17.1156i 0.706372 0.636977i
\(723\) −0.321025 9.75131i −0.0119390 0.362655i
\(724\) −29.6669 3.07332i −1.10256 0.114219i
\(725\) 12.8727 + 7.43204i 0.478079 + 0.276019i
\(726\) 2.37119 8.23048i 0.0880033 0.305462i
\(727\) 2.83467 + 4.90979i 0.105132 + 0.182094i 0.913792 0.406182i \(-0.133140\pi\)
−0.808660 + 0.588276i \(0.799807\pi\)
\(728\) 19.9993 14.5989i 0.741222 0.541071i
\(729\) −26.4754 + 5.29673i −0.980569 + 0.196175i
\(730\) 2.72636 0.581634i 0.100907 0.0215272i
\(731\) −16.9461 + 9.78381i −0.626773 + 0.361867i
\(732\) 2.23062 31.6701i 0.0824461 1.17056i
\(733\) −10.8544 6.26677i −0.400915 0.231469i 0.285964 0.958240i \(-0.407686\pi\)
−0.686879 + 0.726772i \(0.741020\pi\)
\(734\) −23.3190 7.55754i −0.860718 0.278954i
\(735\) −5.38786 + 0.177375i −0.198734 + 0.00654256i
\(736\) 0.138933 + 37.2056i 0.00512114 + 1.37142i
\(737\) 18.8443 0.694139
\(738\) −5.51132 + 5.67018i −0.202875 + 0.208722i
\(739\) 1.83358i 0.0674492i 0.999431 + 0.0337246i \(0.0107369\pi\)
−0.999431 + 0.0337246i \(0.989263\pi\)
\(740\) −7.05261 5.10795i −0.259259 0.187772i
\(741\) 7.79981 4.85223i 0.286533 0.178251i
\(742\) 1.76226 5.43749i 0.0646945 0.199616i
\(743\) −15.6588 + 27.1219i −0.574467 + 0.995006i 0.421632 + 0.906767i \(0.361457\pi\)
−0.996099 + 0.0882391i \(0.971876\pi\)
\(744\) −33.6018 13.5665i −1.23190 0.497372i
\(745\) 7.52491 + 13.0335i 0.275691 + 0.477511i
\(746\) −18.0055 + 3.84125i −0.659230 + 0.140638i
\(747\) 17.8667 + 8.80269i 0.653708 + 0.322074i
\(748\) −12.6359 28.2669i −0.462013 1.03354i
\(749\) 10.7879 6.22841i 0.394182 0.227581i
\(750\) 3.90515 + 15.7466i 0.142596 + 0.574983i
\(751\) 3.64466 6.31274i 0.132996 0.230355i −0.791834 0.610736i \(-0.790874\pi\)
0.924830 + 0.380381i \(0.124207\pi\)
\(752\) −9.62186 29.3148i −0.350873 1.06900i
\(753\) 11.3312 21.2086i 0.412931 0.772883i
\(754\) −19.0333 + 17.1634i −0.693153 + 0.625055i
\(755\) 8.84005i 0.321722i
\(756\) −8.19810 14.3482i −0.298162 0.521838i
\(757\) 12.8156i 0.465792i 0.972502 + 0.232896i \(0.0748202\pi\)
−0.972502 + 0.232896i \(0.925180\pi\)
\(758\) −21.6542 24.0134i −0.786518 0.872206i
\(759\) 14.7048 27.5230i 0.533750 0.999020i
\(760\) 1.88568 0.202466i 0.0684009 0.00734421i
\(761\) 12.5800 21.7892i 0.456025 0.789859i −0.542721 0.839913i \(-0.682606\pi\)
0.998747 + 0.0500541i \(0.0159394\pi\)
\(762\) 4.10718 1.01858i 0.148787 0.0368993i
\(763\) −0.333807 + 0.192724i −0.0120846 + 0.00697706i
\(764\) 13.3611 5.97269i 0.483389 0.216084i
\(765\) −0.776207 11.7761i −0.0280638 0.425765i
\(766\) −8.85883 41.5250i −0.320083 1.50036i
\(767\) 14.6854 + 25.4359i 0.530261 + 0.918439i
\(768\) −17.1484 21.7700i −0.618791 0.785556i
\(769\) −10.7318 + 18.5880i −0.386998 + 0.670300i −0.992044 0.125890i \(-0.959821\pi\)
0.605046 + 0.796190i \(0.293155\pi\)
\(770\) −4.07870 1.32188i −0.146986 0.0476374i
\(771\) 15.9582 9.92750i 0.574719 0.357530i
\(772\) 33.1583 + 24.0153i 1.19339 + 0.864330i
\(773\) 20.2122i 0.726981i −0.931598 0.363491i \(-0.881585\pi\)
0.931598 0.363491i \(-0.118415\pi\)
\(774\) 14.1330 4.00295i 0.508001 0.143883i
\(775\) 33.4007 1.19979
\(776\) −2.85786 + 6.45775i −0.102591 + 0.231820i
\(777\) −17.2191 + 0.566874i −0.617733 + 0.0203365i
\(778\) 16.5878 51.1820i 0.594701 1.83496i
\(779\) −1.55488 0.897712i −0.0557095 0.0321639i
\(780\) −13.2417 0.932648i −0.474127 0.0333942i
\(781\) −8.73811 + 5.04495i −0.312674 + 0.180523i
\(782\) 10.9682 + 51.4127i 0.392223 + 1.83851i
\(783\) 9.97073 + 13.8979i 0.356325 + 0.496670i
\(784\) −11.9283 + 13.3276i −0.426010 + 0.475984i
\(785\) 6.07957 + 10.5301i 0.216989 + 0.375836i
\(786\) 15.6270 + 4.50211i 0.557395 + 0.160585i
\(787\) −17.5726 10.1455i −0.626395 0.361649i 0.152960 0.988232i \(-0.451120\pi\)
−0.779355 + 0.626583i \(0.784453\pi\)
\(788\) 40.8686 + 4.23376i 1.45588 + 0.150821i
\(789\) 1.32275 + 40.1793i 0.0470912 + 1.43042i
\(790\) 3.79534 + 4.20882i 0.135032 + 0.149743i
\(791\) 13.8274 0.491646
\(792\) 3.99594 + 22.8969i 0.141989 + 0.813605i
\(793\) −50.4570 −1.79178
\(794\) 35.4690 + 39.3332i 1.25875 + 1.39588i
\(795\) −2.60195 + 1.61866i −0.0922818 + 0.0574081i
\(796\) 0.403098 3.89112i 0.0142874 0.137917i
\(797\) 28.8758 + 16.6715i 1.02283 + 0.590533i 0.914924 0.403627i \(-0.132251\pi\)
0.107910 + 0.994161i \(0.465584\pi\)
\(798\) 2.70234 2.60310i 0.0956619 0.0921487i
\(799\) −21.7970 37.7535i −0.771122 1.33562i
\(800\) 22.1690 + 12.6891i 0.783792 + 0.448628i
\(801\) −4.98123 7.44898i −0.176003 0.263197i
\(802\) 1.38918 + 6.51164i 0.0490535 + 0.229934i
\(803\) −6.71815 + 3.87873i −0.237078 + 0.136877i
\(804\) 21.4246 10.4361i 0.755587 0.368053i
\(805\) 6.30432 + 3.63980i 0.222198 + 0.128286i
\(806\) −17.7556 + 54.7852i −0.625413 + 1.92972i
\(807\) 3.28085 6.14076i 0.115491 0.216165i
\(808\) −24.5539 10.8662i −0.863803 0.382273i
\(809\) 30.6920 1.07907 0.539536 0.841962i \(-0.318600\pi\)
0.539536 + 0.841962i \(0.318600\pi\)
\(810\) −1.60153 + 8.71327i −0.0562722 + 0.306153i
\(811\) 49.5457i 1.73978i −0.493241 0.869892i \(-0.664188\pi\)
0.493241 0.869892i \(-0.335812\pi\)
\(812\) −6.14069 + 8.47854i −0.215496 + 0.297538i
\(813\) 10.3213 + 5.51443i 0.361985 + 0.193399i
\(814\) 23.0518 + 7.47096i 0.807965 + 0.261857i
\(815\) −2.98168 + 5.16443i −0.104444 + 0.180902i
\(816\) −30.0205 25.1396i −1.05093 0.880061i
\(817\) 1.66763 + 2.88842i 0.0583430 + 0.101053i
\(818\) −3.16532 14.8372i −0.110673 0.518769i
\(819\) −21.8314 + 14.5989i −0.762849 + 0.510127i
\(820\) 1.05884 + 2.36865i 0.0369761 + 0.0827170i
\(821\) 32.9739 19.0375i 1.15080 0.664414i 0.201716 0.979444i \(-0.435348\pi\)
0.949082 + 0.315030i \(0.102015\pi\)
\(822\) −6.16269 6.39765i −0.214949 0.223144i
\(823\) 11.2626 19.5074i 0.392589 0.679984i −0.600201 0.799849i \(-0.704913\pi\)
0.992790 + 0.119865i \(0.0382461\pi\)
\(824\) −41.4651 + 4.45211i −1.44451 + 0.155097i
\(825\) −11.3165 18.1909i −0.393990 0.633326i
\(826\) 8.03429 + 8.90960i 0.279549 + 0.310004i
\(827\) 33.5317i 1.16601i 0.812468 + 0.583006i \(0.198124\pi\)
−0.812468 + 0.583006i \(0.801876\pi\)
\(828\) 1.47586 39.4352i 0.0512897 1.37047i
\(829\) 37.7559i 1.31132i −0.755058 0.655658i \(-0.772391\pi\)
0.755058 0.655658i \(-0.227609\pi\)
\(830\) 4.85342 4.37661i 0.168465 0.151914i
\(831\) 3.66991 0.120818i 0.127308 0.00419113i
\(832\) −32.5980 + 29.6169i −1.13013 + 1.02678i
\(833\) −12.6359 + 21.8860i −0.437807 + 0.758304i
\(834\) 40.7462 + 11.7389i 1.41092 + 0.406486i
\(835\) −7.20378 + 4.15910i −0.249297 + 0.143932i
\(836\) −4.81804 + 2.15376i −0.166635 + 0.0744892i
\(837\) 35.0181 + 15.8432i 1.21040 + 0.547620i
\(838\) 5.71107 1.21838i 0.197286 0.0420884i
\(839\) −9.90604 17.1578i −0.341994 0.592352i 0.642809 0.766027i \(-0.277769\pi\)
−0.984803 + 0.173675i \(0.944436\pi\)
\(840\) −5.36926 + 0.755932i −0.185257 + 0.0260821i
\(841\) −9.08210 + 15.7307i −0.313176 + 0.542436i
\(842\) 6.91361 21.3321i 0.238259 0.735152i
\(843\) 1.48836 + 45.2098i 0.0512618 + 1.55711i
\(844\) 12.3405 17.0387i 0.424778 0.586497i
\(845\) 12.0481i 0.414466i
\(846\) 8.91803 + 31.4865i 0.306608 + 1.08253i
\(847\) −5.56028 −0.191053
\(848\) −2.08415 + 9.95124i −0.0715700 + 0.341727i
\(849\) −17.4711 28.0843i −0.599607 0.963851i
\(850\) 34.3334 + 11.1273i 1.17763 + 0.381662i
\(851\) −35.6304 20.5712i −1.22140 0.705173i
\(852\) −7.14066 + 10.5750i −0.244635 + 0.362293i
\(853\) 5.95424 3.43768i 0.203869 0.117704i −0.394590 0.918857i \(-0.629113\pi\)
0.598459 + 0.801153i \(0.295780\pi\)
\(854\) −20.1566 + 4.30015i −0.689744 + 0.147148i
\(855\) −2.00721 + 0.132303i −0.0686451 + 0.00452466i
\(856\) −17.8965 + 13.0639i −0.611690 + 0.446516i
\(857\) −3.87316 6.70851i −0.132305 0.229158i 0.792260 0.610184i \(-0.208904\pi\)
−0.924565 + 0.381025i \(0.875571\pi\)
\(858\) 35.8532 8.89159i 1.22401 0.303554i
\(859\) −0.594592 0.343288i −0.0202872 0.0117128i 0.489822 0.871822i \(-0.337062\pi\)
−0.510109 + 0.860110i \(0.670395\pi\)
\(860\) 0.496640 4.79409i 0.0169353 0.163477i
\(861\) 4.52750 + 2.41892i 0.154297 + 0.0824367i
\(862\) 16.9988 15.3288i 0.578980 0.522100i
\(863\) −42.9194 −1.46099 −0.730496 0.682917i \(-0.760711\pi\)
−0.730496 + 0.682917i \(0.760711\pi\)
\(864\) 17.2236 + 23.8191i 0.585957 + 0.810342i
\(865\) −9.07991 −0.308726
\(866\) −34.4806 + 31.0931i −1.17170 + 1.05659i
\(867\) −22.8270 12.1959i −0.775246 0.414194i
\(868\) −2.42398 + 23.3988i −0.0822752 + 0.794206i
\(869\) −13.6578 7.88535i −0.463310 0.267492i
\(870\) 5.44733 1.35094i 0.184682 0.0458011i
\(871\) −18.9371 32.8000i −0.641658 1.11138i
\(872\) 0.553766 0.404233i 0.0187529 0.0136891i
\(873\) 3.31037 6.71901i 0.112039 0.227404i
\(874\) 8.76318 1.86951i 0.296419 0.0632372i
\(875\) 9.12082 5.26591i 0.308340 0.178020i
\(876\) −5.48998 + 8.13039i −0.185489 + 0.274700i
\(877\) −14.7508 8.51640i −0.498100 0.287578i 0.229828 0.973231i \(-0.426183\pi\)
−0.727929 + 0.685653i \(0.759517\pi\)
\(878\) 29.4016 + 9.52888i 0.992255 + 0.321584i
\(879\) −5.35742 8.61190i −0.180701 0.290472i
\(880\) 7.46451 + 1.56334i 0.251629 + 0.0527001i
\(881\) −7.90546 −0.266342 −0.133171 0.991093i \(-0.542516\pi\)
−0.133171 + 0.991093i \(0.542516\pi\)
\(882\) 13.2226 13.6037i 0.445227 0.458059i
\(883\) 7.53298i 0.253505i −0.991934 0.126752i \(-0.959545\pi\)
0.991934 0.126752i \(-0.0404554\pi\)
\(884\) −36.5027 + 50.3998i −1.22772 + 1.69513i
\(885\) −0.211626 6.42826i −0.00711372 0.216083i
\(886\) −15.3304 + 47.3023i −0.515035 + 1.58915i
\(887\) 7.02719 12.1715i 0.235950 0.408677i −0.723598 0.690221i \(-0.757513\pi\)
0.959548 + 0.281544i \(0.0908465\pi\)
\(888\) 30.3457 4.27234i 1.01833 0.143370i
\(889\) −1.37351 2.37899i −0.0460660 0.0797886i
\(890\) −2.87558 + 0.613468i −0.0963896 + 0.0205635i
\(891\) −3.23587 24.4396i −0.108406 0.818757i
\(892\) 7.05260 3.15265i 0.236138 0.105558i
\(893\) −6.43501 + 3.71525i −0.215339 + 0.124326i
\(894\) −50.8925 14.6621i −1.70210 0.490374i
\(895\) −1.15500 + 2.00052i −0.0386075 + 0.0668701i
\(896\) −10.4982 + 14.6095i −0.350719 + 0.488069i
\(897\) −62.6831 + 2.06360i −2.09293 + 0.0689016i
\(898\) 3.38026 3.04818i 0.112801 0.101719i
\(899\) 24.3489i 0.812081i
\(900\) −22.9403 14.4146i −0.764676 0.480486i
\(901\) 14.3655i 0.478585i
\(902\) −4.83508 5.36184i −0.160990 0.178530i
\(903\) −5.03694 8.09673i −0.167619 0.269442i
\(904\) −24.4548 + 2.62571i −0.813355 + 0.0873300i
\(905\) 5.19001 8.98936i 0.172522 0.298816i
\(906\) 21.5824 + 22.4053i 0.717028 + 0.744365i
\(907\) −39.7958 + 22.9761i −1.32140 + 0.762910i −0.983952 0.178435i \(-0.942897\pi\)
−0.337447 + 0.941345i \(0.609563\pi\)
\(908\) 13.1176 + 29.3445i 0.435322 + 0.973831i
\(909\) 25.5472 + 12.5868i 0.847349 + 0.417478i
\(910\) 1.79794 + 8.42770i 0.0596012 + 0.279375i
\(911\) 25.7911 + 44.6715i 0.854497 + 1.48003i 0.877111 + 0.480288i \(0.159468\pi\)
−0.0226136 + 0.999744i \(0.507199\pi\)
\(912\) −4.28499 + 5.11693i −0.141890 + 0.169438i
\(913\) −9.09302 + 15.7496i −0.300935 + 0.521235i
\(914\) 10.9109 + 3.53616i 0.360900 + 0.116966i
\(915\) 9.74553 + 5.20679i 0.322177 + 0.172131i
\(916\) −10.1099 + 13.9589i −0.334042 + 0.461216i
\(917\) 10.5571i 0.348627i
\(918\) 30.7179 + 27.9516i 1.01384 + 0.922541i
\(919\) −21.2048 −0.699481 −0.349741 0.936847i \(-0.613730\pi\)
−0.349741 + 0.936847i \(0.613730\pi\)
\(920\) −11.8408 5.24012i −0.390381 0.172762i
\(921\) −11.1877 + 20.9401i −0.368649 + 0.689999i
\(922\) −9.15362 + 28.2437i −0.301458 + 0.930157i
\(923\) 17.5623 + 10.1396i 0.578069 + 0.333748i
\(924\) 13.5648 6.60756i 0.446250 0.217373i
\(925\) −24.4620 + 14.1231i −0.804305 + 0.464366i
\(926\) 2.62611 + 12.3096i 0.0862992 + 0.404520i
\(927\) 44.1374 2.90927i 1.44966 0.0955528i
\(928\) 9.25027 16.1610i 0.303655 0.530511i
\(929\) 1.70516 + 2.95343i 0.0559446 + 0.0968989i 0.892641 0.450767i \(-0.148850\pi\)
−0.836697 + 0.547666i \(0.815516\pi\)
\(930\) 9.08281 8.74925i 0.297837 0.286899i
\(931\) 3.73042 + 2.15376i 0.122259 + 0.0705865i
\(932\) 4.97770 48.0500i 0.163050 1.57393i
\(933\) 28.1779 17.5293i 0.922502 0.573885i
\(934\) −24.6739 27.3621i −0.807356 0.895314i
\(935\) 10.7757 0.352403
\(936\) 35.8382 29.9648i 1.17141 0.979432i
\(937\) 29.4448 0.961919 0.480959 0.876743i \(-0.340288\pi\)
0.480959 + 0.876743i \(0.340288\pi\)
\(938\) −10.3603 11.4890i −0.338277 0.375130i
\(939\) 1.43732 + 43.6595i 0.0469053 + 1.42477i
\(940\) 10.6806 + 1.10645i 0.348362 + 0.0360883i
\(941\) 40.5880 + 23.4335i 1.32313 + 0.763910i 0.984227 0.176911i \(-0.0566106\pi\)
0.338904 + 0.940821i \(0.389944\pi\)
\(942\) −41.1174 11.8459i −1.33968 0.385960i
\(943\) 6.12914 + 10.6160i 0.199592 + 0.345704i
\(944\) −15.9011 14.2316i −0.517537 0.463201i
\(945\) 5.72312 0.566874i 0.186173 0.0184404i
\(946\) 2.79832 + 13.1169i 0.0909812 + 0.426467i
\(947\) 31.5821 18.2340i 1.02628 0.592524i 0.110365 0.993891i \(-0.464798\pi\)
0.915917 + 0.401367i \(0.131465\pi\)
\(948\) −19.8949 1.40126i −0.646157 0.0455107i
\(949\) 13.5024 + 7.79564i 0.438308 + 0.253057i
\(950\) 1.89662 5.85206i 0.0615344 0.189866i
\(951\) 4.27630 0.140781i 0.138669 0.00456514i
\(952\) −10.2868 + 23.2446i −0.333398 + 0.753362i
\(953\) 38.0590 1.23285 0.616426 0.787413i \(-0.288580\pi\)
0.616426 + 0.787413i \(0.288580\pi\)
\(954\) 2.64283 10.4550i 0.0855647 0.338494i
\(955\) 5.09344i 0.164820i
\(956\) 6.52751 + 4.72763i 0.211115 + 0.152903i
\(957\) −13.2610 + 8.24963i −0.428668 + 0.266673i
\(958\) 23.4394 + 7.59657i 0.757292 + 0.245434i
\(959\) −2.88330 + 4.99401i −0.0931065 + 0.161265i
\(960\) 9.35239 2.35650i 0.301847 0.0760558i
\(961\) −11.8569 20.5368i −0.382481 0.662477i
\(962\) −10.1615 47.6312i −0.327620 1.53569i
\(963\) 19.5360 13.0639i 0.629538 0.420980i
\(964\) 10.2851 4.59764i 0.331261 0.148080i
\(965\) −12.3397 + 7.12430i −0.397228 + 0.229339i
\(966\) −24.8647 + 6.16646i −0.800010 + 0.198403i
\(967\) 11.4864 19.8951i 0.369378 0.639782i −0.620090 0.784531i \(-0.712904\pi\)
0.989468 + 0.144749i \(0.0462374\pi\)
\(968\) 9.83377 1.05585i 0.316069 0.0339364i
\(969\) −4.44380 + 8.31745i −0.142755 + 0.267195i
\(970\) −1.64588 1.82519i −0.0528461 0.0586034i
\(971\) 53.8829i 1.72919i −0.502474 0.864593i \(-0.667577\pi\)
0.502474 0.864593i \(-0.332423\pi\)
\(972\) −17.2138 25.9940i −0.552132 0.833757i
\(973\) 27.5269i 0.882473i
\(974\) −31.2313 + 28.1630i −1.00071 + 0.902401i
\(975\) −20.2905 + 37.9777i −0.649816 + 1.21626i
\(976\) 34.8319 11.4327i 1.11494 0.365952i
\(977\) 19.1024 33.0863i 0.611140 1.05853i −0.379909 0.925024i \(-0.624045\pi\)
0.991049 0.133501i \(-0.0426220\pi\)
\(978\) −5.05150 20.3689i −0.161529 0.651326i
\(979\) 7.08585 4.09102i 0.226465 0.130749i
\(980\) −2.54032 5.68279i −0.0811475 0.181530i
\(981\) −0.604495 + 0.404233i −0.0193001 + 0.0129062i
\(982\) 32.9547 7.03045i 1.05163 0.224351i
\(983\) −24.3307 42.1420i −0.776028 1.34412i −0.934215 0.356711i \(-0.883898\pi\)
0.158186 0.987409i \(-0.449435\pi\)
\(984\) −8.46656 3.41832i −0.269904 0.108972i
\(985\) −7.14968 + 12.3836i −0.227808 + 0.394574i
\(986\) 8.11169 25.0288i 0.258329 0.797079i
\(987\) 18.0384 11.2216i 0.574169 0.357188i
\(988\) 8.59054 + 6.22181i 0.273301 + 0.197942i
\(989\) 22.7715i 0.724093i
\(990\) −7.84241 1.98241i −0.249248 0.0630051i
\(991\) −12.7822 −0.406040 −0.203020 0.979175i \(-0.565076\pi\)
−0.203020 + 0.979175i \(0.565076\pi\)
\(992\) −0.156249 41.8428i −0.00496091 1.32851i
\(993\) 48.8543 1.60834i 1.55034 0.0510392i
\(994\) 7.87991 + 2.55383i 0.249936 + 0.0810027i
\(995\) 1.17905 + 0.680723i 0.0373783 + 0.0215804i
\(996\) −1.61586 + 22.9419i −0.0512006 + 0.726942i
\(997\) −21.1161 + 12.1914i −0.668752 + 0.386104i −0.795604 0.605817i \(-0.792846\pi\)
0.126851 + 0.991922i \(0.459513\pi\)
\(998\) −26.9299 + 5.74514i −0.852450 + 0.181859i
\(999\) −32.3456 + 3.20383i −1.02337 + 0.101365i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.2.n.b.13.7 yes 16
3.2 odd 2 216.2.n.b.37.2 16
4.3 odd 2 288.2.r.b.49.7 16
8.3 odd 2 288.2.r.b.49.2 16
8.5 even 2 inner 72.2.n.b.13.1 16
9.2 odd 6 216.2.n.b.181.8 16
9.4 even 3 648.2.d.j.325.6 8
9.5 odd 6 648.2.d.k.325.3 8
9.7 even 3 inner 72.2.n.b.61.1 yes 16
12.11 even 2 864.2.r.b.145.4 16
24.5 odd 2 216.2.n.b.37.8 16
24.11 even 2 864.2.r.b.145.5 16
36.7 odd 6 288.2.r.b.241.2 16
36.11 even 6 864.2.r.b.721.5 16
36.23 even 6 2592.2.d.k.1297.5 8
36.31 odd 6 2592.2.d.j.1297.4 8
72.5 odd 6 648.2.d.k.325.4 8
72.11 even 6 864.2.r.b.721.4 16
72.13 even 6 648.2.d.j.325.5 8
72.29 odd 6 216.2.n.b.181.2 16
72.43 odd 6 288.2.r.b.241.7 16
72.59 even 6 2592.2.d.k.1297.4 8
72.61 even 6 inner 72.2.n.b.61.7 yes 16
72.67 odd 6 2592.2.d.j.1297.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.n.b.13.1 16 8.5 even 2 inner
72.2.n.b.13.7 yes 16 1.1 even 1 trivial
72.2.n.b.61.1 yes 16 9.7 even 3 inner
72.2.n.b.61.7 yes 16 72.61 even 6 inner
216.2.n.b.37.2 16 3.2 odd 2
216.2.n.b.37.8 16 24.5 odd 2
216.2.n.b.181.2 16 72.29 odd 6
216.2.n.b.181.8 16 9.2 odd 6
288.2.r.b.49.2 16 8.3 odd 2
288.2.r.b.49.7 16 4.3 odd 2
288.2.r.b.241.2 16 36.7 odd 6
288.2.r.b.241.7 16 72.43 odd 6
648.2.d.j.325.5 8 72.13 even 6
648.2.d.j.325.6 8 9.4 even 3
648.2.d.k.325.3 8 9.5 odd 6
648.2.d.k.325.4 8 72.5 odd 6
864.2.r.b.145.4 16 12.11 even 2
864.2.r.b.145.5 16 24.11 even 2
864.2.r.b.721.4 16 72.11 even 6
864.2.r.b.721.5 16 36.11 even 6
2592.2.d.j.1297.4 8 36.31 odd 6
2592.2.d.j.1297.5 8 72.67 odd 6
2592.2.d.k.1297.4 8 72.59 even 6
2592.2.d.k.1297.5 8 36.23 even 6